classe
4D |
modulo
1.c sistemi lineari (riferimento CAPITOLO
10) |
prerequisiti
| determinante di una matrice |
| rango di una matrice |
| concetto di sistema: lineare, determinato,
indeterminato, impossibile |
|
obiettivi:
- prendere confidenza con i termini: matrice dei coefficienti e
matrice incompleta, matrice completa
- teorema di Rouché-Capelli
- soluzione di un sistema: che relazioni ci sono tra numero
di incognite, rango e numero di equazioni
- i sistemi omogenei
- il metodo di Cramer
alla fine del modulo dobbiamo, dato un
sistema lineare di qualunque tipo (numerico o parametrico), saper
decidere se ha soluzioni, quante ne ha, come trovarle. |
fasi di
lavoro: |
esercizi |
tempi
previsti |
date |
| matrice incompleta e completa. Il teorema di Rouché-Capelli.
Applicazioni varie (sistemi numerici, sistemi con parametri)
p293-298. |
|
|
30' |
5.11.01 |
|
e142n1-18
e142n19-40 |
30' |
5.11.01 |
| la regola di Cramer |
|
e144n64-75 |
30' |
6.11.01 |
| lavoro sui sistemi |
|
e145n76-108 |
50' |
4.11.01 |
| verifiche orali |
|
|
120' |
12.11.01 |
| verifica scritta |
|
|
50' |
13.11.01 |
in
questo modulo useremo quanto appreso sul determinante e sul rango visto
nel modulo precendente nell'uso particolare per la soluzione e la
discussione dei sistemi lineari. |
|
totale
lezioni 7 ore |