Reti in fibra ottica - Formulario

(versione del 14 gennaio 2003)

Lightwave Basics

Physical Constants

Description	Value	Symbol
Velocity of Light	2.9979 x 10 ⁸ m/s	c
Electron Charge	1.602 x 10 ⁻¹⁹ C	q
Planck Constant	6.626 x 10 ⁻³⁴ J·s	h
Boltzman Constant	1.38 x 10 ⁻²³ J/K	k

Conversion formulae between frequency and wavelength

Absolute frequency/wavelength: $f = \frac{c}{l}$

Frequency/wavelength intervals: $\Delta f = -\frac{c}{l^2} \Delta l$

Optical power:
$$\begin{cases} P_{dBm} = 10 \log_{10} (P_{mW}) \\ P_{mW} = 10^{P_{dBm}/10} \end{cases}$$

Propagation of light in optical fibers

Velocity of light in dielectric of index $n : v = \frac{c}{n}$

Dispersion limits in step index multimode fibers

Normalized Frequency Parameter V: $V = \mathbf{k}_0 a \left(n_1^2 - n_2^2 \right)^{\frac{1}{2}} = \left(\frac{2\mathbf{p}}{I_0} \right) a n_1 \sqrt{2\Delta}$

In order to have a Single Mode Fiber: $V \le 2.405$ In order to have a Multi Mode Fiber: V > 2.405

Amount of pulse broadening in a step index multimode fiber: $dT = L \cdot \frac{n_1^2}{n_2} \cdot \frac{\Delta}{c}$

Bit Rate Limit:
$$dT < \frac{1}{2B}$$
, $BL < \frac{n_2 c}{2n_1^2 \Delta}$

Dispersion limit in graded index multimode fibers

Amount of pulse broadening in a step index multimode fiber: $dT = \frac{Ln_1}{8c} \Delta^2$

Bit Rate Limit: $dT < \frac{1}{2B}$, $BL < \frac{4c}{n_1 \Delta^2}$

Transmission Systems Design

Single-Span Without Amplifiers

Available Power Budget: $\overline{P}_{TX_{dBm}} - \overline{P}_{sens_{dBm}}$ System degradation: $a_{dB} \cdot L + a_{spl} + a_{conn} + a_{bends} + a_{path} + m$ Maximum distance: $L_{max, pract} = \frac{\overline{P}_{TX_{dBm}} - \overline{P}_{sens_{dBm}} - a_{spl} - a_{conn} - a_{bends} - a_{path} - m}{a_{dB}}$ Quantum limit: $BER = \frac{1}{2}e^{-2\overline{N}_{RX}}$, $\overline{N}_{RX} = \frac{\overline{P}_{RX}}{hn \cdot R_{B}} = \frac{\overline{P}_{RX} \cdot T}{hn}$ =number of average photons per bit

Single-Span with RX Optical Amplifier

The Optical Signal-to-Noise Ratio over a bandwidth R_B :

$$OSNR \equiv \frac{\overline{P}_{signal}^{out}}{(G-1) \cdot F \cdot h\mathbf{n} \cdot R_B}, OSNR|_{dB} \cong \overline{P}_{signal}^{out}|_{dBm} - G|_{dB} - F_{EDFA}|_{dB} - P_{base}|_{dBm}$$

$$P_{base}\Big|_{dBm} = 10 \cdot \log_{10}(h\mathbf{n} \cdot R_b \cdot 10^3), \ h = 6.6261 \cdot 10^{-34} \text{ J} \cdot \text{s}, \ \mathbf{n} = 193.41 \ THz \ (@\ 1550 \ nm)$$

Tables of typical values of P_{base} at 1550 nm for different bandwidths

Bandwidth over which	
P_{base} is defined	$P_{base} (dBm)$
2.5 GHz	-54.9 dBm
10 GHz	-48.9 dBm
40 GHz	-42.9 dBm
0.1 nm	-47.9 dBm
0.5 nm	-40.9 dBm

The Bit Error Rate: $P(e) \cong \frac{1}{2} e^{-0.98 \cdot OSNR}$ (ideal matched optical filter+photodiode, the OSNR is defined over a bandwidth equal to the bit rate) Ratio between the optical – 3dB filter bandwidth and the bit-rate: $r = \frac{B_{opt}}{R_B}$

Multi-Span, with In-line Optical Amplifiers

The Optical Signal-to-Noise Ratio OSNR, defined over a bandwidth equal to the bit rate:

$$OSNR = \frac{P_{TX}}{2N_{span} \cdot N_0 \cdot R_B}, OSNR|_{dB} \cong \overline{P}_{signal}^{out}|_{dBm} - a_{span} - 10\log_{10}N_{span} - F_{EDFA}|_{dB} - P_{base}|_{dBm}$$

Propagation in Optical Fibers

Group delay: $t_g = \frac{L}{n_g}$; Group velocity: $n_g = \frac{c}{n_g}$, $n_g = 1.5$

The dispersion parameter D: $D = \frac{d}{dl} (t_g) \Big|_{over 1Km} \qquad \left[\frac{\text{ps}}{\text{nm} \cdot \text{km}} \right]$

Relative delay: $\Delta_{delay} = D \cdot L \cdot \Delta l$

Accumulated delay over different pieces of fibers:

$$\Delta_{delay,tot} = \Delta_{delay,1} + \Delta_{delay,2} = \left(D_1 \cdot L_1 + D_2 \cdot L_2\right) \cdot \Delta I$$

The dispersion parameter β_2 : $b_2 = \frac{d}{dw} (t_g) \Big|_{over 1Km} \qquad \left[\frac{\text{ps}^2}{\text{km}} \right]$

Relative delay: $\Delta_{delay} = L \cdot |\boldsymbol{b}_2| \cdot \Delta \boldsymbol{w} = L \cdot |\boldsymbol{b}_2| \cdot 2\boldsymbol{p} \cdot \Delta \boldsymbol{f}$

Dispersion parameters β_2 and D: $D = -\frac{2pc}{l^2}b_2$

Higher Order Dispersion:
$$S = \frac{dD}{dl} \quad \left[\frac{\text{ps}}{\text{nm}^2 \cdot \text{km}}\right], \ b_3 = \frac{db_2}{dw} \quad \left[\frac{\text{ps}^3}{\text{km}}\right]$$

Dispersion limits

Case #1: large spectrum optical sources, D≠0

$$\left(B_r \cdot L\right)_{\max} \leq \frac{1}{2|D|\Delta I_{opt}}$$

Case #2: large spectrum optical sources, D=0

$$(B_r \cdot L)_{\max} \leq \frac{1}{|S| (\Delta I_{opt})^2 \sqrt{8}}$$

Case #3: external modulation, $D\neq 0$

$$\left(B_r^2 L\right)_{\max} \leq \frac{1}{8|\boldsymbol{b}_2|}$$

Case #4: external modulation, D=0

$$\left(B_r^3 L\right)_{\max} \leq \frac{\left(0.324\right)^3}{\left|\boldsymbol{b}_3\right|}$$

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com