next up previous contents
Next: Ringraziamenti Up: tesi Previous: A.2 Analisi quantitativa   Indice

Bibliografia

1
S. C. ABRAHAMS, H. J. LEVINSTEIN, J. M. REDDY. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24 °C and 1200 °C. J. of Phys. Chem. Solids, 27, pp. 1019-1026, 1966.

2
S. C. ABRAHAMS, J. M. REDDY, J. L. BERNSTEIN. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 °C. J. of Phys. Chem. Solids, 27, pp. 997-1012, 1966.

3
S. C. ABRAHAMS, W. C. HAMILTON, J. M. REDDY. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 °C. J. of Phys. Chem. Solids, 27, pp. 1013-1018, 1966.

4
X. AN, D. PSALTIS, G. W. BURR. Thermal fixing of 10,000 holograms in LiNbO3:Fe. Appl. Opt., 38, pp. 366-393, 1999.

5
A. ASHKIN, G. D. BOYD, J. M. DZIEDZIC, R. G. SMIITH, A. A. BALLMAN, J. J. LEVINSTEIN, K. NASSAU. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett., 9, pp. 72-74, 1966.

6
Y. AVRAHAMI, E. ZOLOTOYABKO. Diffusion and stuctural modification of Ti:LiNbO3 by high-resolution X-ray diffraction. J. Appl. Phys., 85, pp. 6447-6452, 1999.

7
A. S. BAKKER JR., R. LOUDON Dielectric properties and optical phonons in LiNbO3. Phys. Rev., 158, pp. 433-445, 1967.

8
A. BERTINO. Lo scambio protonico in LiNbO3: studio e applicazioni. Tesi di laurea, Università di Padova, 1998.

9
G. W. BURR, H. COUFAL, J. A. HOFFNAGLE, C. M. JEFFERSON, M. JURICH, B. MARCUS, R. M. MACFARLANE, R. M. SHELBY. Optical data storage enters a new dimension. Physics World, pp. 37-42, 2000.

10
F. CACCAVALE, P. CHAKRABORTY, I. MANSOUR, G. GIANELLO, M. MAZZOLENI, M. ELENA. A secondary-ion-mass spectrometry of magnesium diffusion in lithium niobate. J. of Appl. Phys., 76, pp. 7552-7558, 1994.

11
C. CACCAVALE, F. GONELLA, G. CANEVA, I. MANSUR. Iterative simplex-finite difference method for the characterization of optical waveguides. IEEE J. of Light. Techn., LT-14, pp. 1825-1830, 1996.

12
F. CACCAVALE, A. MORBIATO, M. NATALI, C. SADA, F. SEGATO. Correlation between optical and compositional properties of Ti:LiNbO3 channel optical waveguides. J. Appl. Phys., 87, pp. 107-1011, 2000.

13
K. S. CHIANG. Construction of refractive index profiles of planar dielectric waveguides from the distribution of effective indexes. IEEE J. of Light. Tech., LT-3, pp. 385-391, 1985.

14
J. CRANK. The mathematics of diffusion. Clarendon Press-Oxford, 1975.

15
S. FOUCHET, A. CARENCO, C. DAUGET, R. GUGLIELMI, L. RIVIERE. Wavelenght dispersion of Ti induced refractive index change in LiNbO3 as function of diffusion parameters. IEEE J. of Light. Tech., LT-5, pp. 700-708, 1987.

16
A. GEDEON. Comparison between rigorous theory and WKB analysis of modes in graded-index waveguides. Opt. Comm., 12, pp. 329-332, 1974.

17
V. GERICKE, P. HERTEL, E. KRATZIG, J. N. NISIUS, R. SOMMERFELDT. Light-Induced index changes in LiNbO3:Ti waveguides. Appl. Phys. B, 44, pp. 155-162, 1987.

18
F. GONELLA. Misure di birifrangenza e correlazione tra comportamento ottico e composizionale in guide d'onda planari. Tesi di dottorato, Università di Padova, 1992.

19
R. GROUSSON, M. HENRY, Y. OGAWA. Measuremement of bulk photovoltaic and photorefractive charateristics of iron doped LiNbO3. J. Appl. Phys., 54, pp. 3012-3016, 1983.

20
R. W. HANNAH, J. S. SWINEHART. Experiments in technique of infrared spectroscopy. Perkin-Elmer, 1984.

21
J. HUKRIEDE, D. KIP, E. KRATZIG. Thermal tuning of fixed Bragg grating for IR light fabricated in a LiNbO3:Ti channel waveguide. Appl. Phys. B, 70, pp. 73-75, 1999.

22
J. HUKRIEDE, E. KRATZIG. Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides. Appl. Phys. B, 66, pp. 155-162, 1997.

23
R. G. HUNSPERGER. Integrated optics: theory and technology. Spinger-Verlag, 1982.

24
J. JANTA, J. CTYROY. On the accurancy of WKB analysis of TE and TM modes in planar graded-index waveguides. Opt. Comm., 25, pp. 49-52, 1978.

25
D. KIP. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B, 67, pp. 131-150, 1998.

26
D. KIP, B. GATHER, H. BENDIG, E. KRATZIG. Concentration and refractive index profiles of titanium and iron diffused planar LiNbO3 waveguides. Phys. Stat. Sol. A, 139, pp. 241-248, 1993.

27
H. KOGELNIK. Coupled wave theory for thick hologram gratings. Bell. Syst. Tech. J., 48, pp. 2908-2947, 1969.

28
Y. KONG, J. XU, X. CHEN, C. ZHANG, G. ZHANG. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystal by Raman scattering spectra. J. Appl. Phys., 87, pp. 4410-4414, 2000.

29
Y. N. KORKISHKO, V. A. FEDOROV. Ion exchange in single crystals for integrated optics and optoelectronics. Cambridge Int. Sci. Pub., 1999.

30
Y. N. KORKISHKO, V. A. FEDOROV, S. M. KOSTRITSKII. Optical and x-ray charaterization of HxLi(1-x)NbO3 phases proton-exchanged in LiNbO3 optical waveguides. J. Appl. Phys., 84, pp. 2411-2419, 1998.

31
S. M. KOSTRITSKII. Comunicazioni private, 2001.

32
S. M. KOSTRITSKII, O. M. KOLESNIKOV. Photoinduced light scattering in copper-doped Li(1-x)NbO3photorefractive waveguides. J. Opt. Soc. Am. B, 9, pp. 1674-1680, 1994.

33
S. M. KOSTRITSKII, P. MORETTI. Photorefractive LiNbO3 waveguides fabricated by combining He-implantion and copper exchange. Appl. Phys. B, 68, pp. 802-805, 1999.

34
D. LINDE, A. M. GLASS. Principles and applications of ferroelectrics and related materials. Clarendon press, Oxford, 1977.

35
B. T. MATTHIAS, J. P. REMEIKA. Ferroelectricity in the Ilmenite Structure. Phys. Rev., 76, pp. 1886-1887, 1949.

36
Relazione del convegno Tecniche di indagine nel campo dei materiali (1976). Edita da P. Mazzoldi, 1978.

37
K. NASSAU, H. J. LEVINSTEIN, G. M. LOIACONO. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J. of Phys. Chem. Solids, 27, pp. 983-988, 1966.

38
K. NASSAU, H. J. LEVINSTEIN, G. M. LOIACONO. Ferroelectric lithium niobate. 2. Preparation of single domain crystals. J. of Phys. Chem. Solids, 27, pp. 989-996, 1966.

39
K. PEITHMANN, J. HUKRIEDE, K. BUSE, E. KRATZIG. Photorefractive properties of LiNbO3 crystals doped by copper diffusion. Phys. Rev. B, 61, pp. 4615-4620, 2000.

40
C. SADA. Preparazione e caratterizzazione di materiali ottici drogati con rame ed erbio tramite scambio ionico. Tesi di laurea, Università di Padova, 1997.

41
B. E. A. SALEH, M. C. TEICH. Fundamentals of photonics. Wiley, 1991.

42
R. F. SCHAUFELE, M. J. WEBER. Raman scattering by lithium niobate. Phys. Rev., 152, pp. 705-708, 1966.

43
L. SCHIFF. Quantum Mechanics. McGraw-Hill, 1968.

44
F. SEGATO. Local doping of lithium niobate for integrated optics: realization and characterization. Tesi di dottorato, Università di Padova, 1999.

45
K. SUGII, M. FUKUMA, H. IWASAKI. A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction metods. J. Mater. Sci., 13, pp. 523-533, 1978.

46
P. K. TIEN. Integrate optics and new wave phenomena in optical waveguides. Rev. Mod. Phys., 49, pp. 365-383, 1977.

47
P. D. TOWNSEND. Application of ion implantation for optoelectronics and photonics. In Insulating materials for optoelectronics. F. Agullò-Lòpez editor, pp. 393-419. Word Scientific, 1995.

48
R. S. WEIS, T. K. GAYLORD. Lithium Niobate: Summary of Physical Properties and Crystal Structure. Appl. Phys. A, 37, pp. 191-203, 1985.

49
J. M. WHITE, P. F. HEIDRICH. Optical waveguide refractive index determined from measurements of mode indexes: a simple analisys. Appl. Opt., 15, pp. 151-155, 1976.

next up previous contents
Next: Ringraziamenti Up: tesi Previous: A.2 Analisi quantitativa   Indice

Guide di luce in niobato di litio drogato con ferro per applicazioni olografiche
Barbara Imperio
email-me