
Power Compiling Solutions™

D-CC & D-C++

Compiler Suites

C Library Reference Manual

Version 4.2 10/98

000-5416-001

ii Contents C Library Reference Manual
Version 4.2 10/98

Copyright Notice

Copyright 1991-1998, Diab Data, Inc., Foster City, California, USA

All rights reserved. This document may not be copied in whole or in part, or otherwise reproduced, except
as specifically permitted under U.S. law, without the prior written consent of Diab Data, Inc.

Disclaimer

Diab Data makes no representations or warranties with respect to the contents of this publication, and spe-
cifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Diab
Data reserves the right to revise this publication and make changes from time to time in the content hereof
without obligation on the part of Diab Data to notify any person or company of such revision or changes.

In no event shall Diab Data, or others from whom Diab Data has a licensing right, be liable for any indi-
rect, special, incidental, or consequential damages arising out of or connected with a customers possession
or use of this product, even if Diab Data or such others has advance notice of the possibility of such
damages.

Trademarks

Diab Data, alone and in combination with D-AS, D-C++, D-CC, D-F77, D-LD , and FastJ are trademarks
of Diab Data, Inc. All other trademarks used in this document are the property of their respective owners.

C Library Reference Manual Contents iii

Contents

1 Introduction 1
Document conventions 2

Library structure 2

Libraries supplied 3

Assumptions 5

Library directory structure 5

libc.a 7

Library search paths 8

2 Include Files 13
Files 13

Defined Variables, Types, and Constants 15

errno.h 15

fcntl.h 16

float.h 16

limits.h 16

math.h 16

mathf.h 16

setjmp.h 16

signal.h 16

stdarg.h 17

stddef.h 17

stdio.h 17

stdlib.h 17

string.h 17

time.h 17

3 Functions 19
Format of Descriptions 19

Operating system calls 19

References 20

Function Listing 21

iv Contents C Library Reference Manual

a64l 21

abort 21

abs 21

access 21

acos 22

acosf 22

advance 22

alloca 22

asctime 23

asin 23

asinf 23

assert 23

atan 24

atanf 24

atan2 24

atan2f 25

atexit 25

atof 25

atoi 25

atol 26

bsearch 26

calloc 26

ceil 26

ceilf 27

_chgsign 27

clearerr 27

clock 27

close 28

compile 28

_copysign 28

cos 28

cosf 29

cosh 29

coshf 29

creat 29

ctime 30

C Library Reference Manual Contents v

difftime 30

div 30

drand48 30

ecvt 31

erf 31

erff 31

erfc 32

erfcf 32

exit 32

_exit 32

exp 33

expf 33

fabs 33

fabsf 33

fclose 34

fcntl 34

fcvt 34

fdopen 34

feof 35

ferror 35

fflush 35

fgetc 35

fgetpos 36

fgets 36

fileno 36

_finite 36

floor 37

floorf 37

fmod 37

fmodf 37

fopen 38

fprintf 38

fputc 39

fputs 39

fread 39

free 40

vi Contents C Library Reference Manual

freopen 40

frexp 40

frexpf 41

fscanf 41

fseek 41

fsetpos 42

fstat 42

ftell 42

fwrite 42

gamma 43

gammaf 43

gcvt 43

getc 44

getchar 44

getenv 44

getopt 44

getpid 45

gets 45

getw 45

gmtime 45

hcreate 46

hdestroy 46

hsearch 46

hypot 47

hypotf 47

irand48 47

isalnum 47

isalpha 47

isascii 48

isatty 48

iscntrl 48

isdigit 48

isgraph 49

islower 49

_isnan 49

isprint 49

C Library Reference Manual Contents vii

ispunct 49

isspace 50

isupper 50

isxdigit 50

j0 50

j0f 51

j1 51

j1f 51

jn 51

jnf 52

jrand48 52

kill 52

krand48 52

l3tol 53

l64a 53

labs 53

lcong48 53

ldexp 53

ldexpf 54

ldiv 54

_lessgreater 54

lfind 54

link 55

localeconv 55

localtime 55

log 55

_logb 56

logf 56

log10 56

log10f 56

longjmp 57

lrand48 57

lsearch 57

lseek 57

ltol3 58

mallinfo 58

viii Contents C Library Reference Manual

malloc 58

mallopt 59

matherr 59

matherrf 60

mblen 60

mbstowcs 61

mbtowc 61

memccpy 61

memchr 62

memcmp 62

memcpy 62

memmove 62

memset 63

mktemp 63

mktime 63

modf 63

modff 64

mrand48 64

_nextafter 64

nrand48 64

offsetof 65

open 65

perror 65

pow 66

powf 66

printf 66

putc 68

putchar 69

putenv 69

puts 69

putw 69

qsort 70

raise 70

rand 70

read 70

realloc 71

C Library Reference Manual Contents ix

remove 71

rename 71

rewind 71

sbrk 72

_scalb 72

scanf 72

seed48 74

setbuf 74

setjmp 74

setlocale 75

setvbuf 75

signal 76

sin 76

sinf 76

sinh 76

sinhf 77

sprintf 77

sqrt 77

sqrtf 77

srand 78

srand48 78

sscanf 78

step 78

strcat 79

strchr 79

strcmp 79

strcoll 79

strcpy 80

strcspn 80

strdup 80

strerror 80

strftime 81

strlen 82

strncat 82

strncmp 82

strncpy 83

x Contents C Library Reference Manual

strpbrk 83

strrchr 83

strspn 83

strstr 84

strtod 84

strtok 84

strtol 85

strtoul 85

strxfrm 85

swab 86

tan 86

tanf 86

tanh 86

tanhf 87

tdelete 87

tell 87

tempnam 87

tfind 88

time 88

tmpfile 88

tmpnam 88

toascii 89

tolower 89

_tolower 89

toupper 89

_toupper 90

tsearch 90

twalk 90

tzset 91

ungetc 91

unlink 91

_unordered 91

vfprintf 92

vfscanf 92

vprintf 92

vscanf 93

C Library Reference Manual Contents xi

vsprintf 93

vsscanf 94

wcstombs 94

wctomb 94

write 94

y0 95

y0f 95

y1 95

y1f 95

yn 96

ynf 96

Index 97

xii Contents C Library Reference Manual

List of Tables

Table 1-1 Document conventions 2

Table 1-2 Library files 3

Table 1-3 Library directory locations 6

Table 1-4 libc.a files delivered with the tools 7

Table 1-5 Directories searched for libraries 8

Table 1-6 Examples of libraries found for different -t options 10

Table 2-1 Standard Include Files 14

C Library Reference Manual 1 Introduction 1

1 Introduction

Document conventions 2

Library structure 2

Libraries supplied 3

Assumptions 5

Library directory structure 5

libc.a 7

Library search paths 8

This is a reference manual for the C libraries provided with Diab Data optimizing compil-
ers. It applies to all targets supported by Diab Data.

It is written for the professional programmer and contains descriptions and references for
include files, functions, macros, and variables defined in the libraries.

The libraries are compliant with the following standards and definitions:

ANSI X3.159-1989

ISO/IEC 9945-1:1990

POSIX IEEE Std 1003.1

SVID Issue 2

For C++ specific headers, see “Header files” in the chapter “C++ Features and Compatibil-
ity” in the Language User’s Manual.

ì

2 1 Introduction C Library Reference Manual

Document conventions

Document conventions

This manual uses the following typographic conventions:

Library structure

➤ Libraries are usually selected automatically by the dctrl command or the -t option to
the linker. This section is provided for user customization of the process and can be
skipped for standard use.

Table 1-1 Document conventions

Example Description

dcc -o test.c This font is used for file and program names, environment vari-
ables, examples, user input, and program output.

if , main(), #pragma,
__pack__

Bold type is used for keywords, operators and other tokens of the
language, library routines and entry points, and section names.

Some names begin or end with underscores. These underscores
and special characters such as # shown in bold are required.

variable, filename Italic type is used for placeholders for information which you
must supply. Italics are also used for emphasis, to introduce new
terms, and for titles.

[optional text] An item enclosed in brackets is optional.

{ item1 | item2 } Two or more items enclosed in braces and separated by vertical
bars means that you must choose exactly one of the items.

item ...
item ,...

An item followed by “...” means that items of that form may be
repeated separated by whitespace (spaces or tabs). A character
preceding the “...” means that the items are separated by the char-
acter, shown here as a comma, and optional whitespace.

The item may be a single token, an optional item enclosed in
[] brackets (meaning that the item may appear not at all, once, or
multiple times), or a set of choices enclosed in { } braces (mean-
ing that a choice must be made from the enclosed items one or
more times).

C Library Reference Manual 1 Introduction 3
Library structure

The Diab Data library structure is designed to support a wide range of processors, types of
floating point support, and execution environments. This section describes that structure
and the mechanism used by the linker to select particular libraries.

This discussion is independent of any target, and should be read in conjunction with the
following:

• Chapter 2, “Installing the Compiler,” in the Language User’s Manual

• Chapter 2, “Selecting a Target and Its Components,” in the Target User’s Manual.

These sections describe the location of the components of the tools and the configuration
variables (and their equivalents – environment variables and command line options) used to
control their operation. That knowledge is assumed here.

Libraries supplied

The next table shows the archive libraries distributed with the tools. This does not include
libc.a , which is not an archive library, but is instead a text file which includes other librar-
ies as described following the table.

Table 1-2 Library files

File Contents

libcfp.a Floating point functions called by user code, including, for exam-
ple, the printf and scanf formatting functions (but not the actual
device input/output code). The version selected depends on the
type of floating point selected: hardware, software, or none as
described below.

Typically included automatically by libc.a , see below.

libchar.a Basic operating system functions using simple character input/out-
put for stdin and stdout only (stderr and named files are not
supported). This is an alternative to libram.a .

Sometimes included automatically by libc.a , see below.

libcomplex.a C++ complex math class library.

Not automatic; include with an -lcomplex option.

4 1 Introduction C Library Reference Manual

Library structure

The tools accommodate requirements for different floating point and target operating sys-
tem and input/output support using two mechanisms:

• libc.a is a text file which includes a number of the libraries listed above. Several
libc.a files which include different combinations are delivered for each target.

libd.a Additional standard library and support functions delivered with
C++ only (libc.a is also required).

Included automatically in the link command generated by dplus .
If the linker is invoked directly (command dld), then must be
included by the user with an -ld option.

libi.a General library containing all standard ANSI C functions except
those in libcfp.a , libchar.a , and libram.a .

Typically included automatically by libc.a , see below.

libimpfp.a Conversions between floating point and other types. There are
three versions: one for use with hardware floating point, one for
software floating point, and an empty file when “none” is selected
for floating point.

libimpl.a Utility functions called by compiler-generated or runtime code for
constructs not implemented in hardware, e.g., low-level software
floating point (except conversions), 64-bit integer support, and reg-
ister save/restore when absent in the hardware.

Typically included automatically by libc.a , see below.

libios.a C++ iostream class library.

Not automatic; include with an -lios option.

libm.a Advanced math function library.

Not automatic; include with an -lm option.

libram.a Basic operating system functions using RAM disk file input/output
– an alternative to libchar.a .

Sometimes included automatically by libc.a , see below.

Table 1-2 Library files (continued)

File Contents

C Library Reference Manual 1 Introduction 5
Library structure

• The configuration information held in the configuration variables DTARGET, DOBJECT,
DFP, and DENVIRON causes dcc or dplus to generate a particular set of paths used by
the linker to search for libraries. By setting these configuration variables appropriately,
the user can control the search and consequently the particular libc.a or other librar-
ies used by the linker to resolve unsatisfied externals.

As described in Chapter 2, “Selecting a Target and Its Components,” in the Target
User’s Manual, these four configuration variables are normally set indirectly using the
dctrl program or the -ttof:environ option on the command line used to invoke the
compiler, assembler, or linker.

• The DENVIRON configuration variable (set from the environ part of -ttof:environ) desig-
nates the “target operating system” environment. The tools use two standard values:
simple and cross , which as shown below, help define the library search paths.

In addition, the tools may be supplied with directories and files to support other environ
operating system values. See relnote.htm and any relevant Application Notes for
details for any particular operating system supported by Diab Data.

The remainder of this section describes these mechanisms in more detail.

Assumptions

To keep this manual independent of any particular host and target, assume that:

• The target processor is the targ001, a member of the targ family, and it includes hard-
ware floating point support.

• The object module format specifier – the ‘o’ part of the -ttof:environ option or its
equivalent, is ‘E’ for ELF and ‘D’ for COFF; the examples will assume ELF. (Actual
targets may use different letters for ELF and COFF.)

• The tools have been installed in the version_path directory as described in Chapter 2 in
the Language User’s Manual.

Library directory structure

Given the above assumptions, and following the pattern described in “Selected startup mod-
ule and libraries” in Chapter 2 in the Target User’s Manual, the libraries of Table 1-2,
“Library files,” above will be arranged as follows (see that section in the Target User’s
Manual for the exact directories for a particular target):

6 1 Introduction C Library Reference Manual

Library structure

Table 1-3 Library directory locations

Directory / file Contents

TARGE/ Directories and files for ELF components (final ‘E’ in TARGE).

libc.a Text file which includes other ELF libraries as described below –
no input/output support.

libchar.a ELF basic operating system functions using character input/out-
put for stdin and stdout only (stderr and named files are not
supported).

libi.a ELF standard ANSI C functions.

libimpl.a ELF functions called by compiler-generated or runtime code.

libd.a ELF additional C++ standard and support functions.

libram.a ELF basic operating system functions using RAM-disk input/out-
put.

cross/libc.a ELF libc.a which includes the RAM-disk input/output library
libram.a .

simple/libc.a ELF libc.a which includes the basic character input/output
library libchar.a .

TARGEN/ ELF floating point floating point support of “None”.

libcfp.a
libimpfp.a

Stubs to avoid undefined externals.
Empty file required by different versions of libc.a.

TARGEH/ ELF hardware floating point libraries:

libcfp.a

libcomplex.a

libimpfp.a

libios.a

libm.a

Basic floating point functions
Complex number package (not included automatically)
Conversions between floating point and other types
iostream (not included automatically)
Math library (not included automatically)

C Library Reference Manual 1 Introduction 7
Library structure

libc.a

There are three libc.a files in the table above. Each of these is a short text file which con-
tains -l option lines, each line naming a library. The -l option is the standard command line
option to specify a library for the linker to search. When the linker finds that libc.a is a
text file, it reads the -l lines in the liba.c and then searches the named libraries for unsatis-
fied externals. (As with any -l option, only the portion of the name following “lib” is given;
thus, -li identifies library libi.a .)

This approach allows the functions in libc.a to be factored into groups for different float-
ing point and input/output requirements. Three of the libc.a files delivered with the tools
are:

TARGES/ ELF software floating point libraries parallel to TARGEH.

TARGD
TARGDN/
TARGDS/

Parallel directories for COFF components (final ‘D’ in TARGD)

Table 1-3 Library directory locations (continued)

Directory / file Contents

Table 1-4 libc.a files delivered with the tools

liba.c files Contents Use

TARGE/libc.a -li
-lcfp
-limpl
-limpfp

Standard C runtime but with no input/output
support; if input/output calls are made they will
be undefined.

TARGE/simple/libc.a -li
-lcfp
-lchar
-limpl
-limpfp

Supports character input/output by adding
libchar.a for stdin and stdout only
(stderr and named files are not supported).

TARGE/cross/libc.a -li
-lcfp
-lram
-limpl
-limpfp

Supports RAM-disk input/output by adding
libram.a .

8 1 Introduction C Library Reference Manual

Library structure

Notes:

• Only one of the simple or cross (or similar) libraries should be used.

• The order of the lines in each liba.c file determines the order in which the linker will
search for unsatisfied externals.

The particular libc.a found, as well as the directories for the libraries listed in each
libc.a , are determined by the search path given to the linker as described in the next
section.

Library search paths

When dplus or dcc is invoked, it invokes the compiler, assembler, and linker in turn. The
generated linker command line includes:

• an -lc option to cause the linker to search for libc.a

• for C++, an -ld option to cause the linker to search for libd.a

• a -Y P option which specifies the directories to be searched for these libraries and also
for the libraries named in the selected libc.a (and any others specified by the user
with -l libname1 options).

The -Y P option generated for each target is a function of the -ttof:environ option or its
equivalent environment variables, and is defined in “Selected startup module and librar-
ies” in Chapter 2 in the Target User’s Manual.

Following the pattern there, the assumptions made here will generate a -Y P option listing
the following directories in the order given for each setting of the floating point ‘f ’ part of
the -t:tof option or its equivalent, and where environ is either simple or cross:

Table 1-5 Directories searched for libraries

‘f’ Directories Environment Floating point support

N version_path/TARGEN/environ
version_path/TARGEN

version_path/TARGE/ environ
version_path/TARGE

specific
generic
specific
generic

None
None
not applicable
not applicable

H version_path/TARGEH/environ
version_path/TARGEH

version_path/TARGE/ environ
version_path/TARGE

specific
generic
specific
generic

Hardware
Hardware
not applicable
not applicable

C Library Reference Manual 1 Introduction 9
Library structure

Notes:

• There is no error if a directory given with the -Y P option does not exist.

• The difference between “None” floating point support and “not applicable” is that the
directories for the “not applicable” cases do not contain any floating point code, only
integer, while the “None” cases will use the TARGEN/libcfp.a and TAR-

GEN/libimpfp.a libraries. TARGEN/libcfp.a provides stubs functions that call printf
with an error message for floating point externals used by compiler-generated or runt-
ime code so that these externals will not be undefined; TARGEN/libimpfp is an empty
file needed because each libc.a is common to all types of floating point support.

The following table gives examples of the libraries found given the above directory search
order. Note that the search for the libraries included by a libc.a is independent of the
search for libc.a . That is, regardless of which directory supplies libc.a , the search for
the libraries it names begins anew with the first directory in the selected row of Table 1-5,
“Directories searched for libraries,” above. In all cases, a library is taken from the first
directory in which it is found.

S version_path/TARGES/environ
version_path/TARGES

version_path/TARGE/ environ
version_path/TARGE

specific
generic
specific
generic

Software
Software
not applicable
not applicable

Table 1-5 Directories searched for libraries(continued)

‘f’ Directories Environment Floating point support

10 1 Introduction C Library Reference Manual

Library structure

Table 1-6 Examples of libraries found for different -t options

-t option Libraries found Notes

-tTARGEN:simple TARGE/simple/libc.a

TARGE/libi.a
TARGEN/libcfp.a
TARGE/libchar.a
TARGE/libimpl.a
TARGEN/libimpfp.a

libc.a is specific to the environment, but never
to the floating point support. It is found in the
third directory searched. It names four libraries:

• libi.a and libimpl.a are common to all
TARGE systems and are found in the fourth
directory TARGE.

• The floating point support is independent of
the environment and comes from the second
directory TARGEN.

• The character input/output support is inde-
pendent of the floating point support, and
while it has been selected because of the
simple environment setting, it resides in the
generic fourth directory TARGE.

-tTARGES:cross TARGE/cross/libc.a

TARGE/libi.a
TARGES/libcfp.a
TARGE/libram.a
TARGE/libimpl.a
TARGES/libimpfp.a

Again, libc.a is specific to the environment but
not the floating point support, and is found in the
third directory TARGE/cross . It again names four
libraries:

• libi.a and libimpl.a are in the fourth
directory TARGE as before.

• The software floating point library lib-

cfp.a is from the second directory, now
TARGES.

• This time libram.a has been selected by
TARGE/cross/libc.a instead of lib-

char.a (but still from the fourth directory
TARGE as before).

C Library Reference Manual 1 Introduction 11
Library structure

-tTARGES:cust TARGE/cust/libc.a

TARGE/libi.a
TARGES/libcfp.a
TARGE/cust/libchar.a
TARGE/libimpl.a
TARGES/libimpfp.a

The customer has defined a new libc.a in a new
TARGE/cust directory for a C++ project using
software floating point. This libc.a text file
consists of the following five lines:

-li
-lcfp
-lchar
-limpl
-limpfp

Thus, based on the search order implied by the
-tTARGES:cust option, the standard libraries
TARGE/libi.a , TARGE/libimpl.a ,
TARGES/libcfp.a , and TARGES/libimpfp.a
will be searched.

In addition, the library TARGE/cust/lib-

char.a , a special character I/O package for the
customer’s target environment, will also be
searched. Because directory TARGES/cust is
searched before TARGE, the linker will find the
customer’s libchar.a library rather than the
standard TARGE/libchar.a .

Table 1-6 Examples of libraries found for different -t options(continued)

-t option Libraries found Notes

12 1 Introduction C Library Reference Manual

Library structure

C Library Reference Manual 2 Include Files 13
Files

2 Include Files

Files 13

Defined Variables, Types, and Constants 15

errno.h 15

fcntl.h 16

float.h 16

limits.h 16

math.h 16

mathf.h 16

setjmp.h 16

signal.h 16

stdarg.h 17

stddef.h 17

stdio.h 17

stdlib.h 17

string.h 17

time.h 17

Files

The following list is a subset of the include files provided. Each is enclosed in angle brack-
ets, < >, whenever used in text to emphasize their inclusion in the standard C library.

All include files are found in version_path/include . See “Installation and compiler com-
ponents” in Chapter 2, “Installing the Compiler,” in the Language User’s Manual for
additional information.

ë

14 2 Include Files C Library Reference Manual

Files

➤ In this manual, some paths are given using UNIX format, that is, using a ‘/’ separator.
For DOS, substitute a‘\’ separator; for MPW, use ‘{ }’ and ‘:’ as required.

Table 2-1 Standard Include Files

Name Description

<aouthdr.h > COFF optional header

<ar.h > archive header

<assert.h > assert() macro

<ctype.h > character handling macros

<dcc.h > prototypes not found elsewhere

<errno.h > error macros and errno variable

<fcntl.h > creat(), fcntl() , and open() definitions

<filehdr.h > COFF file header

<float.h > floating point limits

<limits.h > limits of processor and operating system

<linenum.h > COFF line number definitions

<locale.h > locale definitions

<malloc.h > old malloc() definitions. Use <stdlib.h >

<math.h > defines the constant HUGE_VAL and declares math functions

<mathf.h > single precision versions of <math.h > functions

<memory.h > old declarations of mem*(). Use <string.h >

<mon.h > monitor() definitions

<regexp.h > regular expression handling

<reloc.h > COFF relocation entry definitions

<scnhdr.h > COFF section header definitions

C Library Reference Manual 2 Include Files 15
Defined Variables, Types, and Constants

Defined Variables, Types, and Constants

The following list is a subset of the variables, types, and constants defined in the include
files in the D-CC libraries.

errno.h

Declares the variable errno holding error codes. Defines error codes; all starting with E.
See the file for more information.

<search.h > search routine declarations

<setjmp.h > setjmp() and longjmp() definitions

<signal.h > signal handling

<stdarg.h > ANSI variable arguments handling

<stddef.h > ANSI definitions

<stdio.h > stdio library definitions

<stdlib.h > ANSI definitions

<storclass.h > COFF storage classes

<string.h > str*() and mem*() declarations

<syms.h > COFF symbol table definitions

<sys/types.h > type definitions

<time.h > time handling definitions

<unistd.h > prototypes for UNIX system calls

<values.h > old limits definitions. Use <limits.h > and <float.h >

<varargs.h > old variable arguments handling. Use <stdarg.h >

Table 2-1 Standard Include Files(continued)

Name Description

16 2 Include Files C Library Reference Manual

Defined Variables, Types, and Constants

fcntl.h

Defines the following constants used by open() and fcntl() :

float.h

Defines constants handling the precision and range of floating point values. See the ANSI C
standard for reference.

limits.h

Defines constants defining the range of integers and operating system limits. See the ANSI
C and POSIX 1003.1 standards for reference.

math.h

Defines the value HUGE_VAL that is set to IEEE double precision infinity.

mathf.h

Defines the value HUGE_VAL_F that is set to IEEE single precision infinity.

setjmp.h

Defines the type jmpbuf , used by setjmp() and longjmp().
Defines the type sigjmpbuf, used by sigsetjmp() and siglongjmp().

signal.h

Defines the signal macros starting with SIG.
Defines the volatile type sig_atomic_t that can be used by signal handlers.
Defines the type sigset_t, used by POSIX signal routines.

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

O_NDELAY no blocking

O_APPEND append all writes at the end of the file

C Library Reference Manual 2 Include Files 17
Defined Variables, Types, and Constants

stdarg.h

Defines the type va_list used by the macros va_start, va_arg, and va_end.

stddef.h

Defines ptrdiff_t which is the result type of subtracting two pointers.
Defines size_t which is the result type of the sizeof operator.
Defines NULL which is the null pointer constant.

stdio.h

Defines size_t which is the result type of the sizeof operator.
Defines fpos_t which is the type used for file positioning.
Defines FILE which is the type used by stream and file input and output.
Defines the BUFSIZ constant which is the size used by setbuf().
Defines the EOF constant which indicates end-of-file.
Defines NULL which is the null pointer constant.
Declares stdin as a pointer to the FILE associated with standard input.
Declares stdout as a pointer to the FILE associated with standard output.
Declares stderr as a pointer to the FILE associated with standard error.

stdlib.h

Defines size_t which is the result type of the sizeof operator.
Defines div_t and ldiv_t which are the types returned by div() and ldiv() .
Defines NULL which is the null pointer constant.
Defines the EXIT_FAILURE and EXIT_SUCCESS constants returned by exit().

string.h

Defines NULL which is the null pointer constant.
Defines size_t which is the result type of the sizeof operator.

time.h

Defines CLOCKS_PER_SEC constant which is the number of clock ticks per second.

18 2 Include Files C Library Reference Manual

Defined Variables, Types, and Constants

C Library Reference Manual 3 Functions 19
Format of Descriptions

3 Functions

Format of Descriptions 19

Operating system calls 19

References 20

Function Listing 21

Format of Descriptions

This chapter describes the functions and function-like macros provided in the D-CC librar-
ies. The descriptions are not a complete definition of the functions, but rather a brief
explanation for the experienced user.

Each function description is formatted as follows:

name include files
prototype definition

brief description

OS calls: optional; see below

Reference: see below

Operating system calls

Some of the functions described in this chapter make calls on operating system functions
that are standard in UNIX environments. In embedded environments, such functions can-
not be used unless the embedded environment includes a real-time operating system
providing these operating system functions.

The functions which call operating system functions, directly or indirectly, have all the
required operating system functions listed. The non-UNIX user can employ this list to see
what system functions need to be provided in order to use a particular function.

Some functions refer to standard input, output, and error – the standard input/output streams

ê

20 3 Functions C Library Reference Manual

Format of Descriptions

found in UNIX and DOS environments. For embedded environments, see the Target User’s
Manual for suggestions for file system support.

References

All functions have references to the following standards and definitions:

Other references:

Most functions in the libraries have a synonym to conform to various standards. For exam-
ple, the function read() has the synonym _read(). In ANSI C, read() is not defined,
which means that the user is free to define read() as a new function. To avoid conflicts
with such user-defined functions, library functions, e.g., fread(), call the synonym defined
with the leading underscore, e.g., _read().

ANSI The function/macro is defined in ANSI X3.159-1989.

ANSI 754 The function is define in ANSI/IEEE Std 754-1985.

DCC The function/macro is added to D-CC.

POSIX The function/macro is defined in IEEE Std 1003.1-1990.

SVID The function/macro is defined in System V Interface Definition 2.

UNIX The function/macro is provided to be compatible with Unix V.3.

MATH The math libraries must be specified at link time with the -lm option.

SYS The function must be provided by the operating system or emulated in
a stand-alone system.

REENT The function is reentrant. It does not use any static or global data.

REERR The function might modify errno and is reentrant only if all processes
ignore that variable

C Library Reference Manual 3 Functions 21
Function Listing

Function Listing

a64l

#include <stdlib.h>
long a64l(const char *s);

Converts the base-64 number, pointed to by *s, to a long value.

Reference: SVID, REENT.

abort

#include <stdlib.h>
int abort(void);

Same as exit(), but also causes the signal SIGABRT to be sent to the calling process. If
SIGABRT is neither caught nor ignored, all streams are flushed prior to the signal being
sent and a core dump results.

OS calls: close, getpid, kill , sbrk, write .

Reference: ANSI.

abs

#include <stdlib.h>
int abs(int i);

Returns the absolute value of its integer operand.

Reference: ANSI, REENT.

access

#include <unistd.h>
int access(char *path, int amode);

Determines accessibility of a file.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

22 3 Functions C Library Reference Manual

Function Listing

acos

#include <math.h>
double acos(double x);

Returns the arc cosine of x in the range [0, π]. x must be in the range [-1, 1]. Otherwise zero
is returned, errno is set to EDOM , and a message indicating a domain error is printed on
the standard error output.

OS calls: write .

Reference: ANSI, MATH, REERR.

acosf

#include <mathf.h>
float acosf(float x);

Returns the arc cosine of x in the range [0, π]. x must be in the range [-1, 1]. Otherwise zero
is returned, errno is set to EDOM , and a message indicating a domain error is printed on
the standard error output. This is the single precision version of acos().

OS calls: write .

Reference: DCC, MATH, REERR.

advance

#include <regexp.h>
int advance(char *string, char *expbuf);

Does pattern matching given the string string and a compiled regular expression in expbuf.
See SVID for more details.

Reference: SVID.

alloca

#include <dcc.h>
void *alloca(size_t size)

Allocates temporary local stack space for an object of size size. Returns a pointer to the start
of the object. The allocated memory will be released at return from the current function.

Reference: DCC, REENT.

C Library Reference Manual 3 Functions 23
Function Listing

asctime

#include <time.h>
char *asctime(const struct tm *timeptr);

Converts time in timeptr into a string in the form exemplified by

"Sun Sep 16 01:03:52 1973\n".

Reference: ANSI.

asin

#include <math.h>
double asin(double x);

Returns the arc sine of x in the range [-π/2, π/2]. x must be in the range [-1, 1]. Otherwise
zero is returned, errno is set to EDOM and a message indicating a domain error is printed
on the standard error output.

OS calls: write .

Reference: ANSI, MATH, REERR.

asinf

#include <mathf.h>
float asinf(float x);

Returns the arc sine of x in the range [-π/2, π/2]. x must be in the range [-1, 1]. Otherwise
zero is returned, errno is set to EDOM and a message indicating a domain error is printed
on the standard error output. This is the single precision version of asin().

OS calls: write .

Reference: DCC, MATH, REERR.

assert

#include <assert.h>
void assert(int expression);

Puts diagnostics into programs. If expression is false, assert() writes information about the
particular call that failed (including the text of the argument, the name of the source file,
and the source line number – the latter are respectively the values of the preprocessing mac-
ros __FILE__ and __LINE__) on the standard error file. It then calls the abort()

24 3 Functions C Library Reference Manual

Function Listing

function. assert() is implemented as a macro. If the preprocessor macro NDEBUG is
defined at compile time, the assert() macro will not generate any code.

OS calls: close, getpid, kill , sbrk, write .

Reference: ANSI.

atan

#include <math.h>
double atan(double x);

Returns the arc tangent of x in the range [-π/2, π/2].

OS calls: write .

Reference: ANSI, MATH, REERR.

atanf

#include <mathf.h>
float atan(float x);

Returns the arc tangent of x in the range [-π/2, π/2]. This is the single precision version of
atan().

OS calls: write .

Reference: DCC, MATH, REERR.

atan2

#include <math.h>
double atan2(double x, double y);

Returns the arc tangent of y/x in the range [-π, π], using the signs of both arguments to
determine the quadrant of the return value. If both arguments are zero, then zero is
returned, errno is set to EDOM and a message indicating a domain error is printed on the
standard error output.

OS calls: write .

Reference: ANSI, MATH, REERR.

C Library Reference Manual 3 Functions 25
Function Listing

atan2f

#include <mathf.h>
float atan2(float x, float y);

Returns the arc tangent of y/x in the range [-π, π], using the signs of both arguments to
determine the quadrant of the return value. If both arguments are zero, then zero is
returned, errno is set to EDOM and a message indicating a domain error is printed on the
standard error output. This is the single precision version of atan2().

OS calls: write .

Reference: DCC, MATH, REERR.

atexit

#include <stdlib.h>
void atexit(void (*func) (void));

Registers the function whose address is func to be called by exit().

Reference: ANSI.

atof

#include <stdlib.h>
double atof(const char *nptr);

Converts an ASCII number string nptr into a double.

Reference: ANSI, REERR.

atoi

#include <stdlib.h>
int atoi(const char *nptr);

Converts an ASCII decimal number string nptr into an int .

Reference: ANSI, REENT.

26 3 Functions C Library Reference Manual

Function Listing

atol

#include <stdlib.h>
long atol(const char *nptr);

Converts an ASCII decimal number string nptr into a long.

Reference: ANSI, REENT.

bsearch

#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nel, size_t size,
int (* compar)());

Binary search routine which returns a pointer into a table indicating where a datum may be
found. The table must be previously sorted in increasing order. key points to a datum
instance to search for in the table, base points to the element at the base of the table, nel is
the number of elements in the table. compar is a pointer to the comparison function, which
is called with two arguments that point to the elements being compared.

Reference: ANSI, REENT.

calloc

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Allocates space for an array of nmemb objects of the size size. Returns a pointer to the start
(lowest byte address) of the object. The array is initialized to zero. See malloc() for more
information.

OS calls: sbrk, write .

Reference: ANSI.

ceil

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x.

OS calls: write .

Reference: ANSI, MATH, REENT.

C Library Reference Manual 3 Functions 27
Function Listing

ceilf

#include <mathf.h>
float ceilf(float x);

Returns the smallest integer not less than x. This is the single precision version of ceil().

OS calls: write .

Reference: DCC, MATH, REENT.

_chgsign

#include <math.h>
double _chgsign(double x);

Returns x copies with its sign reversed, not 0 - x. The distinction is germane when x is +- or
-0 or NaN. Consequently, it is a mistake to use the sign bit to distinguish signaling NaNs
from quite NaNs.

Reference: ANSI 754, MATH, REENT.

clearerr

#include <stdio.h>
void clearerr (FILE * stream);

Resets the error and EOF indicators to zero on the named stream.

Reference: ANSI.

clock

#include <time.h>
clock_t clock(void);

Returns the number of clock ticks of elapsed processor time, counting from a time related to
program start-up. The constant CLOCKS_PER_SEC is the number of ticks per second.

OS calls: times.

Reference: ANSI.

28 3 Functions C Library Reference Manual

Function Listing

close

#include <unistd.h>
int close(int fildes);

Closes the file descriptor fildes.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

compile

#include <regexp.h>
int compile(char *instring, char *expbuf, char *endbuf, int eof);

Compiles the regular expression in instring and produces a compiled expression that can be
used by advance() and step() for pattern matching.

Reference: SVID.

_copysign

#include <math.h>
double _copysign(double x, double y);

Returns x with the sign of y. Hence, abs(x) = _copysign(x, 1.0) even if x is NaN.

Reference: ANSI 754, MATH, REENT.

cos

#include <math.h>
double cos(double x);

Returns the cosine of x measured in radians. Accuracy is reduced with large argument
values.

OS calls: write .

Reference: ANSI, MATH, REERR.

C Library Reference Manual 3 Functions 29
Function Listing

cosf

#include <mathf.h>
float cosf(float x);

Returns the cosine of x measured in radians. Accuracy is reduced with large argument val-
ues. This is the single precision version of cos().

OS calls: write .

Reference: DCC, MATH, REERR.

cosh

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x measured in radians. Accuracy is reduced with large
argument values.

OS calls: write .

Reference: ANSI, MATH, REERR.

coshf

#include <mathf.h>
float coshf(float x);

Returns the hyperbolic cosine of x measured in radians. Accuracy is reduced with a large
argument values. This is the single precision version of cosh().

OS calls: write .

Reference: DCC, MATH, REERR.

creat

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int creat(char *path, mode_t mode);

Creates the new file path.

30 3 Functions C Library Reference Manual

Function Listing

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

ctime

#include <time.h>
char *ctime(const time_t *timer);

Equivalent to calling asctime(localtime(timer)).

Reference: ANSI.

difftime

#include <time.h>
double difftime(time_t t1, time_t t0);

Returns the difference in seconds between the calendar time t0 and the calendar time t1.

Reference: ANSI, REENT.

div

#include <stdlib.h>
div_t div(int numer, int denom);

Divides numer by denom and returns the quotient and the remainder as a div_t structure.

Reference: ANSI, REENT.

drand48

#include <stdlib.h>
double drand48(void);

Generates pseudo-random, non-negative, double-precision floating-point numbers uni-
formly distributed over the half open interval [0.0, 1.0[(i.e. excluding 1.0), using the linear
congruential algorithm and 48-bit integer arithmetic. It must be initialized using the
srand48(), seed48(), or lcong48() functions.

Reference: SVID.

C Library Reference Manual 3 Functions 31
Function Listing

#include <unistd.h>
int dup(int fildes);

Duplicates the open file descriptor fildes.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

ecvt

#include <dcc.h>
char *ecvt(double value, int ndigit, int * decpt, int *sign);

Converts value to a null-terminated string of ndigit digits and returns a pointer to it. The
high-order digit is non-0 unless value is zero. The low-order digit is rounded to the nearest
value (5 is rounded up). The position of the decimal point relative the beginning of the
string is stored through decpt (negative means to the left of the returned digits). If the sign
of the result is negative, the integer pointed to by sign is set to one, otherwise it is set to
zero.

Reference: DCC.

erf

#include <math.h>
double erf(double x);

Returns the error function of x.

Reference: SVID, MATH, REENT.

erff

#include <mathf.h>
float erff(float x);

Returns the error function of x. This is the single precision version of erf().

Reference: DCC, MATH, REENT.

32 3 Functions C Library Reference Manual

Function Listing

erfc

#include <math.h>
double erfc(double x);

Complementary error function = 1.0 - erf(x). Provided because of the extreme loss of rela-
tive accuracy if erf(x) is called for large x and the result subtracted from 1.0.

Reference: SVID, MATH, REENT.

erfcf

#include <mathf.h>
float erfcf(float x);

Complementary error function = 1.0 - erff(x). Provided because of the extreme loss of rela-
tive accuracy if erff(x) is called for large x and the result subtracted from 1.0. This is the
single precision version of erfc().

Reference: DCC, MATH, REENT.

exit

#include <stdlib.h>
void exit(int status);

Normal program termination. Flushes all open files. Executes all functions submitted by the
atexit() function. Does not return to its caller. The following status constants are provided:

OS calls: _exit, close, sbrk, write .

Reference: ANSI.

_exit

#include <unistd.h>
void _exit(int status);

Program termination. All files are closed. Does not return to its caller.

EXIT_FAILURE unsuccessful termination

EXIT_SUCCESS successful termination

C Library Reference Manual 3 Functions 33
Function Listing

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

exp

#include <math.h>
double exp(double x);

Returns the exponential function of x. Returns HUGE_VAL when the correct value would
overflow or 0 when the correct value would underflow, and sets errno to ERANGE.

OS calls: write .

Reference: ANSI, MATH, REERR.

expf

#include <mathf.h>
float expf(float x);

Returns the exponential function of x. Returns HUGE_VAL when the correct value would
overflow or 0 when the correct value would underflow and sets errno to ERANGE. This is
the single precision version of exp().

OS calls: write .

Reference: DCC, MATH, REERR.

fabs

#include <math.h>
double fabs(double x);

Returns the absolute value of x.

Reference: ANSI, MATH, REENT.

fabsf

#include <mathf.h>
float fabsf(float x);

Returns the absolute value of x. This is the single precision version of fabs().

34 3 Functions C Library Reference Manual

Function Listing

Reference: DCC, MATH, REENT.

fclose

#include <stdio.h>
int fclose(FILE * stream);

Causes any buffered data for the named stream to be written out, and the stream to be
closed.

OS calls: close, sbrk, write .

Reference: ANSI.

fcntl

#include <fcntl.h>
int fcntl(int fildes, int cmd, ...);

Controls the open file fildes.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

fcvt

#include <dcc.h>
char *fcvt(double value, int ndigit, int *decpt, int * sign);

Rounds the correct digit for printf format "%f " (FORTRAN F-format) output according to
the number of digits specified. See ecvt().

Reference: DCC.

fdopen

#include <stdio.h>
FILE *fdopen(int fildes, const char *type);

See fopen(). fdopen() associates a stream with a file descriptor, obtained from open(),
dup(), creat(), or pipe(). The type of stream must agree with the mode of the open file.

OS calls: fcntl , lseek.

C Library Reference Manual 3 Functions 35
Function Listing

Reference: POSIX.

feof

#include <stdio.h>
int feof (FILE * stream);

Returns non-zero when end-of-file has previously been detected reading the named input
stream.

Reference: ANSI.

ferror

#include <stdio.h>
int ferror (FILE * stream);

Returns non-zero when an input/output error has occurred while reading from or writing to
the named stream.

Reference: ANSI.

fflush

#include <stdio.h>
int fflush(FILE * stream);

Causes any buffered data for the named stream to be written to the file, and the stream
remains open.

OS calls: write .

Reference: ANSI.

fgetc

#include <stdio.h>
int fgetc(FILE * stream);

Behaves like the macro getc(), but is a function. Runs more slowly than getc(), takes less
space, and can be passed as an argument to a function.

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

36 3 Functions C Library Reference Manual

Function Listing

fgetpos

#include <stdio.h>
int fgetpos(FILE * stream, fpos_t *pos);

Stores the file position indicator for stream in *pos. If unsuccessful, it stores a positive
value in errno and returns a nonzero value.

OS calls: lseek.

Reference: ANSI.

fgets

#include <stdio.h>
char *fgets(char *s, int n, FILE * stream);

Reads characters from stream into the array pointed to by s, until n-1 characters are read, or
a new-line character is read and transferred to s, or an EOF is encountered. The string is ter-
minated with a null character.

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

fileno

#include <stdio.h>
int fileno (FILE * stream);

Returns the integer file descriptor associated with the named stream; see open().

Reference: POSIX.

_finite

#include <math.h>
double _finite(double x);

Returns a non-zero value if -∞ < x < +∞, and returns 0 otherwise.

Reference: ANSI 754, MATH, REENT

C Library Reference Manual 3 Functions 37
Function Listing

floor

#include <math.h>
double floor(double x);

Returns the largest integer (as a double-precision number) not greater than x.

Reference: ANSI, MATH, REENT.

floorf

#include <mathf.h>
float floorf(float x);

Returns the largest integer (as a single-precision number) not greater than x. This is the sin-
gle precision version of floor() .

Reference: DCC, MATH, REENT.

fmod

#include <math.h>
double fmod(double x, double y);

Returns the floating-point remainder of the division of x by y, zero if y is zero or if x/y
would overflow. Otherwise the number is f with the same sign as x, such that x=iy+f for
some integer i, and absolute value of f is less than absolute value of y.

Reference: ANSI, MATH, REENT.

fmodf

#include <mathf.h>
float fmodf(float x, float y);

Returns the floating-point remainder of the division of x by y, zero if y is zero or if x/y
would overflow. Otherwise the number is f with the same sign as x, such that x=iy+f for
some integer i, and absolute value of f is less than absolute value of y. This is the single pre-
cision version of fmod().

Reference: DCC, MATH, REENT.

38 3 Functions C Library Reference Manual

Function Listing

fopen

#include <stdio.h>
FILE *fopen(const char * filename, const char *type);

Opens the file named by filename and associates a stream with it. Returns a pointer to the
FILE structure associated with the stream. type is a character string having one of the fol-
lowing values:

A "b" can also be specified as the second or third character in the above list, to indicate a
binary file on systems where there is a difference between text files and binary files. Exam-
ples: "rb" , "wb+" , and "a+b" .

OS calls: lseek, open.

Reference: ANSI.

fprintf

#include <stdio.h>
int fprintf(FILE * stream, const char *format, ...);

Places output argument on named output stream. See printf() .

➤ By default in most environments, fprintf buffers its output until a newline is output. To
cause output character-by-character without waiting for a newline, call setbuf
(page 74) with a NULL buffer pointer after opening but before writing to the stream:

setbuf(* stream, 0);

OS calls: isatty, sbrk, write .

"r" open for reading

"w" truncate or create for writing

"a" append; open for writing at EOF, or create for writing

"r+" open for update (read and write)

"w+" truncate or create for update

"a+" append; open or create for update at EOF

C Library Reference Manual 3 Functions 39
Function Listing

Reference: ANSI.

fputc

#include <stdio.h>
int fputc(int c, FILE * stream)

Behaves like the macro putc(), but is a function. Therefore, it runs more slowly, takes up
less space, and can be passed as an argument to a function.

OS calls: isatty, sbrk, write .

Reference: ANSI.

fputs

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the null-terminated string pointed to by s to the named output stream.

OS calls: isatty, sbrk, write .

Reference: ANSI.

fread

#include <stdio.h>
#include <sys/types.h>
int fread(void * ptr, size_t size, int nitems, FILE * stream);

Copies nitems items of data from the named input stream into an array pointed to by ptr,
where an item of data is a sequence of bytes of length size. It leaves the file pointer in
stream pointing to the byte following the last byte read.

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

40 3 Functions C Library Reference Manual

Function Listing

free

#include <stdlib.h>
void free(void *ptr);
extern int _ _no_malloc_warning;

Object pointed to by ptr is made available for further allocation. ptr must previously have
been assigned a value from malloc(), calloc(), or realloc().

If the pointer ptr was freed or not allocated by malloc(), a warning is printed on the stderr
stream. The warning can be suppressed by assigning a non-zero value to the integer
__no_malloc_warning. See malloc() for more information.

OS calls: sbrk, write .

Reference: ANSI.

freopen

#include <stdio.h>
FILE *freopen(const char *filenam, const char *type, FILE * stream);

See fopen(). freopen() opens the named file in place of the open stream. The original
stream is closed, and a pointer to the FILE structure for the new stream is returned.

OS calls: close, lseek, open, sbrk, write .

Reference: ANSI.

frexp

#include <math.h>
double frexp(double value, int * eptr);

Given that every non-zero number can be expressed as x*(2n), where 0.5<=|x|< 1.0 and n is
an integer, this function returns x for a value and stores n in the location pointed to by eptr.

Reference: ANSI, REENT.

C Library Reference Manual 3 Functions 41
Function Listing

frexpf

#include <mathf.h>
float frexpf(float value, int * eptr);

Given that every non-zero number can be expressed as x*(2n), where 0.5<=|x|< 1.0 and n is
an integer, this function returns x for a value and stores n in the location pointed to by eptr.
This is the single precision version of frexp().

Reference: DCC, MATH, REENT.

fscanf

#include <stdio.h>
int fscanf(FILE * stream, const char *format, ...);

Reads formatted data from the named input stream and optionally assigns converted data to
variables specified by the format string. Returns the number of successful conversions (or
EOF if input is exhausted). See scanf().

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

fseek

#include <stdio.h>
int fseek(FILE * stream, long offset, int whence);

Sets the position of the next input or output operation on the stream. The new position is at
the signed distance offset bytes from the beginning, from the current position, or from the
end of the file, according to whence. The next operation on a file opened for update may be
either input or output. whence has one of the following values:

OS calls: lseek, write .

Reference: ANSI.

SEEK_SET offset is absolute position from beginning of file.

SEEK_CUR offset is relative distance from current position.

SEEK_END offset is relative distance from the end of the file.

42 3 Functions C Library Reference Manual

Function Listing

fsetpos

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Sets the file position indicator for stream to *pos and clears the EOF indicator for stream. If
unsuccessful, stores a positive value in errno and returns a nonzero value.

OS calls: lseek, write .

Reference: ANSI.

fstat

#include <sys/types.h>
#include <sys/stat.h>
int fstat(int fildes, struct stat *buf);

Gets file status for the file descriptor fildes.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

ftell

#include <stdio.h>
long ftell(FILE * stream);

See fseek(). Returns the offset of the current byte relative to the beginning of the file asso-
ciated with the named stream.

OS calls: lseek.

Reference: ANSI.

fwrite

#include <stdio.h>
#include <sys/types.h>
int fwrite(const void * ptr, size_t size, int nitems, FILE * stream);

Appends at most nitems items of data from the array pointed to by ptr to the named output
stream. See fread().

C Library Reference Manual 3 Functions 43
Function Listing

OS calls: isatty, sbrk, write .

Reference: ANSI.

gamma

#include <math.h>
double gamma(double x);
extern int signgam;

Returns the natural logarithm of the absolute value of the gamma function of x. The argu-
ment x must be a positive integer. The sign of the gamma function is returned as -1 or 1 in
signgam.

OS calls: write .

Reference: UNIX, MATH, REERR.

gammaf

#include <mathf.h>
float gammaf(float x);
extern int signgamf;

Returns the natural logarithm of the absolute value of the gamma function of x. The argu-
ment x must be a positive integer. The sign of the gamma function is returned as -1 or 1 in
signgamf. This is the single precision version of gamma().

OS calls: write .

Reference: DCC, MATH, REERR.

gcvt

#include <dcc.h>
char *gcvt(double value, int ndigit, char *buf);

See ecvt(). Converts value to a null-terminated string in the array pointed to by buf and
returns buf. Produces ndigit significant digits in FORTRAN F-format if possible, otherwise
E-format. Any minus sign or decimal point will be included as part of the string. Trailing
zeros are suppressed.

Reference: DCC.

44 3 Functions C Library Reference Manual

Function Listing

getc

#include <stdio.h>
int getc(FILE * stream);

Returns the next character (i.e. byte) from the named input stream. Moves the file pointer, if
defined, ahead one character in stream.

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

getchar

#include <stdio.h>
int getchar(void);

Same as getc, but defined as getc(stdin).

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

getenv

#include <stdlib.h>
char getenv(char *name);

Searches the environment list for a string of the form name=value, and returns a pointer to
value if present, otherwise a null pointer.

Reference: ANSI, REENT.

getopt

#include <stdio.h>
int getopt(int argc, char *const *argv, const char *optstring);

extern char *optarg;
extern int optind, opterr;

Returns the next option letter in argv that matches a letter in optstring, and supports all the
rules of the command syntax standard. optarg is set to point to the start of the option-argu-
ment on return from getopt(). getopt() places the argv index of the next argument to be
processed in optind. Error message output may be disabled by setting opterr to 0.

OS calls: write .

C Library Reference Manual 3 Functions 45
Function Listing

Reference: SVID.

getpid

#include <unistd.h>
pid_t getpid(void);

Gets process ID.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

gets

#include <stdio.h>
char *gets(char *s);

Reads characters from stdin into the array pointed to by s, until a new-line character is read
or an EOF is encountered. The new-line character is discarded and the string is terminated
with a null character. The user is responsible for allocating enough space for the array s.

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

getw

#include <stdio.h>
int getw(FILE * stream);

Returns the next word (i.e., the next integer) from the named input stream, and increments
the file pointer, if defined, to point to the next word.

OS calls: isatty, read, sbrk, write .

Reference: SVID.

gmtime

#include <time.h>
struct tm *gmtime(const time_t *timer);

Breaks down the calendar time timer into sections, expressed as Coordinated Universal
Time.

46 3 Functions C Library Reference Manual

Function Listing

Reference: ANSI.

hcreate

#include <search.h>
int hcreate(unsigned nel);

Allocates sufficient space for a hash table. See hsearch(). The hash table must be allo-
cated before hsearch() is used. nel is an estimate of the maximum number of entries the
table will contain.

OS calls: sbrk.

Reference: SVID.

hdestroy

#include <search.h>
void hdestroy(void);

Destroys the hash table, and may be followed by another call to hcreate(). See hsearch().

OS calls: sbrk, write .

Reference: SVID.

hsearch

#include <search.h>
ENTRY *hsearch(ENTRY item, ACTION action);

Hash table search routine which returns a pointer into the hash table, indicating the location
where an entry can be found. item.key points to a comparison key, and item.data points to
any other data for that key. action is either ENTER or FIND and indicates the disposition
of the entry if it cannot be found in the table. ENTER means that item should be inserted
into the table and FIND indicates that no entry should be made.

OS calls: sbrk.

Reference: SVID.

C Library Reference Manual 3 Functions 47
Function Listing

hypot

#include <math.h>
double hypot(double x, double y);

Returns sqrt(x * x + y * y), taking precautions against unwarranted overflows.

Reference: UNIX, MATH, REERR.

hypotf

#include <mathf.h>
float hypotf(float x, float y);

Returns sqrt(x * x + y * y), taking precautions against unwarranted overflows. This is the
single precision version of hypot().

Reference: DCC, MATH, REERR.

irand48

#include <stdlib.h>
long irand48(unsigned short n);

Generates pseudo-random non-negative long integers uniformly distributed over the inter-
val [0, n-1], using the linear congruential algorithm and 48-bit integer arithmetic. Must be
initialized using srand48(), seed48(), or lcong48() functions.

Reference: UNIX.

isalnum

#include <ctype.h>
int isalnum(int c);

Tests for any letter or digit. Returns non-zero if test is true.

Reference: ANSI, REENT.

isalpha

#include <ctype.h>
int isalpha(int c);

Tests for any letter. Returns non-zero if test is true.

48 3 Functions C Library Reference Manual

Function Listing

Reference: ANSI, REENT.

isascii

#include <ctype.h>
int isascii(int c);

Tests for ASCII character, code between 0 and 0x7f. Returns non-zero if test is true.

Reference: SVID, REENT.

isatty

#include <unistd.h>
int isatty(int fildes);

Tests for a terminal device. Returns non-zero if fildes is associated with a terminal device.

Although not a system call in the UNIX environment, it needs to be implemented as such in
an embedded environment using the stdio functions.

Reference: POSIX.

iscntrl

#include <ctype.h>
int iscntrl(int c);

Tests for control character (0x7f or less than 0x20). Returns non-zero if test is true.

Reference: ANSI, REENT.

isdigit

#include <ctype.h>
int isdigit(int c);

Tests for digit [0-9]. Returns non-zero if test is true.

Reference: ANSI, REENT.

C Library Reference Manual 3 Functions 49
Function Listing

isgraph

#include <ctype.h>
int isgraph(int c);

Tests for printable character not including space. Returns non-zero if test is true.

Reference: ANSI, REENT.

islower

#include <ctype.h>
int islower(int c);

Tests for lower case letter. Returns non-zero if test is true.

Reference: ANSI, REENT.

_isnan

#include <math.h>
double _isnan(double x);

Returns a non-zero value if x is a NaN, and returns 0 otherwise.

Reference: ANSI 754, MATH, REENT

isprint

#include <ctype.h>
int isprint(int c);

Tests for printable character (including space). Returns non-zero if test is true.

Reference: ANSI, REENT.

ispunct

#include <ctype.h>
int ispunct(int c);

Tests for printable punctuation character. Returns non-zero if test is true.

Reference: ANSI, REENT.

50 3 Functions C Library Reference Manual

Function Listing

isspace

#include <ctype.h>
int isspace(int c);

Tests for space, tab, carriage return, new-line, vertical tab, or form-feed. Returns non-zero if
test is true.

Reference: ANSI, REENT.

isupper

#include <ctype.h>
int isupper(int c);

Tests for upper-case letters. Returns non-zero if test is true.

Reference: ANSI, REENT.

isxdigit

#include <ctype.h>
int isxdigit(int c);

Tests for hexadecimal digit (0-9, a-f, A-F). Returns non-zero if test is true.

Reference: ANSI, REENT.

j0

#include <math.h>
double j0(double x);

Returns the Bessel function of x of the first kind of order 0.

OS calls: write .

Reference: UNIX, MATH, REERR.

C Library Reference Manual 3 Functions 51
Function Listing

j0f

#include <mathf.h>
float j0f(float x);

Returns the Bessel function of x of the first kind of order 0. This is the single precision ver-
sion of j0().

OS calls: write .

Reference: DCC, MATH, REERR.

j1

#include <math.h>
double j1(double x);

Returns the Bessel function of x of the first kind of order 1.

OS calls: write .

Reference: UNIX, MATH, REERR.

j1f

#include <mathf.h>
float j1f(float x);

Returns the Bessel function of x of the first kind of order 1. This is the single precision ver-
sion of j1().

OS calls: write .

Reference: DCC, MATH, REERR.

jn

#include <math.h>
double jn(double n, double x);

Returns the Bessel function of x of the first kind of order n.

OS calls: write .

Reference: UNIX, MATH, REERR.

52 3 Functions C Library Reference Manual

Function Listing

jnf

#include <mathf.h>
float jnf(float n, float x);

Returns the Bessel function of x of the first kind of order n. This is the single precision ver-
sion of jn() .

OS calls: write .

Reference: DCC, MATH, REERR.

jrand48

#include <stdlib.h>
long jrand48(unsigned short xsubi[3]);

Generates pseudo-random non-negative long integers uniformly distributed over the inter-
val [-231, 231-1], using the linear congruential algorithm and 48-bit integer arithmetic. The
calling program must place the initial value Xi into the xsubi array and pass it as an
argument.

Reference: SVID.

kill

#include <signal.h>
int kill(int pid, int sig);

Sends the signal sig to the process pid.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

krand48

#include <stdlib.h>
long krand48(unsigned short xsubi[3], unsigned short n);

Generates pseudo-random non-negative long integers uniformly distributed over the inter-
val [0, n-1], using the linear congruential algorithm and 48-bit integer arithmetic.

Reference: UNIX.

C Library Reference Manual 3 Functions 53
Function Listing

l3tol

#include <dcc.h>
void l3tol(long *lp, char *cp, int n);

Converts the list of n three-byte integers packed into the character string pointed to by cp
into a list of long integers pointed to by *lp .

Reference: UNIX, REENT.

l64a

#include <stdlib.h>
char *l64a(long l);

Converts the long integer l to a base-64 character string.

Reference: SVID.

labs

#include <stdlib.h>
long labs(long i);

Returns the absolute value of i.

Reference: ANSI, REENT.

lcong48

#include <stdlib.h>
void lcong48(unsigned short param[7]);

Initialization entry point for drand48(), lrand48(), and mrand48(). Allows the user to
specify parameters in the random equation: Xi is param[0-2], multiplier a is param[3-5],
and addend c is param[6].

Reference: UNIX.

ldexp

#include <math.h>
double ldexp(double value, int exp);

Returns the quantity: value * (2exp). See also frexp().

54 3 Functions C Library Reference Manual

Function Listing

Reference: UNIX, REERR.

ldexpf

#include <mathf.h>
float ldexpf(float value, int exp);

Returns the quantity: value * (2exp). See also frexpf() . This is the single precision version
of ldexp().

Reference: DCC, MATH, REERR.

ldiv

#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Similar to div(), except that arguments and returned items all have the type long int.

Reference: ANSI, REENT.

_lessgreater

#include <math.h>
double _lessgreater(double x, double y);

The value of x <> y is non-zero only when x < y or x > y, and is distinct from NOT(x = y)
per Table 4 of the ANSI 754 standard.

Reference: ANSI 754, MATH, REENT.

lfind

#include <stdio.h>
#include <search.h>
void *lfind(const void * key, const void *base, unsigned *nelp, int size,

int (* compar)());

Same as lsearch() except that if datum is not found, it is not added to the table. Instead, a
null pointer is returned.

Reference: UNIX, REENT.

C Library Reference Manual 3 Functions 55
Function Listing

link

#include <unistd.h>
int link(const char *path1, const char *path2);

Creates a new link path2 to the existing file path1.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: SYS.

localeconv

#include <locale.h>
struct lconv *localeconv(void);

Loads the components of an object of the type struct lconv with values appropriate for the
formatting of numeric quantities (monetary and otherwise) according to the rules of the cur-
rent locale. See also setlocale().

Reference: ANSI.

localtime

#include <time.h>
struct tm *localtime(const time_t *timer);

Breaks down the calendar time timer into sections, expressed as local time.

Reference: ANSI.

log

#include <math.h>
double log(double x);

Returns the natural logarithm of a positive x.

OS calls: write .

Reference: ANSI, MATH, REERR.

56 3 Functions C Library Reference Manual

Function Listing

_logb

#include <math.h>
double _logb(double x);

Returns the unbiased exponent of x, a signed integer in the format of x, except that
logb(NaN) is NaN, logb(infinity) is +∞, and logb(0) is -∞ and signals the division by zero
exception. When x is positive and finite the expression scalb(x, -logb(x)) lies strictly
between 0 and 2; it is less than 1 only when x is denormalized.

Reference: ANSI 754, MATH, REENT.

logf

#include <mathf.h>
float logf(float x);

Returns the natural logarithm of a positive x. This is the single precision version of log().

OS calls: write .

Reference: DCC, MATH, REERR.

log10

#include <math.h>
double log10(double x);

Returns the logarithm with base ten of a positive x.

OS calls: write .

Reference: ANSI, MATH, REERR.

log10f

#include <mathf.h>
float log10f(float x);

Returns the logarithm with base ten of a positive x. This is the single precision version of
log10().

OS calls: write .

Reference: DCC, MATH, REERR.

C Library Reference Manual 3 Functions 57
Function Listing

longjmp

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment saved in env by a corresponding setjmp() function call. Execu-
tion will continue as if the setjmp() had just returned with the value val. If val is 0 it will
be set to 1 to avoid conflict with the return value from setjmp().

Reference: ANSI, REENT.

lrand48

#include <stdlib.h>
long lrand48(void);

Generates pseudo-random non-negative long integers uniformly distributed over the inter-
val [0, 231-1], using the linear congruential algorithm and 48-bit integer arithmetic. Must be
initialized using srand48(), seed48(), or lcong48() functions.

Reference: SVID.

lsearch

#include <stdio.h>
#include <search.h>
void *lsearch(const void *key, const void *base, unsigned *nelp, int size,

int (* compar)());

Linear search routine which returns a pointer into a table indicating where a datum may be
found. If the datum is not found, it is added to the end of the table. base points to the first
element in the table. nelp points to an integer containing the number of elements in the
table. compar is a pointer to the comparison function which the user must supply (for exam-
ple, strcmp()).

Reference: SVID, REENT.

lseek

#include <unistd.h>
off_t lseek(int fildes, off_t offset, int whence);

Moves the file pointer for the file fildes to the file offset offset. whence has one of the fol-
lowing values:

58 3 Functions C Library Reference Manual

Function Listing

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: SYS.

ltol3

#include <dcc.h>
void ltol3(char *cp, long *lp, int n);

Converts a list of long integers to three-byte integers. It is the inverse of l3tol().

Reference: UNIX, REENT.

mallinfo

#include <malloc.h>
struct mallinfo mallinfo(void)

Used to determine the best setting of malloc() parameters for an application. Must not be
called until after malloc() has been called.

Reference: SVID.

malloc

#include <stdlib.h>
void *malloc(size_t size);

Allocates space for an object of size size. Returns a pointer to the start (lowest byte address)
of the object. Returns a null pointer if no more memory can be obtained by the OS.

The first time malloc() is called, it checks the following environment variables:

SEEK_SET offset is absolute position from beginning of file

SEEK_CUR offset is relative distance from current position

SEEK_END offset is relative distance from the end of the file

DMALLOC_INIT=n If set, malloc() initializes allocated memory with the byte
value n. This is useful when debugging programs that may
depend on malloc() areas always being set to zero.

C Library Reference Manual 3 Functions 59
Function Listing

OS calls: sbrk.

Reference: ANSI.

mallopt

#include <malloc.h>
int mallopt(int cmd, int value);

Used to allocate small blocks of memory quickly by allocating a large group of small
blocks at one time. This function exists in order to be compatible to SVID, but its use is not
recommended, since the malloc() function is already optimized to be fast.

Reference: SVID.

matherr

#include <math.h>
int matherr(struct exception *x);

Invoked by math library routines when errors are detected. Users may define their own pro-
cedure for handling errors, by including a function named matherr() in their programs.
The function matherr() must be of the form described above. When an error occurs, a
pointer to the exception structure x will be passed to the user-supplied matherr() function.
This structure, which is defined by the <math.h > header file, includes the following
members:

int type;
char *name;
double arg1, arg2, retval;

The member type is an integer describing the type of error that has occurred from the fol-
lowing list defined by the <math.h > header file:

DMALLOC_CHECK If set, malloc() and free() check the free-list every time they
are called. This is useful when debugging programs that may
trash the free-list.

DOMAIN argument domain error

SING argument singularity

OVERFLOW overflow range error

UNDERFLOW underflow range error

60 3 Functions C Library Reference Manual

Function Listing

The member name points to a string containing the name of the routine that incurred the
error. The members arg1 and arg2 are the first and second arguments with which the rou-
tine was invoked.

The member retval is set to the default value that will be returned by the routine unless
the user’s matherr() function sets it to a different value.

If the user’s matherr() function returns non-zero, no error message will be printed, and
errno will not be set.

If the function matherr() is not supplied by the user, the default error-handling proce-
dures, described with the math library routines involved, will be invoked upon error. errno
is set to EDOM or ERANGE and the program continues.

Reference: SVID, MATH.

matherrf

#include <mathf.h>
int matherrf(struct exceptionf * x);

This is the single precision version of matherr() .

Reference: DCC, MATH.

mblen

#include <stdlib.h>
int mblen(const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the string s that consti-
tute the next multi-byte character, or -1 if the next n (or the remaining bytes) do not
compromise a valid multi-byte character. A terminating null character is not included in the
character count. If s is a null pointer and the multi-byte characters have a state-dependent
encoding in current locale, the function returns nonzero; otherwise, it returns zero.

Reference: ANSI, REENT.

TLOSS total loss of significance

PLOSS partial loss of significance

C Library Reference Manual 3 Functions 61
Function Listing

mbstowcs

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwc, const char *s, size_t n);

Stores a wide character string in the array whose first element has the address pwc, by con-
verting the multi-byte characters in the string s. It converts as if by calling mbtowc(). It
stores at most n wide characters, stopping after it stores a null wide character. It returns the
number of wide characters stored, not counting the null character.

Reference: ANSI, REENT.

mbtowc

#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the string s that consti-
tute the next multi-byte character. (The number of bytes cannot be greater than
MB_CUR_MAX). If pwc is not a null pointer, the next multi-byte character is converted to
the corresponding wide character value and stored in *pwc. The function returns -1 if the
next n or the remaining bytes do not constitute a valid multi-byte character. If s is a null
pointer and multi-byte characters have a state-dependent encoding in current locale, the
function stores an initial shift state in its internal static duration data object and returns non-
zero; otherwise it returns zero.

Reference: ANSI, REENT.

memccpy

#include <string.h>
void *memccpy(void *s1, const void *s2, int c, size_t n);

Copies characters from s2 into s1, stopping after the first occurrence of character c has been
copied, or after n characters, whichever comes first.

Reference: SVID, REENT.

62 3 Functions C Library Reference Manual

Function Listing

memchr

#include <string.h>
void *memchr(const void *s, int c, size_t n);

Locates the first occurrence of c (converted to unsigned char) in the initial n characters of
the object pointed to by s. Returns a null pointer if c is not found.

Reference: ANSI, REENT.

memcmp

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Compares the first n character of s1 to the first n characters of s2. Returns an integer greater
than, equal to, or less than zero according to the relationship between s1 and s2.

Reference: ANSI, REENT.

memcpy

#include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);

Copies n character from the object pointed to by s2 into the object pointed to by s1. The
behavior is undefined if the objects overlap. Returns the value of s1.

Reference: ANSI, REENT.

memmove

#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed by s2 into the object pointed to by s1. It can
handle overlapping while copying takes place as if the n characters were first copied to a
temporary array, then copied into s1. Returns the value of s1.

Reference: ANSI, REENT.

C Library Reference Manual 3 Functions 63
Function Listing

memset

#include <string.h>
void *memset(void *s, int c, size_t n);

Copies the value of c into each of the first n characters of the object pointed to by s. Returns
the value of s.

Reference: ANSI, REENT.

mktemp

#include <stdio.h>
char *mktemp (char * template);

Replaces the contents of the string pointed to by template with a unique file name, and
returns the address of template. The template string should look like a filename with six
trailing Xs, which will be replaced with a letter and the current process ID.

OS calls: access, getpid.

Reference: SVID.

mktime

#include <time.h>
time_t mktime(struct tm * timeptr);

Converts the local time stored in timeptr into a calendar time with the same encoding as
values returned by the time() function, but with all values within their normal ranges. It
sets the structure members tm_mday, tm_wday , tm_yday .

Reference: ANSI, REENT.

modf

#include <math.h>
double modf(double value, double *iptr);

Returns the fractional part of value and stores the integral part in the location pointed to by
iptr. Both the fractional and integer parts have the same sign as value. See also frexp().

Reference: ANSI, REENT.

64 3 Functions C Library Reference Manual

Function Listing

modff

#include <mathf.h>
float modff(float value, float * iptr);

Returns the fractional part of value and stores the integral part in the location pointed to by
iptr. Both the fractional and integer parts have the same sign as value. See also frexpf() .
This is the single precision version of modf().

Reference: DCC, MATH, REENT.

mrand48

#include <stdlib.h>
long mrand48(void);

Generates pseudo-random non-negative long integers uniformly distributed over the inter-
val [-231, 231-1], using the linear congruential algorithm and 48-bit integer arithmetic. Must
be initialized using srand48(), seed48(), or lcong48() functions.

Reference: SVID.

_nextafter

#include <math.h>
double _nextafter(double x, double y);

Returns the next representable neighbor of x in the direction toward y. The following spe-
cial cases arise: if x = y, then the result is x without any exception being signaled; otherwise,
if either x or y is a quiet NaN, then the result is one or the other of the input NaNs. Over-
flow is signaled when x is finite but _nextafter(x, y) lies strictly between +2Emin and -2Emin.
In both cases, inexact is signaled.

Reference: ANSI 754, MATH, REENT.

nrand48

#include <stdlib.h>
long nrand48(unsigned short xsubi[3]);

Generates pseudo-random non-negative long integers uniformly distributed over the inter-
val [0, 231-1], using the linear congruential algorithm and 48-bit integer arithmetic.

Reference: SVID.

C Library Reference Manual 3 Functions 65
Function Listing

offsetof

#include <stddef.h>
size_t offsetof(type, member);

Returns the offset of the member member in the structure type. Implemented as a macro.

Reference: ANSI, REENT.

open

#include <fcntl.h>
int open(const char *path, int oflag, int mode);

Opens the file path for reading or writing according to oflag. Usual values of oflag are:

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

perror

#include <stdio.h>
void perror(const char *s);

extern int errno;
extern char *sys_errlist[];
extern int sys_nerr;

Produces a message on the standard error output describing the last error encountered dur-
ing a call to a system or library function. The array of message strings sys_errlist[] may be
indexed by errno to access the message string directly without the new-line. sys_nerr is the
number of messages in the table. See strerror() .

OS calls: write .

Reference: ANSI.

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

66 3 Functions C Library Reference Manual

Function Listing

pow

#include <math.h>
double pow(double x, double y);

Returns the value of xy. If x is zero, y must be positive. If x is negative, y must be an integer.

OS calls: write .

Reference: ANSI, MATH, REERR.

powf

#include <mathf.h>
float powf(float x, float y);

Returns the value of xy. If x is zero, y must be positive. If x is negative, y must be an inte-
ger. This is the single precision version of pow().

OS calls: write .

Reference: DCC, MATH, REERR.

printf

#include <stdio.h>
int printf(const char * format, ...);

Places output arguments on stdout, controlled by format. Returns the number of characters
transmitted or a negative value if there was an error. A summary of the printf() conver-
sion specifiers is shown below. Each conversion specification is introduced by the character
% . Conversion specifications within brackets are optional.

% { flags} { field_width} { .precision} { length_modifier} conversion

flags Single characters which modify the operation of the format as fol-
lows:

- left adjusted field

+ signed values will always begin with plus or minus sign

space values will always begin with minus or space

C Library Reference Manual 3 Functions 67
Function Listing

Alternate form. Has the following effect: For o (octal) conver-
sion, the first digit will always be a zero G, g, E, e and f
conversions will always print a decimal point. G and g conver-
sions will also keep trailing zeros. X, x (hex) and p
conversions will prepend non-zero values with 0x (or 0X)

0 zero padding to field width (for d, i, o, u, x, X, e, E, f, g, and G
conversions)

field_width Number of characters to be printed in the field. Field width will be
padded with space if needed. If given as ‘* ’, the next argument
should be an integer holding the field width.

.precision Minimum number of digits to print for integers (d, i, o, u, x and X).
Number of decimals printed for floating point values (e, E, and f).
Maximum number of significant digits for g and G conversions.
Maximum number of characters for s conversion. If given as ‘* ’ the
next argument should be an integer holding the precision.

length_modifier The following length modifiers are used:

h Used before d, i, o, n, u, x, or X conversions to denote a short
int or unsigned short int value.

l Used before d, i, o, n. u, x, or X conversions to denote a
long int or unsigned long int value.

L Used before e, E, f, g or G conversions to denote a
long double value.

conversion The following conversion specifiers are used:

d Write signed decimal integer value.

i Write signed decimal integer value.

o Write unsigned octal integer value

u Write unsigned decimal integer value

x Write unsigned hexadecimal (0-9, abc...) integer value

X Write unsigned hexadecimal (0-9, ABC...) integer value.

e Write floating point value: [-]d.ddde+dd .

E Write floating point value: [-]d.dddE+dd .

f Write floating point value: [-]ddd.ddd .

68 3 Functions C Library Reference Manual

Function Listing

The floating point values Infinity and Not-A-Number are printed as inf , INF , nan , and NAN
when using the e, E, f, g, or G conversions.

➤ By default in most environments, printf buffers its output until a newline is output. To
cause output character-by-character without waiting for a newline, call setbuf
(page 74) with a NULL buffer pointer after opening but before writing to the stream:

setbuf(*stream, 0);

OS calls: isatty, sbrk, write .

Reference: ANSI.

putc

#include <stdio.h>
int putc(int c, FILE * stream)

Writes the character c onto the output stream at the position where the file pointer, if
defined, is pointing.

OS calls: isatty, sbrk, write .

Reference: ANSI.

g Write floating point value in f or e notation depending on the
size of the value (“best” fit conversion).

G Write floating point value in f or E notation depending on the
size of the value (“best” fit conversion).

c Write a single character.

s Write a string.

p Write a pointer value (address).

n Store current number of characters written so far. The argu-
ment should be a pointer to integer.

% Write a percentage character.

C Library Reference Manual 3 Functions 69
Function Listing

putchar

#include <stdio.h>
int putchar(int c)

Similar to putc() but writes to stdout.

OS calls: isatty, sbrk, write .

Reference: ANSI.

putenv

#include <stdlib.h>
int putenv(char *string);

string points to a string of the form name=value, and putenv() makes the value of the envi-
ronmental variable name equal to value. The string pointed to by string becomes part of the
environment, so altering string alters the environment.

OS calls: sbrk, write .

Reference: SVID.

puts

#include <stdio.h>
int puts(const char *s);

Writes the null-terminated string pointed to by s, followed by a new-line character, to
stdout.

OS calls: isatty, sbrk, write .

Reference: ANSI.

putw

#include <stdio.h>
int putw(int w, FILE * stream)

Writes the word (i.e., integer) w to the output stream at the position at which the file
pointer, if defined, is pointing.

OS calls: isatty, sbrk, write .

Reference: SVID.

70 3 Functions C Library Reference Manual

Function Listing

qsort

#include <stdlib.h>
void qsort(void *base, size_t nel, size_t size, int (*compar)());

Sorts a table in place using the quick-sort algorithm. base points to the element at the base
of the table, nel is the number of elements. size is the size of each element. compar is a
pointer to the user supplied comparison function, which is called with two arguments that
point to the elements being compared.

Reference: ANSI, REENT.

raise

#include <signal.h>
int raise(int sig);

Sends the signal sig to the executing program.

OS calls: getpid, kill .

Reference: ANSI.

rand

#include <stdlib.h>
int rand(void);

Returns a pseudo random number in the interval [0, RAND_MAX].

Reference: ANSI.

read

#include <unistd.h>
int read(int fildes, void *buf, unsigned nbyte);

Reads max nbyte bytes from the file associated with the file descriptor fildes to the buffer
pointed to by buf.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: SYS.

C Library Reference Manual 3 Functions 71
Function Listing

realloc

#include <stdlib.h>
void *realloc(void *ptr, size_t size);
extern int _ _no_malloc_warning;

Changes the size of the object pointed to by ptr to the size size. ptr must have received its
value from malloc(), calloc(), or realloc(). Returns a pointer to the start address of the
possibly moved object, or a null pointer if no more memory can be obtained from the OS.

If the pointer ptr was freed or not allocated by malloc(), a warning is printed on the stderr
stream. The warning can be suppressed by assigning a non-zero value to the integer vari-
able __no_malloc_warning. See malloc() for more information.

OS calls: sbrk, write .

Reference: ANSI.

remove

#include <stdio.h>
int remove(const char *filename);

Removes the file filename. Once removed, the file cannot be opened as an existing file.

OS calls: unlink .

Reference: ANSI.

rename

#include <stdio.h>
int rename(const char *old, const char *new);

Renames the file old to the file new. Once renamed, the file old cannot be opened again.

OS calls: link , unlink .

Reference: ANSI.

rewind

#include <stdio.h>
void rewind(FILE * stream);

Same as fseek(stream, 0L, 0), except that no value is returned.

72 3 Functions C Library Reference Manual

Function Listing

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

sbrk

#include <unistd.h>
void *sbrk(int incr);

Gets incr bytes of memory from the operating system.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: UNIX, SYS.

_scalb

#include <math.h>
double _scalb(double x, int N);

Returns y * 2N for integeral values N without computing 2N.

Reference: ANSI 754, MATH, REENT.

scanf

#include <stdio.h>
int scanf(const char *format, ...);

Reads formatted data from stdin and optionally assigns converted data to variables speci-
fied by the format string. Returns the number of successful conversions (or EOF if input is
exhausted).

If the format string contains white-space characters, input is scanned until a
non-white-space character is found.

A conversion specification is introduced by the character % .

If the format string neither contains a white-space nor a % , the format string and the input
characters must match exactly.

A summary of the scanf() conversion specifiers is shown below. Conversion specifica-
tions within braces are optional.

% {*} { field_width} { length_modifier} conversion

C Library Reference Manual 3 Functions 73
Function Listing

* No assignment should be done (just scan the field).

field_width Maximum field to be scanned (default is until no match occurs).

length_modifier The following length modifiers are used:

l Used before d, i, or n to indicate long int or before o, u, x to
denote the presence of an unsigned long int. For e, E, g, G,
and f conversions the l character implies a double operand.

h Used before d, i, or n to indicate short int or before o, u, or
x to denote the presence of an unsigned short int.

L For e, E, g, G, and f conversions the L character implies a
long double operand.

conversion The following conversions are available:

d Read an optionally signed decimal integer value.

i Read an optionally signed integer value in standard C nota-
tion. Default is decimal notation, but octal (0n) and hex
(0xn, 0Xn) notations are also recognized.

o Read an optionally signed octal integer.

u Read an unsigned decimal integer.

x, X Read an optionally signed hexadecimal integer.

f, e, E, g, G Read a floating point constant.

s Read a character string.

c Read field_width number of characters (1 is default).

n Store the number of characters read so far. The argument
should be a pointer to an integer.

p Read a pointer value (address).

[Read characters as long as they match any of the characters
that are within the terminating]. If the first character after [
is a ^, the matching condition is reversed. If the [is immedi-
ately followed by] or ^], the] is assumed to belong to the
matching sequence, and there must be another terminating
character. A range of characters may be represented by
first-last, thus [a-f] equals [abcdef].

% Read a % character.

74 3 Functions C Library Reference Manual

Function Listing

Notes: Except for the [, c, or n specifiers leading white-space characters are skipped. Vari-
ables must always be expressed as addresses in order to be assignable by scanf.

OS calls: isatty, read, sbrk, write .

Reference: ANSI.

seed48

#include <stdlib.h>
unsigned short *seed48(unsigned short seed16v[3]);

Initialization entry point for drand48(), lrand48(), and mrand48().

Reference: SVID.

setbuf

#include <stdio.h>
void setbuf(FILE * stream, char *buf);

May be used after the stream has been opened but before reading or writing to it. It causes
the array pointed to by buf to be used instead of an automatically allocated buffer. If buf is
the null pointer, then input/output will be unbuffered. The constant BUFSIZ in <stdio.h >
defines the required size of buf.

OS calls: isatty, sbrk, write .

Reference: ANSI.

setjmp

#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current execution environment in env for use by the longjmp() function. Returns
0 when invoked by setjmp() and a non-zero value when returning from a longjmp() call.

Reference: ANSI, REENT.

C Library Reference Manual 3 Functions 75
Function Listing

setlocale

#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program’s locale as specified by the category and
locale arguments. Can be used to change or query the program’s entire locale with the cate-
gory LC_ALL ; the other values for category name only portions of the program’s locale.
LC_COLLATE affects the behavior of the strcoll() and strxfrm() functions.
LC_CTYPE affects the behavior of the character handling functions and the multi-byte
functions. LC_MONETARY affects the monetary formatting information returned by the
localeconv() function. LC_NUMERIC affects the decimal-point character for the format-
ted input/output functions and the string conversion functions, as well as the non-monetary
formatting information returned by the localeconv() function. LC_TIME affects the
behavior of the strftime() function.

A value of "C" for locale specifies the minimal environment for C translation; a value of
"" for locale specifies the implementation-defined native environment. Other implementa-
tion-defined strings may be passed as the second argument to setlocale().

At program start-up, the equivalent of setlocale(LC_ALL, "C") is executed.

The D-CC currently only supports the "C" locale.

Reference: ANSI.

setvbuf

#include <stdio.h>
void setvbuf(FILE * stream, char *buf, int type, size_t size);

See setbuf(). type determines how the stream will be buffered:

size specifies the size of the buffer to be used; BUFSIZ in <stdio.h > is the suggested size.

OS calls: sbrk, write .

Reference: ANSI.

_IOFBF causes stream to be fully buffered

_IOLBF causes stream to be line buffered

_IONBF causes stream to be unbuffered

76 3 Functions C Library Reference Manual

Function Listing

signal

#include <signal.h>
void (*signal(int sig, void (*func)()))(void);

Specifies the action on delivery of a signal. When the signal sig is delivered, a signal han-
dler specified by func is called.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: ANSI, SYS.

sin

#include <math.h>
double sin(double x);

Returns the sine of x measured in radians. It loses accuracy with a large argument value.

OS calls: write .

Reference: ANSI, MATH, REERR.

sinf

#include <mathf.h>
float sinf(float x);

Returns the sine of x measured in radians. It loses accuracy with a large argument value.
This is the single precision version of sin().

OS calls: write .

Reference: DCC, MATH, REERR.

sinh

#include <math.h>
 double sinh(double x);

Returns the hyperbolic sine of x measured in radians. It loses accuracy with a large argu-
ment value.

Reference: ANSI, MATH, REERR.

C Library Reference Manual 3 Functions 77
Function Listing

sinhf

#include <mathf.h>
float sinhf(float x);

Returns the hyperbolic sine of x measured in radians. It loses accuracy with a large argu-
ment value. This is the single precision version of sinh().

Reference: DCC, MATH, REERR.

sprintf

#include <stdio.h>
int sprintf(char * s, const char *format , ...);

Places output arguments followed by the null character in consecutive bytes starting at *s;
the user must ensure that enough storage is available. See printf() .

Reference: ANSI, REENT.

sqrt

#include <math.h>
double sqrt(double x);

Returns the non-negative square root of x. The argument must be non-negative.

OS calls: write .

Reference: ANSI, MATH, REERR.

sqrtf

#include <mathf.h>
float sqrtf(float x);

Returns the non-negative square root of x. The argument must be non-negative. This is the
single precision version of sqrt().

OS calls: write .

Reference: DCC, MATH, REERR.

78 3 Functions C Library Reference Manual

Function Listing

srand

#include <stdlib.h>
void srand(unsigned seed);

Resets the random-number generator to a random starting point. See rand().

Reference: ANSI.

srand48

#include <stdlib.h>
void srand48(long seedval);

Initialization entry point for drand48(), lrand48(), and mrand48().

Reference: SVID.

sscanf

#include <stdio.h>
int sscanf(const char *s, const char *format, ...);

Reads formatted data from the character string s, optionally assigning converted data to
variables specified by the format string. It returns the number of successful conversions (or
EOF if input is exhausted). See scanf().

Reference: ANSI, REENT.

step

#include <regexp.h>
int step(char *string, char *expbuf);

Does pattern matching given the string string and a compiled regular expression expbuf. See
SVID for more details.

Reference: SVID.

C Library Reference Manual 3 Functions 79
Function Listing

strcat

#include <string.h>
char *strcat(char * s1, const char *s2);

Appends a copy of the string pointed to by s2 (including a null character) to the end of the
string pointed to by s1. The initial character of s2 overwrites the null character at the end of
s1. The behavior is undefined if the objects overlap.

Reference: ANSI, REENT.

strchr

#include <string.h>
char *strchr(const char *s, int c);

Locates the first occurrence of c in the string pointed to by s.

Reference: ANSI, REENT.

strcmp

#include <string.h>
int strcmp(const char *s1, const char *s2);

Compares s1 to s2. Returns an integer greater than, equal to, or less than zero according to
the relationship between s1 and s2.

Reference: ANSI, REENT.

strcoll

#include <string.h>
int strcoll(const char *s1, const char *s2);

Compares s1 to s2, both interpreted as appropriate to the LC_COLLATE category of the
current locale. Returns an integer greater than, equal to, or less than zero according to the
relationship between s1 and s2.

Reference: ANSI, REENT.

80 3 Functions C Library Reference Manual

Function Listing

strcpy

#include <string.h>
char *strcpy(char * s1, const char *s2);

Copies the string pointed to by s2 (including a terminating null character) into the array
pointed to by s1. The behavior is undefined if the objects overlap.

Reference: ANSI, REENT.

strcspn

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of s1 which consists entirely of char-
acters not from s2.

Reference: ANSI, REENT.

strdup

#include <string.h>
char *strdup(const char *s1);

Returns a pointer to a new string which is a duplicate of s1.

OS calls: sbrk.

Reference: SVID.

strerror

#include <string.h>
char *strerror(int errnum);

Maps the error number in errnum to an error message string.

Reference: ANSI, REENT.

C Library Reference Manual 3 Functions 81
Function Listing

strftime

#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *format,

const struct tm *timeptr);

Uses the format format and values in the structure timeptr to generate formatted text. Gen-
erated characters are stored in successive locations in the array pointed to by s. It stores a
null character in the next location in the array. Each non-% character is stored in the array.
For each % followed by a character, a replacement character sequence is stored as shown
below. Examples are in parenthesis.

%a abbreviated weekday name (Mon)

%A full weekday name (Monday)

%b abbreviated month name (Jan)

%B full month name (January)

%c date and time (Jan 03 07:22:43 1990)

%d day of the month (04)

%H hour of the 24-hour day (13)

%I hour of the 12-hour day (9)

%j day of the year, Jan 1 = 001 (322)

%m month of the year (11)

%M minutes after the hour (43)

%p AM/PM indicator (PM)

%S seconds after the minute (37)

%U Sunday week of the year, from 00 (34)

%w weekday number, Sunday = 0 (3)

%W Monday week of the year, from 00 (23)

%x date (Jan 23 1990)

%X time (23:33:45)

%y year of the century (90)

%Y year (1990)

82 3 Functions C Library Reference Manual

Function Listing

Reference: ANSI, REENT.

strlen

#include <string.h>
size_t strlen(const char *s);

Computes the length of the string s.

Reference: ANSI, REENT.

strncat

#include <string.h>
char *strncat(char * s1, const char *s2, size_t n);

Appends not more than n characters from the string pointed to by s2 to the end of the string
pointed to by s1. The initial character of s2 overwrites the null character at the end of s1.
The behavior is undefined if the objects overlap. A terminating null character is always
appended to the result.

Reference: ANSI, REENT.

strncmp

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Compares not more than n characters (characters after a null character are ignored) in s1 to
s2. Returns an integer greater than, equal to, or less than zero according to the relationship
between s1 and s2.

Reference: ANSI, REENT.

%Z time zone name (PST)

%% percent character (%)

C Library Reference Manual 3 Functions 83
Function Listing

strncpy

#include <string.h>
char *strncpy(char * s1, const char *s2, size_t n);

Copies not more than n characters from the string pointed to by s2 (including a terminating
null character) into the array pointed to by s1. The behavior is undefined if the objects over-
lap. If s2 is shorter than n, null characters are appended.

Reference: ANSI, REENT.

strpbrk

#include <string.h>
char *strpbrk(const char * s1, const char *s2);

Locates the first occurrence of any character from the string pointed to by s2 within the
string pointed to by s1.

Reference: ANSI, REENT.

strrchr

#include <string.h>
char *strrchr(const char * s, int c);

Locates the last occurrence of c within the string pointed to by s.

Reference: ANSI, REENT.

strspn

#include <string.h>
size_t strspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of s1 which consists entirely of char-
acters from s2.

Reference: ANSI, REENT.

84 3 Functions C Library Reference Manual

Function Listing

strstr

#include <string.h>
char *strstr(const char *s1, const char *s2);

Locates the first occurrence of the sequence of characters (not including a null character) in
the string pointed to by s2 within the string pointed to by s1.

Reference: ANSI, REENT.

strtod

#include <stdlib.h>
double strtod(const char *str, char ** endptr);

Returns as a double-precision floating-point number the value represented by the character
string pointed to by str. The string is scanned to the first unrecognized character. Recog-
nized characters include optional white-space character(s), optional sign, a string of digits
optionally containing a decimal point, optional e or E followed by an optional sign or space,
followed by an integer. At return, the pointer at *endptr is set to the first unrecognized
character.

Reference: ANSI, REERR.

strtok

#include <string.h>
char *strtok(char * s1, const char *s2);

Searches string s1 for address of the first element that equals none of the elements in string
s2. If the search does not find an element, it stores the address of the terminating null char-
acter in the internal static duration data object and returns a null pointer. Otherwise,
searches from found address to address of the first element that equals any one of the ele-
ments in string s2. If it does not find element, it stores address of the terminating null
character in the internal static duration data object. Otherwise, it stores a null character in
the element whose address was found in second search. Then it stores address of the next
element after end in the internal duration data object (so next search starts at that address)
and returns address found in initial search.

Reference: ANSI.

C Library Reference Manual 3 Functions 85
Function Listing

strtol

#include <stdlib.h>
long strtol(const char *str, char ** endptr, int base);

Returns as a long integer the value represented by the character string pointed to by str. The
string is scanned to the first character inconsistent with the base. Leading white-space char-
acters are ignored. At return, the pointer at *endptr is set to the first unrecognized character.

If base is positive and less then 37, it is used as the base for conversion. After an optional
sign, leading zeros are ignored, and "0x" or "0X" is ignored if base is 16.

If base is zero, the string itself determines the base: after an optional leading sign a leading
zero indicates octal, a leading "0x" or "0X" indicates hexadecimal, else decimal conversion
is used.

Reference: ANSI, REERR.

strtoul

#include <stdlib.h>
long strtoul(const char *, char ** endptr, int base);

Returns as an unsigned long integer the value represented by the character string pointed to
by s. The string is scanned to the first character inconsistent with the base. Leading
white-space characters are ignored. This is the same as strtol() , except that it reports a
range error only if the value is too large to be represented as the type unsigned long.

Reference: ANSI, REERR.

strxfrm

#include <string.h>
size_t strxfrm(char *s1, char *s2, size_t n);

Transforms s2 and places the result in s1. No more than n characters are put in s1, includ-
ing the terminating null character. The transformation is such that if strcmp() is applied to
the two strings, it returns a value greater than, equal to, or less than zero, corresponding to
the result of the strcoll() function applied to the same two original strings. Copying
between objects that overlap causes undefined results.

Reference: ANSI, REENT.

86 3 Functions C Library Reference Manual

Function Listing

swab

#include <dcc.h>
void swab(const char *from, char *to, int nbytes)

Copies nbytes bytes pointed to by from to the array pointed to by to. nbytes must be even
and non-negative. Adjacent even and odd bytes are exchanged.

Reference: SVID, REENT.

tan

#include <math.h>
double tan(double x);

Returns the tangent of x measured in radians.

OS calls: write .

Reference: ANSI, MATH, REERR.

tanf

#include <mathf.h>
float tanf(float x);

Returns the tangent of x measured in radians. This is the single precision version of tan().

OS calls: write .

Reference: DCC, MATH, REERR.

tanh

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x measured in radians.

Reference: ANSI, MATH, REENT.

C Library Reference Manual 3 Functions 87
Function Listing

tanhf

#include <mathf.h>
float tanhf(float x);

Returns the hyperbolic tangent of x measured in radians. This is the single precision ver-
sion of tanh().

Reference: DCC, MATH, REENT.

tdelete

#include <search.h>
 void *tdelete(const void *key, void ** rootp, int (* compar)());

The tdelete() function deletes a node from a binary search tree. The value for rootp will be
changed if the deleted node was the root of the tree. Returns a pointer to the parent of the
deleted node. See tsearch().

Reference: SVID.

tell

#include <dcc.h>
 long tell(int fildes);

Returns the current location in the file descriptor fildes. This is the same as
lseek(fildes,0L,1).

OS calls: lseek.

Reference: DCC.

tempnam

#include <stdio.h>
char *tempnam(const char *dir, const char *pfx);

Creates a unique file name, allowing control of the choice of directory. If the TMPDIR vari-
able is specified in the user’s environment, it is used as the temporary file directory.
Otherwise, the argument dir points to the name of the directory in which the file is to be
created. If dir is invalid, the path-prefix P_tmpdir (<stdio.h >) is used. If P_tmpdir is
invalid, /tmp is used. See tmpnam().

Reference: SVID.

88 3 Functions C Library Reference Manual

Function Listing

tfind

#include <search.h>
void *tfind(void * key, void *const *rootp, int (*compar)());

tfind() will search for a datum in a binary tree, and return a pointer to it if found, other-
wise it returns a null pointer. See tsearch().

Reference: SVID, REENT.

time

#include <time.h>
time_t time(time_t *timer);

Returns the system time. If timer is not a null pointer, the time value is stored in *timer.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: ANSI, SYS.

tmpfile

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file using a name generated by tmpnam() and returns the correspond-
ing FILE pointer. File is opened for update ("w+"), and is automatically deleted when the
process using it terminates.

OS calls: lseek, open, unlink .

Reference: ANSI.

tmpnam

#include <stdio.h>
char *tmpnam(char * s);

Creates a unique file name using the path-prefix defined as P_tmpdir in <stdio.h >. If s is
a null pointer, tmpnam() leaves the result in an internal static area and returns a pointer to
that area. At the next call to tmpnam(), it will destroy the contents of the area. If s is not a
null pointer, it is assumed to be the address of an array of at least L_tmpnam bytes
(defined in <stdio.h >); tmpnam() places the result in that array and returns s.

C Library Reference Manual 3 Functions 89
Function Listing

OS calls: access, getpid.

Reference: ANSI.

toascii

#include <ctype.h>
int toascii(int c);

Turns off all bits in the argument c that are not part of a standard ASCII character; for com-
patibility with other systems.

Reference: SVID, REENT.

tolower

#include <ctype.h>
int tolower(int c);

Converts an upper-case letter to the corresponding lower-case letter. The argument range is
-1 through 255, any other argument is unchanged.

Reference: ANSI, REENT.

_tolower

#include <ctype.h>
int _tolower(int c);

Converts an upper-case letter to the corresponding lower-case letter. Arguments outside
lower-case letters return undefined results. The speed is somewhat faster than tolower().

Reference: SVID, REENT.

toupper

#include <ctype.h>
int toupper(int c);

Converts a lower-case letter to the corresponding upper-case letter. The argument range is
-1 through 255, any other argument is unchanged.

Reference: ANSI, REENT.

90 3 Functions C Library Reference Manual

Function Listing

_toupper

#include <ctype.h>
int _toupper(int c);

Converts a lower-case letter to the corresponding upper-case letter. Arguments outside
lower-case letters return undefined results. The speed is somewhat faster than toupper().

Reference: SVID, REENT.

tsearch

#include <search.h>
void *tsearch(const void *key, void ** rootp, int (* compar)());

Used to build and access a binary tree. The user supplies the routine compar to perform
comparisons. key is a pointer to a datum to be accessed or stored. If a datum equal to *key is
in the tree, a pointer to that datum is returned. Otherwise, *key is inserted, and a pointer to it
is returned. rootp points to a variable that points to the root of the tree.

Reference: SVID.

twalk

#include <search.h>
void twalk(void * root, void (*action)());

twalk() traverses a binary tree. root is the root of the tree to be traversed, and any node
may be the root for a walk below that node. action is the name of the user supplied routine
to be invoked at each node, and is called with three arguments. The first argument is the
address of the node being visited. The second argument is a value from the enumeration
data type typedef enum {preorder, postorder, endorder, leaf} VISIT (see <search.h >),
depending on whether this is the first, second, or third time the node has been visited (dur-
ing a depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The third
argument is the level of the node in the tree, with the root as level zero. See tsearch().

Reference: SVID, REENT.

C Library Reference Manual 3 Functions 91
Function Listing

tzset

#include <sys/types.h>
#include <time.h>
void tzset(void);

tzset() uses the contents of the environment variable TZ to override the value of the differ-
ent external variables for the time zone. It scans the contents of TZ and assigns the different
fields to the respective variable. tzset() is called by asctime() and may be called explicitly
by the user.

Reference: POSIX.

ungetc

#include <stdio.h>
int ungetc(int c, FILE * stream);

Inserts character c into the buffer associated with input stream. The argument c will be
returned at the next getc() call on that stream. ungetc() returns c and leaves the file associ-
ated with stream unchanged. If c equals EOF, ungetc() does nothing to the buffer and
returns EOF. Only one character of push-back is guaranteed.

Reference: ANSI.

unlink

#include <unistd.h>
int unlink(const char *path);

Removes the directory entry path.

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

_unordered

#include <math.h>
double _unordered(double x, double y);

Returns a non-zero value if x is unordered with y, and returns zero otherwise. See Table 4 of
the ANSI 754 standard for the meaning of unordered.

92 3 Functions C Library Reference Manual

Function Listing

Reference: ANSI 754, MATH, REENT.

vfprintf

#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE * stream, const char *format, va_list arg);

This is equivalent to fprintf() , but with the argument list replaced by arg, which must have
been initialized with the va_start macro.

➤ By default in most environments, vfprintf buffers its output until a newline is output.
To cause output character-by-character without waiting for a newline, call setbuf
(page 74) with a NULL buffer pointer before after opening but before writing to the
stream:

setbuf(* stream, 0);

OS calls: isatty, sbrk, write .

Reference: ANSI.

vfscanf

#include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE * stream, const char *format, va_list arg);

This is equivalent to fscanf(), but with the argument list replaced by arg, which must have
been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write .

Reference: DCC.

vprintf

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char * format, va_list arg);

This is equivalent to printf() , but with the argument list replaced by arg, which must have
been initialized with the va_start macro.

C Library Reference Manual 3 Functions 93
Function Listing

➤ By default in most environments, vprintf buffers its output until a newline is output.
To cause output character-by-character without waiting for a newline, call setbuf
(page 74) with a NULL buffer pointer before after opening but before writing to the
stream:

setbuf(* stream, 0);

OS calls: isatty, sbrk, write .

Reference: ANSI.

vscanf

#include <stdarg.h>
#include <stdio.h>
int vscanf(const char *format, va_list arg);

This is equivalent to scanf(), but with the argument list replaced by arg, which must have
been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write .

Reference: DCC.

vsprintf

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char * s, const char *format, va_list arg);

This is equivalent to sprintf() , but with the argument list replaced by arg, which must have
been initialized with the va_start macro.

OS calls: isatty, sbrk, write .

Reference: ANSI, REENT.

94 3 Functions C Library Reference Manual

Function Listing

vsscanf

#include <stdarg.h>
#include <stdio.h>
int vsscanf(const char *s, const char *format, va_list arg);

This is equivalent to sscanf(), but with the argument list replaced by arg, which must have
been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write .

Reference: DCC, REENT.

wcstombs

#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *wcs, size_t n);

Stores a multi-byte character string in the array whose first element has the address s by
converting each of the characters in the string wcs. It converts as if calling wctomb(). It
stores no more than n characters, stopping after it stores a null character. It returns the num-
ber of characters stored, not counting the null character; unless there is an error, in which
case it returns -1.

Reference: ANSI.

wctomb

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

If s is not a null pointer, the function determines the number of bytes needed to represent
the multi-byte character corresponding to the wide character wchar. It converts wchar to the
corresponding multi-byte character and stores it in the array whose first element has the
address s. It returns the number of bytes required, not counting the terminating null charac-
ter; unless there is an error, in which case it returns -1.

Reference: ANSI.

write

#include <unistd.h>
int write(int fildes, const void *buf, unsigned nbyte);

Writes nbyte bytes from the buffer buf to the file fildes.

C Library Reference Manual 3 Functions 95
Function Listing

The D-CC libraries provide an interface to this operating system call. Please see your OS
manual for a complete definition.

Reference: POSIX, SYS.

y0

#include <math.h>
double y0(double x);

Returns the Bessel function of positive x of the second kind of order 0.

OS calls: write .

Reference: UNIX, MATH, REERR.

y0f

#include <mathf.h>
float y0f(float x);

Returns the Bessel function of positive x of the second kind of order 0. This is the single
precision version of y0().

OS calls: write .

Reference: DCC, MATH, REERR.

y1

#include <math.h>
double y1(double x);

Returns the Bessel function of positive x of the second kind of order 1.

OS calls: write .

Reference: UNIX, MATH, REERR.

y1f

#include <mathf.h>
float y1f(float x);

Returns the Bessel function of positive x of the second kind of order 1. This is the single
precision version of y1().

96 3 Functions C Library Reference Manual

Function Listing

OS calls: write .

Reference: DCC, MATH, REERR.

yn

#include <math.h>
double yn(double n, double x);

Returns the Bessel function of positive x of the second kind of order n.

OS calls: write .

Reference: UNIX, MATH, REERR.

ynf

#include <mathf.h>
float ynf(float n, float x);

Returns the Bessel function of positive x of the second kind of order n. This is the single
precision version of yn().

OS calls: write .

Reference: DCC, MATH, REERR.

C Library Reference Manual Index 97

Index

Symbols
%f format specifier 34

A
a64l function 21
abort function 21
abs function 21
access function 21
acos function 22
acosf function 22
advance function 22, 28
alloca function 22
ANSI 754 reference 20
ANSI reference 20
asctime function 23, 91
asin function 23
asinf function 23
assert function 23
assert macro 14, 24
atan function 24
atan2 function 24
atan2f function 25
atanf function 24
atexit function 25, 32
atof function 25
atoi function 25
atol function 26

B
bsearch function 26
BUFSIZ constant 17, 74–75

C
calloc function 26, 40, 71
ceil function 26–27
ceilf function 27

_chgsign function 27
class

library
C++ complex.a 3
C++ iostream.a 4

clearerr function 27
clock function 27
CLOCKS_PER_SEC constant 17, 27
close function 28
COFF object module format

crt0.o startup module and libraries, parallel to
ELF 7

compile function 28
complex arithmetic library, libcomplex.a 6
complex.a C++ complex math class library 3
constants

BUFSIZ 17, 74–75
CLOCKS_PER_SEC 17, 27
DOMAIN 59
EDOM 22–24, 60
ENTER 46
EOF 17, 41, 72, 78, 91
ERANGE 33, 60
EXIT_FAILURE 17, 32
EXIT_SUCCESS 17, 32
FIND 46
HUGE_VAL 14, 16, 33
HUGE_VAL_F 16
_IOFBF 75
_IOLBF 75
_IONBF 75
LC_ALL 75
LC_COLLATE 75, 79
LC_MONETARY 75
LC_NUMERIC 75
LC_TIME 75
L_tmpnam 88
MB_CUR_MAX 61
NULL

98 Index C Library Reference Manual

in stddef.h 17
in stdio.h 17
in stdlib.h 17
in string.h 17

O_APPEND 16
O_NDELAY 16
O_RDONLY 16, 65
O_RDWR 16, 65
OVERFLOW 59
O_WRONLY 16, 65
PLOSS 60
RAND_MAX 70
SEEK_CUR 58
SEEK_END 58
SEEK_SET 58
SING 59
TLOSS 60
UNDERFLOW 59

_copysign function 28
cos function 28
cosf function 29
cosh function 29
coshf function 29
creat function 14, 29, 34
ctime function 30

D
DCC reference 20
defined variables, types, and constants 15–17
difftime function 30
div function 17, 30, 54
div_t type 17, 30
DMALLOC_CHECK environment variable 59
DMALLOC_INIT environment variable 58
DOMAIN constant 59
drand48 function 30, 53, 78
dup function 34

E
ecvt function 31
EDOM constant 22–24, 60

ENTER constant 46
environment variables

DMALLOC_CHECK 59
DMALLOC_INIT 58

EOF constant 17, 41, 72, 78, 91
ERANGE constant 33, 60
erf function 31
erfc function 32
erfcf function 32
erff function 31
errno variable 14–15, 20, 22–24, 33, 36, 42, 60, 65
__exit function 32
exit function 17, 21, 25, 32
EXIT_FAILURE constant 17, 32
EXIT_SUCCESS constant 17, 32
exp function 33
expf function 33

F
fabs function 33
fabsf function 33
fclose function 34
fcntl function 14, 16, 34
fcvt function 34
fdopen function 34
feof function 35
ferror function 35
fflush function 35
fgetc function 35
fgetpos function 36
fgets function 36
__FILE__ preprocessor macro 23
FILE structure 38, 40, 88
file type 38
fileno function 36
files

include 13
stderr 17, 40, 71
stdin 17, 45, 72
stdout 17, 66, 69

FIND constant 46
_finite function 36

C Library Reference Manual Index 99

floating point
libcfp.a hardware library 6
libcfp.a software library 7
libcfp.a stubs library 6

floor function 37
floorf function 37
fmod function 37
fmodf function 37
fopen function 38
fpos_t type 17
fprintf function 38, 92
fputc function 39
fputs function 39
fread function 39
free function 40, 59
freopen function 40
frexp function 40
frexpf function 41, 64
fscanf function 41, 92
fseek function 41, 71
fsetpos function 42
fstat function 42
ftel function 42
function standards and definitions, table of 20
functions

See specific function name
modifies errno marked by REERR 20
reentrant marked by REENT 20

fwrite 42

G
gamma function 43
gammaf function 43
gcvt function 43
getc function 35, 44, 91
getchar function 44
getenv function 44
getopt function 44
getpid function 45
gets function 45
getw function 45
gmtime function 45

H
hcreate function 46
hdestroy function 46
hsearch function 46
HUGE_VAL constant 14, 16, 33
HUGE_VAL_F constants 16
hypot function 47
hypotf function 47

I
include files 13
include files, standard, table of 14
input/output

basic character input/output library, part of sim-
ple/libc.a 6

RAM-disk library, part of cross/libc.a 6
_IOFBF constant 75
_IOLBF constant 75
_IONBF constant 75
iostream C++ library, libios.a 6
iostream.a C++ iostream class library 4
irand48 function 47
isalnum function 47
isalpha function 47
isascii function 48
isatty function 48
iscntrl function 48
isdigit function 48
isgraph function 49
islowe function 49
_isnan function 49
isprint function 49
ispunct function 49
isspace function 50
isupper function 50
isxdigi function 50

J
j0 function 50
j0f function 51

100 Index C Library Reference Manual

j1 function 51
j1f function 51
jmpbuf type 16
jn function 51
jnf function 52
jrand48 function 52

K
keyword, sizeof 17
keywords

sizeof 17
kill function 52
krand48 function 52

L
l3tol function 53, 58
l64a function 53
labs function 53
LC_ALL constant 75
LC_COLLATE constant 75, 79
LC_MONETARY constant 75
LC_NUMERIC constant 75
lcong4 function 47
lcong48 function 30, 53, 57, 64
LC_TIME constant 75
ldexp function 53
ldexpf function 54
ldiv function 17, 54
ldiv_t type 17
_lessgreater function 54
lfind function 54
libcfp.a floating point library 3
libchar.a basic character I/O library 3
libd.a C++ additional standard library 4
libi.a standard C library 4
libimpfp.a compiler support library 4, 6
libimpl.a compiler support library 4
libm.a math library 4
libram.a RAM disk I/O library 4
libraries

complex.a, C++ complex math class 3

iostream.a, C++ iostream class 4
libcfp.a, floating point 3
libchar.a, basic character I/O 3
libd.a, additional standard C++ 4
libi.a, standard C 4
libimpfp.a, compiler support 4, 6
libimpl.a, compiler support 4
libm.a, math 4
libram.a, RAM disk I/O 4

library
basic character input output, part of libc.a 6
complex arithmetic, libcomplex.a 6
floating point hardware, libcfp.a 6
floating point software, libcfp.a 7
floating point stubs, libcfp.a 6
iostream C++, libios.a 6
libc.a 6
RAM-disk input output, part of libc.a 6

__LINE__ preprocessor macro 23
link function 55
-lm option 20
localeconv function 55, 75
localtime function 55
location of include files,version_path/include 13
log function 55
log10 function 56
log10f function 56
_logb function 56
logf function 56
longjmp function 15–16, 57, 74
lrand4 function 78
lrand48 function 53, 57
lsearch function 54, 57
lseek function 57, 87
L_tmpnam constant 88
ltol3 function 58

M
macros

assert 14, 24
va_arg 17
va_end 17

C Library Reference Manual Index 101

va_start 17, 92–93
mallinfo function 58
malloc function 14, 40, 58, 71
mallopt function 59
MATH functions require math library 20
matherr function 59
matherrf function 60
MB_CUR_MAX constant 61
mblen function 60
mbstowcs function 61
mbtowc function 61
memccpy function 61
memchr function 62
memcmp function 62
memcpy function 62
memmove function 62
memory allocation functions 14–15
memset function 63
mktemp function 63
mktime function 63
modf function 63
modff function 64
mrand48 function 53, 64, 78

N
NDEBUG preprocessor macro 24
_nextafter function 64
__no_malloc_warning 40
__no_malloc_warning variable 71
nrand48 function 64
NULL constant

in stblib.h 17
in stddef.h 17
in stdio.h 17
in string.h 17

O
O_APPEND constant 16
offsetof function 65
O_NDELAY constant 16
open function 14, 16, 34, 65

operator, sizeof 17
option, -lm 20
O_RDONLY constant 16, 65
O_RDWR constant 16, 65
OVERFLOW constant 59
O_WRONLY constant 16, 65

P
perror function 65
pipe function 34
PLOSS constant 60
POSIX reference 20
pow function 66
powf function 66
preprocessor macros

__FILE__ 23
__LINE__ 23
NDEBUG 24

printf function 34, 66
ptrdiff_t type 17
putc function 39, 68
putchar function 69
putenv function 69
puts function 69
putw function 69

Q
qsort function 70

R
raise function 70
rand function 70
RAND_MAX constant 70
read function 20, 70
realloc function 40, 71
REENT functions are reentrant 20
reentrant function marked by REENT 20
REERR functions modify errno 20
remove function 71
rename function 71

102 Index C Library Reference Manual

rewind function 71

S
sbrk function 72
_scalb function 72
scanf function 72, 93
seed4 function 30
seed48 function 47, 57, 64, 74
SEEK_CUR constant 58
SEEK_END constant 58
SEEK_SET constant 58
setbuf function 17, 74
setjmp function 15–16, 57, 74
setlocale function 75
setvbuf function 75
SIGABRT signal 21
sig_atomic_t type 16
sigjmpbuf type 16
siglongjmp function 16
signal function 76
signals

SIGABRT 21
sigsetjmp function 16
sigset_t type 16
sin function 76
sinf function 76
SING constant 59
sinh function 76
sinhf function 77
sizeof keyword 17
sizeof operator 17
size_t type

in stddef.h 17
in stdio.h 17
in stdlib.h 17
in string.h 17

sprintf function 77, 93
sqrt function 77
sqrtf function 77
srand function 78
srand48 function 30, 47, 57, 64, 78
sscanf function 78, 94

standard include files, table of 14
stderr file 17, 40, 71
stdin file 17, 45, 72
stdio 15, 48
stdout file 17, 66, 69
step function 28, 78
strcat function 79
strchr function 79
strcmp function 57, 79, 85
strcoll function 75, 79, 85
strcpy function 80
strcspn function 80
strdup function 80
strerror function 80
strftime function 75, 81
string functions 15
strlen function 82
strncat function 82
strncmp function 82
strncpy function 83
strpbrk function 83
strrchr function 83
strspn function 83
strstr function 84
strtod function 84
strtok function 84
strtol function 85
strtoul function 85
struct lconv 55
strxfrm function 75, 85
SVID reference 20
swab function 86
SYS functions provided by system 20
sys_errlist variable 65
sys_nerr variable 65

T
tan function 86
tanf function 86
tanh function 86
tanhf function 87
tdelete function 87

C Library Reference Manual Index 103

tell function 87
tempnam function 87
tfind function 88
time function 63, 88
TLOSS constant 60
tmpfile function 88
tmpnam function 88
toascii function 89
_tolower function 89
tolower function 89
_toupper function 90
toupper function 89
tsearch function 90
twalk function 90
types 17

div_t 17, 30
fpos_t 17
jmpbuf 16
ldiv_t 17
ptfdiff 17
sig_atomic_t 16
sigjmpbuf 16
sigset_t 16
size_t

in stddef.h 17
in stdio.h 17
in stdlib.h 17
in string.h 17

VISIT 90
tzset function 91

U
UNDERFLOW constant 59
ungetc function 91
UNIX reference 20
unlink function 91
_unordered function 91

V
va_arg macro 17
va_end macro 17

va_list type 17
variables

errno 14–15, 20, 22–24, 33, 36, 42, 60, 65
__no_malloc_warning 71
sys_errlist 65
sys_nerr 65

va_start macro 17, 92–93
vfprintf function 92
vfscanf function 92
VISIT type 90
vprintf function 92
vscanf function 93
vsprintf function 93
vsscanf function 94

W
wcstombs function 94
wctomb function 94
write function 94

Y
y0 function 95
y0f function 95
y1 function 95
y1f function 95
yn function 96
ynf function 96

	Welcome
	C Library Reference Manual
	Contents
	List of Tables
	1 Introduction
	Document conventions
	Library structure
	Libraries supplied
	Assumptions
	Library directory structure
	libc.a
	Library search paths

	2 Include Files
	Files
	Defined Variables, Types, and Constants
	errno.h
	fcntl.h
	float.h
	limits.h
	math.h
	mathf.h
	setjmp.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	string.h
	time.h

	3 Functions
	Format of Descriptions
	Operating system calls
	References

	Function Listing
	a64l
	abort
	abs
	access
	acos
	acosf
	advance
	alloca
	asctime
	asin
	asinf
	assert
	atan
	atanf
	atan2
	atan2f
	atexit
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	ceilf
	_chgsign
	clearerr
	clock
	close
	compile
	_copysign
	cos
	cosf
	cosh
	coshf
	creat
	ctime
	difftime
	div
	drand48
	ecvt
	erf
	erff
	erfc
	erfcf
	exit
	_exit
	exp
	expf
	fabs
	fabsf
	fclose
	fcntl
	fcvt
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fileno
	_finite
	floor
	floorf
	fmod
	fmodf
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	frexp
	frexpf
	fscanf
	fseek
	fsetpos
	fstat
	ftell
	fwrite
	gamma
	gammaf
	gcvt
	getc
	getchar
	getenv
	getopt
	getpid
	gets
	getw
	gmtime
	hcreate
	hdestroy
	hsearch
	hypot
	hypotf
	irand48
	isalnum
	isalpha
	isascii
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	_isnan
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	j0
	j0f
	j1
	j1f
	jn
	jnf
	jrand48
	kill
	krand48
	l3tol
	l64a
	labs
	lcong48
	ldexp
	ldexpf
	ldiv
	_lessgreater
	lfind
	link
	localeconv
	localtime
	log
	_logb
	logf
	log10
	log10f
	longjmp
	lrand48
	lsearch
	lseek
	ltol3
	mallinfo
	malloc
	mallopt
	matherr
	matherrf
	mblen
	mbstowcs
	mbtowc
	memccpy
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktemp
	mktime
	modf
	modff
	mrand48
	_nextafter
	nrand48
	offsetof
	open
	perror
	pow
	powf
	printf
	putc
	putchar
	putenv
	puts
	putw
	qsort
	raise
	rand
	read
	realloc
	remove
	rename
	rewind
	sbrk
	_scalb
	scanf
	seed48
	setbuf
	setjmp
	setlocale
	setvbuf
	signal
	sin
	sinf
	sinh
	sinhf
	sprintf
	sqrt
	sqrtf
	srand
	srand48
	sscanf
	step
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	swab
	tan
	tanf
	tanh
	tanhf
	tdelete
	tell
	tempnam
	tfind
	time
	tmpfile
	tmpnam
	toascii
	tolower
	_tolower
	toupper
	_toupper
	tsearch
	twalk
	tzset
	ungetc
	unlink
	_unordered
	vfprintf
	vfscanf
	vprintf
	vscanf
	vsprintf
	vsscanf
	wcstombs
	wctomb
	write
	y0
	y0f
	y1
	y1f
	yn
	ynf

	Index

