|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object javax.robotics.vecmath.jama.SingularValueDecomposition
public class SingularValueDecomposition
Singular Value Decomposition.
For an m-by-n matrix A with m >= n, the singular value decomposition is an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and an n-by-n orthogonal matrix V so that A = U*S*V'.
The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= ... >= sigma[n-1].
The singular value decompostion always exists, so the constructor will never fail. The matrix condition number and the effective numerical rank can be computed from this decomposition.
Constructor Summary | |
---|---|
SingularValueDecomposition(double[][] Arg,
int NumRow,
int NumCol)
Construct the singular value decomposition |
Method Summary | |
---|---|
double |
cond()
Two norm condition number |
double[][] |
getS()
Return the diagonal matrix of singular values |
double[] |
getSingularValues()
Return the one-dimensional array of singular values |
double[][] |
getU()
Return the left singular vectors |
double[][] |
getV()
Return the right singular vectors |
double |
norm2()
Two norm |
int |
rank()
Effective numerical matrix rank |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public SingularValueDecomposition(double[][] Arg, int NumRow, int NumCol)
Arg
- Rectangular matrixNumRow
- number of rows of matrixNumCol
- number of columns of matrixMethod Detail |
---|
public final double[][] getU()
public final double[][] getV()
public final double[] getSingularValues()
public double[][] getS()
public final double norm2()
public double cond()
public int rank()
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |