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A sparse, positive-definite kernel function is adopted as the basis for
the formulation of a simple support vector machine (SVM) model in
which the bias term is removed. The resulting functional to be mini-
mised in the SVM training process is shown to be equivalent to the
potential function (co-content) of a linear, resistive circuit featuring
low complexity.

Introduction: The support vector machine (SVM) model [1] is a very
effective methodology for tackling classification problems in complex,
nonlinear data distributions. The success of SVMs in real-world
domains motivates the ongoing research towards hardware implemen-
tations, and programmable logic devices are quite popular for the realis-
ation of off-line trained SVMs [2].

Digital technologies, however, may prove inefficient when supporting
systems that require on-line training capabilities. This Letter presents an
innovative circuit-design method for the hardware support of SVM train-
ing, and shows that by a sparse, positive-definite kernel one can map
efficiently the learning process into a linear, low-complexity, resistive
circuit.

Issues in circuit support to SVM training: The training process of
SVMs, the model of which derives from statistical learning theory [1],
can be stated as a convex quadratic programming (QP) problem; it
requires the minimisation of a quadratic functional, subject to linear
equality and inequality constraints. Let Z ¼f(xl, yl); l ¼ 1, . . . , np;
xl [ <n, yl [ f21,þ 1gg denote the (training) set of labelled patterns,
belonging to two classes yl; the resulting binary classification setting
requires one to solve the QP problem:
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where the scalar quantities a are the model parameters to be adjusted, the
quantity C upper bounds the SVM parameters, and K(8,8) is a kernel
function, i.e. the basis for the SVM series expansion. SVM supports a
linear class separation in a Hilbert space; the classification rule for a
trained SVM is:

f ðxÞ ¼
Pnp

l¼1
alylKðx; xlÞ þ b ð2Þ

where b is a bias.
The functional (1) can be viewed as the co-content potential of a

resistive circuit. This poses the basis for Chua and Lin’s circuit for
trained SVMs [3], which is extended to the hardware support of the
learning phase in [4]. That approach exhibits two crucial drawbacks,
which ultimately limit its overall effectiveness. First, Chua and Lin’s
circuit model cannot support the linear equality constraint shown in
(1), and the trick of replacing the equality constraint with a pair of
inequalities [4] may compromise the stability of the overall circuit.
Secondly, the complexity of Chua and Lin’s circuit model increases
as the density of the kernel matrix, K(xl, xm), increases.

The following discussion addresses both of these issues, and shows
that the properties of positive-definite kernels allow one to set up a
simpler model, leading to an efficient circuit support to the SVM train-
ing task.

Sparse kernels for efficient circuit support of SVM training: A theoreti-
cal result [5] allows one to overcome the equality-constraint issue: for
any positive-definite kernel, the representer theorem [6] holds true for
SVMs even in the absence of a bias term. As a consequence, choosing
a positive-definite kernel takes out the bias term, b, from (2); it can be
easily proved that this eliminates the linear constraint in (1), while the
generalisation ability of the SVM remains unaffected.
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When selecting the required positive-definite kernel function,
however, one can take into account the second issue, i.e. circuit com-
plexity. The present approach adopts a kernel formulation [7] that
leads to sparse matrixes, and therefore attains the goal of limiting
circuit complexity. The kernel function can be formalised as follows:
let d(xl, xm) ¼ kxl 2 xmk

2 denote the distance between points (xl, xm),
and let r be a cutoff distance. By definition, the kernel-based inner
product, K(xl, xm), nullifies whenever d(xl, xm)� 2r; otherwise, the
quantity K(xl, xm) is worked out by means of a recursive procedure:
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Recursions stop when the index, j, reaches the dimension, n, of the orig-
inal data space, hence: K(xl, xm) ; kn,n (xl, xm). As shown in [7], this
kernel ensures good prediction performances while yielding sparse
kernel matrixes. From a circuit-design perspective, it can be proved
that the above kernel-based SVM training process directly maps into a
simple co-content minimising circuit. By assuming a voltage reference,
V0, and a reference resistance, R0, one implements the terms al as vl/V0

and reformulates the overall SVM function as the equivalent co-content
function:
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subject to the set of ‘box’ constraints, 0 �vl � CV0, 8l.
The first sum is the co-content function of a multi-terminal linear

resistor G, the conductance matrix elements of which are Glm ¼ ylym

K(xl, xm). Each term in the second sum is the co-content of constant
current sources, V0/R0. The ‘box’ constraints on the set of voltages,
vl, is satisfied by as many identical, nonlinear resistors (diodes) the
characteristic of which is represented in Fig. 1a. By connecting the np

terminals to (identical) capacitors C as per Fig. 1b, one allows the free
voltages, v1, . . . , vnp, to reach their stable values imposed by:
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Fig. 1 Nonlinear resistor characteristic and global circuital structure

a Nonlinear resistor characteristic
b Global circuital structure

Experimental results: The well-known Sonar dataset from UCI reposi-
tory provided a complex testbed for evaluating the proposed circuit
implementation; the dataset includes 208 patterns evenly distributed
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over two classes. To verify the generalisation performance of the circuit
support, the dataset was randomly split into a training set holding 150
patterns, and a test set including the remaining 58 patterns. The
circuit-design parameters C, V0, R0, and I0 were set as follows: C ¼
1 nF, V0 ¼ 1 V, R0 ¼ 1 kV and I0 ¼ 1 mA. In the graph in Fig. 2, the
x-axis gives the cutoff distance, r, and three different quantities are
reported on the co-ordinate axis: 1. circuit complexity, measured by a
scalar in the range [0,1] that quantifies the sparseness of the kernel
matrix; 2. ‘software’ classification accuracy, measured as the number
of classification errors scored by an ideal SVM model (including,
bias) on the test set; 3. ‘hardware’ classification accuracy, measured as
the number of classification errors (test set) scored by the circuit
implementation described in this Letter. All values were measured
upon completion of a transient interval of 80 ms.
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Fig. 2 Circuital complexity and classification accuracies against cutoff
distance

Stars denote classification accuracies obtained with software implementation of
the SVM model; triangles denote classification accuracies obtained with circuital
implementation of SVM model

Remarkably, numerical results show that the performance of the circuit
implementation of the SVM model decays only when the circuit complex-
ity is lower than 0.2. This occurs when the cutoff distance, r, yields a
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kernel matrix such that more than 80% of the matrix elements are null.
The lack of a bias term in the circuit setup determines the degradation
in generalisation performance as compared with the ideal model; at the
same time, one might observe that such a degradation begins in a
region of the graph in which circuit complexity is sufficiently low.

Conclusion: This Letter presents an effective circuit implementation of
the SVM training process. In the proposed approach, theoretical proper-
ties of the SVM paradigm have been exploited to efficiently map the
training process on a linear, resistive circuit characterised by low
complexity.
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