sei sul sito di Giovanni Fraterno

Prefazione: ho "annientato" la matematica corrente
I numeri negativi della matematica corrente sono l'espressione dell'annientamento dell'ordinamento capovolto da parte dell'ordinamento tradizionale
Penso che i nostri antenati utilizzavano i simboli numerici (lettere, geroglifici, bastoncini) solo per rappresentare delle quantit di oggetti, ma non per far di conto.

Per far di conto, invece, credo che essi si affidavano alle dita delle mani o ai sassi, e ci sia per contare che per conteggiare, e nella sostanza usando mentalmente un sistema di numerazione posizionale su base decimale, ben prima che questo venisse proposto con i simboli e le implementazioni aritmetiche che tutti noi conosciamo.

Ed infatti gli antichi Romani, anche se con notazione numerica scrivevano LXXVII (e solo per denotare una quantit), non dicevano n scrivevano quinquaginta decem decem quinque unum unum, ma dicevano e scrivevano: septaginta septem.

Ritengo ci la prova dell'uso mentale di un sistema di numerazione posizionale su base decimale attraverso l'uso dei sassi, proprio perch gli Antichi per capire, ad esempio, la numerosit del gregge C, unione del gregge A composto di sessantacinque pecore, e del gregge B composto di dodici pecore, mischiavano i sassi, i sei grandi e cinque piccoli rappresentativi del gregge A, e l'uno grande e due piccoli rappresentativi del gregge B.

Ed appunto ottenendo sette sassi grandi e sette sassi piccoli, e quindi settantasette pecore, ovvero septaginta septem pecore.

Il problema dunque, che nessun popolo dell'antichit fu in grado di risolvere, fu quello di inventarsi un formalismo simbolico numerico coerente con il sistema mentale di calcolo coadiuvato dai sassi, sistema di calcolo che all'epoca reputo gi fosse senz'altro posizionale e decimale.

Viene, a questo punto, spontaneo chiedersi:

ma il sistema di numerazione posizionale su base decimale corrente, l'unico possibile ?

e ancora:

ci si pu inventare un sistema di numerazione posizionale su base decimale che non prevede il numero zero ?

Ebbene, penso di essere riuscito nell'impresa di dare corpo, appunto, ad un innovativo sistema di numerazione posizionale su base decimale e che, fra l'altro, non prevede il numero zero.

E ci, nonostante mi sia volutamente mosso nell'ambito di una logica primitiva, con l'obiettivo di comprendere la mente logica-matematica degli Antichi, e quella istintiva e primitiva dell'uomo moderno.

Da questo punto di vista, l'invenzione (o la scoperta ?) degli ordinali capovolti, utili fra l'altro per il conteggio del tempo all'indietro (paragrafo CA.20) stata determinante.

Conteggio del tempo all'indietro, con il quale gli Antichi erano in evidente difficolt: si veda la designazione dei giorni del mese degli antichi Romani fatta attraverso il sistema delle calende, none e idi.

Conteggio del tempo all'indietro, con il quale siamo addirittura in difficolt noi Moderni: si veda la cronologia con gli anni avanti Cristo, con la quale, il buon Dionigi il Piccolo, non c'entra perfettamente niente.

Ma andiamo con ordine.

L'Origine Estrema (OE) di tutte le grandezze continue il nulla, un concetto logico dietro il quale non esiste n il denaro, n lo spazio, n il tempo, n nient'altro.

Di una grandezza continua per diciamo che non ha una quantit minima indivisibile.

Sembrerebbe dunque che le grandezze continue siano fatte di nulla.

In realt, ad esempio, il presente esiste, ed un istante, e separa il passato dal futuro.

Per dirimere la questione penso si possa dire:

se indichiamo con le parole stato nascente di una grandezza continua, il primo manifestarsi di quest'ultima, interrogarsi sulla quantificabilit dell'istante di tempo, equivale a interrogarsi sulla quantificabilit dello stato nascente del tempo, che estrapolando, equivale a interrogarsi sulla quantificabilit dello stato nascente di tutte le grandezze continue, e quindi equivale a interrogarsi sullo stato nascente dell'universo (il tutto).

Ma a quest'ultimo interrogativo non saremo mai in grado di rispondere, perch vorrebbe dire che un giorno saremo in grado di capire come passare dal nulla al tutto, con ci diventando noi stessi i creatori dell'universo di cui facciamo attualmente parte.

La qual cosa non possibile, dato che allora non saremmo oggi qui a chiederci della quantificabilit dell'istante di tempo.

Il creatore del tutto, appunto al disopra di tutto, tempo incluso.

Quantificare un istante di tempo, dunque, non sar mai possibile, ed infatti di una grandezza continua in generale noi diciamo che non ha una quantit minima indivisibile.

Ma alla luce delle considerazioni esposte forse pi giusto dire:

che una grandezza continua ha una quantit minima indivisibile, il suo stato nascente, la cui quantificabilit ci per per sempre preclusa, e ci perch non siamo i creatori del tutto.

Ma la quantificabilit dello stato nascente di una grandezza continua, potrebbe addirittura esserci preclusa, perch la grandezza continua corrispondente nemmeno esiste, pur essendo funzionale alla comprensione dell'universo, e che dunque si tratta di semplice pensiero umano coadiuvato da un mero conteggio.

Per cui anche tale siffatto stato nascente, ha senz'altro un'esistenza reale, come reale il pensiero umano che l'ha partorito, ma, come quest'ultimo, del tutto non quantificabile.

In generale, per le grandezze continue, impossibile fissare una OE.

Una tipica grandezza continua senza OE , ad esempio, il tempo.

Alla domanda:
"Quando nasce il tempo ?"
non siamo, infatti, in grado di rispondere.

Tipiche grandezze continue con una OE, sono viceversa la velocit e il denaro.

Tra le due grandi Guerre Mondiali sono infatti esistite monete italiane che erano e si chiamavano Centesimi (di lire).

E fra breve entreranno in circolazione in Europa, i Centesimi di euro, anche quello denaro.

Nulla vieta, d'altra parte, anche se non esiste la corrispondente moneta, di dire che quella cosa:
"Non vale nemmeno un milionesimo di lire"
o anche meno.

Al fatto che non tutte le grandezze continue hanno una OE, si pu ovviare introducendo l'Ordinamento Capovolto (OC), si veda a tal fine il paragrafo LA.19.

L'OC fa riferimento ad una logica alternativa a quella cui fa riferimento l'Ordinamento Tradizionale (OT), e pertanto da luogo ad una nuova matematica, appunto la Matematica dell'Ordinamento Capovolto (MOC).

E' di importanza fondamentale capire che, ad esempio, un segmento che nell'OT misura 1,7
nell'OC, lo stesso segmento, misura 2,7.

E ci perch, semplicemente, sono alternativi i modi di designare gli intervalli.

Se, infatti, nell'OT i numeri sono l'espressione numerica della quantit di intervalli completi, raggiunti e superati.
Per cui la misura 1,7 significa che sono stati appunto raggiunti e superati: 1 intervallo e 7 sottointervalli.

Nell'OC i numeri sono l'espressione numerica della quantit di intervalli completi, raggiunti ma non superati.
Per cui la misura 2,7 significa che sono stati appunto raggiunti ma non superati: 2 intervalli e 7 sottointervalli.

Tutto ci comporta, fra l'altro, che solo i segmenti che hanno per misura un numero intero (senza decimali), si ritrovano ad avere la stessa notazione numerica nell'OT e nell'OC.

E anche se nell'OC al nulla non associabile un numero, lo 0 (zero) (vedi paragrafo LA.19), l'aritmetica esiste ugualmente, come del resto i suoi dieci numeri, che appunto sono:

1 2 3 4 5 6 7 8 9

con l'ultimo numero a destra, che il numero dieci, mentre ogni numero la corrispondente quantit relativa agli ordinali capovolti:

1 2 3 4 5 6 7 .......

ovvero:

ultimo penultimo terzultimo ..............

Riporto di seguito i primi 200 numeri interi dell'OC in notazione posizionale e decimale, dai quali possibile ricavare tutti i successivi, e per i quali l'impiego del numero zero non assolutamente necessario:


da uno a cento:
  1    2    3    4    5    6    7    8    9    
 11   12   13   14   15   16   17   18   19   1
 21   22   23   24   25   26   27   28   29   2
 31   32   33   34   35   36   37   38   39   3
 41   42   43   44   45   46   47   48   49   4
 51   52   53   54   55   56   57   58   59   5
 61   62   63   64   65   66   67   68   69   6
 71   72   73   74   75   76   77   78   79   7
 81   82   83   84   85   86   87   88   89   8
 91   92   93   94   95   96   97   98   99   9


 da centouno a duecento:
 1   2   3   4   5   6   7   8   9   
111  112  113  114  115  116  117  118  119  11
121  122  123  124  125  126  127  128  129  12
131  132  133  134  135  136  137  138  139  13
141  142  143  144  145  146  147  148  149  14
151  152  153  154  155  156  157  158  159  15
161  162  163  164  165  166  167  168  169  16
171  172  173  174  175  176  177  178  179  17
181  182  183  184  185  186  187  188  189  18
191  192  193  194  195  196  197  198  199  19
E cos via.

Il sistema di numerazione posizionale su base decimale senza il numero zero stato dunque trovato e, fra l'altro, consente anche un risparmio di caratteri.

Il numero mille : 99 = 9 * ^2 + 9 * ^1 + .

Il numero duemila : 199 = 1 * ^3 + 9 * ^2 + 9 * ^1 + .

Il numero duemilauno : 191 = 1 * ^3 + 9 * ^2 + * ^1 + 1.

Secondo la MOC, alternativa alla Matematica dell'Ordinamento Tradizionale (MOT), ad esempio:

1,7 + 1,2 = 1,9 (e non 2,9)
perch:
1,7 + 1,2 = 7/ + 2/ = 1/ (7 + 2) = 9/ = 1,9

ma anche:

1,7 - 1,2 = 1,5 (e non 0,5)
perch:
1,7 - 1,2 = 7/ - 2/ = 1/ (7 - 2) = 5/ = 1,5

Attenzione che, ad esempio, le quantit:
1,1
2,2
sono rispettivamente pi piccole delle quantit:
1
2
ed infatti:
1,1 = 1/ = un decimo
1,2 = 2/ = due decimi
2,1 = 1 + 1/
2,2 = 1 + 2/

Per cui anche se :
1 > 1,1

1,2 > 1,1

La sequenza di numeri reali in crescita (da sinistra a destra) con una sola cifra decimale, fino ad 1 :

1,1___1,2___1,3___1,4___1,5___1,6___1,7___1,8___1,9___1,__1

Anche 14,1 pi piccolo di 14, ed infatti :
14,1 = 13 + 1/ = 1* + 3 + 1/

Utili alla comprensione della MOC sono anche, ad esempio, le operazioni:

1 + = 11

1 * =

3,1 + 2,7 = (2 + 1/) + (1 + 7/) = 3 + 8/ = 4,8

3,8 - 2,6 = (2 + 8/) - (1 + 6/) = 1 + 2/ = 2,2

3,7 - 2,8 = (2 + 7/) - (1 + 8/) = 1 + 7/ - 8/ =
= / + 7/ - 8/ = 9/ = 1,9

3,7 + 2,8 = (2 + 7/) + (1 + 8/) = 3 + 15/ =
= 3 + / + 5/ = 4 + 5/ = 5,5

Se dunque nella MOT la parte intera di un numero reale, ovvero la parte intera di un "numero con la virgola", e quindi la sequenza di numeri "a sinistra" della virgola, pi piccola del numero reale stesso, e con riferimento, ad esempio, al numero 403,207 :
403 minore di 403,207 .

Nella MOC, invece, la parte intera di un numero reale, ovvero la parte intera di un "numero con la virgola", e quindi la sequenza di numeri "a sinistra" della virgola, pi grande del numero reale stesso, e con riferimento, ad esempio, al numero 74,25 :
74 maggiore di 74,25 .

Nel paragrafo LA.19 scritto fra l' altro:

" Ma allora vuol dire che, questa volta, l'immenso, e cio l'estremo superiore dell'intervallo finale, in base alla definizione allargata di numero cardinale, associabile ad un numero, essendo ora l'immenso incluso nell'intervallo finale, e quindi concettualmente raggiungibile.
Per cui, mentre nell'ambito dell'ordinamento tradizionale, l'immenso non un numero, nell'ambito dell'ordinamento capovolto, ha la dignit di numero.
Ha quindi diritto ad un simbolo, per esempio questo:
oo
e ad un nome numerico, ovvero
infinito. "

Fin qui, dunque, si detto che:

- per individuare l'estremo superiore dell'intervallo cui appartiene il numero reale R dell'ordinamento capovolto, basta prendere semplicemente la parte intera di R

- poich l'immenso incluso nell'intervallo finale, questi concettualmente raggiungibile, per cui, nell'ambito dell'OC, all'immenso associabile un numero, ovvero il simbolo oo che chiamiamo infinito.

Quest'ultima cosa quello che effettivamente avviene.

L'oo (l' infinito) infatti, un numero che saremo sempre in grado di quantificare, dato che per ogni numero reale R della MOC, comunque grande (anche titanico), sempre possibile individuare l'estremo superiore dell'intervallo cui appartiene R.

E ci prendendo semplicemente la parte intera di R.

Nella MOC, dunque, l'infinito un numero come tutti gli altri, maneggiabile numericamente sempre, e per esempio usarlo per per effettuare le normali quattro operazioni aritmetiche.

Baster infatti scrivere:
oo = (parte intera del numero reale titanico R)

Ma la MOC regaler e regala altre sorprese, e per esempio, il fatto che, non esistendo lo zero, l'addizione non ha un elemento neutro, e non nemmeno possibile la sottrazione fra numeri identici.

In generale, come nella MOT le operazioni che coinvolgono l'immenso sono impossibili, cos nella MOC lo sono quelle che coinvolgono il nulla.

Della MOC, in realt, c' gi traccia nella nostra matematica, la MOT, ed esattamente nei numeri negativi.

Numeri negativi che sono l'espressione della sottomissione, ed anzi dell'annientamento, della MOC alla MOT.

Capito il meccanismo di azione di suddetto annientamento, possibile e lecito, dualmente, annientare del tutto la MOT, introducendo i numeri negativi nella MOC.

Si detto che i due tipi di ordinamento sono distinti e separati, e danno luogo a due distinte matematiche.

Quello che per possiamo fare, e che inconsapevolmente abbiamo fatto, fondere i due tipi di ordinamenti e nel modo spiegato in dettaglio nel paragrafo LA.19.

In sostanza l spiego che, le "tacche" dell'OC, da positive diventano negative, per far si che, gli spostamenti nell'OC, siano da considerarsi positivi e negativi, in modo concorde a quanto avviene nell'OT.

Quello che, a livello numerico, successivamente avviene, e che nel paragrafo segnalato non scritto, che, per ottenere l'asse reale a tutti noto, in aggiunta a quanto gi detto, e sempre inconsapevolmente, quello che abbiamo fatto anche leggere le lunghezze dei segmenti dell'OC, utilizzando il criterio adottato per leggere la misura dei segmenti dell'OT.

Cos, ad esempio, un segmento che nell'OC misura 2,7 viene trattato numericamente come un segmento di lunghezza 1,7 con ci sottomettendo di fatto, la MOC alla MOT, ed anzi annientandola.

Se, dunque, vogliamo sottomettere, viceversa, la MOT alla MOC, dobbiamo esattamente fare le stesse cose.

E quindi: ridesignare le "tacche" dell'OT con i numeri negativi, e leggere la misura dei segmenti dell'OT secondo la logica dell'OC, con ci sottomettendo di fatto, la MOT alla MOC, ed anzi annientandola.

Ci si traduce nello scrivere numericamente che:

1,2 - 1,7 = 2/ - 7/ = 1/ (2 - 7) = - 5/ = -1,5


Giovanni
sabato 6 giorno di ottobre 2001



utenti in questo momento connessi alla rete di siti web di Giovanni Fraterno: