Reti in fibra ottica – Formulario

(versione del 14 gennaio 2003)

Lightwave Basics

Physical Constants

Conversion formulae between frequency and wavelength

Absolute frequency/wavelength: $f = \frac{c}{l}$ *l* =

Frequency/wavelength intervals: $\Delta f = -\frac{c}{l^2} \Delta l$ *l* $\Delta f = -\frac{c}{l^2} \Delta$

Optical power:
$$
\begin{cases} P_{dBm} = 10 \log_{10} (P_{mW}) \\ P_{mW} = 10^{P_{dBm}/10} \end{cases}
$$

Propagation of light in optical fibers

Velocity of light in dielectric of index $n : v = \frac{c}{x}$ *n* =

Dispersion limits in step index multimode fibers

Normalized Frequency Parameter V: $V = k_0 a (n_1^2 - n_2^2)^{1/2} = \frac{2p}{l} \tan \frac{1}{2}$ 0 $V = k_0 a (n_1^2 - n_2^2)^{\frac{1}{2}} = \frac{2p}{l}$ $\sin \sqrt{2}$ *l* $(2p)$ $=$ **k**₀ $a(n_1^2 - n_2^2)^{7/2} = \frac{2P}{I_0}$ $\int a n_1 \sqrt{2\Delta}$

In order to have a Single Mode Fiber: $V \le 2.405$ In order to have a Multi Mode Fiber: $V > 2.405$

Amount of pulse broadening in a step index multimode fiber: 2 1 2 $T = L \cdot \frac{n}{2}$ n, c $dT = L \cdot \frac{n_1^2}{n_1} \cdot \frac{\Delta}{n_1}$

Bit Rate Limit:
$$
dT < \frac{1}{2B}
$$
, $BL < \frac{n_2 c}{2n_1^2 \Delta}$

Dispersion limit in graded index multimode fibers

Amount of pulse broadening in a step index multimode fiber: $dT = \frac{L_1}{2} \Delta^2$ 8 $T = \frac{Ln}{2}$ *c* $dT = \frac{LH_1}{2} \Delta$

Bit Rate Limit:
$$
dT < \frac{1}{2B}
$$
, $BL < \frac{4c}{n_1 \Delta^2}$

Transmission Systems Design

Single-Span Without Amplifiers

Available Power Budget: $\overline{P}_{TX_{dBm}} - \overline{P}_{sens_{dBm}}$ System degradation: $a_{dB} \cdot L + a_{spl} + a_{conn} + a_{bends} + a_{path} + m$ Maximum distance: $L_{\text{max, pract}} = \frac{P_{TX_{dBm}} - P_{sens_{dBm}} - a_{spl} - a_{bends} - a_{path}}{2}$ *pract dB* $P_{TX_{dBm}} - P$ *L* $a_{\textit{val}} - a_{\textit{conn}} - a_{\textit{heads}} - a_{\textit{node}} - a$ *a* $-P_{sens_{dBm}}-a_{snl}-a_{conn}-a_{bends}-a_{nath}-$ = Quantum limit: $BER = \frac{1}{2}e^{-2}$ 2 $BER = \frac{1}{2}e^{-2N_{RX}}$, $\bar{N}_{RX} = \frac{r_{RX}}{I_{RX} - R} = \frac{r_{RX}}{I_{X}}$ *B* $\overline{N}_{RX} = \frac{\overline{P}_{RX}}{\overline{P}_{RX}} = \frac{\overline{P}_{RX} \cdot T}{\overline{P}_{YX}}$ h **n** \cdot R _{*R*} *h***n** $=\frac{\overline{P}_{RX}}{\overline{P}_{RX}}=\frac{\overline{P}_{RX}}{\overline{P}_{X}}$ ⋅ =number of average photons per bit

Single-Span with RX Optical Amplifier

The Optical Signal-to-Noise Ratio over a bandwidth *RB*:

$$
OSNR \equiv \frac{\overline{P}_{signal}^{out}}{(G-1) \cdot F \cdot h\mathbf{n} \cdot R_B}, \quad OSNR \big|_{dB} \cong \overline{P}_{signal}^{out} \big|_{dBm} - G \big|_{dB} - F_{EDFA} \big|_{dB} - P_{base} \big|_{dBm}
$$

$$
P_{base} \big|_{dBm} = 10 \cdot \log_{10} (h\mathbf{n} \cdot R_b \cdot 10^3), \quad h = 6.6261 \cdot 10^{-34} \text{ J} \cdot \text{s}, \quad \mathbf{n} = 193.41 \text{ THz (} \text{ @ } 1550 \text{ nm})
$$

Tables of typical values of *Pbase* at 1550 nm for different bandwidths

The Bit Error Rate: $P(e) \approx \frac{1}{2} e^{-0.98}$ 2 $P(e) \approx \frac{1}{2} e^{-0.98 \cdot 0.05 N R}$ (ideal matched optical filter+photodiode, the *OSNR* is defined over a bandwidth equal to the bit rate)

Ratio between the optical – 3dB filter bandwidth and the bit-rate: $r = \frac{B_{opt}}{I}$ *B B R*

Multi-Span, with In-line Optical Amplifiers

The Optical Signal-to-Noise Ratio OSNR, defined over a bandwidth equal to the bit rate:

$$
OSNR=\frac{\overline{P_{TX}}}{2N_{span}\cdot N_{0}\cdot R_{B}}\ ,\ \left. OSNR\right|_{dB}\cong\overline{P}_{signal}^{out}\Big|_{dBm}-\boldsymbol{a}_{span}-10\log_{10}N_{span}-\overline{F}_{EDFA}\Big|_{dB}-\boldsymbol{P}_{base}\Big|_{dBm}
$$

Propagation in Optical Fibers

Group delay: *g* $t_e = \frac{L}{\sqrt{2}}$ $=\frac{E}{n_s}$; Group velocity: n_g *g c* $n_{g} = \frac{c}{n_{g}}$, $n_{g} = 1.5$

The dispersion parameter D: $D = \frac{a}{d} (t_g)$ 1 $=\frac{d}{dt}(t_{\rho})\Big| \qquad \qquad \Big| \frac{\text{ps}}{\text{ps}}$ $\left\{ g \mid g \right\}_{\text{over } 1 \text{ Km}}$ $\left[\text{ nm} \cdot \text{ km} \right]$ $D \triangleq \frac{d}{d}$ *d t l* $=\frac{d}{dI}(t_s)\Big|_{over1Km}$ $\left[\frac{\text{ps}}{\text{nm}\cdot\text{km}}\right]$

Relative delay: $\Delta_{delay} = D \cdot L \cdot \Delta I$

Accumulated delay over different pieces of fibers:

$$
\Delta_{\text{delay},\text{tot}} = \Delta_{\text{delay},1} + \Delta_{\text{delay},2} = (D_1 \cdot L_1 + D_2 \cdot L_2) \cdot \Delta I
$$

The dispersion parameter β_2 : $b_2 = \frac{a}{1} (t_g)$ 2 2 1 ps $\left\{ g \mid g \right\}_{over \text{over } 1 \text{Km}}$ [km *d d* $b_2 = \frac{a}{t}$ (t *w* $|ps^2|$ $=\frac{a}{dw}(t_s)\Big|_{over\text{1km}}$ $\left[\frac{P^3}{km}\right]$

Relative delay: $\Delta_{delay} = L \cdot |b_2| \cdot \Delta w = L \cdot |b_2| \cdot 2p \cdot \Delta f$

Dispersion parameters β₂ and D: $D = -\frac{2p c}{l^2} b_2$ *l* = −

Higher Order Disperson:
$$
S = \frac{dD}{dI} \left[\frac{\text{ps}}{\text{nm}^2 \cdot \text{km}} \right], b_3 = \frac{d b_2}{d w} \left[\frac{\text{ps}^3}{\text{km}} \right]
$$

Dispersion limits

Case #1: large spectrum optical sources, D≠0

$$
(B_r \cdot L)_{\text{max}} \le \frac{1}{2|D|\Delta l_{opt}}
$$

Case #2: large spectrum optical sources, D=0

$$
(B_r \cdot L)_{\max} \le \frac{1}{|S| (\Delta L_{opt})^2 \sqrt{8}}
$$

Case #3: external modulation, D≠0

$$
\left(B_r^2 L\right)_{\max} \leq \frac{1}{8|b_2|}
$$

Case #4: external modulation, D=0

$$
(B_r^3 L)_{\max} \le \frac{(0.324)^3}{|b_3|}
$$

PDF created with FinePrint pdfFactory trial version <http://www.fineprint.com>