next up previous contents
Next: Deviazione standard Up: Valutazione incertezza Previous: Valor medio   Contents

Valore efficace


\begin{displaymath}
i_{C_{rms}}=\sqrt{\frac{1}{N}\sum ^{N}_{k=1}i^{2}_{C}\left( kT_{C}\right) }\end{displaymath}

Incertezza della radice quadrata di una misura \( y \): \( U_{\sqrt{y}}=\left\vert \frac{\partial \sqrt{y}}{\partial y}\right\vert U_{y}=\frac{1}{2\sqrt{y}}U_{y} \)

In questo caso \( y=\frac{1}{N}\sum ^{N}_{k=1}i^{2}_{C}\left( kT_{C}\right) \Rightarrow U_{i_{C...
... }\frac{1}{2\sqrt{\frac{1}{N}\sum ^{N}_{K=1}i^{2}_{C}\left( kT_{C}\right) }}= \)
\( =\frac{1}{N}\sum _{k=1}^{N}U_{i^{2}_{C}\left( kT_{C}\right) }\frac{1}{2i_{C_{rms}}} \)

Incertezza del quadrato di una misura: \( U_{y^{2}}=U_{y}\left\vert y\right\vert +U_{y}\left\vert y\right\vert =2U_{y}\left\vert y\right\vert \)

In questo caso \( y=i^{2}_{C}\left( kT_{C}\right) \Rightarrow U_{i^{2}_{C}\left( kT_{C}\right) }=2U_{i_{C}\left( kT_{C}\right) }i_{C}\left( kT_{C}\right) \)

In definitiva:

\begin{displaymath}
U_{i_{C_{rms}}}=\frac{1}{Ni_{C_{rms}}}\sum ^{N}_{k=1}U_{i_{C}\left( kT_{C}\right) }i_{C}\left( kT_{C}\right) \end{displaymath}



2001-10-22