PSpice Models Archive
 
Koren's Models + Miscellaneous
.subckt 12ax7i 1 2 3 ; placca griglia catodo
+ params: mu=100 ex=1.4 kg1=1060 kp=600 kvb=300 rgi=200
+ ccg=2.3p cgp=2.4p ccp=.9p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
**********************
.subckt 6sn7i 1 2 3 ; placca griglia catodo
+ params: mu=21 ex=1.36 kg1=1460 kp=150 kvb=400 rgi=300
+ ccg=2.4p cgp=4p ccp=.7p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
*********************
.subckt 6sn7ii 1 2 3 ; placca griglia catodo   
+ params: mu=22.004 ex=1.2128 kg1=1213.7 kp=203.06 kvb=355 rgi=2k
+ ccg=2.4p cgp=4p ccp=.7p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

********************
.subckt 6dj8i 1 2 3 ; placca griglia catodo
+ params: mu=28 ex=1.3 kg1=330 kp=320 kvb=300 rgi=2k
+ ccg=2.3p cgp=2.1p ccp=.7p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
********************
.subckt 6dj8ii 1 2 3 ; placca griglia catodo 
+ params: mu=35.7 ex=1.35 kg1= kp=305 kvb=310 rgi=2k
+ ccg=3.1p cgp=1.4p ccp=.45p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

*******************
.subckt 2a3-X 1 2 3 ; placca griglia catodo ***F.I.V.R.E.***
+ params: mu=4.4 ex=1.27 kg1=1106 kp=39.6 kvb=10 rgi=2k
+ ccg=2.3p cgp=2.1p ccp=.7p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
*****************
.subckt 2a3-Y 1 2 3 ; placca griglia catodo ***F.I.V.R.E.***
+ params: mu=4.4 ex=1.25 kg1=1106 kp=39.6 kvb=10 rgi=2k 
+ a=-2.889e-7 b=-1.222e-5 c=1.321
+ ccg=7.5p cgp=16.5p ccp=5.5p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value = {a*v(1,3)*v(1,3)+b*v(1,3)+c}
re2 8 0 1meg
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends 2a3-y ; modello con andamento parabolico esponente EX
*******************
.subckt 300B 1 2 3 ; placca griglia catodo *** Western Electric ***
+ params: mu=3.85 ex=1.264 kg1=1240 kp=89 kvb=10 rgi=2k 
+ a=1.119e-6 b=-7.983e-4 c=1.398
+ ccg=9p cgp=15p ccp=4.3p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value = {a*v(1,3)*v(1,3)+b*v(1,3)+c}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
******************
.subckt 6cw4 1 2 3 ; placca griglia catodo NUVISTOR R.C.A.
+ params: mu=68.75 ex=1.35 kg1=160 kp=250 kvb=300 rgi=200
+ ccg=4.1p cgp=.92p ccp=.18p
+ a=2.133e-7 b=-9.40e-5 c=.0139666 d=.64
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value=
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends 6cw4  
*************
.subckt ef86t 1 2 3 4 ;placca, griglia controllo, catodo, griglia schermo
+ params: mu=37.5 ex=1.2 kg1=1500 kg2=2500 kp=260 kvb=4
+ ccg=14p cpg1=.85p ccp=12p rgi=1k
*************************
*only for triode mode*
*************************
re1 7 0 1meg
e1 7 0 value =
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value =
+{(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value=
+{(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ;convergence resistor
c1 2 3 {ccg}
c2 1 2 {cpg1}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends ef86t ;triode mode
***********************

**************************
.subckt 811a-i 1 2 3 ; placca griglia catodo Documentazione R.C.A.
+ params: mu=160 ex=1.317 kg1=1350 kp=100 kvb=1400 rgi=1000
+ ccg=2.3p cgp=2.4p ccp=.9p
+ a=1.6667e-10 b=-.0000002875 c=0.0001758333 d=1.275 
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value=
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}
re2 8 0 1g
e3 9 0 table {v(2,3)} =
+ (-1 1.1e-16)
+ (0, .6e-4) (20, 5.38e-4)
+ (40, 6.25e-4) (60, 7.41e-4)
re3 9 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))*v(9)}
rcp 1 3 100k
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends 811a-i
**********************
.subckt 845i 1 2 3 ; placca griglia catodo  R.C.A.
+ params: mu=5.27 ex=1.25 kg1=2560 kp=100 kvb=180 rgi=8000
+ ccg=6p cgp=13.5p ccp=6.5p
+ a=-5.150e-14 b=8.536e-11 c=-1.469e-7 d=4.635e-4
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value= 
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))*v(8)}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends 845i
*******************
.subckt ecc86 1 2 3 ; placca griglia catodo
********************************************
;modello valido nell'intorno vp=0..10volt
********************************************
+ params: mu=14 ex=1.71 kg1=295 kp=220 kvb=100 rgi=2k
+ ccg=3p cgp=1.3p ccp=1.8p
+ a2=0.0083 a1=-0.022 a0=1.1033
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value=
+{a2*v(1,3)*v(1,3)+a1*v(1,3)+a0}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt e182cc-sq 1 2 3 ; placca griglia catodo
+ params: mu=24 ex=1.7 kg1=75 kp=320 kvb=300 rgi=2k
+ ccg=2.3p cgp=2.4p ccp=.9p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
***********************
.subckt cv5112 1 3 4 ; TRIODO SEGNALE 
g1 2 4 value = {(exp(1.5*(log((v(2,4)/30)+v(3,4)))))/32.51}
c1 3 4 11p
c2 3 1 4p
c3 1 4 2.46p
r1 3 5 20k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends cv5112 ; eq. 3a/167m
***********************
.model l_var ind(L=1 dev=5%)
***********************
.subckt 5842 1 2 3 ; placca griglia catodo
+ params: mu=42.4 ex=2.21 kg1=393 kp=629 kvb=446 rgi=2000
+ ccg=9p cgp=1.8p ccp=.48p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
 ********************
.subckt 437a 1 2 3 ; placca griglia catodo
+ params: a=-0.90242 b=520 c=-12.98 d=-36.421 
+ ccg=9p cgp=1.8p ccp=.48p ex=2.2 rgi=2k
e1 7 0 value=
+{a*((v(1,3)+b)/(v(2,3)+c))+d}
re1 7 0 1
g1 1 3 value= {pwr(v(7),ex)+pwrs(v(7),ex)}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
********************************************
Duncan's Models
************************************************************************
.SUBCKT TRIODENH A G K
+PARAMS: LIP=1 LIF=3.7E-3 RAF=18E-3 RAS=1 CDO=0 RAP=4E-3
+ ERP=1.5 ERI=0
+ MU0=17.3 MUR=19E-3 EMC=9.6E-6 GCO=0 GCF=213E-6
+ CGA=3.9p CGK=2.4p CAK=0.7p
************************************************************************
*
* Anode/grid model
*
* Models reduction in mu at large negative grid voltages
* Models change in Ra with negative grid voltages
* Models limit in Ia with high +Vg and low Va
*
* PARAMETERS
*
* LIP Conduction limit exponent
* LIF Conduction limit factor
* CDO Conduction offset
* RAF Anode resistance factor for neg grid voltages
* RAP Anode resistance factor for positive grid voltages
* ERP Emission power
* ERI Emission power increase
* MU0 Mu between grid and anode at Vg=0
* MUR Mu reduction factor for large negative grid voltages
* EMC Emission coefficient
* GCO Grid current offset in volts
* GCF Grid current scale factor
*
************************************************************************
Elim LI 0 VALUE {PWR(LIMIT{V(A,K),0,1E6},{LIP})*{LIF}}
Egg GG 0 VALUE {V(G,K)-{CDO}}
Erpf RP 0 VALUE {1-PWR(LIMIT{-V(GG)*{RAF},0,0.999},{RAS})+LIMIT{V(GG),0,1E6}*{RAP}}
Egr GR 0 VALUE {LIMIT{V(GG),0,1E6}+LIMIT{(V(GG))*(1+V(GG)*{MUR}),0,-1E6}}
Eem EM 0 VALUE {LIMIT{V(A,K)+V(GR)*{MU0},0,1E6}}
Eep EP 0 VALUE {PWR(V(EM),ERP-LIMIT{V(G,K),0,-1E6}*ERI)*{EMC}*V(RP)}
Eel EL 0 VALUE {LIMIT{V(EP),0,V(LI)}}
Eld LD 0 VALUE {LIMIT{V(EP)-V(LI),0,1E6}}
Ga A K VALUE {V(EL)}
************************************************************************
*
* Grid current model
*
* Models grid current, along with rise in grid current at low Va
*
************************************************************************
Egf GF 0 VALUE {PWR(LIMIT{V(GG),0,1E6},1.5)*{GCF}}
Gg G K VALUE {(V(GF)+V(LD))}
*
* Capacitances and anti-float resistors
*
CM1 G K {CGK}
CM2 A G {CGA}
CM3 A K {CAK}
RF1 A 0 1000MEG
RF2 G 0 1000MEG
RF3 K 0 1000MEG
.ENDS
**********************************************************************
* GENERIC: 2A3
* MODEL: NH2A3
* NOTES: No heater model (virtual cathode)
**********************************************************************
.SUBCKT NH2A3 A G K
XV1 A G K TRIODENH
+PARAMS: LIP= 1.5 LIF= 0.003 RAF= 0.0045 RAS= 1 CDO= 0
+ RAP= 0.005 ERP= 1.6247 ERI=-0.000019
+ MU0= 3.7731 MUR= 0.004685 EMC= 0.0000615
+ GCO= 0 GCF= 0.0001
+ CGA=1.65E-11 CGK=7.50E-12 CAK=5.50E-12
.ENDS
**********************************************************************
* GENERIC: 3CX300
* MODEL: NH3CX300
* NOTES: No heater model
**********************************************************************
.SUBCKT NH3CX300 A G K
XV1 A G K TRIODENH
+PARAMS: LIP= 1.5 LIF= 10 RAF= 0.00473 RAS= 1 CDO= 0
+ RAP= 0.005 ERP= 1.25 ERI=-0.00053
+ MU0= 8.321 MUR= 0.0012 EMC= 0.000533
+ GCO= 0 GCF= 0.0001
+ CGA=1.00E-11 CGK=2.50E-11 CAK=1.00E-12
.ENDS
**********************************************************************
* GENERIC: SV6AS7
* MODEL: NHSV6AS7
* NOTES: No heater model
**********************************************************************
.SUBCKT NHSV6AS7 A G K
XV1 A G K TRIODENH
+PARAMS: LIP= 1 LIF= 0.01 RAF= 0.0058 RAS= 0.7 CDO= 0
+ RAP= 0.035 ERP= 1.5 ERI= 0
+ MU0= 2.05 MUR= 0.0017 EMC= 0.0005
+ GCO= 0 GCF= 0
+ CGA=1.10E-11 CGK=8.00E-12 CAK=3.00E-12
.ENDS
**********************************************************************
* GENERIC: 6SN7GTB
* MODEL: NH6SN7GTB
* NOTES: No heater model
**********************************************************************
.SUBCKT NH6SN7GTB A G K
XV1 A G K TRIODENH
+PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.03 RAS= 2 CDO= 0
+ RAP= 0.002 ERP= 1.4 ERI= 0.007
+ MU0= 19.2642 MUR= 0.007677 EMC= 0.0000189
+ GCO= 0 GCF= 0.000213
+ CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13
.ENDS
**********************************************************************
Maillet's Models

************ p g c **********(copyright vivaAnalog)******
.subckt RCA12ax7  1 2 3
*************************  
eGIogVpc 20 0 value={log(v(1,3))}
rGlogVpc 20 0 1 
eG0 10 0 poly(1) <2,3>   -3.7694e+00   1.9947e+00   5.9432e-02    
eG1 11 0 poly(1) <2,3>   -3.2024e-02  -4.1443e-02  -4.8236e-03 
eG2 12 0 poly(1) <2,3>    1.9127e-02  -1.2189e-02  -1.5526e-03 
eG3 13 0 poly(1) <2,3>   -1.1354e-02   4.9339e-03   6.1016e-04  
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG   2 3 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}
*
eP0 110 0 poly(1) <2,3>    -9.9158e+0  1.9145e+0 -2.8135e+0  1.8661e+0     
+ 1.5643e+0  4.7240e-1  6.4276e-2  3.3101e-3 
eP1 111 0 poly(1) <2,3>     9.5428e-1  3.2558e-2 -8.3349e-1 -4.8578e-2  
+ 2.6213e-1  1.0492e-1  1.8921e-2  1.3632e-3 
eP2 112 0 poly(1) <2,3>     9.5766e-2  2.5192e-2  2.2391e-1 -1.7040e-1 
+ -2.4952e-1 -1.0960e-1 -2.0981e-2 -1.4882e-3
eP3 113 0 poly(1) <2,3>    -6.6107e-2 -3.9657e-2  7.5560e-2  3.1025e-2  
+ 2.4265e-2  1.7002e-2  4.2512e-3  3.4761e-4
eP4 114 0 poly(1) <2,3>     8.4148e-3  4.7989e-3 -1.3258e-2 -1.9288e-3  
+ 5.2888e-4 -5.6853e-4 -2.4727e-4 -2.4359e-5
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
rP4 114 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*(v(113)+v(20)*v(114))))))}
Cgc 2 3 1.8p
Cgp 2 1 1.7p
Cpc 1 3 1.9p
.ends
************************* p g c
.subckt triode_GE12at7wc  1 2 3
**************************
ePIog1 20 0 value={log(v(1,3))}
rPlog1 20 0 1
eGp0 10 0 poly(1) <2,3> -2.7764e+00   2.2296e+00   7.5589e-02
eGp1 11 0 poly(1) <2,3> -4.1300e-02  -1.1676e-02  -1.4968e-03
eGp2 12 0 poly(1) <2,3> -2.3014e-02  -1.2650e-02  -2.1541e-03
eGp3 13 0 poly(1) <2,3>  1.0328e-03   1.9344e-03   3.6700e-04
rGp0 10 0 1
rGp1 11 0 1
rGp2 12 0 1
rGp3 13 0 1
gG    3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/3581}
ePp0 110 0 poly(1) <2,3> -3.6500e+00   7.6923e+00  -3.7894e+00 -7.2613e-01
+ -3.4056e-02
ePp1 111 0 poly(1) <2,3>  1.1200e+00  -1.6148e+00   8.2466e-01  1.7359e-01
+ 8.4978e-03
ePp2 112 0 poly(1) <2,3>  3.7117e-03  -5.1629e-02   3.1072e-02  6.1221e-03
+ 2.6104e-04
ePp3 113 0 poly(1) <2,3>  5.5502e-03   1.8236e-02  -1.0661e-02 -2.4714e-03
+ -1.2170e-04
rPp0 110 0 1
rPp1 111 0 1
rPp2 112 0 1
rPp3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends

************************* p g c
.subckt triode_GE12ax7wa1 1 2 3
**************************
eGIog1 20 0 value={log(v(1,3))}
rGlog1 20 0 1
eG0 10 0 poly(1) <2,3>   -3.7694e+00   1.9947e+00    5.9432e-02
eG1 11 0 poly(1) <2,3>   -3.2024e-02  -4.1443e-02   -4.8236e-03
eG2 12 0 poly(1) <2,3>    1.9127e-02  -1.2189e-02   -1.5526e-03
eG3 13 0 poly(1) <2,3>   -1.1354e-02   4.9339e-03    6.1016e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG   3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}
eP0 110 0 poly(1) <2,3> -1.6702e+00  3.9084e+00 -1.5799e+00 -1.3727e-01
+ -1.0348e-03
eP1 111 0 poly(1) <2,3>  1.1947e-01 -3.2355e-01  2.4620e-01  6.2866e-02
+ 3.9416e-03
eP2 112 0 poly(1) <2,3>  6.9903e-02 -7.3976e-02 -4.3982e-02 -6.3812e-03
+ -2.9682e-04
eP3 113 0 poly(1) <2,3>  4.2712e-03  3.4864e-03  8.3734e-03  4.4558e-04
+ -8.4579e-06
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP   1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends
***************************************************
.subckt triode_GE12ax7wa1b  1 2 3
***************************
eGIoga 20 0 value={log(v(1,3))}
rGloga 20 0 1
eGIogb 21 0 value={log(v(2,3)+7)}
rGlogb 21 0 1
eG0 10 0
value={(exp(-1524.2+v(21)*(2083.2+v(21)*(-951.29+v(21)*(145.16)))))/0.049}
rG0 10 0 1
gG   2 3 value={bnd(v(10)*(exp(-1.2838+v(20)*(-9.2220e-2+v(20)*(-9.4734e-4+
+ v(20)*(-5.0132e-3)))))/1085)}
eP0 110 0 poly(1) <2,3> -1.6702e+00  3.9084e+00 -1.5799e+00 -1.3727e-01
+ -1.0348e-03
eP1 111 0 poly(1) <2,3>  1.1947e-01 -3.2355e-01  2.4620e-01  6.2866e-02
+ 3.9416e-03
eP2 112 0 poly(1) <2,3>  6.9903e-02 -7.3976e-02 -4.3982e-02 -6.3812e-03
+ -2.9682e-04
eP3 113 0 poly(1) <2,3>  4.2712e-03  3.4864e-03  8.3734e-03  4.4558e-04
+ -8.4579e-06
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP    1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113))))/1000)}
Cgc 2 3 1.8p
Cgp 2 1 1.7p
Cpc 1 3 1.9p
.ends
************************* p g c
.subckt triode_GE12ax7wa2 1 2 3
**************************
eGIog1 20 0 value={log(v(1,3))}
rGlog1 20 0 1
eG0 10 0 poly(1) <2,3>   -3.7694e+00   1.9947e+00    5.9432e-02
eG1 11 0 poly(1) <2,3>   -3.2024e-02  -4.1443e-02   -4.8236e-03
eG2 12 0 poly(1) <2,3>    1.9127e-02  -1.2189e-02   -1.5526e-03
eG3 13 0 poly(1) <2,3>   -1.1354e-02   4.9339e-03    6.1016e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG   3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}
eP0 110 0 poly(1) <2,3>  -2.2416e+00    3.8456e+00  -1.0299e+00
+ 2.3909e-02   1.0561e-02
eP1 111 0 poly(1) <2,3>   2.9920e-01   -3.7081e-01   1.3630e-01
+ 3.5417e-02   2.0746e-03
eP2 112 0 poly(1) <2,3>   6.7037e-02   -8.1618e-02  -5.2735e-02
+ -8.6960e-03  -4.7085e-04
eP3 113 0 poly(1) <2,3>   2.2006e-03    6.6606e-03   1.0641e-02
+ 9.4134e-04   2.7545e-05
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP   1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends
************************* p g c
.subckt triode_GE5751     1 2 3
**************************
eGIog1 20 0 value={log(v(1,3))}
rGlog1 20 0 1
eG0 10 0 poly(1) <2,3>    -3.2813e+00   1.7569e+00   2.9338e-02
eG1 11 0 poly(1) <2,3>    -9.0720e-02  -2.7519e-02  -3.0229e-03
eG2 12 0 poly(1) <2,3>    -1.8084e-02   4.2859e-03   1.7988e-04
eG3 13 0 poly(1) <2,3>     1.1015e-03   4.2800e-04   1.0427e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG   3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/189}
eP0 110 0 poly(1) <2,3>
+  -4.9584e-1   4.2097e+0  -2.7252e+0  -2.0530e-1   1.3162e-2    1.3347e-3
eP1 111 0 poly(1) <2,3>
+   2.6000e-2  -3.4437e-1   1.3060e-1  -8.7594e-2  -1.5166e-2   -6.5829e-4
eP2 112 0 poly(1) <2,3>
+  -3.5787e-2  -2.2883e-1   2.4121e-1   1.0443e-1   1.4721e-2    6.5731e-4
eP3 113 0 poly(1) <2,3>
+   2.0259e-2   2.8834e-2  -3.1118e-2  -1.3945e-2  -2.0977e-3   -9.8313e-5
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP   1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends

**************************** p g c
.subckt triode_PHLPS12at7wc  1 2 3
****************************
ePIog1 20 0 value={log(v(1,3))}
rPlog1 20 0 1
eGp0 10 0 poly(1) <2,3> -3.4856e+00  1.9216e+00  6.7355e-02
eGp1 11 0 poly(1) <2,3> -2.7396e-02 -4.0726e-02 -5.5367e-03
eGp2 12 0 poly(1) <2,3> -2.5889e-02 -1.0947e-03 -1.2516e-04
eGp3 13 0 poly(1) <2,3> -5.3691e-04  1.5773e-03  2.5402e-04
rGp0 10 0 1
rGp1 11 0 1
rGp2 12 0 1
rGp3 13 0 1
gG    3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/3581}
ePp0 110 0 poly(1) <2,3> -2.7098e+00  7.6798e+00 -3.8264e+00 -7.3346e-01
+ -3.4417e-02
ePp1 111 0 poly(1) <2,3>  9.6711e-01 -1.6271e+00  8.1943e-01  1.7330e-01
+ 8.4990e-03
ePp2 112 0 poly(1) <2,3>  1.2914e-02 -5.2319e-02  3.8963e-02  7.9005e-03
+ 3.5277e-04
ePp3 113 0 poly(1) <2,3>  1.8966e-03  1.8966e-02 -1.1283e-02 -2.6729e-03
+ -1.3326e-04
rPp0 110 0 1
rPp1 111 0 1
rPp2 112 0 1
rPp3 113 0 1
gP     1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends

Marshall's and Reynold's Models + Variations
***********************
.subckt 12ax7 1 3 4 ; TRIODO SEGNALE 
g1 2 4 value = {(exp(1.5*(log((v(2,4)/85)+v(3,4)))))/580}
c1 3 4 1.6p
c2 3 1 1.7p
c3 1 4 .46p
r1 3 5 50k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 12ax7 ; eq. ecc83
************************
.subckt 6sn7 1 3 4 ; TRIODO SEGNALE 
g1 2 4  value = {(exp(1.5*(log((v(2,4)/22)+v(3,4)))))/1086}    
*+ (0, 0) (20u, 20u)
*+ (30u, 30u) (.35m, .806m)
*+ (1m, 1.77m) (1.5m, 2.322m)
*+ (2m, 2.85m) (3m, 4.015m)
*+ (4m, 4.87m) (5m, 5.8m)
*+ (8m, 8.77m) (10m, 10.33m)
*+ (15m, 14.65m) (20m, 19.405m)  
c1 3 4 2.6p
c2 3 1 4p
c3 1 4 .7p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 6sn7
************************
.subckt 12au7 1 3 4 ; TRIODO SEGNALE  
g1 2 4 value = {(exp(1.5*(log((v(2,4)/18)+v(3,4)))))/1151}
c1 3 4 1.6p
c2 3 1 1.5p
c3 1 4 .5p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 12au7 ; eq. ecc82
***********************

*************************
.subckt VT4C 1 3 4 ; TRIODO DI POTENZA D.H.T. ( G.E.)
g1 2 4 value = {(exp(1.5*(log((v(2,4)/12)+v(3,4)))))/3010}
c1 3 4 6p
c2 3 1 14.5p
c3 1 4 5.5p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends VT4C ; eq. 211A
***********************
.subckt 2A3 1 3 4 ; TRIODO DI POTENZA D.H.T. ( F.I.V.R.E.)
g1 2 4 value = {(exp(1.5*(log((v(2,4)/4.2)+v(3,4)))))/970}
c1 3 4 7.5p
c2 3 1 16.5p
c3 1 4 5.5p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 2A3
***********************
.subckt ECC88 1 3 4 ; TRIODO DI SEGNALE  ( F.I.V.R.E.)
g1 2 4 value = {(exp(1.5*(log((v(2,4)/33)+v(3,4)))))/104}   
c1 3 4 3.3p
c2 3 1 1.4p
c3 1 4 2.8p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends ECC88 ; eq. 6dj8, 7dj8, e88cc, 6922
***********************
.subckt 300B 1 3 4 ; TRIODO DI POTENZA D.H.T. (WESTERN ELECTRIC)
g1 2 4 value = {(exp(1.46*(log((v(2,4)/3.5)+v(3,4)))))/2000}
c1 3 4 9p
c2 3 1 15p
c3 1 4 4.3p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 300B ; 
***********************

.subckt 6FQ7 1 3 4 ; TRIODO DI SEGNALE  ALTA CORRENTE
g1 2 4 value = {(exp(1.5*(log((v(2,4)/20)+v(3,4)))))/1049}
c1 3 4 2.4p
c2 3 1 3.6p
c3 1 4 .34p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 6FQ7 ;
***********************
.subckt 6CG7 1 3 4 ; TRIODO DI SEGNALE  ALTA CORRENTE
g1 2 4 value = {(exp(1.5*(log((v(2,4)/20)+v(3,4)))))/990}
c1 3 4 2.3p
c2 3 1 4p
c3 1 4 2.2p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 6CG7 ;
***********************

.subckt E88CC 1 3 4 ; TRIODO DI SEGNALE  (SQ PHILIPS) *modello sperimentale*
g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-0.1369*v(3,4)*v(3,4)-1.0232*v(3,4)+31.5035))+v(3,4)))))/120}
c1 3 4 3.3p
c2 3 1 1.4p
c3 1 4 2.8p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends E88CC ; eq. 6dj8, 7dj8, 6922
***********************
.subckt 6C33C-B 1 3 4 ; POWER TRIODE (SOVTEK) *modello sperimentale* 
g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-0.0002*v(3,4)*v(3,4)-0.0231*v(3,4)+1.6840))+v(3,4)))))/517}
c1 3 4 26p
c2 3 1 30p
c3 1 4  10p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 6C33C-B
************************
.subckt 12AT7 1 3 4 ; TRIODO DI SEGNALE *modello sperimentale*  
g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-.3512*v(3,4)*v(3,4)-2.6040*v(3,4)+62.7825))+v(3,4)))))/147}
c1 3 4 2.2p
c2 3 1 1.5p
c3 1 4 .5p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 12AT7 ;eq. ECC81
***********************
.subckt 5842 1 3 4 ; TRIODO DI SEGNALE  ( General Electric)
g1 2 4 value = {(exp(1.5*(log((v(2,4)/43)+v(3,4)))))/98.54}
c1 3 4 3.3p
c2 3 1 1.4p
c3 1 4 2.8p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 5842 ; 417A
***********************
.subckt SV811-10 1 3 4 ; Power Triode  ( Svetlana )
g1 2 4 value = {(exp(1.5*(log((v(2,4)/11)+v(3,4)))))/1668}
c1 3 4 7p
c2 3 1 8p
c3 1 4 8p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends SV811-10,
***********************
.subckt cv5112 1 3 4 ; TRIODO SEGNALE 
g1 2 4 value = {(exp(1.5*(log((v(2,4)/47)+v(3,4)))))/32.51}
c1 3 4 11p
c2 3 1 4p
c3 1 4 2.46p
r1 3 5 20k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends cv5112 ; eq. 3a/167m
***********************
.subckt 6080 1 3 4 ; TRIODO SEGNALE 
g1 2 4 value = {(exp(1.5*(log((v(2,4)/2)+v(3,4)))))/732}
c1 3 4 1.6p
c2 3 1 1.7p
c3 1 4 .46p
r1 3 5 50k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends 6080 ; 
************************
.subckt 12ax7i p g k 
e1 2 0 value = {v(p,k) + 83.5*v(g,k)}
r1 2 0 1k
gp p k value = {1.73e-6*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}
rgk g 1 100k
d1 1 k dm
cgp g p  1.6p
cgk g k 1.7p
cpk p k .4p
.model dm d
.ends ;modello "Marshall"
*************************
.subckt 811a p g k
e1 2 0 value = {v(p,k) + 140*v(g,k)}
r1 2 0 1k
gp p k value = {3.73e-7*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}
rgk g 1 2k
d1 1 k dm
cgp g p  1.6p
cgk g k 1.7p
cpk p k .4p
.model dm d
.ends ;modello "Marshall"
*************************
.subckt 845 p g k
e1 2 0 value = {v(p,k) +5.27*v(g,k)}
r1 2 0 1k
e2 3 0  table {v(p,k)} =
+ (20, 0) (100, 1)
r2 3 0 1k
gp p k value = {(2.484e-5*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2)*v(3)}
rgk g 1 8k
d1 1 k dm
cgp g p 13.5p
cgk g k 6p
cpk p k 6.5p
.model dm d
.ends 845 ; modello "Marshall"
************************
.subckt 6sn7-gt p g k 
e1 2 0 value = {v(p,k) +20*v(g,k)}
*e2 3 0 table {v(p,k)} =
*+ (175, 0) ;(175, 2.857)
*+ (200, 0.997) (225, 1)
*+ (250, 1) (275, .978)
*+ (300, .945) (325, .917)
*+ (350, .906) 
r1 2 0 1k
*r2 3 0 1k
gp p k value ={1.054e-5*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}
rgk g 1 10k
d1 1 k dm
cgp g p 3.8p
cgk g k 2.6p
cpk p k .7p
.model dm d
.ends 6sn7-gt ; Modello "Marshall"
************************
Rydel's Models
*******************************
.subckt e182cc p g k  ;Rydel's Models Triode Mode
+params: gp=0.00035349        b=36443491.15
+        c=8.843336963        d=81.53628791
+        cgk=11p        cgp=5p
+        cpk=1.8p       mu=24
e1      1 0  value= {1+(v(g,k)/b)}
re1     1 0 100meg
e2      2 0  value= {v(p,k)/(v(p,k)+c)}
re2     2 0 100meg
e3      3 0  value= {v(g,k)+((v(p,k)+d)/mu)}
re3     3 0 100meg
g1      p k  value= {gp*v(1)*v(2)*((1/2)*(pwr(v(3),1.5)+pwrs(v(3),1.5)))}
rpk     p k 100meg
c1      g k {cgk}
c2      g p {cgp}
c3      p k {cpk}
.ends
********************************
.subckt e55l p g k  ;Rydel's Models Triode Mode
+params: gp=0.004735979219        b=3734.604234
+        c=0.3266713215           d=79.54627249
+        cgk=11p        cgp=5p
+        cpk=1.8p       mu=30
e1      1 0  value= {1+(v(g,k)/b)}
re1     1 0 100meg
e2      2 0  value= {v(p,k)/(v(p,k)+c)}
re2     2 0 100meg
e3      3 0  value= {v(g,k)+((v(p,k)+d)/mu)}
re3     3 0 100meg
g1      p k  value= {gp*v(1)*v(2)*(pwr(v(3),1.5)+pwrs(v(3),1.5))}
rpk     p k 100meg
c1      g k {cgk}
c2      g p {cgp}
c3      p k {cpk}
.ends
********************************
.subckt 6c33c p g k  ;Rydel's Models
+params: g=2.957e-3        B=16.976 mu=1.984
+        k=0.941        Vc=-0.578
+        cgk=11p        cgp=5p
+        cpk=1.8p       
e1      1 0  value= {1+(v(g,k)/(B-(V(g,k)/k)))}
re1     1 0 100meg
e2      2 0  value= {v(g,k)+((v(p,k)+Vc)/mu)}
re2     2 0 100meg
g1      p k  value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}
rpk     p k 100meg
c1      g k {cgk}
c2      g p {cgp}
c3      p k {cpk}
.ends
*************************
.subckt 6c33c_m p g k  ;Rydel's Models
+params: g=2.957e-3        B=16.976 mu=2.2
+        k=0.941        Vc=-0.578
+        cgk=11p        cgp=5p
+        cpk=1.8p       
v_eddy 10 0 2.984
R_eddy1   10 11 0.504k
R-break   11 0  {m} 
e1      1 0  value= {1+(v(g,k)/(B-(V(g,k)/k)))}
re1     1 0 100meg
e2      2 0  value= {v(g,k)+((v(p,k)+Vc)/v(11))}
re2     2 0 100meg
g1      p k  value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}
rpk     p k 100meg
c1      g k {cgk}
c2      g p {cgp}
c3      p k {cpk}
.ends 6c33c_m