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INTRODUCTION

.. the end of all our exploring

will be to arrive where we started
and know the place for the first time.
T.S. Eliot, "Little Gidding”

A well know theorem of linear algebra asserts that if F5 is a nondegenerate quadratic
form over a k-vector space of dimension n + I, with k£ algebraically closed, then F5 can

be written has n + I squares of linear forms
Fy=L%+..4+L2,,.

The linear forms L; considered as vectors in the dual space V* are mutually orthogonal
with respect to the dual quadratic form F.

For more than hundred years algebraists and geometers have searched for a generalization
of this construction to homogeneous forms Fy on V of arbitrary degree. This problem is
known as the Waring problem for homogeneous form.

The more important object of the study is the variety of sums of powers VSP(Fy, h)°
parametrizing all representations of F,; as a sum of powers of h linear forms. A decom-
position {Lq,..., Ly} in h linear forms of F, is called an h-polar polyhedron of Fy. The
variety VSP(F,, h)° can be viewed as the subvariety of the symmetric power PV*() of
PV* parametrizing the polar polyhedra of Fy.

The Waring problem for homogeneous form was only recently solved by J.Alexander
and A.Hirschowitz. Their result also yields, via Terraccini’s lemma, the dimension of
VSP(Fy, h)°. The varieties VSP(Fy, h)° were studied in the classical algebraic geometry
by A. Dizon, F. Palatini, T Reye, H. Richmond, J. Rosanes, G. Scorza, A. Terracini,
and others.

The lack of techniques of higher dimensional algebraic geometry did not allow them to
give any explicit construction of the varieties VSP(Fy, h)°
pactification VSP(Fy, h) of VSP(Fy, h)°.

The interest in varieties of power sums theory has been reawaken in 1992 by a work of

or to study a possible com-

S.Mukai, who gave a construction of VSP(F,, h)° in the cases

(n,d,h)=(2, 2, 8), (2, 4, 6), (2, 6, 10)

for a general polynomial Fy; and also constructed a smooth compactication VSP(Fy, h)
which turned out to be a Fano threefold in the first two cases and a K8 surface in the
third case. The construction of Mukai employs a generalization of the concept of the dual

quadratic form to forms of arbitrary even degree d = 2k.
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Other smooth compactifications of VSP(Fy, h) are known for general cubic polynomi-
als. If n =2, VSP(F3, 4) is isomorphic to the projective plane, if n =3, VSP(F3, ) is
one point (this is a classical result of Sylvester), if n =4, VSP(F3, 8) is a smooth Fano
variety of dimension & and, if n =5, VSP(F3, 10) is a holomorphic symplectic 4-fold.

The state of art in varieties of power sums classification is resumed in the following table.

d n| h VSP(Fy,h) Reference
2h—1|11| h 1 point Sylvester

2 213 quintic Fano threefold Mukai [Muk92)]

3 214 P2 Dolgachev and Kanev [DK93]

4 2 | 6 | Fano threefold of genus twelve Mukai [Muk92)]

5 2| 7 1 point Hilbert, Richmond, Palatini

6 2|10 K3 surface of genus 20 Mukai [Muk92)

7 2|12 5 points Dizon and Stuart

8 2|15 16 points Mukai [Muk92)

2 314 G(1,4) Ranestad and Schreier [RS00]

3 3|5 1 point Sylvester's Pentahedral Theorem

3 418 4% Ranestad and Schreier [RS00]

3 5|10 S Iliev and Ranestad [1R01b)

Where W is a fivefold and S is is a smooth fourfold.

In the first chapter we describe some classical objects of Algebraic Geometry. In par-
ticular we state some properties of Grassmannians, Hilbert Schemes and Secant Varieties
that will be very important in the study of Varieties of Power Sums.

In the second chapter we define the concept of variety of power sums and we prove some
general facts about these varieties.

In the third chapter we report Mukai’s construction and we prove Mukai’s theorem.

The last chapter is the most important, we give some new proof about well known the-
orems and we state some new results. We prove by geometrical methods Hilbert’s and
Sylvester’s theorems. Then we give an alternative proof of Dolgachev - Kanev’s theorem
and using the same idea we will find that VSP(F5,4) is a Grassmannian, moreover we give
a method to reconstruct all 4-polar polyhedra of quadric and cubic polynomials. Finally
we state some original results about varieties of power sums rationality, in particular we

prove rationality of varieties of power sums of quadrics by arguments from linear algebra.

AM. -5 July 2009



Chapter 1

GENERAL RESULTS

In this first chapter we describe some classical objects of Algebraic Geometry. In particular
we state some properties of Grassmannians, Hilbert Schemes and Secant Varieties that

will be very important in the study of Varieties of Power Sums.

1.1 Grassmannians

Let V be a k-vector space of dimension n and let W C V be a subspace of dimension h.
Let {vy,...,u, } be a basis of W and consider the h-multivector v A...Av, in the h-wedge
product A" V. If {uy,...,us } is another basis of W and B is the matrix of change of basis
we have v A...Av, = det(B)(uiA...Aup, ). The matrix B is invertible so det(B) # 0 and
the two multivectors viA...Avp and uj A...Auy, identifies the same point in the projective
space P(A" V). If we denote with G (h,n) the set of the subspaces of dimension h of V we

have a well defined map
Pk:G(h,n) — P(N" V), defined by W — [viA...Avp]

If {e1,...,e, } is a basis of V then {e; A...Ae;, } with iy < iy < ... < i is a basis of \" V.
So dim(\"V) = (1) and P(A\" V) = PN with N = (}) - 1.
We can write the vector viA...Avy in the basis {e;; A...A¢;, } as

VIA. AV, = Zi1<...<ihpi17m;ih ei N...\€;,

The elements p;, ... ;, are called the Pliicker coordinates of W.

Given a multivector w € /\hV and a vector v € V we say that v divides w if there
exist a multivector u € /\hi1 V such that w = v A u. A multivector w € /\h V is totally
decomposable if and only if the space of vectors dividing w has dimension h.

For any fw] = Pk(W) we can recover W as the space of vectors v such that v A w = 0 in
/\}hLl V. So the map Pk is injective and it is called the Pliicker embedding. Now we give a
more explicit description of this embedding. If H = <wy,...,up > and {ey,...,e, } is a basis

of V we can write v; = vlej +... +ul'e,. We consider the hxn matrix

M=
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If A,
of M with 4y <...< 4, then the Pliicker embedding can be write in the following way

_in is the determinant of the matrix hxh whose columns are the columns i,...,7,

Now we fix a multivector w € A"V and consider the map
w: V= A"V, 0= w A v
Then w is totally decomposable if and only if dim(Ker(p,,)) = h if and only if
rank(pw ) = n-h.
We note that the rank of ¢,, is never strictly less than n-h and we conclude that
Jw] € G(h,n) < rank(py) < n-h

Now the map L:/\h V— Hom(V,/\’H_1 V) defined by w—p,, is linear and G(h,n)gP’(/\h V)
is the subset defined by the vanishing of (n-h+1)x (n-h+1) minors of the matrix of L. We
see that G(h,n) is an algebraic variety called the Grassmannian of the h-planes of V.

REMARK 1. Any h-plane W C V determine a (n-h)-plane %, and we have an exact

sequence
O— W—V— % — 0
By dualization we obtain another exact sequence
0— (w)*— V= Wre— 0

Considering the canonical isomorphism of a vector space of finite dimension with its
bidual, if we dualize the second sequence we recover the first sequence. So we have a

bijective correspondence between the h-plane in V and the (n-h)-plane in V* then
G(h, V)= G(n-h,V*).

PROPOSITION 1. The Grassmannian G(h,n) parameterizing the h-planes in P™ is a smooth
variety of dimension (h+1)(n-h).

Proof: We denote by Py € G(h,n) the point corresponding to the (h+1)-plane H of
VLl Let {vo,...,vn } be a basis of H. If {eg,...,e, } is a basis of V"' then we can write

v; = Weg+...4+v'e,. We consider the matrix

v) .o vy

M= : :
0 n

Uy, eee ee. Uy

Let My, a (h+1)x (h+1) minor of M obtained extracting h-columns in M, say the first
h, we consider the set

Ur = {PH S G(h+1,n+1) / det(./\/l[) #* 0}

The sets Uy are open sets in G(h+1,n+1) and on U; the matrix M is invertible and we
have
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1 0 ... 0 )\0’1 . )\O,nfh

M M= A L
0 ... 0 1 X1 .o Ann—n

We note that any point Py € U; determines uniquely a matrix of this form. So we have

a bijective correspondence
Yr: Uy — KD Py (N1, N0 s s An—h)

So Uy = kPHD(=h) Now the open sets of the form U; cover G(h+1,n+1) and we con-
clude that G(h+1,n+1) is smooth. O

The first non trivial example of Grassmannian is the case of the lines in P3.

EXAMPLE 1. A line L = <z,y> in P? corresponds to a plane H in V*. If {eg,...,e3} is a
basis of V* we can write © = z9eg+...+x3e3 and y = yoeo+...+yses. In this case we have
N = 5 and the Pliicker embedding is

Pk: G(1,3) — PP, L—[Ag1:002:00,3:012:A1 3:00 3]
where N; j = %y~ Y.
The A; ; satisfy the equation Ao 109 3-8 201 34+00 3012 = 0.
quadric
K = V(XoX5-X1 X4 + X2 X3)

But we know that G(1,3) is a projective variety of dimension 4 so it must be equal to K.

We conclude that the Grassmannian G(1,3) is a smooth quadric hypersurface in P5.

Now we enunciate the following proposition on the degree of G(h,n) in its Pliicker

embedding without proving it.

PROPOSITION 2. The Grassmannian G(h,n), embedded in PN wvia the Pliicker embedding,

is a variety of degree

deg(G(h.n)) = (h(n-h)! T, s

Proof: Harris - Algebraic Geometry a first Course [Lecture. 19 p.247].

Finally we define two important vector bundles on G(h,n). Consider the map
m:G(h,n)xV — G(hn), (z,v)—z.

On each z € G(h,n) the fibre 7! (z) is isomorphic to the vector space V so we have
defined a vector bundle of rank n = dim(V) on G(h,n) called the trivial bundle and
denoted by E¢. Now we consider the subvariety Z C G(h,n)x V defined by

T =A{(zw) € Glhyn)xV [ve W, }
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where W, is the h-subspace of V corresponding to z € G(h,n). Then for each z € G(h,n)
the fibre of the map

©IxV — G(hn), (1,v)—1,

is isomorphic to k*. In this way we get a vector bundle of rank h on G(h,n) called the
universal bundle and denoted by Sg. We note that for any = € G(h,n) the fibre of ¢
is a subvector space of the fibre of 7 and Sg is a subbundle of £;. We have the exact

sequence

0—Sg—Eq— Qa0

where Qg = g—g is a quotient vector bundle of rank n-h on G(h,n).

1.1.1 The Pliicker embedding

In this section we prove directly that the Pliicker map is indeed an embedding. We

consider the map
Pk:G(h,n) — P(N" V), defined by Wi [AY . AW, ]

Suppose that W =< wy,...,w, > and Z =< 2z, ...,z > are two h-subspaces of V such

that pk(W) = pk(Z), then there exists a non zero A € k such that A}/Il/ijh = )‘AJ‘Zl,..,jh for

any ji,...,Jjn. We write
i i d 2 = 2t i
w; = wpeg + ... + wye, and z; = zgeg + ... + 2,65

Then we consider the matrix

1 1
wy wy,
h h
we w,y
1 1
20 Zn
h h
2y .. 2y
It is clear from the relations A}/‘l/ i = )\AJ»ZI .jn that this matrix has rank h, so W = Z

and the Pliicker map is injective.

We saw that the Grassmannian G(h,n) is covered by the affine sets

Ui, i, =P1.ns s P, |Piy i # 0

Now we consider the Pliicker map on this open affine subset to prove that its differential
is injective. It not restrictive to consider Ui, . j, since p1, . = Ay, # 0 the points in

U,,....,», can be represented by a matrix in the form

=)

10 ... 0 x2+1 oo

S e

o ... 0 1 xZH ..



1.1 Grassmannians 11

The (h+ 1) x (h+ 1) minor

1 0 ... 0 2,
0 ... 0 0 zp,
has determinant equal to z? .. Taking all the minors we can interpret the Pliicker map
q h+1

on Us,... » as a morphism on AFD(=h) ipy the form

__________ n— AN, pkulﬁ_wh([w%%_l Caoxh)) = [a:?H_l SRR L = Y A

Where Py, ..., P; are polynomial function in the aj?H_l, ...,x". So modulo a change of basis

the Jacobian matrix of pky,

1 0 0
0 ... 0 1
J(pkul ,,,,, h) = 80130 o BOPO
oy 1y Oz,
OP; OP;
az(h)/-'—l DY DY 8z9l+1

and it this clear that rank(J(pky,

injective and since the situation is similar on the other sets of the covering we conclude

.)) = h+ 1. So the the differential of pky, , is

that the Pliicker map is an embedding.
EXAMPLE 2. We consider again G(1,3) and the map

Pk: G(1,3) — P5,

W [xoy1 — T1Yo  ToY2 — T2Yo : ToY3 — T3Yo - T1Y2 — T2Y1  T1Y3 — T3Y1 - T2Y3 — xsyz}-
On Up,1 we can assume xo =y =1 and 1 =yo =0, so
Pkuo,l([ﬂﬁz X3 Y2 ys]) = [yz CY3 X2 LT3 T2Y3 — xsyz]

The Jacobian matriz is

J(pkUOJ) =

oS = O O
= o o O
S O O
o O = O

and clearly its rank is 4.

1.1.2 Tangent space to Grassmannians

Since we have covered G(h,n) by affine open subsets its is immediate to describe its

tangent space at each point A; it is just the underlying vector space of any affine piece in
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which A lies in. Now we want to describe the tangent space in a intrinsic way to get the
tangent bundle of G(h,n).
Let B = {ep,...,en} be a basis of V' and look for simplicity at the affine piece Uy .. p
represented by the matrix

1 0 ... 0 ah,, ...z

. So

h h
0 ... 0 1 ap,y ... z,
Let A be a point in Uy, ..., this is the same of fixing a basis B = {vg, ...,vp} of A and
whose coordinates with respect to the basis B are the rows of the given matrix. Since the
zero vector in the tangent space in A must correspond to A the right way to interpret a
tangent vector to G(h,n) in A is as a matrix of the form

1 0 ... 0 af  +th,y ... ad+1)

0 ... 0 1 ah 4+t ... ah+th

where (£9) i1 ...,t") represents a tangent direction. It is natural to interpret this matrix
as the matrix of a linear map A — V with respect to the basis B' and B. Note that this
morphism maps each vectors v; to itself plus a linear combination depending only on the
t; So it is natural to compose our map with the projection map V' — V/A for finally
getting a linear map A — V/A whose matrix is precisely

0 0
0. .t

h h
the, ... th

when taking B’ as a basis of A and the classes of €h+t1s--s€n as a basis of V/A. The
important fact is that this map is independent on the affine chart chosen an so we can
canonically identify the tangent space of G(h,n) in A with the vector space Hom(A, V/A).
Then we have

TAG(h,n) = Hom (A, V/A).

Now recalling our description of the universal bundle S¢ and of the quotient bundle Qg
we have that the tangent sheaf of G(h,n) is naturally isomorphic to Hom(Sg, Qa),

TG(h,n) 2 Hom(Sg, Qc) = Sg ® Q.

1.2 The Hilbert Scheme

The Grassmannians parametrize the subspace of a given dimension of a projective space.
The Hilbert schemes are a sort of generalization of the Grassmannias, in some sense they
parametrize the subvarieties of P with a given degree and dimension.
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1.2.1 The Hilbert Polynomial

We begin this section defining the Hilbert polynomial of a projective scheme X in P".
The idea is to associate to the homogeneous coordinate ring S(X) of X a polynomial

Px € Q[z] that codifies some numerical invariants of X as the dimension and the degree.

DEFINITION 1. A polynomial P(xz) € Qx| is called a numerical polynomial if P(n) € Z

for all integers n»0.

PROPOSITION 3. If P € Q[z] is a numerical polynomial then there are integers ky,...,k,
such that

P(x) = ko(3) + k(%)) +-F k.

r—1

If F'7Z — Z is a function and there exists a numerical polynomial Q(x) such that the differ-
ence function AF = F(n+1) - F(n) for all n»0, then there exists a numerical polynomial
P(z) such that F(n) = P(n) for all ns0.

Proof: We proceed by induction on the degree of P. If deg(P) = 0 we take ky =...=
ky = 0. Now () = Z-+... so we can express a polynomial P € Q/z/ with deg(P) = r
in the above form with ky,...,k. € Q. We define the difference polynomial as AP(z) =
P(z+1) - P(z) so

) = La(a-1)...(-r+2)r = (%) and

AR = () - (
AP = ko(,%)) + ka(,%,) +oothros.

Now deg(AP) = r-1 and by induction ko,...,k-—1 € Z, P(n) € Z for n»0 implies k. € Z.
Let F:Z — Z be a function, by the preceding part we can write

Q = ko(*) + k1 (%)) +ot hy, with ko,....k, € Z and let

r—1

P k() +B() rot ).

Then AP = kOA(T-T—l) + kA(T) +...+ kA(T) = Q But AF(n) = Q(n) for n»0 implies

that A(F-P)(n) = 0 for n»0 so (F-P)(n) = ky4+1 constant for n»0, with k.1 € Z. We

have

F(n) = P(n) + kepr = ko(,5,) + ki(5) +ot ke (T) + kg for all ny0.

Let S = @,czS: be a graded ring. A graded S-module is a S-module M with a
decomposition M = @heth such that Sx My C M. We define the twisted module
M(1) by M(l), = Mp4,; for any [ € Z. The annihilator of M is

Ann(M) = {s € S such that sm = 0V m € M}.
It is a homogeneous ideal in S. The Hilbert function of M is defined by

har (1) = dimy. M, for each | € Z.
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THEOREM 1. (Hilbert-Serre) Let M be a finitely generated graded S-module where

S = k’/l’o,...,a?n/.

Then there exists a unique polynomial Py (z) € Q[z] such that har (1) = P (1) for all suffi-
ciently large integers l. Furthermore deg(Pas(z)) = dim(V(Ann(M))) where V(Ann(M))
denotes the zero set in P defined by the homogeneous ideal Ann(M).

Proof: We note that if 0—M LM M0 is a short exact sequence, then hps (1)
= dimp M, = dimp M} + dim M’y = hapo (1) + hago (1). Now we prove that V(Ann(M))
= V(Ann(M)) U V(Ann(M")). Let s € Ann(M) then s-m = 0 for any m € M. We
consider m" € M and m” € M’'. Then f(sm') = s - f(m') = 0 but f is injective
so ssm = 0. Now there exists m € M such that g(m) = m’ and sm’ = g(sm) =
0. Now Ann(M) C (Ann(M )) N (Ann(M") implies V(Ann(M )) U V(Ann(M')) C
V(Ann(M)). Let z ¢ V(Ann(M)) then there exists P € Ann(M) such that P(z) # 0.
From Ann(M) C (Ann(M )) 0 (Ann(M") we have that P € (Ann(M )) N (Ann(M") and
sox ¢ V(Ann(M )) U V(Ann(M")).

Now M is a finitely generated graded module over the noetherian ring S so M admits

a filtration with quotients of the form % (1) with P a homogeneous prime ideal and we
have M %% (1). The shift I corresponds to a change of variables so we can consider M =
%. If P = (2,...,2,) we note that Ann(M) = P. Then hy(l) = 0 for any >0 and so
Py (1) = 0 for any >0 and deg(Pp ) = dim(V(P)) = -1 with the convention that the
zero polynomial has degree -1 and the empty set has dimension -1. If P # (xg,...,%,) we
choose z; ¢ (1p,...,4, ). Then we have the exact sequence

0— M- M -5 Mg

where F(Q) = z;Q. Let Q € M such that z;Q = 0 in M, z;¢P implies Q € P because P
is a prime ideal so = 0 in M and F is injective. The projection G is clearly surjective.
Let @ € Ker(G) then @ € x; M and there exists H € M such that Q@ = 2;H = F(H). Let
Q € Im(F) then there exists H € M such that F(H) = z;H = @ so G(Q) = 0 and Q €
Ker(G). We conclude that the sequence is exact.

Then h_ar (1) = har (1)-hay (1-1) = (Ahag)(1-1). Moreover V(Ann(;; M-)) = V(P)n H,
where H/ is the hyperplane z; = 0 and V(P) is not contained in H because z; ¢ P
&) dzm(V{Ann(x 7)) = dim(V(P)) - 1. Now by induction on dim(V(Ann(M))) we
can assume that h_m_ coincides with a polynomial P s for any [»0 with deg(P v ) =

T M

sponding to a polynomlal Py of degree dim(V(P)). Clearly Py is unique.

Let X C P" be a scheme of dimension r then its homogeneous coordinate ring
an 7-Kn]
() — Hesemd

is a finitely generated graded kfxy,...,z,/-module.
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DEFINITION 2. The polynomial Py is called the Hilbert polynomial of the module M. The

polynomial Px associated to the ring S(X) is called the Hilbert polynomial of the scheme
X and by Hilbert-Serre theorem we have deg(Px ) = r = dim(X). We define the degree of
X to be r! times the leading coefficient of Px and the arithmetic genus of X to be

pa(X) = (-1)"™) (po(0) - 1).
EXAMPLE 3. We consider the case X = P" then S = kfxo,...,2n] and
Px(z) = hx(z) = (*I") = L+,

so dim(X) = n, deg(X) = 1 and po(X) = (-1)"((%) - 1) = 0.
If X = V(P) is a hypersurface in P"™ with P a homogeneous polynomial of degree d then

we have the eract sequence

F oG
0—S(-d)— S—>(—15;)r—>0

where F(Q) = P-Q. So h% (z) = hs(z) - hs(z-d) and

Px(z) = (F37) - (75 = e v,

so deg(X) = d and dim(X) = n-1. In particular if C C P? is a curve of degree d then

Px() — (%2) - (%) — 1 -L(d-2)(d-1) s0 pa(C) — (d-1)(d2)
More generally if X C P™ is a hypersurface of degree d we have Px (0) = 1 - (7dn+”) and

pa(X) _ (—I)n 7t?n+n _ (—J)n (7d+n)(7d+n71)...(7d+1) _ (d*’ﬂ)(d*ﬂ‘i’l)...(d*l) _ (d*l)'

n! n! n

For example for a cubic surface X C P? we have p, (X) = 0.
Finally let X be a complete intersection of two surfaces of degree a,b in P3. We write
I(Y)=(f,g) with f homogeneous of degree a and g homogeneous of degree b. We consider

the exact sequence

0 S (b) <5 & T Sy,

—~
~

hs =hs (_b)+h(f:9g) and h(ﬁsg) (Z):h(TS) (Z)-h(TS)

(5 (2) 50 h_s_(2)=h s (2)-h s (D).

(f.9) [€2) [€2)

hy(z):(z;)rS)_(zfg+3)_<27§+3)+(zfagb+3); PY (0):1_(7a?)+3)_(7b3+3)+(7a73b+3).

(Py (0)-1):-w and pqo (Y)=% (36*b+3ab?-12ab+6) =% (a®b+ab®-4ab)+1.

We conclude that the arithmetic genus of a curve that is scheme theoretic complete inter-

section of surfaces of degree a,b in P is given by
pa(Y)=32ab(a+b-4)+1.
EXAMPLE 4. Let

O  PTX P PN ([20 1t @], [Yo i oo 2 Yml]) = [T0Y0 t oot Yy 1 e T,
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with N = nm + n + m, be the Segre embedding, and let X, ,, = op,m (P x P™) be the
Segre variety.

A homogeneous polynomial of degree d on X, n, corresponds to a bihomogeneous polyno-
mial of bidegree (d,d) on P x P™. Then

thmL (d) _ (d—;n) (d-‘;m) _ (d+n);L.!.(d+1) (d+m)7;,;!.(d+1) _ ﬁdnﬁrm 4.

We have dim(Sp,m) =n+m and deg(Sn,m) = ——(n+m) = ("T™).

nlm! n
In particular for the smooth quadric surface 11 = Q C P? we have

hs,, (d) = (d+1)2.

If we compute the Hilbert polynomial of Q using the formula for an hypersurface in P3
we obtain ho(d) = (d§3) - (d?;l) = (d+1)2.

1.2.2 Flat families and Hilbert Scheme

In this section we define the Hilbert scheme an we state some of its property without
proves. For a complete treatment of Hilbert schemes theory see, for example, E.Sernesi,
Deformations of Algebraic schemes, Springer.

The notion of representable functor has several applications in Algebraic Geometry, the
Hilbert scheme is an example. Let C be a category and let X € Ob(C). We have the

covariant functor Home (X, —) and the controvariant functor Home(—, X).

DEFINITION 3. A covariant functor F : C — Gets is representable if there exists an
object X in Ob(C), such that F is isomorphic to Home(X, —).

A controvariant functor F' : C — Gets is representable if there exists an object X in
0b(C), such that F is isomorphic to Home(—, X).

In this case the object X € Ob(C) represents the functor F' and this object is unique
up to isomorphism.

In this section we denote by
e Gch(k) the category of schemes over k,
e Gets the category of sets.

Let X be a quasi projective scheme over the algebraically closed field k. A flat family of
proper subscheme of X parametrized by a scheme S is a closed subscheme Z C S x X,
such that the projection 7 : Z — S is flat and proper. If s € S is a closed point we note
Zs = n~1(s). We denote by Flat(S) the set of all flat families of proper subschemes of X
parametrized by S.

Given a flat family and a morphism of schemes f : S’ — S, we have a morphism

fxIdx:8xX—SxX,
and the family Z’ = (f x Idx)~(Z) is again flat. In this way we obtain a morphism
f:3at(S) — Flat(S), Z— (f x Idx)"Y(Z).

We get a controvariant functor
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Hilb(X) : &ch(k) — Gets, defined by S — Flat(S),
that we can consider as a covariant functor
Hilb(X) : &ceh(k)°P — Gets, defined by S — Flat(S).

Let P € Q[T] be a polynomial. We denote by HPBp(S) the set of Z C S x X such that
Z is proper and flat over S and Z; has Hilbert polynomial P for any s € S. For a flat
family Z C S x X the map

HP:S — Q[T],s+— Pz,

where Py_ is the Hilbert polynomial of Z;, is a locally constant function. This implies

that given a polynomial P € Q[T], the functor
Hilbp(X) : Sch(k)? — Gets, defined by S — HPBp(5),
is a subfunctor of Hilb(X).

THEOREM 2. (Grothendieck) The functor Hilbp(X) is representable by a quasi projective
scheme Hilbp(X). If X is projective then Hilbp(X) is also projective.

The theorem implies that there exists a scheme Hilbp(X), whose points parametrize

the subschemes of X with a given Hilbert polynomial P. The scheme Hilbp(X) is called
the Hilbert scheme.
Let X be a projective schemes. We consider the constant polynomial P = h, with h € Z.
The subschemes of X with Hilbert polynomial P have dimension zero and degree h,
i.e, these subschemes are the sets of h points counted with multiplicity. We denote by
Hilby(X) the corresponding Hilbert scheme.

THEOREM 3. (Grothendieck) Let [Z] € Hilby(X) be a closed point, representing a sub-
scheme Z of a scheme X. Let Iz be the ideal sheaf of Z. Then there is a canonical

isomorphism
T[Z]Hilbh(X) > Homo,(Zz,0z).

THEOREM 4. (Fogarty) Let X be a smooth connected quasi projective surface. Then for
each h € N the Hilbert scheme Hilb,(X) is connected and smooth of dimension 2h.

In chapter 2 the fact that Hilby (P?) is connected and smooth will be very important.
Fogarty’s theorem is fundamental for several properties of Hilb,(X). For higher dimen-

sional schemes much less is true.

COROLLARY 1. Let X be a quasi projective scheme of dimension n and let [Z] € Hilb,(X)
be a closed point such that dim(T,Z) < 2 for any x € Z. Then Hilby(X) is smooth of
dimension hn at [Z]. In particular Hilb,(X) is smooth for all n if h < 3.

1.3 Secant Varieties

Let X C P™ be an irreducible variety. For any p,q in X we con consider the line <p,q>

in P". In this way we get a rational map
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p: XxX --» G(1,n), defined by (p,q) — <p,q>.

The map ¢ is defined in the complement of the diagonal A C Xx X. It is called the secant
lines map and the closure of its image is called the variety of secant lines to X and denoted
by S(X).

Now let p1,...,pn € X be h points in general position. If X is irreducible and not contained

in any (h-1)-plane we can define the map

;X X .o x X --» G(h-1 defined b <P1yeees P>
©Ph > ( ;n)a enne y (p17 7ph) = DP1,--3Ph

h—times

The map ¢y, is called the secant h-planes map of X and the closure of its image Sy (X) is
called the variety of secant h-planes of X.

The union

Seca(X) = Upesx)L € P°

is a subvariety of P™ called the secant lines variety of X. More in general the variety

Sech(X) = Uges, x)H € P"
is a subvariety of P™ called the secant h-planes variety of X.

EXAMPLE 5. Let C C IP3 be the twisted cubic curve and let p € P3 be a generic point such
that p ¢ C. There exists a line L such that p € L and L is secant to C. If a such line will
not exists then the projection of C in P2 from p is a smooth plane cubic C isomorphic to C,
but g(C) = 0 and g(C) = 1, a contradiction. If there exists two distinct lines L,R secant
to C and containing p then the plane H = <L,R> is such that H-C > 4, a contradiction
because deg(C) = 8 and C is not contained in a plane.

So the generic point p ¢ C lies on a unique secant line to C, we conclude that Sec(C) is
the space P3.

Let X C P™ be an irreducible variety and let A C XxXxX be the locus of triples
with two ore more points equal. The locus Vi 3(X) of the triples of distinct points
(p,q,7) € X x X x X such that p,q,r are collinear is a subvariety of Xx Xx X\A and so
its closure V; 3(X) is a subvariety of Xx XxX.

More generally for any integers h,l we define the variety m C X" to be the closure
of the locus in X" of the h-uples of distinct points contained in a [-plane.

The variety Sec; 3(X) C P™ is the closure of the locus of lines <p,q,7> € V; 3(X). We
define the variety Secy,;(X) of h-secant I-planes to be the closure of the locus of [-planes
containing and spanned by A distinct points of X.

We note that the map

p: XxX --» G(1,n)

is generically finite because the fibre over a point L € G(1,n) will be positive dimensional
if and only if L C X. Then the dimension of §(X) as a subvariety of the Grassmannian
G(1,n) is equal to dim(XxX) = 2-dim(X).

Now we consider the incidence correspondence
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T ={(pL)]|pecL}CP'xS(X)C P"xG(Ln).

The image II1 (Z) = {p € P" | p € L for some L € §(X)} = Secy(X) is the secant variety
of X. The map IIy.Z7—S8 (X) is surjective and all its fibres have dimension one. If the fibre
of IT; is finite (i.e. if p € P™ is a generic point there are a finite number of secant lines of X
such that p € L) we have dim(Z) = dim(Secy (X)). Furthermore dim(Z) = dim(S(X))+1
= 2-dim(X)+1. We conclude that

dim(Secy (X)) = 2-dim(X)+1.

PROPOSITION 4. Let X be an irreducible variety in P™.

The wvariety Sp(X) C G(h-1,n) of secant (h-1)-planes of X is an irreducible variety of
dimension h-dim(X). The secant variety Secy,(X) C P™ is irreducible of dimension at
most h-dim(X)+(h-1) with equality holding if and only if the generic point lying on a
secant (h-1)-planes of X lies on only a finite number of secant (h-1)-planes of X.

P : Th XX .. xX --» G(h-1,n) i ically finite b the fib
roof e map > G(h-1,n) is generically finite because the fibre

h—times

over a point H € G(h-1,n) has positive dimension if and only if H C X. So

dim(Sp (X)) = dim(X x ... x X) = hedim(X).

h—times

It is the image of an irreducible variety via a rational map so it is irreducible.

Now we consider the incidence correspondence
T = {(p,H) |p € H} CP"xS,(X) C P"xG(kn).

The map II3:Z—S}, (X) is surjective and its fibres have dimension h-1. The image of the
first projection IT; :Z—P™ is the variety Secp, (X). We have

dim(Z) - dim(1; ' (p)) = dim(Secy (X)) and dim(Secy, (X)) < dim(Z).
On the other hand we have

dim(T )-dim(T;* (H)) = dim(Secy, (X)) and
dim(Z) = h-dim(X)+(h-1).

We conclude that
dim(Secy, (X)) < h-dim(X)+(h-1).

The equality dim(Secy, (X)) = h-dim(X)+(h-1) holds if and only if the fibre of the first
projection is finite. In other words if and only if the generic point lying on a secant (h-
1)-plane lies on only a finite number of secant (h-1)-planes of X. Finally Il is surjective
with all fibres irreducible so Z is irreducible and via the first projection II; the variety
Secy, (X) is also irreducible. O

Now we give some examples.

ExaMpLE 6. If X C P" is an irreducible curve not contained in any plane then
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dim(Sece (X)) = 3.

We can project X in P3. Now the projection of X is P? from a generic point of P is an
irreducible curve with a finite number of nodal singularities. So there is a finite number

of secant lines of X passing through p. By the proposition we conclude that
dim(Seca (X)) = 2-dim(X)+1 = 8.

EXAMPLE 7. Let X = v(P?) C P5 be the Veronese surface. Let u € P° be a point lying
on a secant line to X. We write the secant line as <v(p),v(q)> with p,q € P2. The line
= <p,q> C P? is carried under the Veronese embedding v in a conic C C X. Since u
€ <v(p)v(q)> and v(p),v(q) € C the point u lies on the plane H spanned by C. All lines
passing through u and contained in H intersect C in two points and so are secant lines of
X. We see that the generic point of P° lying on a secant line of X lies on a 1-dimensional
family of secant lines of X, so dim(Seca (X)) < 4. If it will be dim(Secy (X)) < 3 then the
cones <v,Seco (X)> with vertex a point v € Secs (X) will coincide, a contradiction. We
conclude that dim(Seca (X)) = 4.
There is another way to see this fact. The points of Seca(X) are the conics which can be
written as sum of two squares, i.e. the conics of rank equal to 1 or 2. So we can describe
Secy(X) C P° as the determinantal variety defined by

Xo X3 X4
det X3 Xl X5 :O
X, X5 X,

That is o cubic hypersurface in P°.

DEFINITION 4. Let X C P™ be an irreducible nondegenerate variety. We say that X has
defective secant variety if dim(Secy (X)) < min{h-dim(X)+(h-1),n}.
The difference

0(X) = h-dim(X)+(h-1) - dim(Secy, (X))
is called the defectivity of X.

EXAMPLE 8. Let G = G(1,n) C P**1) be the Grassmannians of lines of P and let
p € Seca(G) be a point. Then p € <u,v> = L € P+ secant line of G. The points
u,v represent two lines Ry,Ro in P*. Now two general lines span a 3-plane H. The lines
contained in H are parametrized by the Grassmannian G(1,3) C G(1,n).

Now dim(G(1,3)) = 4 and G(1,3) spans a 5-plane E C P*"+1)_ Ajl lines L C E and
passing through p intersect G(1,3) in two points because deg(G(1,3)) = 2. We see that
any point p € Secy(G) lies on a 4-dimensional family of secant lines of G. We conclude
that

dim(Sec2(G)) = 2-dim(G)+1-4 = 2:2(n-1)+1-4 = 4n-7 and
5(G) = 2-dim(G)+1-4n+7 = 4.
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1.3.1 Veronese Varieties

The sheaf Opn(d), whose sections H? (P",Opn(d)) = kfxg,...,2,]a are the homogeneous
polynomials of degree d on P", is a very ample sheaf on P™. A basis of the k-vector space
HO (P ,Opn (d)) is given by the monomials of degree d in the n+1 variables y,...,z,. This

n+d)

monomials are ( »¢) and we denote it by My,...,My, where

N= (") -1

n

So the sheaf Opn (d) induces an embedding

called the d-Veronese embedding. Its image Vi, = v4(P") is a irreducible nonsingular
variety in PY. A hyperplane section of V7%, corresponds via the embedding v4 to a
hypersurface of degree d in P". In order to determine the degree of V. we have to
intersect it whit n hyperplanes. In P™ we are intersecting n hypersurfaces of degree d and
by Bezout’s theorem the hypersurfaces intersect in d" points counted with multiplicity.
Via vg we find d" points in PV. We conclude that

deg(Vin) = d".

The variety V7, is called the Veronese variety of dimension n in PN,

The expected dimension of the h-secant variety of the Veronese variety V7, is
dim(Secy, (Vi) = h-dim(V%, )+ (h-1) = h-n+(h-1).

Note that a polynomial of degree r on V., corresponds to a polynomial of degree dr on
P". Then the Hilbert polynomial of V., is given by

hyg, (r) = (V") = Wl = dopn

n n!
and we have again dim (V) = n and deg(Vj}.) = n!% =d".

REMARK 2. Combining the Segre and the Veronese embeddings we can define the Segre-

Veronese embedding
SV :P" x P — PV,

with N = (dzn) (hj'nm) — 1, using the sheaf Opn(d) on P" and the sheaf Opm(h) on P™.
Let X = SV(P™ x P™) be the Segre-Veronese variety.
A homogeneous polynomial of degree r on X corresponds to a bihomogeneous polynomial

of bidegree (dr,hr) on P™ x P™. Then the Hilbert polynomial of X is given by

xr) = () () = L

n m nlm!

We have that dim(X) =n +m and deg(X) = Ll gnpm — ("tmydrhm.

nlm!
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1.4 The Canonical Sheaf

Let A be a commutative ring, let B be an A-algebra and let M be a B-module.
DEFINITION 5. An A-derivation of B into M is a map d:B— M such that

1. 6(b+b’) =§(b) + 4(b’),

2. 5(b:b°) = bdo(b’) + b-(b),

3. §(a) = 0 for all a € A.

The module of relative differential forms of B over A is a B-module Q1g/a with an A-
derivation 6:B—Sp,a such that: for any B-module M and for any A-derivation ¢’:B— M,
the exists a unique B-module homomorphism fQp;s— M such that §* = fo d.

Let f:X — Y be a morphism of schemes and let A:X — Xxy X be the diagonal
morphism. The image A(X) is a locally closed subscheme in Xxy X i.e. A(X) is a closed
subscheme of an open subset U of Xxy X. So we can consider the sheaf of ideals Z of
A(X)inU.

The sheaf Z /Z? has a structure of Oa(x)-module. Now we consider the sheaf Qy,y =
A* (I /I?) obtained by pull-back of Z /Z? via A. Since A induces an isomorphism of X to
A(X), Qx/y has a structure of Ox-module.

Furthermore A (X) is a closed subscheme of ¢ and so the sheaf 7 is a quasi-coherent sheaf
of ideals on . Then also Z/Z? is a quasi-coherent sheaf of ideals on &/ and x/y is a
quasi-coherent sheaf on X.

Finally if Y is noetherian and f is a morphism of finite type then Xxy X is also noetherian,
so Z and Z /I? are coherent on U and x/v is coherent on X.

DEFINITION 6. The sheaf of Ox-module Qx/y = A* (Z/I?) defined above is the the sheaf
of relative differentials of X over Y.

If U = Spec(A) is an open affine subset of ¥ and V = Spec(B) is an open affine subset
of X such that f(V) C U, then VXV is an open affine subset of Xxy X isomorphic to
Spec(B®aB) and A(X) N (VxyV) is the closed subscheme defined by the kernel of the
diagonal morphism B®4B—B. So Z/Z? is the sheaf associated to the module I/ and
Qx/y is the sheaf associated to the module Q2p /4 of relative differential forms of B over
A. This gives the connections between the sheaf (x,y and the sheaf associated to the

module 25,4. Now we will use this connection to prove some propositions.

PRrROPOSITION 5. Let f:X—Y be a morphism, let g:)/—>Y be another morphism, and let
f‘/:X! =XxyY =Y be obtained by base extension. Then Qxr )y = g'*(QX/y), where
g X —X is the first projection.

Proof: We can assume that the schemes are affine. Let X = Spec(A’ ), Y = Spec(A)
and Y = Spec(B), then X' = XxyY = Spec(BoaA ). We have two morphism of
rings f : A—A', g : A—B, so A" and B are two A-algebras. Then QB®AA//A/ >
Qp/a®B (B4 A" ) (Matsumura [2, p.186]). Passing to the shaves of differentials we have
Qs jyr = 9" (Qxy ). ]
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PROPOSITION 6. Let f:X—Y and g:Y—Z be morphisms of schemes. Then there is an

exact sequence of shaves on X,
)z — Qxyz — Qxyy = 0.

Proof: We can assume that the schemes are affine. Let X = Spec(A), Y = Spec(B)
and Z = Spec(C). We have the morphisms of rings f : B—A4, g : C—B and 2.1 4.
So we have an exact sequence

QB/C®BA — QA/C — QA/B — 0

(Matsumura 2, [Th.57 p.186]). Passing at the shaves of differentials we have the exact
sequence of the proposition. O

PROPOSITION 7. Let f:X—Y be a morphism of schemes and let Z be a closed subscheme

of X, with ideal sheaf T. Then there is an exact sequence of shaves on Z,
I/I2 — Qx/y@)OZ — Qz/y — 0.

Proof: We can assume that the schemes are affine. Let X = Spec(A), Y = Spec(B)
and Z = Spec(A/I), where I is an ideal of A. The morphism of rings f : B—A induces

on A a structure of B-algebra. We have an exact sequence

/P — Qap®@ag — Qajy — 0

(Matsumura 2, [Th.58 p.187]). Passing at the shaves of differentials we have the exact

sequence of the proposition. O

In what follow we use the notion of sheaf of differential on an abstract nonsingular variety
to define the canonical sheaf and the shaves related to this.

DEFINITION 7. An abstract variety X over an algebraically closed field k is nonsingular if

all its local rings are regular local rings.

The following theorem connects the concept of nonsingularity to the sheaf of differen-
tials

THEOREM 5. Let X be an irreducible separated scheme of finite type over an algebraically
closed field k. Then Qx, is a locally free sheaf of rank n = dim(X) if and only if X is a

nonsingular variety over k.
Proof: Hartshorne [Th. 8.15 p.177].

THEOREM 6. Let X be a nonsingular variety over k. Let Y C X be an irreducible subvariety
defined by the sheaf of ideals T. Then Y is nonsingular if and only if

1. Qyy is locally free,

2. the sequence of proposition 7 is exact on the left also:
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Furthermore, in this case, T is locally generated by codim(Y,X) elements, and T /T2
is a locally free sheaf of rank codim(Y,X) on X.

Proof: Hartshorne [Th. 8.17 p.178|.

THEOREM 7. Let A be a ring, let Y = Spec(A), and let X =P"y. Then there is an ezact

sequence of shaves on X,
0 Qx/;y — Ox(=1)""!' - Ox — 0
Proof: Hartshorne [Th. 8.13 p.176].

DEFINITION 8. Let X be a nonsingular variety of dimension n over k. The tangent sheaf
of X is the dual of the sheaf of differentials Qx sy,

Tx = Hom(Qx/x,0x)

We have seen that Qx . is a locally free of rank n so Tx is also locally free of rank n.
The canonical sheaf of X is defined to be the n-th wedge product of the sheaf of differentials

wx = N"Qxk

The canonical sheaf has rank (Z) = 1 so it is an invertible sheaf. The associated divisor
on X is called the canonical divisor of X and denoted by Kx.

After this definition we observe that §2x/ is the dual of the tangent sheaf and it is
also called the cotangent sheaf. The sheaf Tx is locally free of rank n and so we can
consider the associated vector bundle T'x, that is the tangent bundle of X, the fibre of T'x
in a point z € X is the tangent space T, X of X in z. In the same way we have a vector
bundle of rank n associated to the sheaf 2x/;, that is the cotangent bundle denoted by
(Tx).

Finally we observe that the dual of the canonical sheaf wx™ = /\nT x 1s an invertible sheaf,
called the anticanonical sheaf of X. The associated divisor is the anticanonical divisor of
X and denoted by -Kx.

Since all these shaves are defined intrinsically, any numbers defined from them, are in-

variants of X up to isomorphism.

DEFINITION 9. If X is a projective, nonsingular variety of dimension n, we define the
geometric genus of X as the dimension of the k-vector space of sections of the canonical
sheaf
py = dimpyH® (X,wx)
By Serre duality theorem we have p, = dim H® (X,wx ) = dimg H* (X,0x ).
We study the tangent and the canonical sheaf for a nonsingular subvariety Y of X.

DEFINITION 10. Let Y be a nonsingular subvariety of a nonsingular variety X over k, and
let T its ideal sheaf. The locally free sheaf I /I? is the conormal sheaf of Y in X. Its dual
Ny)x = Hom (I /I%,0y ) is called the normal sheaf of Y in X. It is a locally free sheaf of
rank codim(Y,X).
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Now we consider the exact sequence
0— I/I2 — QX/k®OY — Qy/k — 0.

If dim(X) = n and dim(Y) = r we have rank(Qx/,,®0y ) = n and rank(Qdy,,) = r, so
rank(Z/I?) = n-r and rank(Ny,x) = n-r = codim(Y,X).
Dualizing the exact sequence above we obtain

0 TY — TX@OY — NY/X — 0.

We see that Ny/ X = TX%OY , and we recover the usual geometrical interpretation of the

normal sheaf as the sheaf of elements in the tangent of X modulo the elements in the

tangent of Y.

PROPOSITION 8. Let Y be a nonsingular subvariety of a monsingular variety X, with
codim(Y,X) = h. The wy = wx®/\hNy/X. In the case h = 1 we can consider Y
as a dwvisor on X and let Ox(Y) the associated invertible sheaf on X. Then wy =
wx®0x(Y)®0y.

Proof: We have rank(Z/I1?) = h, rank(Qx/,©Oy ) = n and rank(Qy ;) = n-h. From

the exact sequence

00— I/1° — Qx/k20y — Qyyp +— 0
taking the highest exterior powers we obtain

N'Qx /@0y = /\hI/IQ®/\"_th/k.

Daualizing and considering the fact that the formation of highest exterior powers com-

mutes with taking the dual sheaf we find wx = wy'®/\h./\/y/ x. Tensorizing by wx®Qwy
h

we have wy = wx®@A\ "Ny, x.

If h = 1 we have Iy = Ox(Y) so Z/I? = Ox(Y)®0Oy and Ny, x = Ox(Y)®0y. For

the previous result with » = 1 we have wy = wx®0x(Y)R0y.

As a special case we will prove the adjunction formula for a nonsingular curve on a

surface.

PROPOSITION 9. (Adjunction Formula) Let C be a nonsingular curve of genus g on a

surface X and let Kx be the canonical divisor of X, then
29-2=0C(C+ Kx)

Proof: We have wg = wx®0x(C)®0¢ and deg(we) = 29 - 2. But we also have
deg(wx®@0x (C)@0O¢c) = C-(C + Kx). O

Let X = PP}. Dualizing the exact sequence

0 Qx/p — Ox(=1)" — Ox — 0
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we have
0— OX — Ox(l)n+1 — TX — 0.

Now rank(Qx i) = n, rank(Ox(—1)"*') = n+1 and rank(Ox ) = 1 so taking the highest
exterior power in the first sequence we find

N Ox (1)t = N'Qx/p®@0x
then we have Kprn 2 Opn (-n-1).

REMARK 3. We can compute the canonical sheaf of P" directly. We consider the differ-
ential forms on P™.

Let [zg, ..., x,] be the homogeneous coordinated on P™, and let
Uy = {[xo, ..y Tp]]zo £ 0} =A™,

On Uy we have the coordinates (y1, ..., Yn) where y; = x;/xo, and a basis of the differential
forms is dy; A ... N dy,,.
Now we consider the open subset Uy, whit coordinates (21, ...,2,) where z; = x;/xy. We

note that y1 = x1/xg = 1/21 and yr, = 2% = zpyy for any k > 2. By differentiation we

X1 o
have

dy; = —%dzl and dyy = zrdyy + dzry; = —z—’%dzl + Z—lldzk for any k > 2.
Then
dyy N ... Ndyy, = —%dzl A (—z—%dzl + %dzz)... A (—z—%dzl + %dzn)
Since dzq1 AN dzy = 0 we have
dyi A ... Ndy, = —Z%dzl A zidzg A A Edz, = —%Hdzl ANdzog N ... \Ndz,.
1 1 zZ1 2]

Since z1 = xo/x1 we see that the canonical divisor of P™ is given by Kpn = —(n + 1)Hy,
where Hy is the hyperplane defined by xog = 0. Then we have again that the canonical
sheaf of P™ is wpn = Opn(—n — 1).

Now prove a proposition that will be very useful.
PROPOSITION 10. Let Y be a closed subscheme of P}..
1. If Y is a nonsingular hypersurface of degree d then wy = Oy (d-n-1).

2. If Y = Hy N...N H, is a nonsingular complete intersection of hypersurfaces H; of
degree deg(H;) = d; then wy = Oy (> d;-n-1).

3. If Y is a nonsingular hypersurface of degree d then py(Y) = (d;I). In particular, if
Y is a nonsingular plane curve of degree d, then py(Y) = 1(d-1)(d-2).

4. If Y is a nonsingular curve in ]P’z, which is a complete intersection of nonsingular
surfaces of degree d,e, then py(Y) = Ld-e(d+e-4)+1.
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Proof: 1) We know that wy = wx®Ox(Y)®0Oy. If Y is a hypersurface of degree
d we have wx = Ox(-n-1) and Ox(Y) = Ox(d). We find wy = Ox (-n-1+d)20y =
Oy (d-n-1).
2) We proceed by induction on 7. For Y = H; we have wy = Oy (di-n-1) by 1).
For the complete intersection Z = Hy N...N H,._1 we have, by induction hypothesis wy =
Oy (dl +...+d»,«_1-’fl—1).
Now Y is a divisor of Z and it is nonsingular, we have wy = wz®0z(Y)®0y. We note
that Z is determined on Y by a hypersurface H, of degree d, so Oz(Y) = Oz(d,). We
conclude that

wy 2 O0z(dy+...+dr_1-1-1)20 7 (d) @0y =0y (dy + ... + d —n — 1).
3) If Y C P} is an hypersurface of degree d then the natural map
H (P, Opn(d)) — H(Y,0y (d))
is a bijection. From wy = Oy (d-n-1) we have
py(Y) = dim . HO (Ywy ) = dimy, HO(PF,Opn(d—n—1)) = (4.

4) We have wy = Oy (d+e-3-1) = Oy (d+e-4). The degree of the canonical divisor is
deg(Ky ) = deg(Y)(d+e-4) = d-e(d+e-4), but we also have deg(Ky ) = 2¢ - 2. Equaling

the two expressions we obtain

pe(Y) =g = %d~e(d+e—4)+1.

We consider the special case of the Grassmannian G(h,n) parametrizing the h-planes

of P". We have the universal exact sequence
0—Scg—Ec—Qa—10

We recall that the tangent sheaf of G(h,n) is TG(h,n) & S, ® Qg, and we take the dual
of the exact sequence tensorized by Qq,

0—9Q, ® Qc—E; ® Qa—T G(h,n)—0
We recall that if F is a locally free sheaf of rank r the multiplication map
NFaN'F—NF

is a perfect pairing for any ¢, i.e. it induces an isomorphism of A\* F with (A" " FY@ A" F.
Now rank(Q, ® Q) = (n — h)?, rank(€, ® Qg) = (n+ 1)(n — h), rank(TG(h,n)) =
(h+1)(n — h), and taking the highest exterior powers we have

/\(n+1)(n—h) gG ® Qp /\(n—h)2(Q~G ® Q) ® /\(h+1)(n—h) TG(h,n).

Taking the highest exterior powers in the universal exact sequence we have /\”Jrl Ea =

/\h'|r1 S ® /\"_h Qg, and since the determinant of Sg is the invertible sheaf giving the

Pliicker embedding we write
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A Se 2 N Qg = 06(1).

Then we get Og(n + 1) = Og(1) ® Og(—1) @ w. We conclude that the anticanonical

and the canonical shaves of G(h, n) are respectively
we 2 O0g(n+1) and wg = Og(—n — 1).

REMARK 4. We think to P" as the Grassmannian G(0,n). Then the universal bundle Sg

becomes the tautological bundle Opn(—1). Then the universal sequence becomes
0+ Opn(—1) — OpFt — Tpu(=1) =0
tensorizing by Opn (1) and taking the dual we recover the Euler sequence
0+ Qpn — O (=1) — Opn 0.

In particular from wg = Og(—n — 1) we recover wpn = Opn(—n — 1).

1.5 Surfaces

In this section we briefly describe the Enriques-Kodaira classification of compact complex
surfaces. We begin listing the most important objects for the classification. Let X be a

projective variety, we consider
e The canonical sheaf wx of holomorphic 2-forms.
e The plurigenera P, = dim;, H°(nK) for n > 1 that are invariant under blowing-up.

e The Hodge invariants h'/ = dim;, H’(Q) where Q¢ is the sheaf of regular i-forms.

Since dim(X) = 2 on a surfaces X we have only
hO’O hO,l h0,2 hl,O hl’l h1’2 h2’0 h2,1 h2’2.

The Hodge invariants are arranged in the Hodge diamond

hO’O
hl,O ho,l
h2,0 hl’l h072
h2,1 h1’2
h2’2

By Serre duality we have

hi = dimkHj (Ql) = dimkHQ_i(QQ_j) = hg_i72_j and
ROO — B2:2 = dimy HO(QO) = 1.

If the surface is algebraic we have h/' = h¥ and we have only three independent
Hodge invariants.

The invariant ¢ = h%! is called the irregularity of X, p, = h%2 — RO! is the
arithmetic genus of X and p, = h%? = h*? is the geometric genus of X. We note

that ¢ = pg — Da-
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1.5.1 Kodaira Dimension

Let X be a projective variety over a field k. We consider the canonical divisor K of X
and the linear systems [nK| for any n > 1.

The Kodaira dimension K(X) of X is the largest dimension of the image of X in P¥ under
the rational map determined by the linear system |nK| for some n > 1 or K(X) = —1 if
[nK| = @ for all n > 1.

It is known that -1< K < n for a variety of dimension n.

1.5.2 Surfaces Classification

Any surface is birational to a nonsingular surface. A nonsingular surface is called minimal
if it cannot be obtained from another nonsingular surface by blowing up a point. Every
surface X is birational to a minimal nonsingular surface, and this minimal nonsingular
surface is unique if X has Kodaira dimension at least 0 or is not algebraic. Now we
classify the nonsingular surfaces using Kodaira dimension.

One can prove the following three results

1. K=-1<|12K| = @ & X is either rational or ruled. And Castelnuovo proved that
X is rational if and only if p, = P, = 0.

2. A surface with L = 1 is an elliptic surface, which is a surface X with a morphism
m: X — C to a curve C such that almost all fibres of m are nonsingular elliptic

curves (here we are assuming char(k) # 2,3).

3. K = 2if and only if [nK| determines a birational map of X onto its image in PV

for some n > 0. These are called surfaces of general type.

It remains the case I = 0. One can prove that £ = 0 & 12K = 0. A surface in this

class must be one of the following (assume char(k) # 2,3).

e A K 3 surfaces, which is defined as a surface with K = 0 and irregularity ¢ = 0.

These have p, = py = 1.

An Enriques surface, which has p, = py = 0 and 2K = 0.
o A two-dimensional abelian variety, which has p, = -1 and p, = 1.

A hyperelliptic surface, which is a surface fibred over P! by a pencil of hyperelliptic

curves.

We resume these facts in the following table

htO | W0 =py | B | pa | g Type
0 0 10 | 0|0 Enriques
1 0 2 |-11]1 Hyperelliptic
0 1 20| 110 K3
2 1 4 | -1 | 2| 2-dimensional Abelian Variety

Now we consider K3 surfaces. The Hodge diamond of a K3 surface is in the form
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1
0 0
1 20 1
0 0
1

An example of K3 surface are the smooth quartic surfaces in P3. Let X C P3? a smooth
surface with deg(X) = 4. For the canonical sheaf we have

wx = Ox(4-3-1) = Ox s0 K = 0 and p, = dimy H(wx) = 1.
We compute

h92 = 1?0 = dim;, H(Q?) = dim, H® (wx) = 1
RO = p10 = dimy H' (Q°) = dimp H (Ox) = 0.

Then p, = h®% — h%! = 1 and ¢ = Pg — Pa = 0. We see that X is a K& surface.

1.5.3 Fano Varieties

We give the definition of Fano variety and state some property of these varieties omitting
the proofs. For a deeper understanding of Fano varieties see Parshin-Shafarevich Algebraic

Geometry V.

DEFINITION 11. A Fano variety is a projective variety X whose anticanonical sheaf wx

is ample.

Fano varieties of dimension I and 2 are all rational and Fano varieties of dimension
2 are called Del Pezzo surfaces. Any Del Pezzo surface can be obtained by blowing-up
P? with the linear system of plane cubics passing through r = 0,1,...,6. By blowing-up r
points we obtain a Del Pezzo surface of degree 9-r in P?~3. For example if r = 6 we get
a smooth cubic surface in P3.

Fano varieties have all Kodaira dimension -1.

1.6 Determinantal Varieties

A matrix A € M, (k) defines a vector in the k-vector space k™™ and a point in the
associated projective space P™"~1. For each positive integer h let M), be the subset of
matrices of rank h or less. This is just the common zero locus of (h+ 1) x (h + 1) minor
determinants, which are homogeneous polynomials of degree h+ 1 on the projective space
P71 Then this subset of matrices is a projective variety. We introduce the incidence

correspondence
T ={(A,AN)|A C Ker(A)} CP™ 1 x G(n — h,n).

We fix A € G(n — h,n), the space of linear maps A : k™ — k™ such that A C Ker(A) is
just Hom(k™/A, k™). Then the fibres of the second projection

mo:Z — G(n—h,n)
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are projective spaces of dimension hm — 1. Clearly 7y is surjective and we conclude that

7 is an irreducible variety of dimension
dim(Z) = dim(G(n — h,n)) + hm —1=h(m+n —h) — 1.
The first projection
m L — Pl
is generically injective on M},. Then we have proved the following

PROPOSITION 11. The variety M;, C P! of m x n matrices of rank at most h is an

irreducible projective variety of codimension (m — h)(n — h) in P71,

Let A € My, \ Mj_1 a matrix of rank h. We choose bases for k™ and k" so that A is
represented by the matrix
In O
0 0

where [}, is the h x h identity matrix. We consider the affine neighborhood U of A given
by {X1,1 # 0} and fix the euclidean coordinates z; ; = X; ;/X1,1. Now we write a general

element of U as

1 Z1,2 z1,3 T1,m
T21 1+ Ta2 X23 - e e T2m
Th,1 1+xh,h Th,h+1 Th,m

Th+1,1 1+~rh+1,h Th+1,h+1 --- Th+l,m
Tn,1 Tn,2 Tn,3 ce ce ce Tn,m

where A corresponds to the origin in this coordinate system. We note that the only
(h+1) x (h+ 1) minors of this matrix with nonzero differential at the origin A are those
involving the first h rows and columns. Their linear terms are exactly the coordinates
x;,; with 4,j > h. Since there are exactly (m — h)(n — h) of these, we conclude that M,
is smooth at any point of My \ M.

REMARK 5. We consider the case of symmetric matrices withn =m = 3 and h = 2. Let
U={X11#0} CP5 We write the generic matriz A € U in My \ My in the form

1 T1,2 71,3
T2 1422 23

x1,3 €23 x3,3

Let F(z1,2,....,233) = det(A). We see that 8253 (A) # 0. Then the points in My \ M

are smooth for My. Note that My is the secant variety Seca(VE) of the Veronese surface
V2 CP°. The variety Seca(VE) is smooth outside V2 and Sing(Seca(VE)) = V2.
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Chapter 2

VARIETIES OF SUMS OF POWERS

In this chapter we define the concept of variety of power sums and we prove the main
properties of these varieties.

Let V be a k-vector space of dimension n+1 over the algebraically closed field k. For
any F € 5%V we denote by V(F) the hypersurface defined by F in the projective space
PV = P". A linear form [:V—k defines a point [l in PV* and a hyperplane V(i) in PV.

2.1 Tensor Algebra and homogeneous polynomials
We consider the n-th tensorial product V®" of V and write

V=V ®..0V,
—_———

n—times

We take the direct sum of the V" for n=0,1,2...,
T(V)- @ Vo,
We define on T(V) a multiplication using the canonical isomorphism
0 VEEQ VO yRk+h (1 @ Q1 )R (Y1 @...QYn =11 ®... QT QY1 ®...Q Y-

With this multiplication T(V) is a graduate k-algebra and V®™ is the n-th graduate com-
ponent.

The k-Algebra T(V) is the Tensor Algebra of V.

Let J be the ideal of T(V) generated by the elements of the form v@w-w@v with v,we T(V).
The quotient algebra S(V):@ is the Symmetric Algebra of V. We observe that S(V)
is a graduate k-algebra as quotient of T(V), we denote by S¥(V) the k-th graduated com-
ponent of S(V).

2.2 Polar Forms

We fix a basis {{,...,t, } of V and the dual basis {&,...,£, } of V* The ring morphism
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Sk (V)—>P0lk (V), t11®®tlk'_)tll tlk

allows us to identify S?(V) with the ring of homogeneous polynomials of degree d on V.

The multilinear form plz(P) is symmetric and P can be reconstructed from plz(P).

PROPOSITION 12. If plz(P) is the symmetric multilinear form associated to a homogeneous

polynomial of degree k on V we have

k!P(v)=plz(P)(v,...,v).

Proof: We have plz(P)(v,...,v)=>" ;.. (-1)F~¢974D) P(Card(I)v). Now for any i<k we
have (’f) subsets of k of cardinality i. So
plz(P)(v,....0)=(-1)F 1 (¥)P(v) +(-1)*=2 () P(20) +...+(-1)* (,* ) P((k-1)v) +(-1)° (}) P(kv)=
1))V Pw)+(-1)F 2 (5) 22 Plo) +.oo+ (1) (F ) (k-1)F P(v) +(-1)° (F) K P(v) =
()2 E) (1) 2 (5) 25+ () () (b-2)F 4 (-1)° (F) K2 ) P(w).
Finally plz(P)(v,...,0)=P ()%, (-1 (¥) i =k!P (). m

Let F:V*—Fk be a symmetric multilinear form. We consider the map
Res(F):V—k, Res(F)(v)=F(v,...v).

We observe that Res(F)eS* (V), moreover plz(Res(F))=k!F. From char(k)=0 we have that
any polynomial PES® (V) can be obtained by Res from a unique symmetric multilinear

form.

DEFINITION 12. The symmetric multilinear form plz(P) is called the polarization of P
and the map Res(F) is called the restitution of F.

EXAMPLE 9. Let @ be a quadratic form on V.

pla(Q)(v,w)=(-1*71Q(v)+(-1*71 Q(w) + (-1 Q(v+w)=Q(v+w)-Q(v)-Q(w).
Res(plz(Q)(v,w))=Res(Q(v+w)-Q(v)-Q(w))=Q(20)-Q(v)-Q(v)=2Q(v).

2.3 Apolar Forms

Let V be a k-vector space of dimension n+1 and let V* be the dual vector space. We

have the map
Vx V*=k, (v,L)—L(v).

We want to generalize this fact constructing a map S*(V)xS%(V*)—S4=*(V*). To do
this we fix a system of coordinates {%,...,t,} on V and the dual coordinates {&y,...,&, }
on V*

Let o=@ (ty,...,tn) be a homogeneous polynomial of degree k£ on V. We consider the

differential operator
Dyp=p(D0,-.-:0n). with 0 =5

This operator acts on ¢ substituting the variable ¢; with the partial derivative 6i:8i£:'
For any ¢€S* (V) and for any FES?(V*) we write
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<p,F> = Dy, (F).

We call this pairing the apolarity pairing.
In general ¢ is of the form ¢ (to,....tn ) =) 5 1 i _3Qi,...in to...#in and F is of the form
F(gOy"-7§n):2j0+_“+jn:dfio,_“ﬂ‘nféo...6%". Then

DQO(F):(Zio-',-“.—&-in:kaiov---Jnaoio 8717'")(F)

We see that F' is derived ig + ... + i,, =k times. So we obtain a homogeneous polynomial
of degree d-k on V*
Fixed FeS?(V*) we have the map

aph:S*(V)—S83=F (V*), oD, (F).
The map aph. is linear and we can consider the subspace Ker(ap% ) of S* (V).

DEFINITION 13. A homogeneous form ¢ € S¢(V) is called apolar to a homogeneous form
F e S (V*)if Dy (F)=0 in other words if p€ Ker(ap). The vector subspace of S*(V) of
apolar forms of degree k to F is denoted by APy (F).

EXAMPLE 10. We consider the case d=2, n=2, k=1. Let Q€S?(V*) be a quadratic form
on V*, we write Q(gOygl>£2):Zij=0qijfi£j; then

852) =2q00&0 + 240181 + 240282
052) =2q0180+2¢1181 +2q1282
o(Q)

ot 240280 121281 + 242282

We consider ¢ (to,t1,t2)=aoty+ai1ti +ata. Then Dy=aq 8%0 +ap 8%1 +avg 8%2' The apolar-
ity map s

apb (¢)=D, (Q)=Eo (2900000 +2q01 01 +2q020x2 ) +£1 (2q01 000 +2qu 1001 +2q12002 ) +

&2 (2q02000 +2q12001 +-2q20x2 ). In a compact form

o
apb (@):Z?:o a(g) (@)fzw
In general if dim(V)=n+1 we have aplQ:V—> V* defined by

aply (9 )= S (0 ).

2.4 Dual homogeneous Forms

We fix d = 2 and consider the space S? V* of quadric forms on V. On a form Q € S2V*
is associated a matrix A = (a;;) and we can write

Q =230 =0t jtit;.
The apolarity map is given by
aply:V—=V*, v=D, (Q) = Y1 52 (0)t;.

Now we define a bilinear form Bg:Vx V—k by Bg(v,w) = <w,apg (v)>.
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EXAMPLE 11. The case d=2, n=2, k=1. Let QES? V* be a quadratic form on V, we write
Q= Zij:o%’jtitj; then

apés (v)=(2400v0 + 240101 +2G02v2 )lo + (2q11v1 +2q01 V0 +2q12v2 )ty + (242202 + 240200 + 2q1201 )2
=(2q00v0 +2q01v1 +2q02v2, 2q11V1 +2G01 %0 +2q1202, 2qa2V2 +2q02v0 +2¢1201 )

We see that Mat(apy) = 2(qi;) and so Q is nondegenerate if and only if the linear map

apég is invertible.

Also in the general case the quadric form @ is nondegenarate if and only if the linear
map apéz :V—V* is invertible. In this case we have the inverse map (| apb )7L V*=V that

induces a bilinear map
B!V V*—k, defined by B! (f.9) = <g,(apl)~* (f)>.

From the construction we deduce that the quadric forms Q* on V* is given by the inverse
of the matrix of ¢ and is the unique quadric forms on V* such that Bg, = Bél. The
quadric form Q* is called the dual quadric form of Q. By the definition of aplQ we see
that this map sends the vector v in the tangent space of V(@) in v, so the dual quadric
Q% is the locus in PV* of tangent hyperplanes of the quadric Q C PV.

EXAMPLE 12. We fix n=3 and consider the quadric Q = 282+38£ +23+t2. The apolar

map s given by
apg (v) = Zf’:og%(v)ti = 4voly +6v1ty +4vaty+2usls.

The associated matriz and the inverse matriz are

4000 1000

06 00 0 L 00

Mat(apg, )= 00 4 0 = 2Mat(Q) and Mat(apg™") = 0 8 1y
4

000 2 00 0 1

We conclude that the dual quadric form is Q* = iﬁgﬁ%ffﬁﬁﬁﬁ%fg.

2.4.1 Catalecticant matrices and dual homogeneous forms

We want to generalize the notion of dual quadric form in the case d = 2k with d > 2.
We begin constructing the k-th catalecticant matriz associated to a homogeneous form
F € S4V*. We consider the apolarity map

aph: SFV—S5kVE oD, (F).
We write the polynomials F' and ¢ in the form

_ d! ] ) i
F = Zio—i—..‘—i-in:diol...in!flov-“ﬂn tO "'tn ’
i )

_ ! ) . Lo i
¥ = Zjo-i-.“-i—jn:kjol___jn!CPJO,---a]n 0 --En

Let {ﬁtg)‘)ﬂf} be a basis of S¥V* and {L—R) #9...tin } be a basis of S¢FV*

G0l inl
both ordered lexicographically, then the matrix of the linear map ap%. is called the k-th
catalecticant matrixz of the form F and denoted by Catg (k,d-k,n+1). It is a matrix of size
dim(SF V)x dim(S4=F V) = ("HF) x ("TATF).

n
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If we consider the basis {£20...ti }i 1. _ of S¥V* the basis {£°...t0 ot i —a_k of
S=EV* and write

— : .o 4
F o Zig+...+in:df10vualn tO "'tnn7

= . _ ¢lo i
Lp - Zj0+~u+jn:}€%0]07---;]n 0 "'Enl'

The matrix of ap’;ﬂ with respect these basis is (dglk)!-CatF (k,d-k,n+1).

ExXaMPLE 13. The case n=2, d=3, k=1.

We have apl:S* V—S2V* with F € S V*

F=f3 0,0t +3f 1,00t +3f,0,118t2+3f1 2.0to 8 +5f1,0.2t083 +6f111tot1 2 +fo,3,060 +
3fo,2,113t2+3fo,1,2t1 83 +f0,0,385-

© = @oo+p18&1 +pa8a.

app(p) = Dy (F) =

85 (3f3,0,000 +3f2,1,001 +3f2,0,102) + 2tot1 (3f2,1,000 +3f1,2,001 +3f1,1,102) +

2toty (3f2,0100 +3f1,1,101 +5f1,0,2902) 8 (3f1,2,000 +3fo0,3,001 +3f0,2,102) +

2t1t2 (311,100 +3f0,2,101 +3o,1,2902 )+ (3f1,0,2¢00 +3f0,1,201 +3f0,0,302)-

So the catalecticant matrix is

3f300 3f210 3f201
3f210 3fi20 3fiin
3f201 3fiin 3fio2
3f1,20 3fo30 3fo21
3fii1 3fo21 3fo1z
3fi02 3fo12 3fo03

Catp(1,2,2) =

Now we consider the special case d = 2k, F € $?* V* and the apolarity map
aph, :SFV— SF V¥,
We define a symmetric bilinear form
Qp:SF VxS V—k, (p1,02)— <pa,ap (p1)>.

The restriction of Qf to the diagonal gives a quadratic form on S* V. The matrix associated
to the quadric form Qp is the catalecticant matrix Catp (k,k,n). It is a square matrix of
size dim(S*V) = ("}*). For n=1 this matrix is known as a Hankel matriz. The quadratic
form Qp is called nondegenerate if and only if det(Catp (k,k,n)) # 0.

DEFINITION 14. Let F € S?* V* be a homogeneous form on V. Then F is called nonde-

generate if Qp is a nondegenerate quadratic form on SFV.

EXAMPLE 14. Case d=4, n=1. We have F = fy ots+fs1t3t1 +fo o3 i +f1 3tot3 +fo 4t
The catalecticant matriz of F is

fao fa1 foo
Catr(2,2,1) = | fz1 fa2 fis
Ja2 f13 foa
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PROPOSITION 13. Let F € S** V* be a nondegenerate form. Then there exists a unique
homogeneous form F € S2EV such that Qp = k.

Proof: The quadratic form Qp is defined by the matrix adj(Caty (F)) = (cu» *) and

we have
QF = > cun 8",
We consider the form F € S?*V defined by
F= Z|u+v|:2k(u+!v)!cuv gt
Then for any ¢ = #0...tin € S*V* we have

! u+v)! utv—i ! j
Dti (F) - Zu+v2i (ui'v)l Cuv *(154»1)3)1')!5 * - le\:k%% *&J,

So the matrix of the linear map S*¥V*—-S8*V defined by Qp is equal to the matrix
adj(Caty (F)) and the quadratic form Qg is the dual of the quadratic form Qp. m|

DEFINITION 15. Let [,L € V* be two linear form. We say that | and L are conjugate with
respect to a nondegenerate form F € SPFV* if

Qp(F,LF) = 0.

2.5 Sums of Powers

For any finite set of points p1,...,pr, € PV we consider the linear space of homogeneous
forms F' of degree d on PV such that V(F) contains the points p1,...,p, and we denote
it by

DEFINITION 16. An unordered set of points {[li],....[Iln]} in PV* is a polar h-polyhedron
of F e SV if

F=D B+ #2018

for some nonzero scalars \1,...,A\r, € k and moreover the ¢ are linearly independent in

Sey#,

PROPOSITION 14. Let F € S?*V* and let {l,,...,I } be a polar h-polyhedron for F, where
the I¥ are linearly independent in S¥ V*. Then each pair l;,l; is conjugate with respect to
the polynomial F.

Proof: We have F = B*+...+* and

h h
Qr = Zi:1Ql§k - Zi:l (15)2-
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So it is sufficient to prove the assertion for quadratic forms. We choose a coordinate sys-
tem such that l; = to, l; = t and F = +13+...+1%. Then F = &5 +...+&2 and Qp (I}, 1Y

= Qp(t5,t7) = 0. O

The ground field is algebraically closed so we can write F' :L‘li+,..+L‘,?L as sums of

powers of linear forms. This fact admits a geometrical interpretation. Let
va PPN [rgc iy o fad 2@ ], with N:("jd)—l,

be the d-Veronese embedding of P" in PY. The projective space PV with N:("jl'd)-l
parametrizes the homogeneous forms of degree d on PV. The Veronese variety Vi, =vq(P")
is the locus of polynomials that are powers of linear forms on P V.

So li,...,l;, is a polar h-polyhedron of F' if and only if F' lies on the secant (h-1)-plane of
V3. passing through l‘f,...,lﬁ.

We know that for the Veronese variety we have

expdim(Secp—1 (V5. )) = min{h-n+h-1, N}.

It is clear that for sufficiently large values of h the variety of secant (h-1)-planes is the space
PN and each homogeneous polynomial of degree d admits a decomposition in the sums
of h d-powers of linear factors. It is as much clear that for some values of h Sec,—1(V}.)
is a proper subvariety of PV and there is a open Zariski subset of PY whose points are
polynomials that don’t admit a decomposition in & d-powers. Let V7 be the Veronese
surface in P°. One expects that dim(Sec;(V3))=5 but we have seen that Sec;(V3) is a
cubic hypersurface in P? and that the generic conic does not admit a decomposition in

the sum of two squares of linear forms.

LEMMA 1. The set P={[L],...,[ln]} is a polar h-polyhedron of F if and only if
La(PV, ], fln]) © AP (F)

and the inclusion is not true if we delete any [l;] from P.

Proof: Let ¢ € S*V be a homogeneous polynomial of degree d and let [; € V* a
linear form on V.
We have <ip,l!>=0 if and only if (Y, | i _;®ig,....i,00"...0n" )(I!)=0 if and only if

fore
Ul —fp € SV [ <ol =0} =fip € SV | Q(Il])=0}=La(PV,[u],-...fln]):
If the conditions of the lemma are satisfied we have
F e APy(F)* C LaPV,[l],....[IlnJ)*" = <¥,... 10>

and F is a linear combination of the ¢. If the l‘f,...,lﬁ are linearly dependent there exists
a proper subset P’ of P such that <P’'>=<P>, we can suppose P’ = {[li[;...;[lh_1/}.
Then

APy(F)F C Ly(PV,py,....pn)t = <P’ >.
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We have <P’ >t = Ly(PV,[L],...,[l]) € AP;(F) contradicting the hypothesis. This prove
that P is a polar polyhedron of F.

Now suppose that P is a polar polyhedron of F. Then F' € <P > and Ly(PV,[L],....[ln])
= <P>t C <F>%t = AP4(F).

Suppose that Ly(PV,[l;],...,[I]) € AP4(F). Then F € APy(F)* C Ly(PV,[h],....,[n])* =
<if,..., | > So we can write

F B+ 4 = o+ o .
This implies
(Al-al)l‘er...+()\h,1—ah,1)l%_1 +)\th:0

in contradiction whit the linear independence of the . O

Now we consider (PV*)" whit its structure of algebraic variety. Under the action of the

symmetric group we obtain another algebraic variety, the symmetric power
h 7(PV*)}L
QEREC S

We denote by VSP(F,h)° the subset of (PV*)") consisting of polar h-polyhedra of F. It
is natural to see VSP(F,h)° in the symmetric power in fact we are not interested in the
order of the linear forms ;.

By lemma 1 VSP(F,h)° is a locally closed subset of (PV*)(") but it is not compact.

For example consider the family of polynomials \(Xo+X; )?-X3-X3. For any \ ¢ {0,1}
we have a decomposition in three factors but for A=0 we have two factors and for A=1
we obtain the product 2XyX;. This shows that the limit of an additive decomposition in
general is not additive.

Now it is natural to look for a compactification of the set VSP(F,h)°. We have different
possibilities. Let F' be a generic homogeneous polynomial of degree d in n+1 variables
and let {Ly,...,Ly } be a h-polar polyhedron of F. We write

F = M L{+. .+ L.

The polynomials Ls,...,L, are points in (P")* so Z = {Ls,...,Ly} is a subscheme of
dimension zero and length A in (P )* and so Z is a point in the Hilbert scheme Hilb, (P™ ) *

of the subschemes of dimension zero and length h of (P™)* Via the injective morphism
VSP°(F,h) — Hilb, (P™)*, defined by {L1,....Lp} — Z

we can see VSP°(F,h) C Hilb, (P™)* and so we have a compactification of the variety of

power sums
VSPy (F,h) = VSP°(F,h)C Hilb, (P™)*.
From another viewpoint we can consider L‘f,...,Lﬁ as points on the Veronese variety V7,

C PN with N = (”jd) - 1. These points generate a (h-1)-plane in PV and define a point

in the Grassmannian G(h-1,N). For h < N - n We have an injective morphism

VSP°(F,h) — G(h-1,N), defined by {L1,...,Ly } — <L¢,....L¢ >
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In this way we can see VSPY (F,h) C G(h-1,N) and we obtain another compactification
VSPg (F,h) = VSP°(F,h)C G(h-1,N).

The points in the set VSP(F,h)\ VSP(F,h)° are called generalized polar polyhedra and
the variety VSP(F,h) is called the variety of power sums of F.

LEMMA 2. The Hilbert scheme Hilby, (P*) of 0-subschemes of length h of P! is a nonsin-

gular scheme of dimension h.

Proof: Any homogeneous polynomial P € S"V vanishes at exactly h points in P!
counted with multiplicity and so determine a point in Hilby, (P! ). Conversely any point in
Hilby, (P!) is a collection of h points with multiplicity and so can be seen as the locus of

zeros of an homogeneous polynomial P € S" V. We have a map
©P(S"V) — Hilb, (P) , Pz — Z.

Where Z is the locus of zeros of Py. If P; = AQz with A\ € k¥, then Pz and @z vanish
at the same subscheme Z and the map ¢ is well defined. If P;,Q, € S"V vanish at the
same subscheme Z then they differ for a non zero constant and defines the same point in
P (5" V). So the map ¢ is injective.

Let Z = {p1, ..., pr} be a point in Hilb,(P'), where the element p; has multiplicity k; and
ki + ...+ k. = h. We write p; = [o; : 3;] € P!, then the polynomial

Py = (ﬁl,’Eo — all‘l)kl...(ﬂrl‘o — Ozrl‘l)kT

is the unique, up to scalar, homogeneous polynomial of degree h vanishing on Z. We get

the morphism
Y = Hilby (P') — P(S"V), Z +— Py.

Clearly 9 is the inverse of ¢, so ¢ is an isomorphism and Hilb, (P') = P(S"V) is a non-

singular scheme of dimension h. O

PROPOSITION 15. In the cases n=1,2 for a general polynomial F € SV the variety
VSP(F,h) is either empty or a smooth variety of dimension

dim(VSP(F,h))=h(n + 1) — ("+9).

Proof: We consider VSP(F,h) as the closure of VSP(F,h)° in the Hilbert scheme
Hilby, (P™)*. We have already seen that VSP(F,h) can be empty if & is too small. Let X

be the incidence variety defined as follow

X = {(Z,F) € Hilb, (P")* x S*V | Z € VSP(F,h)}.
We have two projection maps

©:X— Hilby, (P")*, (Z,F)—Z and ¢:X—SV, (Z,F)—F.
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Let Z € Hilb, (P")* be a point in the Hilbert scheme. We can see Z as a set {ly,...,In }
with [; € PV* The polynomial F=§+...+l{ is such that Z € VSP(F,h) and ¢(Z,F)=Z,
S0 ( is surjective.

Let F € SV be a polynomial. If VSP(F,h) is not empty there is a decomposition of F
in h factors {lj,...,I5 } that is a point Z in the Hilbert scheme such that ¢ (Z,F)=F. This
proves that 1 is surjective.

Note that

0 Y Z)={(Z,F) | F has Z={ly,....,ls, } as polar h-polyhedron}={(Z,F) | F=X1ly +... +\n 11 },
so dim(p~*(Z)) = h. Moreover

v Y F)={(Z,F) | Z is a polar h-polyhedron of F} = VSP(F,h).
Applying the theorems on the dimension of the fibres we have

dim(X) = dim(p=1(Z)) + dim(Hilb, (P")*) = h+nh = (n+1)h,
dim(X) = dim(~(F)) + dim(8?V) = dim(VSP(F.h)) + ("1%).

Equaling the two expressions we obtain dim(VSP(F,h)) = h(n+1) — ("zd).

We can identify a point Z € Hilb, (P")* with a unordered set {[li/,...,[ln]}. We have
dim(Lq(PV*,Z)=dim(S%V)-h if and only if dim(<l,...,ll > S1V)=h.

Recall that Ly(PV* Z)=<W,...,It >+, The h-uples of linearly independent vectors are an
open Zariski subset of (S?V)". So we have an open Zariski subset U C Hilby, (P™)* such
that for any point Z € U, dim(Lq(PV*,Z))=dim(S*V)-h.

We fix a point Z € U and consider the fibre

0 Y(Z) = {F € SV | Z is a polar h-polyhedron of F} = {F € STV | F=A\E+...+ 14}
={Fe SV |Fe <ld,. B>} C Ly@®PVH[l,...[Ih])*.

But Z € U implies that lﬁl,...,lfl are linearly independent and this is a open condition
on the coefficients of the linear combinations F=A; i +...+A,ll. So the fibre ¢~1(Z) is
an open Zariski subset of the linear space Lg(PV* Z)*, moreover the Hilbert scheme of
0-subscheme of length h of P" is nonsingular in the cases n = 1,2. This show that =1 (Z)
is nonsingular for any Z € U.

If X has a singular point it will be a singular point for some fibre =1 (Z) then X is
nonsingular.

The fibres of the second projection are the varieties VSP(F,h). From Bertini theorem we
deduce that for an open Zariski subset of SV the varieties VSP(F,h) are smooth. O

2.5.1 Waring rank and Alexander-Hirschowitz’s theorem

To any quadratic form @ € SV one can associate its rank defined as the smallest number
r such that Q = B+...+2, for some linear forms I,...,[.. We want to generalize this
definition to any homogeneous polynomial F € S V.

DEFINITION 17. The waring rank of F € SV is the smallest number r such that

F =@+ .+
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for some linear forms ly,...,l.. We denote the Waring rank of F by wrk(F).

On the other hand wrk(F) is the smallest number h such that VISP(F,h) is not empty
so for a generic F € S*V one expects that

wrk(F) = [ 45 ("5 |

This is almost always true, J. Alexander and A. Hirschowitz proved, using Terracini’s

lemma, that the following are the only exceptional cases:

d n wrk(F)
2 | arbitrary | n+1
3 8

4 2 6

4 3 10

4 4 15

For a proof see

A . Hirschowitz, J.Alexander, Polynomial interpolation in several variables. J. of Algebraic
Geometry, 4 (1995).

The theorem in its original form is the answer to the following interpolation problem.
Let Py, ..., P, € A" be points in general position. Consider the vector space H of polyno-
mials € klx1, ..., xp]<a of degree < d such that f(P;) = a; and %f(Pi) =b;; for any
i=1,...,s and j = 1,...;n. What is the codimension of H?

It is clear that the expected codimension of H is

expcodim(H) = min{(n + 1)h, (”gd)}.

Alexander and Hirschowitz classified the defective cases.

THEOREM 8. (Alexander-Hirschowitz) The vector space H has the expected codimension
with the following exceptions

e d=2 2<h<n;
.’I’L:Q,d:4, :5;'
en=38d=14h=09;

on=4d=3h=7

Via Terracini’s lemma it is possible to reformulate the theorem in terms of defectivity
of some secant varieties to the Veronese varieties. We reformulate our problem in projec-
tive terms as follows.

Let Py, ..., P, € P™ be points in general position. Consider the vector space H of hyper-
surfaces Xy = V(f) C P", where fis a homogeneous degree d polynomials, such that X
passes through P; and Xy is singular in P; for any i =1,...,s. What is the codimension
of H?

Let vg : P — PY be the d-Veronese embedding and let V' be the corresponding Veronese
variety. Then the hypersurface Xy C P" corresponds to an hyperplane section Hy NV of
V. Since v, is an isomorphism we have that
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Xy is singular in P; for any i = 1,....,h & Hy 2 T,,p,)V for any i = 1,..., h.
LEMMA 3. (Terracini) If X C P} is an irreducible variety, with char(k) = 0, then
<Tp,X,...,Tp,X> = T,Secy (X)
for any z in a open subset U C Secy, (X), with Py,...,P, € X and z € <Py,..., Py >.
An immediate corollary is that
dim(Secy, (X)) = dim(<Tp, X,...,Tp, X>)

So to know the dimension of Secy, (X) is equivalent to know the dimension of the space
generated by the tangent spaces of X in h points.

For the Veronese variety V we have that dim(Sec,(V)) = dim(<Tp, V,....,Tp, V>) =
min{hn+(h-1),N} if and only if the Tp,V are independent. From this point of view
Alexander-Hirschowitz’s theorem says that the only defective Veronese varieties are the

following
Vis, Vi, Vi4, V§4 and V3. for any n>0.

The next proposition compares the Waring rank of a homogeneous form F € §%¢ V*

with the rank of the associated quadratic form Qpg.

PROPOSITION 16. Let F € S** V* be a homogeneous form and let Qp be the associated
quadric form. Then the Waring rank of F is grater or equal than the rank of Q. In

particular if F is nondegenerate then
wrk(F) > (F7).
Proof: Let h = wrk(F) be the Waring rank of F € 59V* with d = 2k. We write
F = L{+...+L§.

Since Qp is linear with respect to F' we have Qp = Z?Zlﬂ 2k We can choose coordinates
such that L; is the coordinate function #;. In this way the catalecticant matrix of L?k is
the matrix with 7 at the upper left corner and 0 elsewhere. The associated quadric form
is ()% so Qpar = (L¥ )? and we have

Qp = Z?:lQL?k - Z?:l (Lf)2'
We have written Qg as sum of A squares of linear forms so we conclude that
rank(Qr) < h = wrk(F).

If F' is nondegenerate then Qp is a non degenerate quadratic form, its associated matrix
is Catp (k,k,n) that is a square matrix of size (k:") = rank(Qr ). o

PROPOSITION 17. Let F € Sk V* be a general homogeneous form of degree 2k. Then

wrk(F) > rank(Qr)
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except in the following cases, where the equality take place:

o k=1
o n =1
on =2 k< 4
en=3%k=2

Proof: If k = 1 then F' is a quadratic form and so wrk(F) = rank(F) = rank(Qr ).
If n = 1 then we have wrk(F) = k+1. The catalecticant matrix of F' is a square matrix
of size k+1 and so rank(Qr) = k+1 = wrk(F).
If n = 2 we get wrk(F) > % (k+1)(2k+1) and rank(Qp) = % (k+1)(k+2). We have wrk(F)
> rank(Qr ) if and only if ¥*>-3k-4 > 0 if and only if £ > 4. By Alexander-Hirschowitz’s
theorem we have
wrk(F) = 6 = rank(Qrp) if k = 2;
wrk(F) = 10 = rank(Qr) if k = 3;
wrk(F) = 15 = rank(Qr) if k = 4.
If n = 3 we have wrk(F) > & (2k+3)(2k+2)(2k+1) > (*3%) = L(k+3)(k+2)(k+1) if and
only if 2k*-2k-9 > 0 if and only if k& > 2. For k = 2 we get wrk(F) = 10. Finally for n >

3 the disequality wrk(F) > %H(Zk:") > (k:") is verified for any & > 1. O
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Chapter 3

MUKAI'S THEOREM

The interest in varieties of power sums theory has been reawaken in 1992 by a work of
S. Mukai, who gave a construction of VSP(Fy, h)° in the cases

(n,d,h)=(2, 2, 8), (2, 4, 6), (2, 6, 10)

for a general polynomial Fy; and also constructed a smooth compactication VSP(Fy, h)
which turned out to be a Fano threefold in the first two cases and a K38 surface in the
third case. The construction of Mukai employs a generalization of the concept of the
dual quadratic form to forms of arbitrary even degree d = 2k. The Mukai’s theorem is

probably the best work in varieties of power sums theory.

3.1 Mukai’s skew-symmetric form

Let w € A*V be a skew-symmetric bilinear form on V* We consider a basis {lo,...,t, } of
V and the dual basis {&p,...,§, } of V¥ Then w € /\2 V that is generated by the elements
of type wi; = & N ;. We define a Poisson bracket on generators in the following way
{ oy o SEFLVH xSRIy * — QRRy*
{1.9)w,;, = {f9ene, = Dei(£)Dg, (9) + D, (f)De, (9).

Extending by linearity we obtain a skew-symmetric bilinear form
[ s SFHLVH 5 Ly G2k /%

Let F € S V* be a nondegenerate form and F € S?*V be its dual form. For each
we A’V we define o, p € (NFTLV)* by

owr(f9) = F({f.9k)-

THEOREM 9. (S. Mukai) Let F be a nondegenerate form in S?* V* and let N be its Waring
rank. Let Qp be the quadratic form associated to F and assume that N = rank(Qp) =
("Hk). For any P = {[u],....[In]} € VSP(F,N)° let E(P) be the linear span of the

n
powers [FT1 in SFHLY*

E(P) = <t ks C gy
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Then we have
i E(P) is isotropic with respect to each form o, r;
i apli'(SF1V) C E(P);

iii For any ¢ € S5V, G € S5t V* and any w € \° V¥ we have 0w, 7 (D, (F),G) = 0.

In other words ap'* (S*=1V) is contained in the radical of each o, p .

Proof: We check that o, p (lf“,l?“) = 0 for any ,j. We compute
oo (ETLETY) = PO BT ), ) = FIEEDw(l,l) = Qp (18,15 )w (l;,1;) = 0, since by

177
proposition 14 of chapter 2 the pair I, l? is conjugate with respect to F.

We note that for ¢ € S*~1V we have D, (B*) = (;a{ci;!Zﬁleo(lf_l)lfH, in fact we

derive the B* k-1 times. Therefore the elements in ap’ ' (S*~1V) are in the form

SN N e EP).

To prove the last assertion we compute

{Dy(F).G}u,; = {Dyp(F),Gle;ne; = De, (Dy(F))De,; (G) + De; (D (F))De, (G) =

D@ﬁz‘ (F)Dﬁj (G) - D@ﬁj (F)Dfi (G)

Now for any A,B € S V* we have F(AB) = QN (A,B) = <QI;1 (A),B>. Therefore
Ouwiy,F (Dy (F),G) = F({Dy(F),Gluy;) = F( De, Dy (F)De, (G) - De; Dy (F)D, (G)) =
F(Dg, Dy (F)Dg; (G)) - F(Dg; Dy (F)Dg, (G)) = <&, Dg; (G) > - <€j,Dg, (G)> =

Dy (Deie, (G) - Deye, (G)) = Dy (0) = 0. a

3.2 The Mukai Map

LEMMA 4. Let V be a k-vector space and let W be a subspace of V. Then % =~ Wt

Proof: Let I1:V — W" be the projection map. Then II is a surjective k-linear mor-
phism and we note that

ker) = {fve V[II(v) = 0} = W.

Therefore the map ﬁ:% — W+ defined by v+ W + II(v) is an isomorphism of k-vector
spaces. O

LEMMA 5. We identify SV with (S*V*)* and let d = deg(F). Then
ap’} (Sk V)L = APd_k (F)

Proof: For any ¢, € S*V and ¢);_, € S%*V we have <¢/,_, aph (pr)> =
<90:1—kf<§0k¢F> - = <$Dfi—k90k)F> - <90k7<90:1—k’F> > = ap;l;k(@:i—k)(‘pk}
Thus, if <@/, ,,apk(pr)> = 0 for all p; we have ap?,fk (0l )(pr) = 0 for all ¢,. By
nondegenerancy of the apolarity pairing we get aph ¥ (¢, ) = 0i.e. ¢, € APq_y(F).
Conversely if ¢/, , € APy (F) then ap&" (0!, ,) = 0 and apt* (¢!, . )(px) = 0 for all
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oK. So <!, ,,apk(or)> = 0 for all @y, i.e. ¢l , € aph(SFV)*. O

Let F' € S** V* be a nondegenerate form and assume that (k,n) is one of the exceptional

cases of proposition 17 of chapter 2, then
Ny = wrk(F) = rank(Qr) = (”:k)

We know that VISP(F,Ny )° # @ for general enough F. Let P € VSP(F,N;)° and

The space E(P) is a subspace of W = %

By lemma 4 we have W = aph ' (S¥~1V)+ and so W* = ap’ ' (S*~1V)L. By lemma 5

we get

W* =2 aph=t(SF=1V)L = APy (F) hence W = APy (F)*
In this way we can see E(P) C AP, (F)* as a subspace of AP, (F)*.
PROPOSITION 18. In the preceding notation we have

i dim(APyy1 (F)*) = (775) + ("7

ii dim(E(P)) = Ny, = ("1F);

iii dim(E(P)) = ("),

n—1

Proof:
i Since F is nondegenerate APy (F) = ker(apl.) = {0}, hence ker(ap’ ') = {0}. Therefore
the map ap’f{l:Sk_l V — S¥~1V* is an isomorphism of vector spaces and

dim(aph ' (S*71V)) = dim(SE=1VH) = ("TETY).

n

k
Now APy (F)*=2 W = %, therefore we have

dim(APysy (F)*) = (FH4m) - (B 1) = St (k1) = (04R)  (MEEDY).

ii Let P = {[i],...,[In, ]} be a Ny-polar polyhedron of F. We have to prove that l]fH,...,lfVJ;l
are linearly independent that is equivalent to prove that the space of hypersurfaces

containing [k /,...,/ly, / has dimension ("*F*1) - N = ("TH) fe.

n—1

dzm(LkH(PV*,ﬂl/ /lNk/)) - (ﬂ+k)

Case n = 1) We have to prove that dim (L1 (PV* [l].....[In,]) = ("§F) = 1 where
N, = (1';’“) = k+1. This is clear because given k+1 points in P! we have only one
degree k+1 homogeneous polynomial vanishing on the k+1 points.

Case k = 1. In this case N = (1:”) = n+1. We have to prove that

dim(Ly (P VA [L],....[l+1])) = (”") = n(n+1).
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The space of quadrics has dimension ("22) so the space of quadrics containing
[i],-.., [lhr1] has dimension ("22) -1 - (n+1) = n(n+1) because the £ are inde-
pendent.

Case n = 2, k = 2) We have to prove that dim(Ls (PV*,[k]....,[ls]))=(*T%) =4, in this
case Nj, = (g) = 6. Suppose that dim(Ls (PV* [li],...,[ls])) > 4. Since APy(F) = {0}
no conics passes through the 6 points, in particular no 4 points are collinear. We
take a conic K through the five points [l /,...,[ls] and two points z,y on K such that
each component of C' contains > 4 points.

Since dim(Ls(PV* [li],....[ls],z,y)) > 2 there exists three linearly independent cu-
bics C; such that C; has 7 common points with K. By Bezout’s theorem we see
that the cubics contain K. The residual lines have to pass through [ls/ and we get
a 2-dimensional family of lines through a point but this is impossible.

Case n = 2, k = 8) In this case N, = (g) = 10. We have to prove that

dim(L4(PV*,ﬂl/,...,ﬂlQ/)) = (i’) = b.

Suppose that dim(Ly(PV*[L],...,[li0o])) > 5, since APs(F) = {0} no cubics passes
through the ten points in particular no 5 points are collinear and no § points are
on a conic. Let K be a conic through [i/,...,[ls] and let z,y,z,w four points of K
such that each component on K contains > 5 points.

Then dim(Ly(PV* [li],...,[ho],2,y,2,w)) > 1 and there exist two independent quar-
tics @; such that @; and K have 9 common points. By Bezout’s theorem K is a
component of Q;. So there exists a line of conics through [ls/,...,/l10/ and this forces
[ls],---,[lo] to be collinear. Repeating the same argument for the points [ls/,...,[lo/
yields the collinearity of [li/,...,/laJ. Then [h],....[lu],[ls],...,[ls] are on a conic, a
contradiction.

Case n = 2, k = 4) In this case Ny = (2) = 15. We have to prove that

dim(Ls P V*,[L].....[u5]) = (§) = 6.

Since AP,(F) = {0} no quartics passes through the 15 points in particular no 13
points are on a cubic, no 10 points are on a conic and no 6 points are collinear.
Suppose that dim(Ls P V* [L],...,[hs])) > 6. Let L be the line generated by [h/,[l2],
we take 4 points z,y,z,w € L. Then dim(Ls PV* [L],...,[Ls],2,y,2,w)) > 2 and there
exist 4 independent quintics C; such that C; and L have 6 common points. In this
way we find a projective plane of quartics containing the 18 points [lz/,...,[li5] but
generically the space of quartics through 18 points is a projective line. We have
three possibilities.

The family of quartics is the union of a cubic for the 13 points with the lines of P2,
but this is impossible because no 18 points are on a cubic.

The family of quartics is the union of a conic for the 10 points with the conics of
P? through 3 points, but this is impossible because no 10 points are on a conic.
The family of quartics is the union of a line for the 6 points with the cubics of P?
through 7 points, but this is impossible because no 6 points are collinear.

Case n = 3, k = 2) In this case Ny = (3;:2) = 10. We have to prove that
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dim(Ls (P V% [l ],....,[ho])) = (3J2r2) = 10. Suppose dim(L3(PV*[],...,[ho])) > 10.
Since APy (F) = {0} no quadrics passes through the 10 points, in particular no
7 points are on plane. There exists a unique quadrics @ through the 9 points
[l],...,[lo]. Then the 9 points impose independent conditions to the quadrics and
the 10 points [y ],...,[lip] impose independent conditions to the cubics.

<l’f+1,...,l’;,:1>

iii We have E(P) = e
dlm(E('P)) — N, - dim(ap’;;l(sk_lv)) _ (n+k) ) (7L+k—1) _ (k=1 (n+k—1).

n n k!(n—1)! n—1

We compute

O

We have seen that for any P = {[li],...,[In, ]} € VSP(F,Ny)° the space

_ <l’f+1,...,zfvzl>

EP) = wetvy
is a subspace of dimension (”Iﬁ;l) of the (ZJ_H;) + (”Zﬁ;l) dimensional vector space
APy 1 (F)* ie. apoint in the Grassmannian G((":f;l),AP;H_l (F)*). We get the regular
map

MuR: VSP(F,N,)° — G(("1* "), APy11(F)*), P — E(P).

n—1

We call this map the Mukai map.
ProproOSITION 19. The Mukai map is injective.

Proof: Let P, = {[u],...[In. ]}, P = {[L1],....,[Ln,]} € VSP(F,N;)° such that
MuR(P;) = Muk(Pr) then

k k k k k— —
<L Ss=< LV LR > mod(aphnt (SFTIY)).

Since F is nondegenerate we have APy (F) = {0} and so AP,_1(F) = {0}. We have
< l]fH - LlfH, ~~-;l§€vt1 - L]Xrtl > C ap];_l(Sk*lV) = S*=1V*. This forces

k+1 k+1 k+1 k+1
A N L e L U

and so lf“ = L?H

for any j. This implies
<L s=< LFT LR > and
dim(Ly1(PVA [ ],....[In.[)) = dim(Lgy1 (PVA[L1],....[Ln,]))-

Without loss of generality we can assume that [l;/ # [L;/ for any j. Since
dim(Ly(PV* [lo],.... [ [) = ("FF) - (Ne - 1) = ("5 - ("FTF) + 1 >0

we can find a form ¢ of degree k vanishing on the last Ny - 1 points. If L € V is a linear
form on V* vanishing on [l; / but not containing any /L;/ then ¢ L € Ly (PV*[lL],...,[In,])
= Lg41(PV*[L1],...,[Ln, /). The form ¢L vanishes on any /L;/ and this force ¢ to van-
ish on any /L;j/. Therefore we have ¢ € Li(PV*[L1],...,[Ln,]) C APy (F). This implies
APy, (F) # {0}, a contraddiction because F is nondegenerate.

Therefore we may assume [li] = [Li]. Now if [l # [L;] for any k > 2, we repeat the
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argument replacing [l ] with [lz/ and obtain another contraddiction. Proceeding in this
way we show that P; = Py.
The same proof works for generalized polar polyhedra. Let Z and Z be two generalized

polar polyhedra such that
Lit1 (PV*,Z) = Ly (PV*,Z).
We suppose Z # 7 and choose a subscheme Zp of Z of length Ni-1 which is not a
subscheme of Z. Since
dim(Ly (BV*,Zp)) > ("3F) - N - 1 >0

there exists a nonzero ¢ € L (PV*,Zp). The sheaf Z/Iz, is a skyscraper sheaf con-
centrated in P and it is annihilated by the maximal ideal mp, so mpZz, C Zz. We
choose a linear form L vanishing at P but not vanishing at any subscheme of Z . Then
Lo € Ljy1 (PV*,Z) = Ljyr (PV*,Z ) and hence ¢ € L (PV*,Z ), a contradiction since F
is nondegenerate. ]

3.3 Mukai's Theorem

Recall that we have the linear map
ANV — N VSV, w— oy p.
We know that for any ¢ € S*"'V, G € S1V* w € A°V* oy, 1 (Dy(F),G) = 0. There-
fore the previous map defines an injective map
NV — N2APy 41 (F).
Let N' C AQAPk+1(F) be the image of this map, then A is a subspace of the space of
the 2-forms on APy (F)* Let
G(("F N AP (F))nv € G(("TFY), APysr (F)%)
be the subvariety of the Grassmannian consisting of the subspaces of A\” APy, (F) that
are isotropic with respect all the 2-forms in N. Since E(P) is isotropic with respect all
the 2-forms in N we have
MUR(VSP(F,N,)) € G(("F1), APy (F)*)x.
We know that the map 9MMufk: VSP(F,N,) — G((":ffl),APkH (F)*) is injective.

1
Therefore we have

dim(Muk(VSP(F,Ny))) = dim(VSP(F,Ny)) = (n+1)Ny, - ("+?%) = (n+1)(" 1) - ("12).

n
We report in the following table the cases in which we are interested

n k dim(OMMuR(VSP(F, Ni)))
1 arbitrary 1
arbitrary 1 (n;rl)
2 2 3
2 3 2
2 4 0
3 2 5
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We denote by G = G(h,E) the Grassmannian of h-subspace of a vector space E. Recall
the exact sequence on the Grassmannian

0— Sqg — Eq — Qg +— 0

where S¢ is the universal bundle whose fibre in z € G is the h-subspace corresponding
to 2. To give a section s: G — Sg of S¢ is equivalent to give h-regular function G — k"
in fact S¢ is locally trivial of rank h. The locus of zeros of this h regular function defines
a subvariety of codimension <h of the Grassmannian and the equality holds for a Zariski
open subset of sections because generically the h functions are independent. In this way
we can associate to a section s: G — Sg of S¢ a subvariety of G that we denote by Z(s).
In our case the universal bundle on G((le),APk_H (F)*) has rank k+1. A 2-form on
& defines by restriction a 2-form on /\28G whose associated subvariety has codimension
§(k;1) = rank(\>Sg) and the equality holds for a Zariski open subset of sections.

For any h-dimensional subspace of section the locus of common zeros has codimension
§h(k;1) and again the equality hold for a Zariski open subset of sections.

Since dim(N) = dim(\*V) = (ngl) in our case the expected codimesnion and the
expected dimension for G’((”H]j_l),APkH (F)*)n are

expcodim(G(("Jr:*l) VAP (F)¥)y) = ((n+§_l)) %n(n—k]);

expdim(G ("), APt (F)%)x) = (Y () - (75 ) bngnor 1),

n—1 n—1

For n = 1 expcodim(G(1,APwi1(F)*)n) = 0, G(1,APy1(F)*)y = G(1,APii1(F)%)
and dim(G(1,APy41(F)*)y) = 1.
For n = 2 we have expcodim(G((kzl),APkH (F)*)x) = 3(’“;1) and

expdim(G((*"), APe1 (F)*)n) = 3(*3) = (b 1)(k+2) - 5(*37) = 3(1+k)(4-k).

In the cases k = 1,2,3,4 we have

k expdim(G((kzl s APii1 (F)*)pr)

=~ W N =

We see that the expected dimension of G((”Hlj_l) JAP 1 (F)*)ar is equal to the dimension
of VSP(F,Ny) in the cases n = 1 and n = 2, k = 1,2,3,4. In all other cases it is strictly
less.

THEOREM 10. (S. Mukai) Let F € S¢V* be a generic polynomial of degree d = 2k. We
assume n = 8 and k < 4. Then

VSP(F,N,) = VSP(F,(*1?)) = G((*I"),APyi1 (F)*)x = G(k+1,APpy1(F)¥)n.

M1 Ifn =2and k = 1 then d = 2, N, = 8 and dim(VSP(F3,3)) = 3.
The variety VSP(F5,3) is a smooth Fano 3-fold of genus 21 and index 2.

M2 Ifn =2and k = 2 then d = 4, N, = 6 and dim(VSP(F5,3)) = 3.
The variety VSP(Fy,6) is a smooth Fano 3-fold of genus 12 and index 1.
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M3 Ifn =2and k = 3 then d = 6, N, = 10 and dim(VSP(F5,3)) = 2.
The variety VSP(Fg,10) is a smooth K3 surface.

M4 Ifn=2and k = 4 then d = 8, N, = 15 and dim(VSP(F;,3)) = 0.
The variety VSP(Fy4,6) is a set of 16 points.

Proof: We know that for n = 2 the varieties VSP(F,(kgz) ) are irreducible and
smooth. We compute their dimensions

k| dim(VSP(F, (*1?)))

3
3
2
0

= W N

Via the Mukai map we are associating to each polyhedra P € VSP(F, (k‘gz)) a point in
G(k+1,(APyy1F)*). We have dim((APy1F)*) = 2k + 3 and dim(G(k+1,(APp+1F)*))
= (k + 8)(k + 1). In our cases

k| dim((APy1F)*) | Gk + 1, (AP F)*) | dim(G(k + 1, (AP, F)*))
1 5 G(2,5) 6
2 7 G(3,7) 12
3 9 G(4,9) 20
4 11 G(5,11) 30

A basis for a 3-dimension space N of sections of & = /\QSG* defines a section of the
vector bundle £93 = £ ® £ ® £. The bundle € is generated by global section and by
Bertini theorem on sections of a vector bundle we know that a generic section of &£ is
smooth.

Therefore the locus of zeros Z(s) of a generic section s of £ is a smooth subvariety of
G(k+1,(APy1F)*) and its codimesnion in equal to 3(]“2'1) = 3k(k+1). We compute

dim(Z(s)) = ("5 () - Sk(k+1) = (1+k)-(4-k).

We assume k < 4 and so dim(Z(s)) > 0.
The normal bundle N ¢ is isomorphic to £ @3 It is know that the determinant of the
tangent bundle of G = G(h,N) is given by

c1(G) = Ney (S ™)
and that the determinant of /\QSG is given by
1 (N'Sc) = (h-1)ei (Sa ).
In our case we have N = dim((APx1F)*) = 2k + 3, h = k + 1 and

CLED) = 81 (E) = 31 (N2S6 ™) = 3(k + 1 - 1)er(Sa*) = Sker (S ¥);
Cl(G) = (Qk + 3)01(8(;*).

By adjunction formula we have Kz, = Kg + det(NZ(S)’G) i.e. on the Chern classes we
have
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c(Z(s) = c1(G) + c1(E93) = (2k + 3 -3k)er (Sc*) = (3-k)er (S ).

We write ¢1(Z(s)) = (3-k)c1(Ozs) (1)), where Oz (1) is the restriction of det(Sg*) on
Z(s). We note that

OZ(S)(I) = det(SG *) ® Oz(s)

is the sheaf associated to the Plicker embedding of the Grassmannian and the global
sections of Oz, (1) are the hyperplane sections of the Grassmannian in its Pliicker em-
bedding. Therefore Oz (1) is ample.

If £ < 8 then ¢1(Z(s)) = (8-k)c1(Ogsy(1)) with 3-k > 0. Then the anticanonical sheaf
is ample and Z(s) is a smooth Fano 3-fold.

If k = 3 then ¢1(Z(s)) = 0 and the canonical sheaf is trivial. Then Z(s) is a smooth K3
surface.

If k = 4 then dim(Z(s)) = 0 and the rank of £¥3 is given by

rank(€93) = Srank(€) = 3(*31) = 80 = dim(G(5,11)).

The generic section of £92 vanishes on a finite number of points equal to the Chern num-
ber 630(5@3) = 16. O
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Chapter 4

A NEW VIEWPOINT ON VSP

In this chapter we state some new results in varieties of power sums theory. First we prove
by geometrical methods Hilbert and Sylvester theorems. Then we give an alternative proof
of Dolgachev - Kanev theorem and with the same method we will find that VSP(Fs,/)
is a Grassmannian. Furthermore we give a method to reconstruct a 4-polar polyhedron

for a plane cubic. Finally we prove a theorem on varieties of power sums rationality.

REMARK 6. (Partial Derivatives) Let {Lq, ..., Ly} be a h-polar polyhedron for the homo-

geneus polynomial F € k[xg, ..., x,]q. We write
F=ML{+ ..+ AL

The partial derivatives of F' are homogeneus polynomials of degree d — 1 decomposed in h

linear factors
Fy, = AlaildL‘lifl + .+ )\haihszfl, for anyi=0,...,n.

Then VSP(F,h)° C VSP(F,., h)°, taking clousures we have VSP(F,h) C VSP(Fy,,h).
The polynomial F has ("ZH) partial derivatives of order l. Cleary these derivatives are
homogeneus polynomials of degree d — 1 decomposed in h-linear factors. Then we have

VSP(F,h) C V,S'P(F%z1 Tzn,h), where Iy + ... + 1, = L.

REMARK 7. (Projections) Let H C PN be a l-plane. We consider a (N — [ — 1)-plane
E such that HNE = &. Then any | + 1 - plane containing H intersects E in a point.
Conversely for any point p € E is uniquely determined an l+1 - plane < p, H > containing
H. We con project PN in E = PN=I=1 wiq the rational map

7: PN\ H --» PN=1=1 defined by p—< p, H > NE.

4.1 Hilbert’'s and Sylvester's Theorems

In this section we study two cases where the variety of power sums is a single point. We

will give two proofs for the Hilbert’s theorem.

THEOREM 11. (Hilbert) The variety of power sums VSP(Fs,7), parameterizing all decom-
positions in seven linear factors of a homogeneous quintic polynomial in three variables,

18 a point.
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Proof:

1. We consider F5 as point in P?°. We have the Veronese embedding
vs P2 — P20

whose image is the Veronese variety V = V3.. By Alexander-Hirschowitz’s theorem

we know that he variety of secant 6-plane of V' has dimension
dim(Secg(V)) = 7-2+7-1 = 20

so any quintic homogeneous polynomial in three variables admits a decomposition
in seven linear factors.
Let {li,...,I } be a polar 7-polyhedron of F5. We write

Fs = \ME+...+2E.

The partial derivatives of F5 are homogeneous polynomials of degree four and the
second partial derivatives of F5 are homogeneous polynomials of degree three. By
Schwarz theorem the second mixed derivatives are equal so we have six second
partial derivatives of F;5 that we denote by F,., Fyy, F.., Fpy, Fypz, Fy..

The second partial derivatives are decomposed in the seven linear factor l,...,l.
Now we look at the PY parameterizing the homogeneous polynomial of degree three

in z,y,2. We consider the Veronese embedding
vs P2 — P9 with V' = V2 = 13 (P2).

In P? we have the seven points £,....B € V/7 the P> spanned by the second partial
derivatives and denoted by Hj = <Fy,...,F,. >. Moreover we have the P® spanned
by 8,...,53 that contains Hj, we denote it by HF = <B,...,B >.

Now we suppose that there is a second decomposition of Fy in seven linear factors
= 7]1L‘?+.,.+777L?.

This gives rise to a second decomposition for the second partial derivatives in the
factors L3,...,L3. In P we have the P° spanned by L%,...,L? that contains Hj, we
denote it by H® = <L3,... L3 >. Since

dim(HP) + dim(V'") = dim(HS) + dim(V') =8 < 9

the 6 - planes H?, HS intersects V' exactly in the points L and I3 respectively, and
since there exist 4,j such that L; # l;, we have that H} # HY.

Moreover Hj does not intersect V' since dim(V') + dim(H3) < 9. We project P?
in P via the 6-planes containing H g. We denote the projection by

m: PO\H] --» P3.
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The variety V = n(V') is a surface in P with deg(V) = 9. The projections of H?
and H? determine on V two points z,y € V of multiplicity 7. We consider the line
R = <x,y> that intersect V with multiplicity at least 14, but deg(V) = 9 implies
that R C V.

The line R determine a 7-plane H” in P? whose intersection with V' contains a
curve ' € H'NV'. The 7-plane H” contains Hf and HS so we can estimate deg(T')
intersecting with HlG. We have F~Hfi <7

We know that any curve in V' has degree multiple of three, so we have only two

possibilities
deg(T') = 3 or deg(T') = 6.

We write H' = HS N HS as intersection of two hyperplanes. Then H3 NV’ = X; and
HS N V' = X, are curves of degree 9 with I' as a common component. The curves
X1, X, corresponds in P? to two cubic curves C;, C» with a common irreducible

component I'. We have two cases:

e C; =T UK; and C, =T U K, with K;, K, conics.
o (] = Tu Ry and Gy = Tu Ry with Ry, Ry lines.

In the first case I' = v3(T) is a twisted cubic curve contained in H” and
HT = HY-T = 3,

say HENT = {13,13,13} and HS NT = {L3, L3, L}}. The image of K; via v3 is a
curve of degree 6, K that passes through {I3,12,13,13} and intersects I in T'; = 2
points. Similarly the image of Ko via v3 is a curve of degree 6, K, that passes
through {L3, L3 L3, L3}. Now the set {I3,12,13,13} is contained in the hyperplane
section HS NV’ = I UK,. Conversely the set {L3, L3, L3 L3} is contained in the
hyperplane section H¥NV' = TUK;. But K; and K7 intersect in exactly K;-K, = 4
points and so {L3, L3, L3, L3} = {i3,13,13,12}. In particular there are four points
on HP N HY that don’t lie in Hj.

In the second case I' = v3(T) is a rational normal curve of degree 6 and

HST = HS.T = 6.

Then the images of R, and Ry are two conics R; and Ry that passes through the
remaining points say [3 and L2 respectively. We note that L3 is in the hyperplane
section HY N V' =TUR, and I3 is in the hyperplane section H§ N V' = TUR,.
Since R, and R, intersect in Ry - Ry = 1 point, we have [3 = L‘; and we find a point
on Hl6 N Hg that don’t lie in Hg

In any case we find a point on H? N HY that does not lie on H) because it lies on
V'. So HY = HS, a contradiction. O

2. The partial derivatives of F5 are three homogeneous polynomials of degree four

Fy,Fy,F, decomposed in seven factors. We consider the Veronese embedding
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vy P? — P with V = V34 = vy (P?).

We suppose to have two different 7-polar polyhedra {l,...,Iz} and {Ls,...,L7}. In
P4 we have the two 6-plane Hl6 and Hg, the 2-plane H(% = <Fy,Fy,F,> and the
k-plane HX = <HP HS >

Let H'3 be a generic hyperplane in P4 containing H*. Then H'* NV =T is a
curve of degree 16. Now we prove that the intersection H'® N V is transversal and
so the curve I is smooth.

By Bertini’s theorem if the generic hyperplane containing H* has non transversal
intersection in z at V then z € H*. Let {zy,...,7,} = H*NV such that H*2> T,V
for any i=1,...,1. Let H'2 be a 12-plane contained in H'3 such that H'?2H* then
H'2.V = 16. Now the z; have multiplicity at least two for any i—1,...,/ and so
H2.V =16 > 12—k+s+1. Now s=14 implies k=10 and 16>12-10+14+1 implies
[=0. When s decreases of one also k decreases of one and so [ is constant and equal
to zero.

Then T is smooth and corresponds to a smooth quartic curve in P2, so g(T') = 3.
Then H* - T' < 14. Let II be a hyperplane in H'® such that H* C II. We have
II.T = 16. Let A be the linear system determined on I' by the hyperplanes in H'3

containing H*, we have
A = H*T + {12-k points} = H*T + gi5°F.

In fact the family of the hyperplanes in P!3 containing a fixed k-plane have di-
mension 13-k-1 = 12-k. Now we have a divisor D on I' with deg(D) = 12-k and
dim(H°(T,Or(D))) = 13-k. By Riemann-Roch theorem on the divisor D we have

W (D) - W (Kp - D) = deg(D)+1-g(T) = 12-k+1-3 = 10-F.

Now h°(D) = 13-k implies h° (Kr - D) = 8. For the canonical divisor Kr we have
that Kt is the divisor associated to the sheaf

O]p2(-3+4) ® Orp = O]p2(]) ® Or.

In other words Kt is the class of divisors determined on I' by the lines of P2. We
write D = p+q, the Kp - D is the class of divisor in K1 vanishing on D so is the
divisor cut on I by the line <p,¢> and h° (Kt - D) = 1, a contradiction. m|

THEOREM 12. (Sylvester) Let F3 = F3(z,y,z,w) be a homogeneous polynomial of degree

three. The variety of power sums VSP(Fs,5), parameterizing all decompositions in five

linear factors of a homogeneous cubic polynomial in four variables, is a point.

Proof: The polynomial F3 is a point in P'. We consider the Veronese variety V =

V3, parameterizing the 3-powers of linear factor on P3 and its variety of secant /-planes.
We have

dim(Secy(V)) = 53+5-1 = 19.
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So the generic cubic polynomial on P? admits a decomposition in five linear factors.

We suppose that there are two different 5-polar polyhedra {ly,...,l5} and {Li,...,L5} for
F3. So we have two different decomposition for the partial derivatives of F3. The partial
derivatives of Fj3 are four quadric polynomials decomposed in five linear factors in two
different ways.

The partial derivatives generate a P? denoted by H3 = <F,,F,,F,,F, > in the P param-

eterizing the quadric polynomials. We consider the Veronese embedding
vy P3P — P9 with V' = VB = 1y (P3).

The two 5-polar polyhedra are two sets of five points on V' that generate two P4 denoted
by

Hf = <B,..,B>and H} = <I3%,...,[2>.

The /-planes Hl4 and H} both contain the 3-plane Hg
We project P? in P® via the 4-planes containing Hg. We have a well defined map

mPO\HE --» P5.

In P5 we have the 3-fold V' = 7(V') of degree 8. On V' we have two 5-fold points
x=m(H) and y = n(H}). The line R = <z,y> intersects V' with multiplicity 10 and
deg(V') = 8 implies that R is contained in V.

Now 7 '(R) = H® = P® and we have a curve I' C H® N V' corresponding to the line
R. We note that I', H' and H} are contained in H®> 2 P°. So we can estimate deg(T")
intersecting it with H;'. We have

-H} <V -H! =5
So deg(T") < 5, but the curves in V' are all of even degree and we have only two possibilities
deg(T') = 2 or deg(T) = 4.

e We suppose deg(T') = 2. Then I''H, = T"-H;, = 2 and we can assume
HNV' 2 TUBUBUBULAUL3ULS.

Now we consider the linear system |Zps (1)] of the hyperplanes in PY containing H°.
Then dim(|Zys (1)) = 9-5-1 = 3. Any hyperplane of the linear system |Zgs (1)| cuts
a surface of degree § on V' that corresponds to a quadric surface of P3 containing
the line X = v; '(T") and the points I;, L; for i = 1,2,3. In this way we get a
linear system of quadrics A C |Ops (2)| and dim(A) = 8, we write A = <Q1,...,Qs4>.
Suppose that all the quadric in A are singular, the singular locus is contained in
the base locus. If L; is a singular point then all the lines < L, L; >, < Ly,l; >
are contained in any quadric of A and so are in the base locus, a contradiction. If
any quadric in A has a singular point on X then X and the singular point impose
4 conditions, if we impose to the quadrics to contain the L;,[; the dimension of A
becomes smaller that 3, a contradiction. Then A contains a smooth quadric and so

the generic quadric in A is smooth.
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Now X = vy (T) is a line and Q;NQ,; = XUR where R is a twisted cubic curve.
On a quadric X it is a divisor of type (1,0) and XUR is of type (2,2) so R is of type
(a,b) where (1+a,b) = (2,2). We conclude that (a,b) = (1,2) and R-X = 2. Then
@s-R = 6 and we have two points of R on X, so Q1N@QNQs = X U {4 points}. A

contradiction because we have T'U{6 points} in the base locus.

e Now we suppose deg(I') = 4. Then I'"H, = I'"H;, = 4/ and we have HnV' 2
TULUL;. We consider the linear system |Zys (1)] of the hyperplanes in P? containing
HP. Then dim(|Zgs(1)|) = 9-5-1 = 3. The linear system [Zgs (1)| gives a linear
system of quadrics A C |Ops (2)| and dim(A) = 3 and we write A = <Qy,...,Q4 >,
as in the preceding point the generic quadric in A is smooth. Now X = v ! (T)is a
conic and 1NQ2 = XUR where R is conic. On a quadric X it is a divisor of type
(1,1) and XUR is of type (1,1) and so R-X = 2. Then Q3-R = 4 and we have two
points of R on X, so Q1N@NQ3 = X U l; U Ly. Finally we have Q1NQ2NQ3N Q4
= X U l; U Ly, the intersection with ()4 does not change the base locus and @ is

in the span of @1,Qs, @3, a contradiction.

O

Using polar forms Sylvester’s theorem can be proved in another simple and beautiful way.
I thank Giorgio Ottaviani who suggested me the sketch of this proof.

Proof: Let F = F3 € P? be a homogeneous form of degree three. We know that a
5-polar polyhedron of F exists. The polar form of F in a point £ = [£y: &1 : &o @ &3] € P3
is the quadric

PF=&ogh + a5 + i +&Gan.

Let {L1, ..., L5} be a 5-polar polyhedron of F, then F' = L} + ... + L. The polar form is
of the type

PeF =Y &NL2

and it has rank 2 on the points ¢ € P? on which three of the linear form L! vanish
simultaneously. These points are (g) = 10.

Now we consider the subvariety X, of P? parametrizing the quadrics of rank 2. A quadric
Q of rank 2 is the union of two plane, the planes of P3 are parametrized by P3*), then
dim(Xs5) = 6. To find the degree of X5 we have to intersect with a 3-plane, that is
intersection of 6 hyperplanes. So the degree of X5 is equal to the number of quadrics
of rank 2 passing through 6 general points of P3. If we choose three points then the
plane through these points is determined, and also the quadric is determined. Then these
quadric are %(g) = 10. We have seen that dim(X3) = 6 and deg(X2) = 10.

Now the linear space
[ ={PF|¢eP3} CP?

is clearly a 3-plane in PY.
Then I' N Xy = {P¢F|rank(P:F) = 2} is a set of 10 points. These points have to be the
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10 points we have found in the first part of the proof. Then the decomposition of F' in

five linear factor is unique. O

4.2 Dolgachev - Kanev’'s Theorem

In this section we study some cases of varieties of power sums that are not single points.
We will recover some well known varieties as the projective plane P? and the Grassmannian
of lines G(1,4).

4.2.1 Conics

We study the variety of power sums of a homogeneous polynomial of degree two in three
variables decomposed in four linear factors. We give an explicit method to find all 4-polar

polyhedra of a given quadratic polynomial.

THEOREM 13. The variety VSP(Fs,4), parameterizing the decomposition of a homo-
geneous polynomial of degree 2 in 8 wvariables in 4 linear factors, is birational to the
Grassmannian G(2,4).

Proof: We consider the Veronese variety V = V2 C P5 and F, € P® as a point. Any
4-polar polyhedron {L1, ..., L4} of Fy determines the / points L?,..., L7 € V which span

a 3-plane Hy = <L2?,...,L?>. In this way we get the morphism
¥: VSP(Fy,4)—G(3,5), defined by {Ly,...,Ls}—Hp.

Now a generic 3-plane in P? intersects V in exactly 4 points counted with multiplicity,
then the morphism ¢ is generically injective. We note that any 3-plane spanned by
a 4-polyhedron passes trough the point F5. Then the image of ¢ is contained in the
subvariety G(3,5,F3) C G(8,5), whose points are the 3-planes passing through F». We
know that G(3,5,F3) is isomorphic to the Grassmannian G(2,4). We get a generically
injective morphism

¥: VSP(Fq,4)—G(2,4), defined by {L1,..., L4 }—H].
We know that VSP(F5,/) and G(2,4) are both smooth. Furthermore
dim(VSP(F,, /) = 12— 6 = 6 and dim(G(2,4)) = 6.

Then 1) is a generically injective between two smooth varieties of the same dimension, we
conclude that it is birational map and VSP(F2,4) is birational to G(2,4). O

REMARK 8. In the preceding proposition we associate to a conic F' the Grassmannian
G(2,Hr), where Hr is the hyperplane in P°* dual to the point F. Clearly in this con-
struction every hyperplane H gives the varieties of power sums VSP(H*,4) of F = H*,
that is G(2, H). We want to understand when the conic associated to an hyperplane H is
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singular. The answer is the following.
If H is an hyperplane in P°* then the Grassmannian G(2, H) is the varieties of power

sums of a singular conic if and only if there exists a 3-plane A C H such that
A= (L3)* N (L3)"

In fact in this case A* is a line passing through H* = F and A* =< L2 L3 >, then F

can be written has sum of two squares and it is singular.

We can interpret the preceding construction in another way. The $-planes containing
F are the lines in the hyperplane F*, then VSP(Fy, 4) is isomorphic to G(1,4), that
indeed is isomorphic to G(2,4). Then any hyperplane H in P° determines the varieties
of power sums of the polynomial H* by VSP(H*,4) = G(1, H). Fixed an hyperplane H

in P? it is easy to reconstruct the corresponding polynomial that is simply H*.

EXAMPLE 15. If we consider the hyperplane & + &1 + &9 — 263 — &4 + &5 = 0 then the
corresponding polynomial is [1:1:1:=2:—1:1] i.e. F = 2% +y?+ 22 — 20y — 22 + y=.

By apolarity lemma we know that if F' is a homogeneous polynomials of degree 2,

{L1, ..., L4} is a 4-polar polyhedron of F if and only if
Ly (PV*,[Lq],...,[L4]) C APy(F)

and the inclusion is no more true if we delete one of the L;.
Now AP, (F) is the kernel of the linear map

ap% : S?V — k, ¢ — D,F.

By dimension theorem dimy(AP(F)) = 6 —1 = 5 i.e. P(AP2(F)) is an hyperplane in
P(S%V) = P5.

Let R be a line contained in P(AP,(F)). The line R determines a pencil of conics, by
apolarity lemma we know that 4, counted with multiplicity, base points of this pencil are a
4-polar polyhedron of F' if and only if deleting one of the be base points, say L4, the plane
of conics La(PV*,[L4],...,[L3]) is contained in P(AP;(F)). But the lines in P(AP:(F))
are parametrized by G(1,P(AP(F))) that has dimension 6, and also VSP(F,4) has di-
mension 6, so any line in P(AP,(F')) determines a 4-polar polyhedron of F'.

REMARK 9. By the preceding argumentation we can give another proof of theorem 13. Let
{L1,...,L4} be a 4-polar polyhedron of F', we can consider the pencil of conics

Lo(PV*,[Ly], ..., [L4]) C AP (F).
We get an injective morphism
2 VSP(Fv 4) — G(LP(APQ(F)))a {Lla "'3L4} = L2(PV*7 [Ll]? ) [L4D

Since dim(VSP(F, 4)) = dim(G(1,P(AP,(F)))) = 6, and since both the varieties are
smooth ¢ has to be an isomorphism.

This interpretation allow us to write explicitly an inverse morphism. Let H be an hy-
perplane in (P5)* then G(1,H) is the variety of power sums of F = H*. Take a line
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R € G(1, H), choose two conics Ky, Ko in the pencil determined by R, compute the in-
tersection Ky - Ko. The 0-subscheme K1 - Ko of length 4 is a 4-polar polyhedron of F. In

this notation the morphism
Y: G(l,H) — VSP(F,4),R+— K; - K»

is the inverse of .
In this way we get a direct method to construct all 4-polar polyhedra of a given homoge-

neous polynomial of degree 2.
We give an explicit example

EXAMPLE 16. Consider the polynomial F = 22 +2y% — 22 + 4xy —xz+yz. The differential
operator associated to a homogeneous polynomial ¢ of degree 2 is

2 2 2 2 2 2
D, = 0‘0% + ‘118672 + 0‘2% + O‘3agay + 0‘46502 + 0‘562&'
Applying D, to F we get the hyperplane in P®
P(AP2) = V(200 + 401 — 202 + 4az — oy + ).

Note that F can be recovered by P(AP2) simply dividing by 2 the coefficients of the pure
derivatives. In this way we get the point [1 :2: —1:4: —1: 1] that corresponds to F.
We choose the line

R= V(Oéo, a1, Q9,200 + 4o — 200 + dag — ag + a5)

contained in P(AP2). On R we consider the points [0:0:0:1:2:-2] and [0:0:0:0:1:1], i.e.
the conics

K1 = V(zy + 22z — 2yx) and Ko = V(zz +yz)
in the pencil determined by R. An easy computation show that
Ky - Ko={[1:0:0[,[0:1:0],[0:0:1],[4:—4:1]}.
Then the linear forms
Li=x,Ly=y,L3=2Ls=4x —4y+ 2
determine a 4-polar polyhedron of F. Indeed we have
F =3z +4y? — 122 — {(4w — 4y + 2)> = 3L} +4L3 — TL13 — L L3.

REMARK 10. We have proved, in theorem 13, that if F' is a generic polynomial of degree
two in three variables (n=2) then VSP(F,4) =2 G(1,4). Ranestad and Schreier proved
that if G is a generic polynomial of degree two in four variables (n=38) then we have
VSP(G,4) = G(1,4). We conclude that

VSP(F,4) = VSP(G, 4).

It can be interesting to write explicitly an isomorphism.
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4.2.2 Plane Cubics

Now we consider the special case (d,n,h)=(3,2,4) of the plane cubic curves in four factors.
Let F3 be a homogeneous polynomial in three variables F3 = F5(z,y,z). In this case we
have wrk(F3) = 4. We know that the variety VSP(Fs,4), parameterizing all decompo-
sition of F3 in powers of four linear factors, is an irreducible and nonsingular variety of
dimension dim(VSP(Fs,4)) = 2.

THEOREM 14. (Dolgachev - Kanev) The variety of power sums VSP(Fs,4), parameter-

izing all decompositions in four linear factors of a homogeneous cubic polynomial in three

variables, is isomorphic to the projective plane P2.

Proof: Let F3 be a generic cubic polynomial. We are in P? and we consider the

Veronese variety V = VZ. For the variety of its secant $-planes we have
dim(Secs(V)) = min{4-2 + 8,9} = 9.

So the generic cubic polynomial admits a decomposition as sums of four linear factors.

The partial derivatives of F3 are three quadric polynomials %, 86—1;3, 8812 .

a projective plane II in the P° parameterizing the plane conics.
Let {/ii],...,[la]} be a polar 4-polyhedron of F3. We have

that generate

Fy = MB+ B3B8
The partial derivatives of F3 are

% = 3)\10[1l%+3)\204215+3/\3013[§ +3>\4044ZZ
871;3 = S\ B1 B+ B2B+3N3 B3 +3NaBu s
8 = S\ B+ B+ B +3M74 8.

The polynomials &, B, B, & are four points on the Veronese surfaces V3 C P5. This
points generate a P that contains II. Let G(5,3) be the Grassmanian of the projective
spaces of P5 and let G(5,3,I1) the subvariety of G(5,3) parameterizing the projective
spaces of P that contains II. We have the morphism

P VSP(F374)O - G(5’37H) defined by {[11/7/12/)[13/7ﬂ4/} = <[f7l§7[§)li>'

We denote by VSP(0,Fs,4)° the sums of power variety of the partial derivatives of Fj.
We see that VSP(Fs,4)° C VSP(0,Fs,4)° and taking the closure we have VSP(F3,/)
C VSP(9,Fs,4). We have a morphism

p: VSP(F3,4) — G(5,511), {/11/’/12/’/13]7/14/} = <l%,l%,[§,li>.

Now let A be a projective space that contains II. Let V' be the Veronese surface in PS5,
we know that deg(V ' ) =4so AN V' consists of four points counted with multiplicity
B,B,E,5, and the morphism ¢ is injective. By duality the variety G(5,3,I1) is isomorphic
to G(1,2) = P2, and we have a injective morphism

¢: VSP(Fs,}) — P?
{ﬂl/:ﬂ2/7ﬂ3]7ﬂ4/} — <l%,l§,l§,li>
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We know that VSP(F3,4) is a smooth variety of dimension two. The map ¢ is a bijective
morphism between smooth varieties of the same dimension then it is an isomorphism and

VSP(Fs,/) = P2. 0

4.2.3 Reconstructing polar Polyhedra

We have associated to any homogeneous polynomial F' of degree 3 a plane in P°. Now
we give a method to reconstruct all 4-polar polyhedra of F. We begin this section with

another proof of Dolghachev-Kanev theorem, involving apolar forms.

THEOREM 15. (Dolgachev - Kanev) The variety of power sums VSP(Fs,4), parameter-

izing all decompositions in four linear factors of a homogeneous cubic polynomial in three

variables, is isomorphic to the projective plane P2.

Proof: Let {Ly,...,L4} be a 4-polar polyhedron of F, then it is also a 4-polar poly-
hedron for the partial derivatives Fy, Fy, F, of F.
By apolarity lemma we have that the linear space Lo(PV*,[L1], ..., [L4]) is contained in
the hyperplanes P(AP,(F,)), P(APy(Fy)), P(AP»(F,)). Since F is general these three
hyperplanes intersect in a plane H = P(AP,(Fy)) NP(AP(Fy)) N P(AP(F})).

We get a morphism
¢ : VSP(F3,4) — H* {Ly,..., Ly} — Lo(PV*,[L1], ..., [L4]).

If two pencil of conics are equal clearly they have the same base points i.e. the morphism

© is injective. Since dim(VSP(F3,4)) = 2 = dim(H*) it is an isomorphism. O

Fix a plane H in P? then it represents the varieties of power sums of a polynomial
Fy. Let R be aline in H then R represents a pencil of conics and by apolarity lemma the
base locus of this pencil is a 4-polar polyhedron of Fiy. To find the linear forms we can

take two conics K1, Ko and compute their intersection. In this notation the morphism
Y H* — VSP(F3,4),R— K - Ky,
is the inverse of .
ExXaMPLE 17. We consider the cubic polynomial
F =23+ y%2 + 222
Its partial derivatives are
F, =32% + 2% F, = 2yz, F, = y* 4+ 2x2z.
Applying the differential operator

D 92 a2 92 92 92 o2
v = C0g,z +o oy? + 922 tas Ox0y t oy Oxdz tas Oyoz*

to the partial derivatives we obtain
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P(APy(F,)) = V(3ag + a2),P(APy(Fy)) = V(as),P(AP(F)) = V(en + au).
So the plane H is given by
H=0Bay+as=0a5=0a;+ay=0).
We consider the line R contained in H given by
R=Bag+az=as=0a1+as=a3=0)

and on R we choose the points[0:1:0:0: —=1:0] and[1:0:—=3:0:0:0] corresponding

to the conics
K= (y? —22=0) and Ky = (22 — 32° = 0).
These conics intersects in the four points
[V3:V3:1,[V3: V311, [-V3:iV3: 1], [-V3: —iV3: 1]
and so
L1 = \V3x+V3y+2,La = V32— V3y+2,Ls = —V3x+iv3y+2,Ls = —/3z—iv/3y+2.

is a 4-polar polyhedron of F'.

4.3 The Grassmannian G(1,4)

In this section we prove that in the case n = 3, d = 2, h = 4 the variety VSP(F>,}) is bira-
tional to the Grassmannian G(1,4) giving explicitly a birational morphism of VISP (Fs,/)
in G(1,4). For our proof we need to see the Veronese variety Vi4 as a subvariety of the
Grassmannian G(1,4).

Ranestad and Schreier proved by more complicated methods that VISP(Fs,/) and G(1,4)

are isomorphic.

PROPOSITION 20. The projective space P™ can be embbedded in the Grassmannian G(1,n+1)
as the 2-Veronese embedding of P in PN with N = ("'2"2)-1. In other words the Veronese

variety V5. is a subvariety of the Grassmannian of lines G(1,n+1).

Proof: Let [1g,...,x,] be a point in P". We consider [xy,...,2,,0] and [0:10,...,z,] as
two points in P"*! that generate the line

Lizg,....zn] = <[0,-+,%0,0],[0:20,...,0, ] > C prtl,
In this way we have a morphism
@ P" — G(1,n+1), defined by [xg,...,70] = Liz,.... 2]

Now we consider a line R = <[ug,...,un+1/,[00,--,Unt1/> in G(1,n+1) and the Plicker
embedding

Where A; ; is the 2x 2 minor given by the columns 4,j of the matrix
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Ug Uy e Unp Un41
A= *
Vo (%1 e Un Un+1

On P" we have the composition

P 25 G(1,n+1) 25 PN
We note that

Ty T1 - Ty 0

(pko@)(xo;“-;xn) = pk< ) = /AO,I-'-'~-'Ai,j~'--~'An,n+1/ =

0 @z -+ Zp_1 wn

So pkoy gives an embedding of P in G(1,n+1) C PV whose image is the Veronese variety
Vi a

THEOREM 16. Let F = Fy(z,y,z,w) be a homogeneous polynomial of degree two and let
VSP(Fs,4) be the variety of power sums, parameterizing all decompositions in four linear
factors of a homogeneous quadric polynomial in four variables. The variety VSP(Fs,4)

is birational to the Grassmannian of lines G(1,4).
Proof: We consider F' as a point in PY. We have the Veronese embedding
vy P — P, with V = V& = 1y (P2?)
Then we consider the Pliicker embedding
Pk:G(1,4) — PN () = P°.
We know that dim(G(1,4)) = (1+1)(4-1) = 6 and

deg(G(1,4)) = deg(G(2,5)) = (2(5-2))T] =) iy = 5.

Now for any 4-polar polyhedra {l1,...,ls} of F we consider the 8-plane A; = <,...,[3 >.
We have dim(G(1,4) N A;) = 6+3-9=0 and deg(G(1,4)) = 5 implies that the intersection
consists of exactly § points {pi,...,ps } counted with multiplicity.

By the proposition 20 P? can be embedded in G(1,4) as the Veronese variety V. So any
P3 generated by a 4-polar polyhedra {&2,...,3 } intersects G(1,4) in the four points &,...,12
and in a additional point P. In this way we have a map

V:VSP(Fy,4) — G(1,4), defined by {l,...,l} — P.

Let {lj,....,Is} and {Ly,...,L4} two 4-polar polihedra of F' and let H; and Hj the two
associated 3-spaces. If ﬁl = ﬁL then H;NHj contains the line R = <]31,F>.

We can assume ]31 ¢ V.If |; # L; for any i,j=1,...,4, then H; and H, generate a 5-plane
A that intersects V in 8 points. Let Q € V be a point different from [; and L;. Then
<A,Q> is a 6-plane that intersects V in 9 points but deg(V) = 8, a contraddiction.

If i, = Ly and [;#L; for any i>1 then H;NHj contains the plane <F,l;,P;>. Then
A =< Hj, Hy, > is a /-plane that intersects V in 7 points.



70 A NEw VIEWPOINT ON VSP

We choose two points @Q1,Q> € V different form [;, L;. Then <A,Q;,Qs> is a 6-plane
that intersects V in 9 points, a contraddiction.

If } = Ly and b = Ly we note that the variety V is defective and so dim(Sec; (V)) = 6
and we can assume that the lines <l;,ly > and <F,]31> are skew. Then H;NHj, contains
the 8-plane <F,l,l,P;> and <B,....,B> = <L3,...,L3 >.

In this way we have proved that the map 1 is generically injective, furthermore
dim(VSP(Fy,4)) = dim(G(1,4)) implies that ¢ is birational. O

4.4 Polynomials on P!

In this section we prove some results, probably well known to the experts, about polyno-
mials in two variables.

We fix n = 1. We consider the variety of power sums VSP(Fy,h) for a fixed h. If
d = 2h — 1 then the waring rank of Fyp,_ 1 is

wrk(F) = 5 (3n") = h.

Sylvester proved that V.SP(Fy,_1,h) is a point. In this section we prove that VSP(F},,h)
is isomorphic to P~ 1.

Then we determine the variety VSP(F4,h) for any h < d < 2h-1. Note that for h = 1
we have h = 2h-1, for h = 2 we have 2h-1 = 3, so the first interesting case is for h = 3.
Let d be an integer h < d < 2h-1 and let vy P! — P? be the d-uple embedding then
X = yy(P!) is the rational normal curve of degree d in P4. A h-polar polyhedron of Fj

determines an (h-1)-plane. The dimension of the variety of secant (h-1)-planes of X is
dim(Secp—1(X)) = min{h + h — 1,d} = min{2h — 1,d}.

Since d < 2h-1 we see that Sec,_;(X) covers P?. This observation shows that for any
h < d < 2h—1 the generic homogeneous polynomial F,; of degree d admits a decomposition

in h linear factors.

THEOREM 17. (Sylvester) Let Fan_1 be a homogeneous polynomial of degree 2h-1 in two
variables. The variety of power sums VSP(Faop_1,h) parameterizing all decomposition of

Fy,_1 in h linear factors is a single point.

P2h71

Proof: We consider Fy,_1 as a point in and let X be the rational normal curve

of degree 2h-1 in P2P—1,
We suppose that {lj,...,ls } and {Ly,...,Ly } are two distinct h-polar polyhedra of Fap_1.
Let A; and Ay the two (h-1)-planes generated by the decompositions. The point Fop_4

belongs to A; N Ay, so the linear space I' = <A;,A, > has dimension
dim(T) < (h-1)+(h-1) = 2h-2.

If A; and A have only Fs,_1 as common point then dim(T') = (h-1)+(h-1) = 2h-2. So
I is an hyperplane in P2"~! and I'-X > 2h. A contraddiction because deg(X) = 2h-1.
If A; and Ap, have k£ common points then A; and Ay, intersect in k+1 points Q1,...,Qr,Fon_1,



4.4 Polynomials on P* 71

Ay N Ap is a P* and dim(T') = 2h-2-k. We choose k points Pi,...,P; on X in general
position so H = <I', Py,...,Px > is a hyperplane such that H-X>2h-k+k = 2h, a contrad-

diction. We conclude that the decomposition of Fs;,_1 in h linear factors is unique. O

Now we consider some specific cases.

e Case d = 8 and h = 8. Let F be a cubic polynomial and let X be the twisted cubic
curve in P3. A 3-polar polyhedron of F determines a plane containing F. Conversely
any plane containing F' intersects X in three points counted with multiplicity. The
plains of P3 containing a fixed point are parametrized by P?. So we have a well

defined injective morphism
0:VSP(F3,3) — P2, defined by {li,...,I5} — <B,....B>.

Since dim(VSP(F5,3)) = 2 we conclude that ¢ is an isomorphism and VSP(F3,3)

is isomorphic to P2.

e Case d = / and h = J. In this case F' is a quartic polynomial and X is the rational
normal curve of degree 4 in P*. By analogy with the preceding case we have a
bijective correspondence between the 4-polar polyhedra of F and the 3-planes in P*
containing the point F, that are parametrized by a P3. So we have a well defined

injective morphism
:VSP(Fy,4) — P2, defined by {l,...,ls} — <B,....5>.

As in the preceding case we conclude that VSP(F3,3) is isomorphic to P3.
This two observations suggest us that VSP(F},,h) will be isomorphic to P!,
PROPOSITION 21. The variety of power sums VSP(Fy,h) is isomorphic to P'~1.

Proof: Let F be a homogeneous polynomial of degree h. We consider the rational
normal curve X of degree h in P".
Any h-polar polyhedron {h,...,I, } of F determines h points ,...,I € X. This h points
span the hyperplane H; containing F. Let G(h-1,h,F) be the variety of the hyperplanes
containing F. We have a well defined morphism

©:VSP(F,,h) — G(h-1,h,F), defined by {ly,....I} — <I,...I'>.

Any hyperplane containing F' intersects X in h points counted with multiplicity so ¢ is
injective. Moreover the variety G(h-1,h,F) is isomorphic to P"~! and dim(VSP(F},,h))
= h-1. So ¢ is an injective morphism between smooth varieties of the same dimension
then it is an isomorphism and VSP(F,,h) = Ph—1. O

By Sylvester theorem we know that VISP(Fs,_1,h) is a single point and by the preceding
proposition VSP(F,,h) is P"~!. Now it is natural to ask what happens for a generic
integer d such that h < d < 2h-1. We begin with some particular observations.
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e We fix h = 8 so 2h-1 = 5. We have to controll the case d = 4. Let F be a
homogeneous polynomial of degree 4, we consider the decompositions of F' in three
linear factors. The partial derivatives of F' are two homogeneous polynomials F,F),
of degree 8 in & linear factors. In P3 we consider the twisted cubic curve X. Any
decomposition {1f,...,03 } of F in 3 linear factors determine a decomposition {,...,55 }
for F, and F,. The plane spanned by the points £,...,l5 € X contains the line R =
<Fy,Fy>. Conversely any plane containing R intersects X in three points counted
with multiplicity. The planes containing a line in P? are parametrized by a P!. So

we have a well defined injective morphism
0:VSP(F,,3) — P!, defined by {ly,....I5} — <B,....B>.

Since dim(VSP(F,,3)) = 1 this morphism is an isomorphism and VSP(Fy,3) is
isomorphic to P'.

e Now we fix h = 4 so 2h-1 = 7. We have to controll the cases d = 5,6.

For d = 5 we consider the partial derivatives of F' that are two polynomials F,F),
of degree 4 in /4 linear factors. In P* we are considering the rational normal curve
X of degree 4 and the $-planes containing the line R = <F,,F,>. By analogy
with the preceding case we have a bijective correspondence between the 4-polar
polyhedra of F and the $-planes of P* containing the line R that are parametrized
by a P? so we have VSP(F5,4) = P2

The case d = 6 is a bit more difficult in fact it is clear that it is not sufficient to con-
sider the first partial derivatives of F' to have a good correspondence. So we consider
the second partial derivatives F.,Fy,,F., that are three homogeneous polynomi-
als of degree 4 in 4 linear factors. Let X be the rational normal curve of degree
4 in P*. The second partial derivatives span a plane H = <F,.,F,,,F.,>. Any
decomposition {&,...,5 } determine a decomposition {I},...,[; } of the second partial
derivatives and a 3-plane I'; spanned by #,...,lf € X containing H. Conversely any
3-plane containing H intersects X in three points counted with multiplicity. The
3-planes in P* containing a fixed plane are parametrized by a P'. So we have an

injective morphism
©:VSP(F,,3)— P!, defined by {l,...,I4} — <lf,....I{ >.

Now dim(VSP(Fy4,3)) = 1 and so ¢ is an isomorphism.

The preceding observations suggest as that for any integer d such that h < d < 2h-1 the
variety VSP(Fy,h) will be a linear space and that in order to prove this we have only to
consider the right order of the partial derivatives of F.

THEOREM 18. Let h > 1 be a fixed integer. For any integer d such that h < d < 2h-1 the
variety of power sums VSP(Fy,h), parameterizing all decompositions of a homogeneous

polynomial of degree d in h linear factors, is isomorphic to P?h—4-1,

Proof: Let F be a homogeneous polynomial of degree d and let {Li,...,L,} be a
h-polar polyhedron of F. We write
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F =\ L{+..+ L.
We consider the partial derivatives of order d-h > 0 of F. This partial derivatives are

(Y = d-hrt

polynomials of degree h.

Let X be the rational normal curve of degree h in P".

The partial derivatives span a (d-h)-plane H and L¢,...,L¢ € X span a hyperplane in P?
containing H. We note that d < 2h-1 implies d-h < h-1. Let G(h-1,h,H) be the variety
of the hyperplanes of P* containing H. We have a well defined morphism

¢0:VSP(Fy,h) — G(h-1,h,H) , defined by {Li,...,L, } — <Li,....Lh>.

Now any hyperplane containing H intersects X in h points counted with multiplicity so

]P>2h7d71

© is injective. We note that G(h-1,h,H) is isomorphic to . Moreover

dim(VSP(Fg,h)) = 2h - (“4") = 2h-d - 1.

So ¢ is an injective morphism between smooth varieties of the same dimension and then
it is an isomorphism. We conclude that VSP(F,,h) = P2h—d-1, O

4.5 Morphisms into Grassmannians of lines

In this section we prove that some varieties of power sums admits a finite morphism to
G(1,r) for a particular r. For example we see in theorem 15 that VSP(F3,4) admits a
finite morphism to G(1,2) that indeed is injective.

Let F = F,; € k[x,y, z]4 be a homogeneous polynomial of odd degree d = 2k + 1 in three
variables. For any k € N we consider the partial derivatives of order k of F. These

derivatives are
("5 = 3d—k+2)(d—k+1)
homogeneous polynomials of degree d — k. We set
Ny= (5 tand hy =Ny —1=L1(d—k+2)(d—k+1) -2

Then we consider the Grassmannian of lines G(1,k+1) and the variety of power sums
VSP(F, h).

REMARK 11. We note that hy is exactly the Waring rank of F for k = 0,1,2,8,4,5 but
for k > 6 the variety VSP(F, hy) is empty. Moreover since n = 2 is fized the varieties
VSP(F, hy) are smooth.

Now we are ready to prove the following

PROPOSITION 22. For any 0 < k < 5 there exists a generically ((k;::)z) to one morphism

of the variety of power sums VSP(F, hy) to the Grassmannian of lines G(1,k+1). Where
deg(F) = d = 2k+1.
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Proof: We consider the partial derivatives of order k of F'. As we have observed before
these are (d7§+2) = 2(d—k+2)(d— k+ 1) points in the projective space PV* and span
an 2(d—k+2)(d—k+1)—1- plane H.

If {Ly,..., Ly, } is an hg polar polyhedron of F' then each partial derivative is decomposed

on the factor L;iik, e L‘é;k. Then any hy, polar polyhedron {Lq, ..., Ly, } of F' determine
an (hy — 1) - plane I, =< L¢7%, ...,Lﬁ:k > that contains H.

By dualization the (hj, —1) - planes of PN* containing a fixed (3(d—k+2)(d—k+1)—1) -
plane are the (N —(hy—1)—1) - planes contained in a (Ny — (3 (d—k+2)(d—k+1)—1)—1)
- plane. We compute

Ne—(h—1)—1= (") —1-Ll(@d-k+2)d-k+1)+2=1
Ny—(Gd—k+2)(d—k+1)-1)-1=3d*+3d—dk—3k—1=k+2—-1=k+1.

We get the morphism
or :VSP(Fhy) — G(1,k+1), {L1,....Lp,} = < LEF L >,

Let vg_j : P2 — PN* be the (d — k) - Veronese embedding and let V = v,_x(P?) be the
Veronese surface. Since the Lffk are points on the Veronese surface V' and

dim(V) + (hg —1) =2+ 3(d -k +2)(d —k+1) — 3= Ny,
we see that the morphism ¢ is generically finite. Moreover
deg(V) = (d—k)? = (k+1)?,

so any (hx — 1) - plane determines (k + 1)? points counted with multiplicity on V. With
this (k + 1)? points we can construct ((k'}:)z) polar polyhedra of F'. Then the morphism

Yk 18 ((k:;klf) to one. |

We report in the following table the cases of preceding proposition

k[ d ] h|dim(VSP(Fy,h)) | dim(G(1,k + 1))
0] 1]1 0 0
134 2 2
25|38 3 4
3|7 (13 3 6
41819 2 8
511126 0 10

REMARK 12. In particular the morphism
w2 : VSP(F5,8) — G(1,3)
maps VSP(F5,8) in a divisor of the Klein quadric G(1,8). Furthermore we note the the
morphism
o1 : VSP(F3,4) — G(1,2) = P?

is ((kf)z) = ((121)2) = 1 to one. Then dim(VSP(F3,4)) = 2 = dim(G(1,2)) and we

k
recover the isomorphism of theorem 15. Unfortunately this is the only case in which this

observation works.
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Let F = Fy € k[z,y, z]4 be a homogeneous polynomial of degree d, let C' = V(F) C P?
be the plane curve of degree d defined by F. Let {L1,..., Ly} be an h-polar polyhedron
of F. We consider Ly, ..., L, € (P?)* as points in the dual projective plane, then we have
the lines RY = L3, ..., Rﬁ =Ly C P2. The curve

.....

is a plane curve of degree h. Then CNXy, .. 1, = Zr,,.. L, is a zero subscheme of length

hd of the curve C, i.e. a point in the Hilbert scheme Hilbyq(C). We get a morphism
Sﬁd,h . VSP(F, h) — Hilbhd(C), deﬁned by {Ll, ...,Lh} (g ZLly---th'

It can be interesting to understand when this morphism fails to be injective.

4.6 Birational geometry of VSP

In this section we state some original results about varieties of power sums rationality. In
the first part we give some examples that show how to construct a cone of given degree

and dimension on a Veronese variety.

4.6.1 Cones on some Veronese varieties

We construct cones of given degree and dimension on some Veronese varieties. This can

be useful to write a rational map from a variety of power sums to a rational variety.

e Case d=2, n=2, h=3. Let F, € P° a homogeneous polynomial of degree two and
let V = V2 the Veronese surface in P°.
Let O be a point of P? that does not lie on V and let Y be the cone of the lines
over V with vertex O. Then Y contains V and dim(Y) = dim(V)+1 = 3, deg(Y)
= deg(V) = 4.
Any 3-polar polyhedron {Ly,...,L3 } of Fy generate a plane Hy, = <L3,...,L3 > with
L? € V3, that intersects Y in 4 points counted with multiplicity, the 3 points

L3,I2,L% and an additional point P. So we have a map
0:VSP(F5,3) --» Y, defined by {Ly,...,L3} — P.

o Case d=2, n=3, h=4. Let F» € P? be a homogeneous polynomial of degree two and
let V = V3 the Veronese variety in P9.
Let Py,P5,P3 € V three points in general position, the P; generate a P? denoted by
H. We project P? in PS via the P containing H. Let IT:P°\ H --» P°® the projection.
Then V' = II(V) is a variety in PS with dim(V') = dim(V) = 3 and deg(V') =
deg(V)-8 = 5.
Let X = II-(V') be the cone over V'. Then X C P? is a variety of dimension
dim(X) = dim(V')+3 = 6 and degree deg(X) = deg(V') = 5.
Now we have X C P? of dimension 6 and degree 5 containing V.
Any 4-polar polyhedron {Ly,...,Ls} of F; generate a plane H;, = <L?,...,L3 > with
L? € V, that intersects X in 5 points counted with multiplicity, the 4 points

I2,12,I2,12 and an additional point P. So we have a map



76

A NEw VIEWPOINT ON VSP

V:VSP(Fy,4) --» X, defined by {Li,...,Ly } — P.

Let {li,...,l4} and {Ly,...,Ls} two 4-polar polyhedra of F and let H; and Hj, the
two associated 3-spaces. If }51 = ]SL then H;NHj, contains the line R = <?Z,F>.
We can assume P, ¢ V.If l; # L; for any i,j=1,...,4, then H; and Hj generate a
5-plane A that intersects V in & points. Let @ € V be a point different from I;
and L;. Then <A,Q> is a 6-plane that intersects V in 9 points but deg(V) = 8, a
contradiction.

If i = L1 and [;#L; for any i>1 then H)NHj contains the plane <F,l;,P;>. So
A = <H;,Hy, > is a 4-plane that intersects V in 7 points. We choose two points
Q1,0 € V different form I;, L;. Then <A,Qq,Q>> is a 6-plane that intersects V
in 9 points, a contraddiction.

If | = Ly and [ = Ly we note that the variety Sec; (V) is defective and so
dim(Sec; (V)) = 6, we can assume that the lines <lj,lh> and <F,P,> are skew.
Then H;NHy, contains the 3-plane <F,l,lp,P;>so <B,....B> = <L2,... L3>

In this way we have proved that the map 1 is generically injective, furthermore
dim(VSP(Fy,4)) = dim(X) implies that 1 is birational. So VSP(F5,3) is bira-
tional to X.

Case d=2, n=/4, h=5. Let V = Vi, the Veronese variety in P** and let L,R C P* two
skew lines. We consider the linear system |Zrr(2)| of the quadric hypersurfaces of
P* containing L U R.

The linear system |Zrur(2)| is a subsystem of the complete linear system |Opa(2)]
whose sections are the quadric hypersurfaces of P*, moreover |Zryr(2)| does not
have unassigned base points.

To prove the last assertion we must show that for any point P ¢ L U R there exist
a quadric in |Zpyr(2)| that does not contain P.

Modulo an automorphism of P* we can suppose

The quadric hypersurfaces Q = V(X2 +X; X3 +X2X,) contains L and R but P does
not lie on Q. Two quadrics Q1,Q2 € |Zrur(2)| intersect in a surface Y = Q1 N Qs
of degree 4 such that e Y = @1 N @2 of degree 4 such that

wy = Oy(2+2 —4 — 1) = Oy(*l).

So Y is a Del Pezzo surface of degree 4 in P* and we can see it as the blow up of
the linear system of the plane cubics with 5 assigned base points Pi,...,Ps not three
collinear and no five on a conic.

Let Q3 € |Zrur(2)| another quadric, @3 intersects Y in a curve of degree 8 that is
union of the two line L,R and a curve I" with deg(T') = 6. The curve I" is obtained
by cutting Y with a quadric so it corresponds to a curve of degree 6 in Py with
P1,P5 as 3-fold points and the other P; as 2-fold points. We can suppose that L,R
are the exceptional divisors of the blow up corresponding to P; and P;. So on Y

we have
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I''L =T-R =5

Intersecting with a new quadric Q4 € |Zrur(2)| we obtain 12 points on I' but 3
points are on L an 8 are on R so if Yy = Blpug(P*) is the blow up of P* in L U R
on Y we miss §+3 = 6 points.

We note that the complete linear system |Opa(2)| has dimension
dim(H (|Ops(2)/)) - 1 = (*3%) - 1 = 14.

Imposing to a quadric to contain two skew lines is equivalent to impose to the system
|Op4(2)] six independents conditions, so we have dim(/Zrur(2)]) = 14 - 3-3 = 8.
The blow up linear system Blrur (/Zrur(2)/) has degree 12 - 3 - 3 = 6 and it has
dimension dim(Blpur(/Zrur(2)])) = dim(/Zror(2)]) = 8. Moreover the new linear
system on Y is without base points and induces a morphism of Y in P8 as a 4-fold
of degree 6.

?%PS

So via ¢:Y — P® we obtain a variety Y of dimension 4 and degree 6. In P we
consider the cone of the P containing a fixed P? over Y. This cone is a variety X
of dimension dim(X) = 4+6 = 10 and deg(X) = 6. Moreover Y is obtained by the
blow up of the linear system |Zp_ g (2)| that is a subsystem of the complete linear
system |Ops(2)| giving the 2-uple embedding of P* in P4, so the cone X contains
the Veronese variety V. Now any 5-polar polyhedra {Li,...,Ls} of F determines a
4-plane Hy, = <L?,...,[2 > whose intersection with X consists of 6 points counted
with multiplicity. Five points are the L? and we have an additional point P. Since
dim(VSP(F5,5)) = 10 we have a rational map

V:VSP(Fy,5) --» X, defined by {Li,...,Ls } — P.

4.6.2 Quadrics and Cubics

In this section we state the rationality of some varieties of power sums. In particular
we consider homogeneous polynomials of degree two Fy» € k[xq, ..., ]2 decomposed in
h =n+1 = wrk(F,) linear factors and we prove that the varieties VSP(Fy,n+1) are

rational.

PROPOSITION 23. The variety VSP(F3,3) is birational to a smooth quartic Del Pezzo
threefold.

Proof: Let Fy € P> a homogeneous polynomial of degree two and let V =V2 the
Veronese surface in P°.
The homogeneous ideal I(V) is generated by quadric forms. Let @ and @ two quadric
forms in the ideal I(V) then X = @Q; N @2 has dimension 3, degree 4 and contains V.
Moreover the canonical sheaf of X is
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wx = Ox(2+2—5—1) = Ox(—g)

So the anticanonical divisor is -Kx = 2H = (dim(X)-1)H, where H is the hyperplane
section. So X is a smooth quartic Del Pezzo threefold in P?.

Any 3-polar polyhedron {Li,...,L3} of Fy generate a plane H;, = <L3,...,[3> with L?
€ V3. The plane Hy, intersects X in 4 points counted with multiplicity, the & points
L2,12,12 and an additional point P. So we have a rational map

©:VSP(F,,3) --» X, defined by {Ly,...,L3} — Py.

If ISL = ]31 we have two planes II;, and II; containing the line <F,]3L >. The point F is
very general we can assume F ¢ V.

If L, = and L; # ; for any i>1 then II; and II; generate a P? since F and ISL e X
are genaral and we can assume [; ¢ <F,15L >.

If L; # I; for any i then II; and II; generate a 3-plane A and the intersection ANV can
have dimension 0 or 1. If dim(ANV) = 0 then A intersects V in 6 points, a contraddiction
because deg(V) = 4. If ANV is a curve C. We write A = HiNH; as intersection of two
hyperplanes, then C corresponds to a plane curve C that is a common component of two
conics, so deg(C) = 1 and deg(C) = 2. But we have Hy-C' = 3, a contradiction. Then
II;, = II; and the map ¢ is generically injective. Now dim(VSP(F5,3)) = 3 = dim(X)

implies that ¢ is birational. O

We have seen in chapter 3 The Mukai’s theorem which states that VSP(F5,3) is a
smooth Fano threefold that indeed is birational to a smooth quartic Del Pezzo threefold.
Now we come to an important theorem. Let F € k[xg : ... : 2,]2 be a homogeneous
polynomial, by Alexander-Hirschowitzs theorem we know that wrk(F) = n + 1, and we
have the following

THEOREM 19. Let F be a homogeneous polynomial of degree two in the n+1 variables
X0,---,%n. Then for any n>0 the variety VSP(F,n+1) is rational.

Proof: We have d = deg(F) = 2,h = n+1 and N = 5 (n+2)(n+1)-1.
Modulo an automorphism of P we can write F' in the form

F=x +.+ 5.

Let ANV~ be a generic (N-n)-plane in PV that does not contain F. We consider the generic
quadric G € AN~" and the pencil of quadrics AF-G generated by F and G.

Let @ € M(n+1) be the symmetric matrix representing the generic quadric on P™ then
the hypersurface X = V(det(Q)) is a hypersurface of degree n+1 in PV parameterizing
the singular quadrics.

Since F' and G are generic quadratic forms the line <F,G> will intersect X in n+1 points
that represent the cones Cy,...,C,, in the pencil A\F-G. If we denote by v; € P™ the vertex
of the cone C; for i=0,...,n, then via the Veronese embedding v P"—PY we find n+1
points v5(v; ) on the Veronese variety V3,.

If A is the matrix of G then the cones in the pencil A\F-G are determined by the values
of A such that det(AI-A) = 0, in other words the cones are determined by the eigenvalues
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Ao,---,An of A that we can suppose distinct because G is general. Then for any i=0,...,n

we have
MI-A = Mat(C;) and v; = Sing(C;) = Ker(M\I-A).
We see that the vertex v; of the cone Cj is the eigenvector of A corresponding to the

eigenvalue \;. In the basis {v,...,v, } the matrix A is in the form
o - 0

0 - A,

and G is in the form G = A\g@g+...+A,v%. We note that

Ni—Ag e e e 0

Since A; # A; for i#j we have
v = Ker(\MI —A) = (0,..., 1 ,...,0).

i—thplace
Note that the basis {vg,...,v,} is orthonormal, so the matrix of F' remains the identity

after the change of basis. For the Veronese embedding we have
Vo (oo +... +0pTp) = QT3 +...+02 a2+ {mized terms}
va(v) = vo([1:0:...:0]) = 22,....v2 (v,) = va([0:0:...:1]) = 22.
In this way we see that F,G € <a3,...,22 > and we can define a map
AN -—» VSP(F,n+1), defined by G — {uvp,...,v, }.
Now we define another map
©:VSP(Fn+1)--sAN—" defined by {Lo,...,L,} — G = <IL2,....[2 > nNAN""™,

We want to prove that 1 is the inverse of .
If G, = <I3,....[2 >N AN=" with {Ly,...,L,} € VSP(F,n+1) then we can write

G = N L3 +...+N\, L2
and since the diagonalizing bases is orthonormal we can assume
72 2
F = L§+...+L;.

We consider the pencil AF-Gy, whose associated matrix in the basis {Lo,...,L, } is
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Then for A = \;, i=0,...,n we have the cones in the pencil AF-G,.
For A = \; we get

Ker(\;I-B) = (0,..., (1 ,...,0)

j—thplace

that represents the form L;. So we have ¢ (Gr,) = {Lo,...,Ly } and this prove that

Yo = Idysprni1)e-

Now we fix G € AN~ and we have ¢(G) = {Lo,...,L,} with G € <I3,...,[2>. On
the other hand ¢ ({Lo,...,Ln}) = Gr = <L3,...,.L2> NAN~" but the points G, G}, are
containes in <L2.....L2> N AY~" implies G = G, and this prove that

o1 =Id\Nn-n.

We conclude that the maps ¥ and ¢ defines a birational isomorphism between VSP(F,n+1)
and AN~ O

REMARK 13. We consider two particular cases when d = 3.

o Let F3 € PY be a homogeneous polynomial and let V.= V@& C P? be the Veronese
variety. Let Py,Py,P3 € P2 be three points in general position.
Let [Tp, (3)] C |Opz2 (3)] be the linear system of the plane cubics containing Py,Ps,Ps.
Then we have

deg([Zp,(3)]) = 9 and K ([Ip,(3)]) = 9-3 = 7.

The linear system [Ip, (3)] is without unassigned base points and so blowing up P?

in P1,Py,P5 we obtain a very ample linear system Blp, ([Zp, (3)]) such that
deg(Blp, ([Zp, (3)])) = 9-3 = 6 and K (Blp, ([Ip,(3)])) = 7.

The linear system Blp, ([Ip, (3)]) gives an embedding ofﬁ5 = Bip,(P?) in PS as a
Del Pezzo surface of degree 6 that we denote by Y.

R

Now let X be the cone over Y constructed by the 3-planes containing the plane
<v3(P1),v3(Pa),v3(P3)>, then deg(X) = 6 and dim(X) = 2+8 = 5. Let {Ly,...,Ls }
be a 5-polar polyhedron of Fs. We consider the 4-plane Hy, =< L3,...,L3 > with
L? € V2. The J-plane Hy, intersects X in 6 points counted with multiplicity, the 5
points and an additional point Pr, € X. In this way we get a rational map

("2 VSP(F375) ——->X, {Ll,...,Lg)} = PL.
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o Let F3 € P2 be a homogeneous polynomial of degree 3 in four variables. The partial
derivatives of Fs are homogeneous polynomials of degree two F,,F,,F. F, € P°.
We denote by Hg = <F.,F,,F, F,> the 2-plane spanned by the derivatives. We
consider the Veronese variety V.= Vi C P?, then any 6-polar polyhedron {Ly,...,Lg }
determines a 5-plane Hy = <Ly,...,Lg > that contains Hg and intersects V in exactly
Ly,...,Lg since 5+3<9.

Now we consider a 4-plane A* such that A*NH3 = @ so HyNA* = {Pr }. We define

the rational map

: VSP(F3,6)--+A*, defined by {Ly,...,Le }—Pp.

4.7 Maps between VSP

Let F be a homogeneous polynomial of degree d in n+ 1 variables and let {L1, ..., L} be
an h-polar polyhedron of F, we write

F=L{+. +L{.

Let H be an hyperplane in P", we denote by F the restriction to H of F. Then F is a

—~ ~d
homogeneous polynomial of degree d in n variables. Since L¢ = L; we have
~  —d —~d
F=L +.+L)
where the E = Ly are linear forms on P"~!. In this way we get a rational map
on : VSP(F, h) -——» VSP(F, h), {L1,...,Ly} — {L1,..., Ly}

We want to give a geometrical description of this map. We can assume H = {z,, = 0}.

The polynomial F' is of the form

_ . . plo in
F= Zi0+..‘+in:d fioyosin®q - Tp7"-

To restrict F' on H means to kill the monomials in which z,, compares. This monomials
form a space of dimension (";f;l).

So we are projecting PV in PV from a ("t — 1 — plane 11, where N = ("}%) — 1 and
N= (”_;+d). The projection maps F' in F. The h — polyhedron {Ly, ..., L} determine
the zero subscheme of length h, {L¢, ...7L‘,f} on the Veronese variety V. that spans a
(h — 1) — plane Hy, passing through F. This h — plane is projected in a (h — 1) — plane
passing through F and h — secant to the Veronese variety VJ};_IU if and only if Hy, does
not intersect the center of projection II. This is the reason why a priori we can not say

that ¢p is a morphism.
ExXaMPLE 18. We fix d = 2. We have

F = aox% + oq:z:% + 0[21'% + 043:133 + ux0x1 + 520X + gLoxs +Q7T1 Ly + Q8T 1 T3+ QlgT2X3.

F = aoxg + alx% + 062.13% + ayuxox1 + a5x9x2 + 7T To.
We are projecting P° in the 5-plane given by the equation

{X5=X5=Xs=X9=0}



82 A NEw VIEWPOINT ON VSP

from a 3-plane.

Since the dimension of VSP(F,h) is h(n + 1) — ("gd) the expected dimension of the
variety X C Secp_1V]. of the (h—1)—planes passing though F'is h(n+1)— (”;d) +(h=1).
If h(in+1)— (";d) +(h—1)+dim(II) < N the X does not intersect II, but this inequality
is equivalent to h(n+2) < 1— (”;ﬁ;l) that is never verified. So we expect that the maps
of the form ¢y are never morphisms.

However it can be interesting to understand if for some n, h,d one can find a plane H
such that g is generically injective. In this way we can study the birational geometry

of varieties of power sums from another viewpoint.
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CONCLUSIONS

As we have seen few varieties of sums of powers have been classified. To resume the main

results of this work we report a table updated with our contributions.

d n h VSP(Fg4,h) Reference
2h-1 1 h 1 point Sylvester
h<d<2h-1 | 1 h p2h-d-1 Massarenti and Mella

2 2 3 quintic Fano threefold Mukai [Muk92]

3 2 4 P2 Dolgachev and Kanev [DK93]
3 2 4 New proof of D-K Th. Massarenti and Mella

2 2 4 birational to G(1,4) Massarenti and Mella
2,3 2 4 Reconstruction of Decompositions Massarenti and Mella

4 2 6 Fano threefold of genus twelve Mukai [Muk92|

5 2 7 1 point Hilbert, Richmond, Palatini
5 2 7 New proof of Hilbert Th. Massarenti and Mella

6 2 10 K3 surface of genus 20 Mukai [Muk92]

7 2 12 5 points Dixon and Stuart

8 2 15 16 points Mukai [Muk92]

2 3 4 G(1,4) Ranestad and Schreier [RS00]|
3 3 5 1 point Sylvester’s Pentahedral Theorem
3 3 5 New proof of Sylvester Th. Massarenti and Mella

3 4 8 W Ranestad and Schreier [RS00]
3 5 10 S Iliev and Ranestad [IR01b]
2 n | nt1l VSP(F,n+1) rationality Massarenti and Mella

Our next object is the study the birational geometry and the rational connection of

varieties of power sums in the case d > 3.
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