Verifica della Seconda Legge della Dinamica

Descrizione dell'esperienza

Si studia il moto di una slitta trascinata da un peso su una rotaia a cuscino d'aria.

Descrizione dell'apparato

L'apparato sperimentale utilizzato, riprodotto in figura,

inserire figura apparato

consiste di: elenco dettagliato del materiale utilizzato

Descrizione dell'esperimento La seconda legge della dinamica

 $forza = massa \cdot accelerazione$

può essere applicata al sistema descritto in figura in cui la forza applicata è la forza peso di m: $forza = m \cdot g$; la massa è la massa totale del sistema: massa = m + M e quindi

$$m \cdot g = (m + M) \cdot a$$

da cui si può ricavare l'accelerazione prevista teoricamente.

Va confrontata con una misura cinematica indiretta dell'accelerazione del moto della slitta: predisponendo opportunamente il sistema si può fare in modo di misurare il tempo impiegato per percorrere una distanza prefissata. In questo caso la relazione tra spazio e tempo dovrebbe essere quadratica, con una costante di proporzionalità legata all'accelerazione:

$$s = \frac{1}{2}at^2$$

Da tale relazione si può stimare l'accelerazione del sistema.

Analisi dei dati

La tabella seguente riporta i risultati delle varie misure dirette dei tempi di passaggio per le varie posizioni

s (cm)	<i>tl</i> (s)	t2 (s)	<i>t3</i> (s)
40			
50			
60			

La tabella seguente riporta i valori medi dei tempi per ciascuna posizione, assieme ai corrispondenti errori assoluti e relativi. L'errore assoluto di ogni misura temporale è stato calcolato confrontando la semidispersione delle misure con l'incertezza caratteristica di ogni singola misura. L'errore assoluto sullo spazio percorso si può ragionevolmente assumere di 1 cm, supponendo di commettere un errore di mezzo centimetro nel posizionare ciascuna fotocellula.

s (cm)	Er(s)	<i>t</i> (s)	Δt (s)	$\mathrm{Er}(t)$
40				
50				
60				

E' stato innanzitutto verificato che la relazione tra s e t è di tipo quadratico (spiegare come; allegare eventuali grafici).

Fatto questo si può passare al calcolo della accelerazione:

$$a = \frac{2s}{t^2}$$

con $\text{Er}(a) = \text{Er}(s) + 2 \text{ Er}(t) \text{ e } \Delta a = a \cdot \text{Er}(a)$, ottenendo per i vari casi:

s (cm)	$a \text{ (cm/s}^2)$	Er(a)	$\Delta a (\text{cm/s}^2)$
40			
50			
60			

$$a = \frac{mg}{m + M}$$

Tale valore risulta (o non risulta) in accordo con quello calcolato sperimentalmente.

Osservazioni conclusive difficoltà riscontrate principali cause di errore necessità di ripetere l'esperienza con valori diversi delle masse