Euclide di Alessandria

Euclide

Visse intorno al 300 a.C. ad Alessandria d’Egitto dove fondò una scuola di matematica. Una delle sue opere più importanti è rappresentata dagli Elementi, divisa in 13 libri. I primi sei contengono le proposizioni fondamentali della geometria piana e la teoria generale delle proporzioni fra grandezze; i libri VII, VIII, XI trattano dei numeri e delle loro proprietà; il X dà in forma geometrica una classificazione dei numeri irrazionali; gli ultimi tre studiano la geometria solida. L’opera si apre con un elenco di concetti fondamentali ai quali seguono i postulati (tra i quali enuncia il postulato delle parallele la cui negazione diede origine alle geometrie non euclidee), le proposizioni o assiomi e infine la serie dei teoremi: uno dei più famosi teoremi attribuiti allo stesso Euclide stabilisce che in ogni triangolo rettangolo, il quadrato costruito su un cateto è equivalente al rettangolo che ha per base un lato uguale all’ipotenusa del triangolo iniziale, e per altezza la proiezione del cateto sull’ipotenusa. A questo famoso teorema, Euclide ne fece seguire un altro il quale, con dimostrazione pressappoco analoga, afferma che in ogni triangolo rettangolo, il quadrato costruito sull’altezza relativa all’ipotenusa è equivalente al rettangolo che ha per dimensioni le proiezioni dei cateti sull’ipotenusa. Nelle sue opere è inoltre presente la semplice ma geniale dimostrazione dell’infinità dei numeri primi. La grandezza di Euclide non deriva tuttavia dall’originalità delle sue opere ma dalla capacità di aver organizzato tutto il sapere matematico del tempo in un’opera completa e sistematica, dotata di un’impalcatura logica e rigorosa.