PIU' VELOCE DELLA LUCE
La
teoria della relatività ristretta di Einstein impone che la velocità massima
alla quale i corpi materiali possono viaggiare sia la velocità della luce, cioè
300.000 km/s. Questa può sembrare una velocità enorme e in effetti lo è se
confrontata con le misure terrestri, ma se ci si allontana dalla Terra e ci si
dirige verso gli spazi profondi del cosmo diventa un modo di procedere a passo
di lumaca. Alla velocità della luce ci vorrebbero, infatti, 4,3 anni per
raggiungere la stella a noi più vicina, più di 300 anni per approdare sulla
Stella Polare, oltre due milioni di anni per arrivare alla galassia più vicina,
quella di Andromeda e, infine, alcuni miliardi di anni per spingersi fino ai
quasar più lontani che si trovano ai limiti dell'Universo. Ora,
poiché l'uomo ha da sempre accarezzato il sogno di viaggiare fra le stelle per
raggiungere lontani mondi abitati, se non si trova un sistema per superare la
velocità della luce, il sogno non si realizzerà mai. Vediamo
allora se è possibile, almeno in linea di principio, viaggiare più veloci
della luce. Abbiamo detto che i corpi materiali, ossia gli oggetti che
possiedono massa, possono raggiungere al massimo la velocità della luce, ma non
tutte le cose possiedono massa. I fotoni, ad esempio, cioè le particelle che
costituiscono la luce ma anche altre radiazioni elettromagnetiche come raggi X,
raggi gamma e onde radio, non possiedono massa; quindi queste “particelle”
possono viaggiare più veloci della luce? Purtroppo no; tutte le particelle che
non possiedono massa o, per meglio dire, che hanno massa a riposo nulla, possono
viaggiare solo ed esclusivamente alla velocità della luce. Quindi non più
veloci di così, ma neppure meno veloci. Le particelle che non possiedono massa
a volte vengono chiamate luxoni, cioè "oggetti che viaggiano alla
velocità della luce”. Questo
vuol dire che non esiste proprio nulla che possa superare la velocità della
luce? Forse una possibilità esiste, benché molto remota. La teoria della
relatività ristretta, infatti, non esclude in modo categorico l'esistenza di
particelle superluminali (cioè più veloci della luce), ma si tratta di
particelle virtuali che scaturiscono dalle equazioni che descrivono la teoria,
quando in esse si inseriscono i numeri immaginari. A queste particelle è stato
dato il nome di tachioni che significa "oggetti che si muovono
rapidamente" (dall'aggettivo greco takhýs che significa «veloce»).
I tachioni dovrebbero poter viaggiare solo ed esclusivamente a velocità
superiori a quelle della luce, quindi, in questo caso, mai di meno. Tutta la
materia che possiede massa, come abbiamo visto, viaggia invece sempre a velocità
più basse di quella della luce quindi rientra in una categoria di
"corpi" che potremmo chiamare bradioni, cioè "oggetti che
si muovono lentamente" (dall’aggettivo greco bradus
che significa «lento»). Secondo la teoria di Einstein, pertanto, non è
possibile infrangere la barriera della luce, né da una parte, né dall’altra.
La velocità della luce rappresenterebbe quindi una specie di spartiacque fra i bradioni
più lenti della luce e i tachioni più veloci della luce.
Abbiamo
detto che i bradioni possono raggiungere al massimo la velocità della
luce, in realtà essi possono arrivare solo a sfiorare questa velocità limite.
Le equazioni di Einstein prevedono infatti che un corpo materiale aumenti la sua
massa con l'aumentare della velocità fino al punto di diventare di massa
infinita qualora raggiungesse la velocità della luce. Ora, poiché per spingere
un corpo di massa infinita servirebbe una forza altrettanto infinita e poiché
per creare una forza di intensità infinita sarebbe necessaria una quantità di
energia infinita (che nell'Universo non esiste), ecco che nessun corpo materiale
potrà mai raggiungere la velocità della luce. Simmetricamente i tachioni,
che viaggiano in un altro "mondo", non potranno decelerare fino a
raggiungere la velocità della luce perché in questo caso servirebbe una forza
di intensità infinita per frenarli.
Questi
tachioni per il momento nessuno li ha visti e verosimilmente nessuno li
vedrà mai, ma se si dovesse entrare in contatto con essi si scoprirebbe che si
tratta di particelle le quali non solo non possono andare più lente della luce,
ma che addirittura la loro velocità aumenta al diminuire dell'energia
posseduta, al punto che se la loro energia si riducesse a zero (o quasi), la
velocità diverrebbe infinita (o quasi). Essi, come abbiamo detto, si ottengono
quando nelle equazioni che descrivono la teoria relativistica di Einstein si
inseriscono i numeri immaginari, che a loro volta sono numeri che non esistono
nel campo dei numeri reali, così come non esiste la radice quadrata di un
numero negativo. La radice quadrata di un numero, come tutti sanno, fornisce un altro numero che, se elevato al quadrato, dà per risultato il numero che sta sotto radice. La radice quadrata di quattro, ad esempio, è due perché due al quadrato fa quattro. Ma, nessun numero elevato al quadrato dà come risultato un numero negativo, quindi, ad esempio, la radice quadrata di meno quattro non esiste. Tuttavia, se scomponiamo la radice quadrata di questo numero negativo in due fattori, e precisamente nella radice quadrata di meno uno e nella radice quadrata di quattro e chiamiamo la radice quadrata di meno uno «i» (cioè numero immaginario), allora la radice quadrata di meno quattro darebbe per risultato 2 i, un valore che non esiste nel campo dei numeri reali. I
tachioni sarebbero quindi oggetti di massa immaginaria e pertanto con
proprietà opposte a quelli di massa ordinaria con i quali siamo abituati ad
operare. Se ad esempio ad un tachione si imprime una spinta esso, invece
di accelerare, rallenta. Quindi, se ad esso venisse impressa una spinta
infinitamente forte, la sua velocità diminuirebbe fino a quella della luce; se
invece si indebolisse il tachione sottraendogli energia esso
accelererebbe fino a raggiungere velocità infinita. Abbiamo
visto che i tachioni sono il risultato di un trucco matematico e pertanto
probabilmente sono anch'essi un trucco, tuttavia gli scienziati li cercano
ugualmente, anche se con poche speranze di trovarli. Ma ammettiamo pure che un
giorno lontano si riescano ad individuare i tachioni: in che modo
potremmo utilizzarli per muoverci più veloci della luce? Sicuramente non sarà
possibile fermarne uno, caricarci sopra un passeggero e farlo ripartire alla
volta della galassia di Andromeda. E allora? Ebbene,
esiste forse un modo per utilizzarli quali trasportatori di corpi materiali.
Tutti sanno che è possibile trasformare materia in energia e viceversa, secondo
una legge che scaturisce anch'essa dalla teoria della relatività. Espressa
sotto forma di equazione matematica, è la seguente: E=m·c²,
dove E è l'energia e m
la massa; c² è una costante il cui valore, elevatissimo, corrisponde al
quadrato della velocità della luce. Questa legge stabilisce che ci vuole una
grandissima quantità di energia per ottenere una piccolissima quantità di
materia. In effetti l'uomo è in grado, attualmente, di trasformare particelle subatomiche, come elettroni e protoni, in energia, cioè in fotoni, come pure è in grado di fare l’operazione contraria e cioè trasformare fotoni in particelle di piccola massa. Non è in grado, tuttavia, di trasformare un grosso oggetto materiale in energia, né di utilizzare enormi quantità di energia per ottenere oggetti di grosse dimensioni. Sta di fatto che coloro che lavorano più con la fantasia che con la concretezza delle cose immaginano che un giorno si potrà raggiungere questo obiettivo e, se si riuscirà a trasformare oggetti materiali in fotoni, sarà forse anche possibile trasformare oggetti materiali in tachioni. In quest'ultimo caso il gioco sarebbe fatto. Si potrebbe allora prendere una cosa qualsiasi (anche un uomo), trasformarla in energia, cioè in luce tachionica, e spedirla a grande velocità nello spazio, per esempio con destinazione Andromeda, che verrebbe raggiunta in pochi minuti. Quindi, giunta sul luogo, la luce tachionica potrebbe a sua volta essere trasformata in materia. A parole tutto sembra semplice, ma la scienza non è fatta di sole parole. Quello che abbiamo detto, per il momento, lo si può vedere nei film di fantascienza (come già avviene) o leggere nei romanzi, ma non si può ottenere nella realtà. Da
un punto di vista pratico, anche qualora i tachioni esistessero veramente, non
abbiamo comunque la più pallida idea di come fare per trasformarli in materia e
viceversa. E' certo invece che per essere efficace la trasformazione dovrebbe
avvenire tutta contemporaneamente, cioè esattamente nello stesso istante su
tutta la massa dell’oggetto da trasformare in energia pura, cosa questa non
facile da realizzare. Basterebbe la differenza di qualche microsecondo per veder
partire i tachioni di una parte dell'oggetto e rimanere sul posto l'altra parte
con le conseguenze che si possono facilmente immaginare. Secondo
gli esperti se i tachioni esistessero realmente, dovrebbe esistere anche
un ambiente particolare entro il quale farli viaggiare, perché quello in cui si
muovono i bradioni non sarebbe adatto. Per far volare i tachioni -
dicono i fisici - sarebbe necessario uno spazio a quattro dimensioni così come,
per veder volare gli aerei, è necessario uno spazio a tre dimensioni (due non
bastano, mentre sono sufficienti per far viaggiare le automobili). Lo spazio a quattro
dimensioni viene chiamato «iperspazio». Per capire di cosa si tratta
ricorriamo ad un esempio.
Immaginiamoci
un veicolo (non più grande di un punto) che possa muoversi lungo un'unica linea
e che non possa uscire da questa corsia obbligata. Questo veicolo sarebbe come
un treno che può andare da una stazione all'altra, ma non può mai uscire dai
binari (salvo incidenti). La linea viene definita uno spazio unidimensionale
perché su di esso è possibile determinare la posizione di un oggetto con un
solo numero. Nel caso del treno, ad esempio, basterebbe dire che si trova a 240
km dalla stazione A
per conoscere esattamente la sua posizione. Immaginiamo
ora che il nostro treno, per andare dalla città A
alla città B debba
compiere un viaggio tortuoso e che A e B siano in realtà molto vicine fra di loro tanto che se si potesse
lasciare la linea ferrata, da A si raggiungerebbe B
in 10 minuti. Abbandonare la linea ferrata vuol dire passare da uno
spazio unidimensionale ad uno bidimensionale. Uno spazio bidimensionale è, ad esempio, la superficie
della Terra: si tratta cioè di uno spazio nel quale la posizione di un punto è
determinata da due numeri. Per fissare la posizione di un punto sulla superficie
terrestre servono infatti latitudine e longitudine. Su un piano si può
viaggiare più liberamente e raggiungere la destinazione più velocemente di
quanto non avvenga se ci si muove lungo una linea unidimensionale. Ora,
se ci si sposta nell'aria, quindi attraverso uno spazio tridimensionale, si
possono raggiungere velocità molto più elevate. Un aereo può viaggiare a più
di 1.000 km/h e un razzo a più di 10.000 km/h. Passando quindi da un viaggio
bidimensionale ad uno tridimensionale la destinazione viene raggiunta ancora più
rapidamente. Forse, salendo di un altro gradino, le
velocità potrebbero aumentare ulteriormente fino a diventare quasi infinite. Lo
spazio a quattro dimensioni (non a tre più il tempo, come suggerisce la
relatività ristretta di Einstein, ma a quattro tutte spaziali, più
eventualmente quella temporale), quello che viene chiamato iperspazio, per ora
esiste solo nella testa di alcune persone dotate di molta fantasia. I matematici
comunque lo studiano e ne descrivono anche le proprietà geometriche, ma si
tratta solo di uno studio teorico, matematico appunto. I tachioni e l'iperspazio in realtà
non esistono e quindi non esiste nemmeno la possibilità di viaggiare più
velocemente della luce. Accontentiamoci, per ora, di tentare di raggiungere la
massima velocità possibile, cioè quella della luce, che già rappresenterebbe
un bel traguardo. fine
|