amadeux multimedia    SUBLIMEN.com  

   

 

 

Index Sub | Index Demo | Catalogo | Index Frattali

  
Frattali in Natura ed in Fisiologia umana

Le spirali sono alla base del mondo vivente. Il nucleo cellulare è costituito da una lunga catena a spirale, il DNA, riportante l’intero codice genetico. Anche la forma di certi organismi può essere a spirale come quella dell’ammonite, vissuto 300.000.000 di anni fa.
Archimede ne scrisse un trattato, "Sulle Spirali". anche nella natura inanimata scopriamo spirali come ad esempio la galassia a spirale.

Le spirali sono anche alla base dei frattali. Ci sono tre tipi comuni di spirali piane, la più importante delle quali per quanto riguarda i frattali è la spirale logaritmica. La spirale evoluta è quella che si ottiene srotolando un gomitolo e tenendo il filo sempre teso; la fine del filo traccerà una spirale.
Il modo migliore per rappresentarla è con le coordinate polari r e f che costituiscono una valida alternativa alle coordinate cartesiane. r corrisponde alla distanza del punto P dall’ origine, modulo, e f all’ angolo tra OP e l’asse delle x. Da notare che r è sempre maggiore o uguale a 0 e l’angolo cresce in senso antiorario da 0 e una rotazione completa aumenta l’angolo di 2p radianti.

La spirale di Archimede è la più semplice ed è espressa in coordinate polari con la formula r=af. tutte le spirali di Archimede sono simili, differiscono solo per scala.

Spirale di Archimede

La spirale logaritmica sostituisce la r della spirale di Archimede con il log r, log r=af. Se a è maggiore di 0 la spirale cresce all’ infinito, se è minore di 0 procede verso il centro, se a=0 si ha una circonferenza. Il fattore di crescita dipende da f. Si può interpretare come gli spostamenti di una barca attorno ad un faro. Dopo un tratto in linea retta con angolo iniziale b rispetto alla linea che la congiunge con il faro, la nave avrà un angolo di b+a e dovrà aggiustare la rotta. Considerando spostamenti infinitesimi, riducendo a  , si arriva ad una spirale indistinguibile da una spirale matematica.

Spirale per spezzate   Spirale logaritmica >> sopra/top

Nel 1957 A. E. Bosman con La geometria nel pianeta: un campo miracoloso di ricerca voleva mostrare le miracolose figure geometriche della natura, prima fra tutte la spirale. Una delle sue figure più importanti è l’albero di Pitagora la cui costruzione è basata sul sistema binario.

Albero di Pitagora

Un quadrato ha un lato in comune con un triangolo rettangolo isoscele, che a sua volta ha gli altri due lati in comune con altri due quadrati e così via. La somma delle aree dei due quadrati più piccoli, per il teorema di Pitagora, è uguale all’area del quadrato iniziale e così anche le aree dei quadrati che si formano nei passaggi successivi, sommate, daranno l’area del primo quadrato. Si può avere un albero asimmetrico semplicemente costruendo un triangolo rettangolo qualsiasi sul lato del primo quadrato.

Albero di Pitagora, asimmetrico

La forma avvolta non è altro che una spirale logaritmica.

Spirale logaritmica avvolta

Si possono creare infinite spirali partendo dai quadrati. L’albero di Pitagora è un buon esempio di frattale matematico. Vi sono anche frattali a forma di stella, costruiti per esempio con una linea chiusa e successivi segmenti che si incrociano tutti con lo stesso angolo.

Si può comparare la curva di von Koch con una costa della Bretagna, ma la natura è creata con casualità. Se si considera la somiglianza statisticamente si creano frattali più realistici. Per far ciò occorre che ogni parte del frattale abbia le stesse proprietà statistiche. I metodi basati sul caso sono detti metodi di Monte Carlo, e in modo più formale stocastici dal verbo greco che sta per indovinare.

Si può vedere come i frattali siano influenzati da una certa casualità controllata. Ci sono diversi modi di introdurre il caso nella costruzione dei frattali e oggi ci sono programmi per  computer che  possono creare lunghe serie arbitrarie di numeri casuali. Per esempio si sceglie un numero di 4 cifre e si eleva al quadrato, poi si tolgono la prima e l’ultima cifra finché non rimangono ancora 4 numeri, si procede ancora con il quadrato e con il taglio delle cifre e così via: il risultato è una serie di numeri casuali tra 0 e 9999 che non fallisce test statistici di casualità e nello stesso tempo e stata creata con una regola precisa.
Tutto deriva dal primo numero, quindi è una sequenza deterministica, ma da’ l’impressione che sia caotica.

Un buon metodo molto pratico per i frattali basato sulla casualità è pensare al fatto che i frattali sono formati da un numero infinito di punti e che si può rappresentare solo una frazione di essi, un illusione della loro completezza. Analizzando ad esempio l’albero di Pitagora scopriamo che sono stati rappresentati solo i primi 12 passaggi. Introducendo una certa casualità nella costruzione si potrebbe stabilire di lasciare al caso la decisione di creare una spirale verso sinistra o verso destra a seconda della disposizione dei lati dei triangoli rettangoli. questa introduzione di piccoli disturbi nella costruzione di frattali rende quest’ultimi più simili a oggetti naturali come alberi, piante, coralli e spugne. >> sopra/top

Si è sviluppata quindi una branca della geometria frattale che studia i cosiddetti frattali biomorfi, cioè simili ad oggetti presenti in natura. I risultati a volte sono stati stupefacenti. Uno dei frattali biomorfi infatti più riusciti è la foglia di felce i cui dettagli, detti autosimili, riproducono sempre la stessa figura.

Foglia di felce

Attraverso una semplice operazione, la biforcazione di un segmento, si possono ottenere delle "fronde" molto realistiche.

Fronda

E' interessante notare, parlando in termini informatici, che se si potesse riuscire ad aumentare il livello di realismo, la quantità di informazioni (quindi la dimensione di un file) da fornire al computer per visualizzare una felce su schermo, sarebbe infinitamente minore. Questo uso della geometria frattale è studiato da diversi anni e viene chiamato IFS (Iterated Function System).  >> sopra/top

Robert Brown nel 1828 scoprì che le particelle al microscopio si muovevano in modo imprevedibile e casuale. Questo è stato chiamato moto browniano. L’idea della curva di un frattale può aiutare a farsi un’impressione della traiettoria di un moto browniano. Si deduce che le proprietà statistiche non variano a seconda della scala. I frattali browniani sono molto naturali. Un paesaggio lunare potrebbe apparire come la superficie di un frattale: il crateri più grandi rappresentano la scala maggiore, ma anche con qualsiasi scala minore si possono vedere crateri; la locazione dei quali è del tutto casuale.

Superficie lunare generata col metodo di Montecarlo

di Vittorio Gariboldi e Federico Miorelli


I FRATTALI NEL MONDO VEGETALE E NEL PAESAGGIO

Se vediamo la terra dallo spazio, possiamo osservare i continenti con le loro coste, gli oceani e i mari, i fiumi maggiori.

 

Se ci avviciniamo, possiamo vedere solo una parte, ingrandita, dell'immagine precedente, ma la struttura del paesaggio non cambia: ancora coste, e "piccoli mari" e corsi d'acqua.
Le coste, in particolare, hanno infinita lunghezza anche se sono chiuse in una superficie finita, e i dettagli, per quanto ingranditi, non cambiano. Ecco, di nuovo, i frattali!

Nel regno vegetale si trovano esempi comuni di ramificazioni frattali: dalle felci, agli alberi, ai fiori.
Le loro forme, così diverse, così complesse, nascono allora da semplici codici genetici, come quelli che possono essere scritti al computer con poche righe di programma.
>> sopra/top

 

FRATTALI IN FISIOLOGIA UMANA

Nell'immagine (qui sotto) possiamo ammirare un disegno di Leonardo da Vinci raffigurante alcuni organi interni del corpo umano.

Oggi, possiamo individuare in questa rappresentazione strutture riconducibili ai frattali: tra queste, i vasi sanguigni, le fibre nervose e le strutture canalizzate.
Da studi effettuati su calchi di polmone umano e di altre specie di mammiferi è risultato che dette misurazioni mostrano i rapporti tipici di oggetti frattali.
Anche se i vari organi assolvono a funzioni differenti, la loro struttura frattale consente di comprimere nel minimo spazio grandi capacità di estensione: se si pensa che la capacità respiratoria di un animale è direttamente correlata alla superficie dei suoi polmoni, e che questi, in un individuo normale, occupano uno spazio grande quasi come un campo da tennis, si comprende quanto efficace sia stata la scelta "frattale" fatta dalla natura per lo sviluppo dei nostri organi.

L'immagine qui sotto mostra come lo sviluppo del feto sembri seguire una dinamica frattale, ipotesi ormai accreditata presso molti studiosi.

All'attualità, infine, la matematica dei frattali è applicata allo studio dei tumori (immagine qui sotto).
Si è scoperto, infatti, che nell'organismo colpito da tale patologia tendono a formarsi vasi sanguigni che nutrono, specificamente, le cellule tumorali. Riuscire a fermare tale fenomeno può voler dire sconfiggere la malattia.
Ebbene, recenti studi stanno dimostrando che lo sviluppo di tali vasi sanguigni può essere misurato con l'applicazione della matematica frattale.

>> sopra/top

Index Sub | Index Demo | Catalogo | Index Frattali


Le informazioni e le tecniche contenute nel sito hanno puro carattere educativo ed informativo, non "terapeutico" o "psicologico". In nessun modo i creatori e i gestori del sito sono da ritenere responsabili del loro utilizzo. Alcuni articoli, brani ed immagini sono rielaborati e parzialmente estratti da documenti ufficiali o siti web di pubblico dominio nel rispetto delle normative vigenti sul diritto d'autore, di cronaca/critica e sulla liberta' di stampa (Copyright e Note legali).

Servizio segnalazione errori e malfunzionamento del sito - Email: service@sublimen.com
Copyright © 1997- Amadeux - All Rights Reserved Worldwide