Home ] Su ] Indice Generale del Corso ] Novitą ] Le News del Corso Basico ] History ] Cosa bolle in pentola ] Analisi delle carte ] Bibliografia ] Biblioteca del Corso Basico ] Cenni biografici ] Cinquantesimo anniversario ] Climatologia ] Commenti ] Conferenze di meteorologia ] Contributo alla storia della meteorologia ] Corsi avanzati ] Corso basico di meteorologia ] Curiosita e calcoli dilettevoli ] Domande e risposte ] Glossario minimo ] Guida all'interpretazione del messaggio TEMP ] I collaboratori del corso basico ] In preparazione ] Indizi ] Laboratorio di Meteorologia ] Letture d'altri tempi ] Meteorologia aeronautica ] Meteorologia ed inquinamento atmosferico ] Meteorologia ... in breve ] Meteorologia e sicurezza nelle scuole di vela ] Meteorologia per la vela ] Meteorologia per il volo a vela ] Modelli numerici di previsione ] Noticine sinottiche ] Organizzazioni Meteorologiche ] Parlare meteorologico ] Piccolo dizionario italiano-inglese ] Piccolo glossario meteo aeronautico ] Questionari ] Tabelle riassuntive ]

Laurene V. Fausett - 

Fundamentals of Neural Networks: Architectures, Algorithms, and Applications

Brief Description:

Written with the beginner in mind, this volume offers an exceptionally clear and thorough introduction to neural networks at an elementary level. Systematic discussion of all major neural nets features presentation of the architectures, detailed algorithms, and examples of simple applications - in many cases variations on a theme. Each chapter concludes with suggestions for further study, including numerous exercises and computer projects. An instructor's manual with solutions and sample software (in Fortran and C) will be available later this spring.

Table of Contents

Chapter 1 INTRODUCTION; 
1.1 Why neural networks, and why now?;
1.2 What is a neural net?; 
1.3 Where are neural nets being used?;
1.4 How are neural networks used?; 
1.5 Who is developing neural networks?;
1.6 When neural nets began - the McCulloch-Pitts neuron.
Chapter 2 SIMPLE NEURAL NETS FOR PATTERN CLASSIFICATION; 
2.1 General discussion; 
2.2 Hebb net;
2.3 Perceptron;
2.4 Adaline.
Chapter 3 PATTERN ASSOCIATION; 
3.1 Training algorithms for pattern association; 
3.2 Heteroassociative memory neural network;
3.3 Autoassociative net; 
3.4 Iterative autoassociative net;
3.5 Bidirectional associative memory (BAM).
Chapter 4 NEURAL NETWORKS BASED ON COMPETITION; 
4.1 Fixed-weight competitive nets; 
4.2 Kohonen self-organizing maps; 
4.3 Learning vector quantization;
 4.4 Counterpropagation.
Chapter 5 ADAPTIVE RESONANCE THEORY; 
5.1 Introduction; 
5.2 ART1;
5.3 ART2.
Chapter 6 BACKPROPAGATION NEURAL NET; 
6.1 Standard backpropagation;
6.2 Variations; 
6.3 Theoretical results.
Chapter 7 A SAMPLER OF OTHER NEURAL NETS; 
7.1 Fixed weight nets for constrained optimization; 
7.2 A few more nets that learn;
7.3 Adaptive architectures; 
7.4 Neocognitron.
Glossary; References; Index.

Laurene V. Fausett - Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, Prentice Hall.

 
Questa pagina č stata realizzata da Vittorio Villasmunta

v_villas@libero.it

Copyright ©1999, 2001 - SoloBari Corp.