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Introduction

... the end of all our exploring
will be to arrive where we started

and know the place for the first time.
T.S. Eliot, ”Little Gidding”

A well know theorem of linear algebra asserts that if F2 is a nondegenerate quadratic
form over a k-vector space of dimension n + 1, with k algebraically closed, then F2 can
be written has n+ 1 squares of linear forms

F2 = L2
1 + ...+ L2

n+1.

The linear forms Li considered as vectors in the dual space V ∗ are mutually orthogonal
with respect to the dual quadratic form F ∗2 .
For more than hundred years algebraists and geometers have searched for a generalization
of this construction to homogeneous forms Fd on V of arbitrary degree. This problem is
known as the Waring problem for homogeneous form.
The more important object of the study is the variety of sums of powers VSP(Fd, h)o

parametrizing all representations of Fd as a sum of powers of h linear forms. A decom-
position {L1, ..., Lh} in h linear forms of Fd is called an h-polar polyhedron of Fd. The
variety VSP(Fd, h)o can be viewed as the subvariety of the symmetric power PV ∗(h) of
PV ∗ parametrizing the polar polyhedra of Fd.
The Waring problem for homogeneous form was only recently solved by J.Alexander
and A.Hirschowitz. Their result also yields, via Terraccini’s lemma, the dimension of
VSP(Fd, h)o. The varieties VSP(Fd, h)o were studied in the classical algebraic geometry
by A. Dixon, F. Palatini, T Reye, H. Richmond, J. Rosanes, G. Scorza, A. Terracini,
and others.
The lack of techniques of higher dimensional algebraic geometry did not allow them to
give any explicit construction of the varieties VSP(Fd, h)o or to study a possible com-
pactification VSP(Fd, h) of VSP(Fd, h)o.
The interest in varieties of power sums theory has been reawaken in 1992 by a work of
S.Mukai, who gave a construction of VSP(Fd, h)o in the cases

(n,d,h)=(2, 2, 3), (2, 4, 6), (2, 6, 10)

for a general polynomial Fd and also constructed a smooth compactication VSP(Fd, h)
which turned out to be a Fano threefold in the first two cases and a K3 surface in the
third case. The construction of Mukai employs a generalization of the concept of the dual
quadratic form to forms of arbitrary even degree d = 2k.
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Other smooth compactifications of VSP(Fd, h) are known for general cubic polynomi-
als. If n =2, VSP(F3, 4) is isomorphic to the projective plane, if n =3, VSP(F3, 5) is
one point (this is a classical result of Sylvester), if n =4, VSP(F3, 8) is a smooth Fano
variety of dimension 5 and, if n =5, VSP(F3, 10) is a holomorphic symplectic 4 -fold.
The state of art in varieties of power sums classification is resumed in the following table.

d n h VSP(Fd, h) Reference

2h− 1 1 h 1 point Sylvester

2 2 3 quintic Fano threefold Mukai [Muk92]
3 2 4 P2 Dolgachev and Kanev [DK93]
4 2 6 Fano threefold of genus twelve Mukai [Muk92]
5 2 7 1 point Hilbert, Richmond, Palatini

6 2 10 K3 surface of genus 20 Mukai [Muk92]
7 2 12 5 points Dixon and Stuart

8 2 15 16 points Mukai [Muk92]
2 3 4 G(1, 4) Ranestad and Schreier [RS00]
3 3 5 1 point Sylvester′s Pentahedral Theorem

3 4 8 W Ranestad and Schreier [RS00]
3 5 10 S Iliev and Ranestad [IR01b]

Where W is a fivefold and S is is a smooth fourfold.

In the first chapter we describe some classical objects of Algebraic Geometry. In par-
ticular we state some properties of Grassmannians, Hilbert Schemes and Secant Varieties
that will be very important in the study of Varieties of Power Sums.
In the second chapter we define the concept of variety of power sums and we prove some
general facts about these varieties.
In the third chapter we report Mukai’s construction and we prove Mukai’s theorem.
The last chapter is the most important, we give some new proof about well known the-
orems and we state some new results. We prove by geometrical methods Hilbert’s and
Sylvester’s theorems. Then we give an alternative proof of Dolgachev - Kanev’s theorem
and using the same idea we will find that VSP(F2,4) is a Grassmannian, moreover we give
a method to reconstruct all 4-polar polyhedra of quadric and cubic polynomials. Finally
we state some original results about varieties of power sums rationality, in particular we
prove rationality of varieties of power sums of quadrics by arguments from linear algebra.

A.M. - 5 July 2009



Chapter 1

General Results

In this first chapter we describe some classical objects of Algebraic Geometry. In particular
we state some properties of Grassmannians, Hilbert Schemes and Secant Varieties that
will be very important in the study of Varieties of Power Sums.

1.1 Grassmannians

Let V be a k -vector space of dimension n and let W ⊆ V be a subspace of dimension h.
Let {v1,...,vh} be a basis of W and consider the h-multivector v1∧...∧vh in the h-wedge
product

∧hV. If {u1,...,uh} is another basis of W and B is the matrix of change of basis
we have v1∧...∧vh = det(B)(u1∧...∧uh). The matrix B is invertible so det(B) 6= 0 and
the two multivectors v1∧...∧vh and u1∧...∧uh identifies the same point in the projective
space P(

∧hV). If we denote with G(h,n) the set of the subspaces of dimension h of V we
have a well defined map

Pk:G(h,n) → P(
∧hV), defined by W 7→ [v1∧...∧vh]

If {e1,...,en} is a basis of V then {ei1∧...∧eih} with i1 < i2 < ... < ih is a basis of
∧hV.

So dim(
∧hV) =

(
n
h

)
and P(

∧hV) ∼= PN with N =
(
n
h

)
- 1.

We can write the vector v1∧...∧vh in the basis {ei1∧...∧eih} as

v1∧...∧vh =
∑
i1<...<ih

pi1,...,ihei1∧...∧eih
The elements pi1,...,ih are called the Plücker coordinates of W.
Given a multivector w ∈

∧hV and a vector v ∈ V we say that v divides w if there
exist a multivector u ∈

∧h−1V such that w = v ∧ u. A multivector w ∈
∧hV is totally

decomposable if and only if the space of vectors dividing w has dimension h.
For any [w] = Pk(W) we can recover W as the space of vectors v such that v ∧ w = 0 in∧h+1V. So the map Pk is injective and it is called the Plücker embedding. Now we give a
more explicit description of this embedding. If H = <v1,...,vh> and {e1,...,en} is a basis
of V we can write vi = v1

i e1+...+vni en. We consider the h×n matrix

M=


v1

1 . . . . . . vn1
...

. . . . . .
...

v1
h . . . . . . vnh


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If ∆i1,...,ih is the determinant of the matrix h×h whose columns are the columns i1,...,ih
ofM with i1 <...< ih then the Plücker embedding can be write in the following way

Pk:G(h,n) → P(
∧hV), defined by W 7→ [∆1,..,h:...:∆n−h,..,n].

Now we fix a multivector w ∈
∧hV and consider the map

ϕw: V→
∧h+1V, v7→ w ∧ v.

Then w is totally decomposable if and only if dim(Ker(ϕw)) = h if and only if

rank(ϕw) = n-h.

We note that the rank of ϕw is never strictly less than n-h and we conclude that

[w] ∈ G(h,n) ⇔ rank(ϕw) ≤ n-h

Now the map L:
∧hV→ Hom(V,

∧h+1V) defined by w7→ϕw is linear and G(h,n)⊆P(
∧hV)

is the subset defined by the vanishing of (n-h+1)×(n-h+1) minors of the matrix of L. We
see that G(h,n) is an algebraic variety called the Grassmannian of the h-planes of V.

Remark 1. Any h-plane W ⊆ V determine a (n-h)-plane V
W , and we have an exact

sequence

0 7→ W → V → V
W 7→ 0

By dualization we obtain another exact sequence

0 7→ ( VW )* → V* → W* 7→ 0

Considering the canonical isomorphism of a vector space of finite dimension with its
bidual, if we dualize the second sequence we recover the first sequence. So we have a
bijective correspondence between the h-plane in V and the (n-h)-plane in V* then

G(h,V) ∼= G(n-h,V*).

Proposition 1. The Grassmannian G(h,n) parameterizing the h-planes in Pn is a smooth
variety of dimension (h+1)(n-h).

Proof : We denote by PH ∈ G(h,n) the point corresponding to the (h+1)-plane H of
Vn+1. Let {v0,...,vh} be a basis of H. If {e0,...,en} is a basis of Vn+1 then we can write
vi = v0

i e0+...+vni en. We consider the matrix

M=


v0

0 . . . . . . vn0
...

. . . . . .
...

v0
h . . . . . . vnh


LetMh a (h+1)×(h+1) minor ofM obtained extracting h-columns inM, say the first
h, we consider the set

UI = {PH ∈ G(h+1,n+1) | det(MI) 6= 0}

The sets UI are open sets in G(h+1,n+1) and on UI the matrixMI is invertible and we
have
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M−1
I M=


1 0 . . . 0 λ0,1 . . . λ0,n−h
...

. . . . . .
...

...
. . .

...
0 . . . 0 1 λh,1 . . . λh,n−h


We note that any point PH ∈ UI determines uniquely a matrix of this form. So we have
a bijective correspondence

ψI : UI → k(h+1)(n−h), PH 7→(λ0,1,...,λ0,n−h,...,λh,n−h)

So UI ∼= k(h+1)(n−h). Now the open sets of the form UI cover G(h+1,n+1) and we con-
clude that G(h+1,n+1) is smooth. 2

The first non trivial example of Grassmannian is the case of the lines in P3.

Example 1. A line L = <x,y> in P3 corresponds to a plane H in V4. If {e0,...,e3} is a
basis of V4 we can write x = x0e0+...+x3e3 and y = y0e0+...+y3e3. In this case we have
N = 5 and the Plücker embedding is

Pk: G(1,3) → P5, L7→[∆0,1:∆0,2:∆0,3:∆1,2:∆1,3:∆2,3]

where ∆i,j = xiyj-xjyi.
The ∆i,j satisfy the equation ∆0,1∆2,3-∆0,2∆1,3+∆0,3∆1,2 = 0.
If [X0:...:X5] are the homogeneous coordinates on P5 then G(1,3) is contained in the
quadric

K = V(X0X5-X1X4+X2X3)

But we know that G(1,3) is a projective variety of dimension 4 so it must be equal to K.
We conclude that the Grassmannian G(1,3) is a smooth quadric hypersurface in P5.

Now we enunciate the following proposition on the degree of G(h,n) in its Plücker
embedding without proving it.

Proposition 2. The Grassmannian G(h,n), embedded in PN via the Plücker embedding,
is a variety of degree

deg(G(h,n)) = (h(n-h))!
∏h
j=1

(j−1)!
(n−h+j−1)!

Proof : Harris - Algebraic Geometry a first Course [Lecture. 19 p.247].

Finally we define two important vector bundles on G(h,n). Consider the map

π:G(h,n)×V → G(h,n), (x,v)7→x.

On each x ∈ G(h,n) the fibre π−1(x) is isomorphic to the vector space V so we have
defined a vector bundle of rank n = dim(V) on G(h,n) called the trivial bundle and
denoted by EG. Now we consider the subvariety I ⊆ G(h,n)×V defined by

I = {(x,v) ∈ G(h,n)×V | v ∈ Wx}
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where Wx is the h-subspace of V corresponding to x ∈ G(h,n). Then for each x ∈ G(h,n)
the fibre of the map

ϕ:I×V → G(h,n), (x,v)7→x,

is isomorphic to kh. In this way we get a vector bundle of rank h on G(h,n) called the
universal bundle and denoted by SG. We note that for any x ∈ G(h,n) the fibre of ϕ
is a subvector space of the fibre of π and SG is a subbundle of EG. We have the exact
sequence

07→SG−→EG−→QG 7→0

where QG ∼= EG

SG
is a quotient vector bundle of rank n-h on G(h,n).

1.1.1 The Plücker embedding

In this section we prove directly that the Plücker map is indeed an embedding. We
consider the map

Pk:G(h,n) → P(
∧hV), defined by W 7→ [∆W

1,..,h:...:∆
W
n−h,..,n].

Suppose that W =< w1, ..., wh > and Z =< z1, ..., zh > are two h-subspaces of V such
that pk(W) = pk(Z), then there exists a non zero λ ∈ k such that ∆W

j1,..,jh
= λ∆Z

j1,..,jh
for

any j1, ..., jh. We write

wi = wi0e0 + ...+ winen and zi = zi0e0 + ...+ zinen.

Then we consider the matrix 

w1
0 . . . w1

n

...
. . .

...
wh0 . . . whn
z1

0 . . . z1
n

...
. . .

...
zh0 . . . zhn


It is clear from the relations ∆W

j1,..,jh
= λ∆Z

j1,..,jh
that this matrix has rank h, so W = Z

and the Plücker map is injective.
We saw that the Grassmannian G(h, n) is covered by the affine sets

Ui1,...,ih
= {[p1,...,h, ..., pn−h,...,h]|pi1,...,ih 6= 0}.

Now we consider the Plücker map on this open affine subset to prove that its differential
is injective. It not restrictive to consider U1,...,h, since p1,...,h = ∆1,...,h 6= 0 the points in
U1,...,h can be represented by a matrix in the form

1 0 . . . 0 x0
h+1 . . . x0

n

...
. . . . . .

...
...

. . .
...

0 . . . 0 1 xhh+1 . . . xhn


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The (h+ 1)× (h+ 1) minor 
1 0 . . . 0 x0

h+1
...

. . . . . .
...

...
0 . . . 0 0 xhh+1


has determinant equal to xhh+1. Taking all the minors we can interpret the Plücker map
on U1,...,h as a morphism on A(h+1)(n−h) in the form

pkU1,...,h
: U1,...,h → AN , pkU1,...,h

([x0
h+1 : ... : xhn]) = [x0

h+1 : ... : xhn : P0 : ... : Pt].

Where P0, ..., Pt are polynomial function in the x0
h+1, ..., x

h
n. So modulo a change of basis

the Jacobian matrix of pkU1,...,h
is

J(pkU1,...,h
) =



1 0 . . . 0
...

. . . . . .
...

0 . . . 0 1
∂P0
∂x0

h+1
. . . . . . ∂P0

∂x0
h+1

...
. . . . . .

...
∂Pt

∂x0
h+1

. . . . . . ∂Pt

∂x0
h+1


and it this clear that rank(J(pkU1,...,h

)) = h + 1. So the the differential of pkU1,...,h
is

injective and since the situation is similar on the other sets of the covering we conclude
that the Plücker map is an embedding.

Example 2. We consider again G(1, 3) and the map

Pk : G(1, 3) −→ P5,
W 7→ [x0y1 − x1y0 : x0y2 − x2y0 : x0y3 − x3y0 : x1y2 − x2y1 : x1y3 − x3y1 : x2y3 − x3y2].

On U0,1 we can assume x0 = y1 = 1 and x1 = y0 = 0, so

pkU0,1([x2 : x3 : y2 : y3]) = [y2 : y3 : x2 : x3 : x2y3 − x3y2]

The Jacobian matrix is

J(pkU0,1) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
y3 −y2 −x3 x2


and clearly its rank is 4.

1.1.2 Tangent space to Grassmannians

Since we have covered G(h, n) by affine open subsets its is immediate to describe its
tangent space at each point Λ; it is just the underlying vector space of any affine piece in
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which Λ lies in. Now we want to describe the tangent space in a intrinsic way to get the
tangent bundle of G(h, n).
Let B = {e0, ..., en} be a basis of V and look for simplicity at the affine piece U0,...,h

represented by the matrix
1 0 . . . 0 x0

h+1 . . . x0
n

...
. . . . . .

...
...

. . .
...

0 . . . 0 1 xhh+1 . . . xhn


Let Λ be a point in U0,...,h, this is the same of fixing a basis B

′
= {v0, ..., vh} of Λ and

whose coordinates with respect to the basis B are the rows of the given matrix. Since the
zero vector in the tangent space in Λ must correspond to Λ the right way to interpret a
tangent vector to G(h, n) in Λ is as a matrix of the form

1 0 . . . 0 x0
h+1 + t0h+1 . . . x0

n + t0n
...

. . . . . .
...

...
. . .

...
0 . . . 0 1 xhh+1 + thh+1 . . . xhn + thn


where (t0h+1, ..., t

h
n) represents a tangent direction. It is natural to interpret this matrix

as the matrix of a linear map Λ→ V with respect to the basis B
′
and B. Note that this

morphism maps each vectors vi to itself plus a linear combination depending only on the
tij . So it is natural to compose our map with the projection map V → V/Λ for finally
getting a linear map Λ→ V/Λ whose matrix is precisely

t0h+1 . . . t0n
...

. . .
...

thh+1 . . . thn


when taking B

′
as a basis of Λ and the classes of eh+1, ..., en as a basis of V/Λ. The

important fact is that this map is independent on the affine chart chosen an so we can
canonically identify the tangent space of G(h, n) in Λ with the vector spaceHom(Λ, V/Λ).
Then we have

TΛG(h, n) = Hom(Λ, V/Λ).

Now recalling our description of the universal bundle SG and of the quotient bundle QG
we have that the tangent sheaf of G(h, n) is naturally isomorphic to Hom(SG,QG),

TG(h, n) ∼= Hom(SG,QG) ∼= SˇG ⊗QG.

1.2 The Hilbert Scheme

The Grassmannians parametrize the subspace of a given dimension of a projective space.
The Hilbert schemes are a sort of generalization of the Grassmannias, in some sense they
parametrize the subvarieties of Pn with a given degree and dimension.
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1.2.1 The Hilbert Polynomial

We begin this section defining the Hilbert polynomial of a projective scheme X in Pn.
The idea is to associate to the homogeneous coordinate ring S(X) of X a polynomial
PX ∈ Q[x] that codifies some numerical invariants of X as the dimension and the degree.

Definition 1. A polynomial P(x) ∈ Q[x] is called a numerical polynomial if P(n) ∈ Z
for all integers n»0.

Proposition 3. If P ∈ Q[x] is a numerical polynomial then there are integers k0,...,kr
such that

P(x) = k0

(
x
r

)
+ k1

(
x
r−1

)
+...+ kr.

If F:Z→ Z is a function and there exists a numerical polynomial Q(x) such that the differ-
ence function ∆F = F(n+1) - F(n) for all n»0, then there exists a numerical polynomial
P(x) such that F(n) = P(n) for all n»0.

Proof : We proceed by induction on the degree of P. If deg(P) = 0 we take k0 =...=
kr = 0. Now

(
x
r

)
= xr

r! +... so we can express a polynomial P ∈ Q[x] with deg(P) = r
in the above form with k0,...,kr ∈ Q. We define the difference polynomial as ∆P(x) =
P(x+1) - P(x) so

∆
(
x
r

)
=
(
x+1
r

)
-
(
x
r

)
= 1

r!x(x-1)...(x-r+2)r =
(
x
r−1

)
and

∆P = k0

(
x
r−1

)
+ k1

(
x
r−2

)
+...+kr−1.

Now deg(∆P) = r-1 and by induction k0,...,kr−1 ∈ Z, P(n) ∈ Z for n»0 implies kr ∈ Z.
Let F:Z → Z be a function, by the preceding part we can write

Q = k0

(
x
r

)
+ k1

(
x
r−1

)
+...+ kr, with k0,...,kr ∈ Z and let

P = k0

(
x
r+1

)
+ k1

(
x
r

)
+...+ kr

(
x
1

)
.

Then ∆P = k0∆
(
x
r+1

)
+ k1∆

(
x
r

)
+...+ kr∆

(
x
1

)
= Q. But ∆F(n) = Q(n) for n»0 implies

that ∆(F-P)(n) = 0 for n»0 so (F-P)(n) = kr+1 constant for n»0, with kr+1 ∈ Z. We
have

F(n) = P(n) + kr+1 = k0

(
x
r+1

)
+ k1

(
x
r

)
+...+ kr

(
x
1

)
+ kr+1 for all n»0.

2

Let S =
⊕

k∈ZSk be a graded ring. A graded S -module is a S -module M with a
decomposition M =

⊕
h∈ZMh such that SkMh ⊆ Mk+h. We define the twisted module

M(l) by M(l)h = Mh+l for any l ∈ Z. The annihilator of M is

Ann(M) = {s ∈ S such that s·m = 0 ∀ m ∈ M}.

It is a homogeneous ideal in S. The Hilbert function of M is defined by

hM (l) = dimkMl for each l ∈ Z.
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Theorem 1. (Hilbert-Serre) Let M be a finitely generated graded S-module where

S = k[x0,...,xn].

Then there exists a unique polynomial PM (z) ∈ Q[z] such that hM (l) = PM (l) for all suffi-
ciently large integers l. Furthermore deg(PM (z)) = dim(V(Ann(M))) where V(Ann(M))
denotes the zero set in Pn defined by the homogeneous ideal Ann(M).

Proof : We note that if 0 7→M
′ f−→M g−→M

′′ 7→0 is a short exact sequence, then hM (l)
= dimkMl = dimkM

′
l + dimkM

′′
l = hM ′(l) + hM ′′(l). Now we prove that V(Ann(M))

= V(Ann(M
′
)) ∪ V(Ann(M

′′
)). Let s ∈ Ann(M) then s·m = 0 for any m ∈ M. We

consider m
′ ∈ M

′
and m

′′ ∈ M
′′
. Then f(s·m′) = s · f(m′) = 0 but f is injective

so s·m′ = 0. Now there exists m ∈ M such that g(m) = m
′′

and s·m′′ = g(s·m) =
0. Now Ann(M) ⊆ (Ann(M

′
)) ∩ (Ann(M

′′
) implies V(Ann(M

′
)) ∪ V(Ann(M

′′
)) ⊆

V(Ann(M)). Let x /∈ V(Ann(M)) then there exists P ∈ Ann(M) such that P(x) 6= 0.
From Ann(M) ⊆ (Ann(M

′
)) ∩ (Ann(M

′′
) we have that P ∈ (Ann(M

′
)) ∩ (Ann(M

′′
) and

so x /∈ V(Ann(M
′
)) ∪ V(Ann(M

′′
)).

Now M is a finitely generated graded module over the noetherian ring S so M admits
a filtration with quotients of the form S

P (l) with P a homogeneous prime ideal and we
have M ∼= S

P (l). The shift l corresponds to a change of variables so we can consider M =
S
P . If P = (x0,...,xn) we note that Ann(M) = P. Then hM (l) = 0 for any l>0 and so
PM (l) = 0 for any l>0 and deg(PM ) = dim(V(P)) = -1 with the convention that the
zero polynomial has degree -1 and the empty set has dimension -1. If P 6= (x0,...,xn) we
choose xi /∈ (x0,...,xn). Then we have the exact sequence

0 7→M
F−→M

G−→ M
xiM

7→ 0

where F(Q) = xiQ. Let Q ∈ M such that xiQ = 0 in M, xi /∈P implies Q ∈ P because P
is a prime ideal so Q = 0 in M and F is injective. The projection G is clearly surjective.
Let Q ∈ Ker(G) then Q ∈ xiM and there exists H ∈ M such that Q = xiH = F(H). Let
Q ∈ Im(F) then there exists H ∈ M such that F(H) = xiH = Q so G(Q) = 0 and Q ∈
Ker(G). We conclude that the sequence is exact.
Then h M

xiM
(l) = hM (l)-hM (l-1) = (∆hM )(l-1). Moreover V(Ann( M

xiM
)) = V(P) ∩ H,

where H is the hyperplane xi = 0 and V(P) is not contained in H because xi /∈ P
so dim(V(Ann( M

xiM
))) = dim(V(P)) - 1. Now by induction on dim(V(Ann(M))) we

can assume that h M
xiM

coincides with a polynomial P M
xiM

for any l»0 with deg(P M
xiM

) =

dim(V(Ann( M
xiM

)). By proposition 3 we have that hM is a polynomial function corre-
sponding to a polynomial PM of degree dim(V(P)). Clearly PM is unique.

2

Let X ⊆ Pn be a scheme of dimension r then its homogeneous coordinate ring

S(X) = k[x0,...,xn]
IX

is a finitely generated graded k[x0,...,xn] -module.
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Definition 2. The polynomial PM is called the Hilbert polynomial of the module M. The
polynomial PX associated to the ring S(X) is called the Hilbert polynomial of the scheme
X and by Hilbert-Serre theorem we have deg(PX) = r = dim(X). We define the degree of
X to be r! times the leading coefficient of PX and the arithmetic genus of X to be

pa(X) = (-1)dim(X)(pa(0) - 1).

Example 3. We consider the case X = Pn then S = k[x0,...,xn] and

PX(z) = hX(z) =
(
z+n
n

)
= 1

n!z
n+....,

so dim(X) = n, deg(X) = 1 and pa(X) = (-1)n(
(
n
n

)
- 1) = 0.

If X = V(P) is a hypersurface in Pn with P a homogeneous polynomial of degree d then
we have the exact sequence

0 7→S(-d) F−→ S
G−→ S

(P ) 7→0

where F(Q) = P·Q. So h S
(P )

(z) = hS(z) - hS(z-d) and

PX(z) =
(
z+n
n

)
-
(
z−d+n
n

)
= d

(n−1)!z
n−1 +....,

so deg(X) = d and dim(X) = n-1. In particular if C ⊆ P2 is a curve of degree d then
PX(z) =

(
0+2

2

)
-
(

0−d+2
2

)
= 1 - 1

2(d-2)(d-1) so pa(C) = 1
2(d-1)(d-2).

More generally if X ⊆ Pn is a hypersurface of degree d we have PX(0) = 1 -
(−d+n

n

)
and

pa(X) = (-1)n−d+n
n = (-1)n (−d+n)(−d+n−1)...(−d+1)

n! = (d−n)(d−n+1)...(d−1)
n! =

(
d−1
n

)
.

For example for a cubic surface X ⊆ P3 we have pa(X) = 0.
Finally let X be a complete intersection of two surfaces of degree a,b in P3. We write
I(Y)=(f,g) with f homogeneous of degree a and g homogeneous of degree b. We consider
the exact sequence

0 7→ S
(f)(-b)

.g−→ S
(f)

π−→ S
(f,g) 7→ 0.

Then

h S
(f)

=h S
(f) (−b)+h S

(f,g)
and h S

(f,g)
(z)=h S

(f)
(z)-h S

(f) (−b)(z) so h S
(f,g)

(z)=h S
(f)

(z)-h S
(f)

(z-b).

We have

hY (z)=
(
z+3

3

)
-
(
z−a+3

3

)
-
(
z−b+3

3

)
+
(
z−a−b+3

3

)
, PY (0)=1-

(−a+3
3

)
-
(−b+3

3

)
+
(−a−b+3

3

)
.

Then

(PY (0)-1)=- (3a2b+3ab2−12ab)
−6 and pa(Y)= 1

6(3a
2b+3ab2-12ab+6)= 1

2(a
2b+ab2-4ab)+1.

We conclude that the arithmetic genus of a curve that is scheme theoretic complete inter-
section of surfaces of degree a,b in P3 is given by

pa(Y)= 1
2ab(a+b-4)+1.

Example 4. Let

σn,m : Pn × Pm → PN , ([x0 : ... : xn], [y0 : ... : ym]) 7→ [x0y0 : ... : xiyj : ... : xnym],
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with N = nm + n + m, be the Segre embedding, and let Σn,m = σn,m(Pn × Pm) be the
Segre variety.
A homogeneous polynomial of degree d on Σn,m corresponds to a bihomogeneous polyno-
mial of bidegree (d, d) on Pn × Pm. Then

hΣn,m(d) =
(
d+n
d

)(
d+m
d

)
= (d+n)...(d+1)

n!
(d+m)...(d+1)

m! = 1
n!m!d

n+m + ...

We have dim(Σn,m) = n+m and deg(Σn,m) = 1
n!m! (n+m) =

(
n+m
n

)
.

In particular for the smooth quadric surface Σ1,1 = Q ⊆ P3 we have

hΣ1,1(d) = (d+ 1)2.

If we compute the Hilbert polynomial of Q using the formula for an hypersurface in P3

we obtain hQ(d) =
(
d+3

3

)
−
(
d+1

3

)
= (d+ 1)2.

1.2.2 Flat families and Hilbert Scheme

In this section we define the Hilbert scheme an we state some of its property without
proves. For a complete treatment of Hilbert schemes theory see, for example, E.Sernesi,
Deformations of Algebraic schemes, Springer.
The notion of representable functor has several applications in Algebraic Geometry, the
Hilbert scheme is an example. Let C be a category and let X ∈ Ob(C). We have the
covariant functor HomC(X,−) and the controvariant functor HomC(−, X).

Definition 3. A covariant functor F : C −→ Sets is representable if there exists an
object X in Ob(C), such that F is isomorphic to HomC(X,−).
A controvariant functor F : C −→ Sets is representable if there exists an object X in
Ob(C), such that F is isomorphic to HomC(−, X).

In this case the object X ∈ Ob(C) represents the functor F and this object is unique
up to isomorphism.
In this section we denote by

• Sch(k) the category of schemes over k,

• Sets the category of sets.

Let X be a quasi projective scheme over the algebraically closed field k. A flat family of
proper subscheme of X parametrized by a scheme S is a closed subscheme Z ⊆ S ×X,
such that the projection π : Z → S is flat and proper. If s ∈ S is a closed point we note
Zs = π−1(s). We denote by Flat(S) the set of all flat families of proper subschemes of X
parametrized by S.
Given a flat family and a morphism of schemes f : S′ → S, we have a morphism

f × IdX : S′ ×X → S ×X,

and the family Z ′ = (f × IdX)−1(Z) is again flat. In this way we obtain a morphism

f̂ : Flat(S) −→ Flat(S′), Z 7→ (f × IdX)−1(Z).

We get a controvariant functor
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Hilb(X) : Sch(k) −→ Sets, defined by S 7→ Flat(S),

that we can consider as a covariant functor

Hilb(X) : Sch(k)op −→ Sets, defined by S 7→ Flat(S).

Let P ∈ Q[T ] be a polynomial. We denote by HPP (S) the set of Z ⊆ S ×X such that
Z is proper and flat over S and Zs has Hilbert polynomial P for any s ∈ S. For a flat
family Z ⊆ S ×X the map

HP : S −→ Q[T ], s 7→ PZs
,

where PZs
is the Hilbert polynomial of Zs, is a locally constant function. This implies

that given a polynomial P ∈ Q[T ], the functor

HilbP (X) : Sch(k)op −→ Sets, defined by S 7→ HPP (S),

is a subfunctor of Hilb(X).

Theorem 2. (Grothendieck) The functor HilbP (X) is representable by a quasi projective
scheme HilbP (X). If X is projective then HilbP (X) is also projective.

The theorem implies that there exists a scheme HilbP (X), whose points parametrize
the subschemes of X with a given Hilbert polynomial P . The scheme HilbP (X) is called
the Hilbert scheme.
Let X be a projective schemes. We consider the constant polynomial P = h, with h ∈ Z.
The subschemes of X with Hilbert polynomial P have dimension zero and degree h,
i.e, these subschemes are the sets of h points counted with multiplicity. We denote by
Hilbh(X) the corresponding Hilbert scheme.

Theorem 3. (Grothendieck) Let [Z] ∈ Hilbh(X) be a closed point, representing a sub-
scheme Z of a scheme X. Let IZ be the ideal sheaf of Z. Then there is a canonical
isomorphism

T[Z]Hilbh(X) ∼= HomOX
(IZ ,OZ).

Theorem 4. (Fogarty) Let X be a smooth connected quasi projective surface. Then for
each h ∈ N the Hilbert scheme Hilbh(X) is connected and smooth of dimension 2h.

In chapter 2 the fact that Hilbh(P2) is connected and smooth will be very important.
Fogarty’s theorem is fundamental for several properties of Hilbh(X). For higher dimen-
sional schemes much less is true.

Corollary 1. Let X be a quasi projective scheme of dimension n and let [Z] ∈ Hilbh(X)
be a closed point such that dim(TxZ) ≤ 2 for any x ∈ Z. Then Hilbh(X) is smooth of
dimension hn at [Z]. In particular Hilbh(X) is smooth for all n if h ≤ 3.

1.3 Secant Varieties

Let X ⊆ Pn be an irreducible variety. For any p, q in X we con consider the line <p,q>
in Pn. In this way we get a rational map



18 General Results

ϕ: X×X 99K G(1,n), defined by (p,q) 7→ <p,q>.

The map ϕ is defined in the complement of the diagonal ∆ ⊆ X×X. It is called the secant
lines map and the closure of its image is called the variety of secant lines to X and denoted
by S(X).
Now let p1,...,ph ∈ X be h points in general position. If X is irreducible and not contained
in any (h-1)-plane we can define the map

ϕh: X × ...×X︸ ︷︷ ︸
h−times

99K G(h-1,n), defined by (p1,...,ph) 7→ <p1,...,ph>.

The map ϕh is called the secant h-planes map of X and the closure of its image Sh(X) is
called the variety of secant h-planes of X.
The union

Sec2(X) =
⋃
L∈S(X)L ⊆ Pn

is a subvariety of Pn called the secant lines variety of X. More in general the variety

Sech(X) =
⋃
H∈Sh(X)H ⊆ Pn

is a subvariety of Pn called the secant h-planes variety of X.

Example 5. Let C ⊆ P3 be the twisted cubic curve and let p ∈ P3 be a generic point such
that p /∈ C. There exists a line L such that p ∈ L and L is secant to C. If a such line will
not exists then the projection of C in P2 from p is a smooth plane cubic C isomorphic to C,
but g(C) = 0 and g(C) = 1, a contradiction. If there exists two distinct lines L,R secant
to C and containing p then the plane H = <L,R> is such that H·C ≥ 4, a contradiction
because deg(C) = 3 and C is not contained in a plane.
So the generic point p /∈ C lies on a unique secant line to C, we conclude that Sec(C) is
the space P3.

Let X ⊆ Pn be an irreducible variety and let ∆ ⊆ X×X×X be the locus of triples
with two ore more points equal. The locus V1,3(X) of the triples of distinct points
(p, q, r) ∈ X ×X ×X such that p,q,r are collinear is a subvariety of X×X×X\∆ and so
its closure V1,3(X) is a subvariety of X×X×X.
More generally for any integers h,l we define the variety Vl,h(X) ⊆ Xh to be the closure
of the locus in Xh of the h-uples of distinct points contained in a l -plane.
The variety Sec1,3(X) ⊆ Pn is the closure of the locus of lines <p,q,r> ∈ V1,3(X). We
define the variety Sech,l(X) of h-secant l -planes to be the closure of the locus of l -planes
containing and spanned by h distinct points of X.

We note that the map

ϕ: X×X 99K G(1,n)

is generically finite because the fibre over a point L ∈ G(1,n) will be positive dimensional
if and only if L ⊆ X. Then the dimension of S(X) as a subvariety of the Grassmannian
G(1,n) is equal to dim(X×X) = 2·dim(X).
Now we consider the incidence correspondence
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I = {(p,L) | p ∈ L} ⊆ Pn×S(X) ⊆ Pn×G(1,n).

The image Π1(I) = {p ∈ Pn | p ∈ L for some L ∈ S(X)} = Sec2(X) is the secant variety
of X. The map Π2:I→S(X) is surjective and all its fibres have dimension one. If the fibre
of Π1 is finite (i.e. if p ∈ Pn is a generic point there are a finite number of secant lines of X
such that p ∈ L) we have dim(I) = dim(Sec2(X)). Furthermore dim(I) = dim(S(X))+1
= 2·dim(X)+1. We conclude that

dim(Sec2(X)) = 2·dim(X)+1.

Proposition 4. Let X be an irreducible variety in Pn.
The variety Sh(X) ⊆ G(h-1,n) of secant (h-1)-planes of X is an irreducible variety of
dimension h·dim(X). The secant variety Sech(X) ⊆ Pn is irreducible of dimension at
most h·dim(X)+(h-1) with equality holding if and only if the generic point lying on a
secant (h-1)-planes of X lies on only a finite number of secant (h-1)-planes of X.

Proof : The map ϕh: X × ...×X︸ ︷︷ ︸
h−times

99K G(h-1,n) is generically finite because the fibre

over a point H ∈ G(h-1,n) has positive dimension if and only if H ⊆ X. So

dim(Sh(X)) = dim(X × ...×X︸ ︷︷ ︸
h−times

) = h·dim(X).

It is the image of an irreducible variety via a rational map so it is irreducible.
Now we consider the incidence correspondence

I = {(p,H) | p ∈ H} ⊆ Pn×Sh(X) ⊆ Pn×G(k,n).

The map Π2:I→Sh(X) is surjective and its fibres have dimension h-1. The image of the
first projection Π1:I→Pn is the variety Sech(X). We have

dim(I) - dim(Π−1
1 (p)) = dim(Sech(X)) and dim(Sech(X)) ≤ dim(I).

On the other hand we have

dim(I)-dim(Π−1
2 (H)) = dim(Sech(X)) and

dim(I) = h·dim(X)+(h-1).

We conclude that

dim(Sech(X)) ≤ h·dim(X)+(h-1).

The equality dim(Sech(X)) = h·dim(X)+(h-1) holds if and only if the fibre of the first
projection is finite. In other words if and only if the generic point lying on a secant (h-
1)-plane lies on only a finite number of secant (h-1)-planes of X. Finally Π2 is surjective
with all fibres irreducible so I is irreducible and via the first projection Π1 the variety
Sech(X) is also irreducible. 2

Now we give some examples.

Example 6. If X ⊆ Pn is an irreducible curve not contained in any plane then
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dim(Sec2(X)) = 3.

We can project X in P3. Now the projection of X is P2 from a generic point of P3 is an
irreducible curve with a finite number of nodal singularities. So there is a finite number
of secant lines of X passing through p. By the proposition we conclude that

dim(Sec2(X)) = 2·dim(X)+1 = 3.

Example 7. Let X = ν(P2) ⊆ P5 be the Veronese surface. Let u ∈ P5 be a point lying
on a secant line to X. We write the secant line as <ν(p),ν(q)> with p,q ∈ P2. The line
L = <p,q> ⊆ P2 is carried under the Veronese embedding ν in a conic C ⊆ X. Since u
∈ <ν(p),ν(q)> and ν(p),ν(q) ∈ C the point u lies on the plane H spanned by C. All lines
passing through u and contained in H intersect C in two points and so are secant lines of
X. We see that the generic point of P5 lying on a secant line of X lies on a 1-dimensional
family of secant lines of X, so dim(Sec2(X)) ≤ 4. If it will be dim(Sec2(X)) ≤ 3 then the
cones <v,Sec2(X)> with vertex a point v ∈ Sec2(X) will coincide, a contradiction. We
conclude that dim(Sec2(X)) = 4.
There is another way to see this fact. The points of Sec2(X) are the conics which can be
written as sum of two squares, i.e. the conics of rank equal to 1 or 2. So we can describe
Sec2(X) ⊆ P5 as the determinantal variety defined by

det

 X0 X3 X4

X3 X1 X5

X4 X5 X2

 = 0

That is a cubic hypersurface in P5.

Definition 4. Let X ⊆ Pn be an irreducible nondegenerate variety. We say that X has
defective secant variety if dim(Sech(X)) < min{h·dim(X)+(h-1),n}.
The difference

δ(X) = h·dim(X)+(h-1) - dim(Sech(X))

is called the defectivity of X.

Example 8. Let G = G(1,n) ⊆ Pn(n+1) be the Grassmannians of lines of Pn and let
p ∈ Sec2(G) be a point. Then p ∈ <u,v> = L ∈ Pn(n+1) secant line of G. The points
u,v represent two lines R1,R2 in Pn. Now two general lines span a 3-plane H. The lines
contained in H are parametrized by the Grassmannian G(1,3) ⊆ G(1,n).
Now dim(G(1,3)) = 4 and G(1,3) spans a 5-plane E ⊆ Pn(n+1). All lines L ⊆ E and
passing through p intersect G(1,3) in two points because deg(G(1,3)) = 2. We see that
any point p ∈ Sec2(G) lies on a 4-dimensional family of secant lines of G. We conclude
that

dim(Sec2(G)) = 2·dim(G)+1-4 = 2·2(n-1)+1-4 = 4n-7 and
δ(G) = 2·dim(G)+1-4n+7 = 4.



1.3 Secant Varieties 21

1.3.1 Veronese Varieties

The sheaf OPn(d), whose sections H0(Pn,OPn(d)) ∼= k[x0,...,xn]d are the homogeneous
polynomials of degree d on Pn, is a very ample sheaf on Pn. A basis of the k -vector space
H0(Pn,OPn(d)) is given by the monomials of degree d in the n+1 variables x0,...,xn. This
monomials are

(
n+d
n

)
and we denote it byM0,...,MN , where

N =
(
n+d
n

)
- 1.

So the sheaf OPn(d) induces an embedding

νd: Pn → PN , defined by P 7→ [M0(P):...:MN (P)]

called the d-Veronese embedding. Its image Vndn = νd(Pn) is a irreducible nonsingular
variety in PN . A hyperplane section of Vndn corresponds via the embedding νd to a
hypersurface of degree d in Pn. In order to determine the degree of Vndn we have to
intersect it whit n hyperplanes. In Pn we are intersecting n hypersurfaces of degree d and
by Bezout’s theorem the hypersurfaces intersect in dn points counted with multiplicity.
Via νd we find dn points in PN . We conclude that

deg(Vndn) = dn.

The variety Vndn is called the Veronese variety of dimension n in PN .
The expected dimension of the h-secant variety of the Veronese variety Vndn is

dim(Sech(Vndn)) = h·dim(Vndn)+(h-1) = h·n+(h-1).

Note that a polynomial of degree r on V ndn corresponds to a polynomial of degree dr on
Pn. Then the Hilbert polynomial of V ndn is given by

hV n
dn

(r) =
(
dr+n
n

)
= (dr+n)...(dr+1)

n! = dn

n! r
n + ...

and we have again dim(V ndn) = n and deg(V ndn) = n!d
n

n! = dn.

Remark 2. Combining the Segre and the Veronese embeddings we can define the Segre-
Veronese embedding

SV : Pn × Pm → PN ,

with N =
(
d+n
n

)(
h+m
m

)
− 1, using the sheaf OPn(d) on Pn and the sheaf OPm(h) on Pm.

Let X = SV(Pn × Pm) be the Segre-Veronese variety.
A homogeneous polynomial of degree r on X corresponds to a bihomogeneous polynomial
of bidegree (dr, hr) on Pn × Pm. Then the Hilbert polynomial of X is given by

hX(r) =
(
dr+n
n

)(
hr+m
m

)
= dnhm

n!m! r
n+m + ...

We have that dim(X) = n+m and deg(X) = (n+m)!
n!m! d

nhm =
(
n+m
n

)
dnhm.
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1.4 The Canonical Sheaf

Let A be a commutative ring, let B be an A-algebra and let M be a B -module.

Definition 5. An A-derivation of B into M is a map δ:B→M such that

1. δ(b+b’) = δ(b) + δ(b’),

2. δ(b·b’) = b·δ(b’) + b’·δ(b),

3. δ(a) = 0 for all a ∈ A.

The module of relative differential forms of B over A is a B-module ΩB/A with an A-
derivation δ:B→ΩB/A such that: for any B-module M and for any A-derivation δ’:B→M,
the exists a unique B-module homomorphism f:ΩB/A→M such that δ’ = f ◦ δ.

Let f:X → Y be a morphism of schemes and let ∆:X → X×YX be the diagonal
morphism. The image ∆(X) is a locally closed subscheme in X×YX i.e. ∆(X) is a closed
subscheme of an open subset U of X×YX. So we can consider the sheaf of ideals I of
∆(X) in U .
The sheaf I/I2 has a structure of O∆(X)-module. Now we consider the sheaf ΩX/Y =
∆∗(I/I2) obtained by pull-back of I/I2 via ∆. Since ∆ induces an isomorphism of X to
∆(X), ΩX/Y has a structure of OX -module.
Furthermore ∆(X) is a closed subscheme of U and so the sheaf I is a quasi-coherent sheaf
of ideals on U . Then also I/I2 is a quasi-coherent sheaf of ideals on U and ΩX/Y is a
quasi-coherent sheaf on X.
Finally if Y is noetherian and f is a morphism of finite type then X×YX is also noetherian,
so I and I/I2 are coherent on U and ΩX/Y is coherent on X.

Definition 6. The sheaf of OX-module ΩX/Y = ∆∗(I/I2) defined above is the the sheaf
of relative differentials of X over Y.

If U = Spec(A) is an open affine subset of Y and V = Spec(B) is an open affine subset
of X such that f(V) ⊆ U , then V×UV is an open affine subset of X×YX isomorphic to
Spec(B⊗AB) and ∆(X) ∩ (V×UV) is the closed subscheme defined by the kernel of the
diagonal morphism B⊗AB→B. So I/I2 is the sheaf associated to the module I/I2 and
ΩX/Y is the sheaf associated to the module ΩB/A of relative differential forms of B over
A. This gives the connections between the sheaf ΩX/Y and the sheaf associated to the
module ΩB/A. Now we will use this connection to prove some propositions.

Proposition 5. Let f:X→Y be a morphism, let g:Y
′→Y be another morphism, and let

f
′
:X
′
=X×YY

′→Y
′
be obtained by base extension. Then ΩX′/Y ′ ∼= g

′∗(ΩX/Y ), where
g
′
:X
′→X is the first projection.

Proof : We can assume that the schemes are affine. Let X = Spec(A
′
), Y = Spec(A)

and Y
′
= Spec(B), then X

′
= X×YY

′
= Spec(B⊗AA

′
). We have two morphism of

rings f : A→A
′
, g : A→B, so A

′
and B are two A-algebras. Then ΩB⊗AA

′/A′
∼=

ΩB/A⊗B(B⊗AA
′
) (Matsumura [2, p.186]). Passing to the shaves of differentials we have

ΩX′/Y ′ ∼= g
′∗(ΩX/Y ). 2
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Proposition 6. Let f:X→Y and g:Y→Z be morphisms of schemes. Then there is an
exact sequence of shaves on X,

f*ΩY/Z → ΩX/Z → ΩX/Y 7→ 0.

Proof : We can assume that the schemes are affine. Let X = Spec(A), Y = Spec(B)

and Z = Spec(C). We have the morphisms of rings f : B→A, g : C→B and C g−→B f−→A.
So we have an exact sequence

ΩB/C⊗BA → ΩA/C → ΩA/B 7→ 0

(Matsumura 2, [Th.57 p.186]). Passing at the shaves of differentials we have the exact
sequence of the proposition. 2

Proposition 7. Let f:X→Y be a morphism of schemes and let Z be a closed subscheme
of X, with ideal sheaf I. Then there is an exact sequence of shaves on Z,

I/I2 → ΩX/Y⊗OZ → ΩZ/Y 7→ 0.

Proof : We can assume that the schemes are affine. Let X = Spec(A), Y = Spec(B)
and Z = Spec(A/I), where I is an ideal of A. The morphism of rings f : B→A induces
on A a structure of B -algebra. We have an exact sequence

I/I2 → ΩA/B⊗AAI → Ω A
I /A
7→ 0

(Matsumura 2, [Th.58 p.187]). Passing at the shaves of differentials we have the exact
sequence of the proposition. 2

In what follow we use the notion of sheaf of differential on an abstract nonsingular variety
to define the canonical sheaf and the shaves related to this.

Definition 7. An abstract variety X over an algebraically closed field k is nonsingular if
all its local rings are regular local rings.

The following theorem connects the concept of nonsingularity to the sheaf of differen-
tials

Theorem 5. Let X be an irreducible separated scheme of finite type over an algebraically
closed field k. Then ΩX/k is a locally free sheaf of rank n = dim(X) if and only if X is a
nonsingular variety over k.

Proof : Hartshorne [Th. 8.15 p.177].

Theorem 6. Let X be a nonsingular variety over k. Let Y ⊆ X be an irreducible subvariety
defined by the sheaf of ideals I. Then Y is nonsingular if and only if

1. ΩY/k is locally free,

2. the sequence of proposition 7 is exact on the left also:
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0 7→ I/I2 → ΩX/k⊗OY → ΩY/k 7→ 0.

Furthermore, in this case, I is locally generated by codim(Y,X) elements, and I/I2

is a locally free sheaf of rank codim(Y,X) on X.

Proof : Hartshorne [Th. 8.17 p.178].

Theorem 7. Let A be a ring, let Y = Spec(A), and let X = PnA. Then there is an exact
sequence of shaves on X,

0 7→ ΩX/Y → OX(−1)n+1 → OX 7→ 0

Proof : Hartshorne [Th. 8.13 p.176].

Definition 8. Let X be a nonsingular variety of dimension n over k. The tangent sheaf
of X is the dual of the sheaf of differentials ΩX/k,

TX = Hom(ΩX/k,OX)

We have seen that ΩX/k is a locally free of rank n so TX is also locally free of rank n.
The canonical sheaf of X is defined to be the n-th wedge product of the sheaf of differentials

ωX =
∧nΩX/k

The canonical sheaf has rank
(
n
n

)
= 1 so it is an invertible sheaf. The associated divisor

on X is called the canonical divisor of X and denoted by KX .

After this definition we observe that ΩX/k is the dual of the tangent sheaf and it is
also called the cotangent sheaf. The sheaf TX is locally free of rank n and so we can
consider the associated vector bundle TX , that is the tangent bundle of X, the fibre of TX
in a point x ∈ X is the tangent space TxX of X in x. In the same way we have a vector
bundle of rank n associated to the sheaf ΩX/k, that is the cotangent bundle denoted by
(TX)ˇ.
Finally we observe that the dual of the canonical sheaf ωX̌ =

∧nTX is an invertible sheaf,
called the anticanonical sheaf of X. The associated divisor is the anticanonical divisor of
X and denoted by -KX .
Since all these shaves are defined intrinsically, any numbers defined from them, are in-
variants of X up to isomorphism.

Definition 9. If X is a projective, nonsingular variety of dimension n, we define the
geometric genus of X as the dimension of the k-vector space of sections of the canonical
sheaf

pg = dimkH0(X,ωX)

By Serre duality theorem we have pg = dimkH0(X,ωX) = dimkHn(X,OX).

We study the tangent and the canonical sheaf for a nonsingular subvariety Y of X.

Definition 10. Let Y be a nonsingular subvariety of a nonsingular variety X over k, and
let I its ideal sheaf. The locally free sheaf I/I2 is the conormal sheaf of Y in X. Its dual
NY/X = Hom(I/I2,OY ) is called the normal sheaf of Y in X. It is a locally free sheaf of
rank codim(Y,X).
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Now we consider the exact sequence

0 7→ I/I2 → ΩX/k⊗OY → ΩY/k 7→ 0.

If dim(X) = n and dim(Y) = r we have rank(ΩX/k⊗OY ) = n and rank(ΩY/k) = r, so
rank(I/I2) = n-r and rank(NY/X) = n-r = codim(Y,X).
Dualizing the exact sequence above we obtain

0 7→ TY → TX⊗OY → NY/X 7→ 0.

We see that NY/X = TX⊗OY

TY
, and we recover the usual geometrical interpretation of the

normal sheaf as the sheaf of elements in the tangent of X modulo the elements in the
tangent of Y.

Proposition 8. Let Y be a nonsingular subvariety of a nonsingular variety X, with
codim(Y,X) = h. The ωY = ωX⊗

∧hNY/X . In the case h = 1 we can consider Y
as a divisor on X and let OX(Y ) the associated invertible sheaf on X. Then ωY =
ωX⊗OX(Y )⊗OY .

Proof : We have rank(I/I2) = h, rank(ΩX/k⊗OY ) = n and rank(ΩY/k) = n-h. From
the exact sequence

0 7→ I/I2 → ΩX/k⊗OY → ΩY/k 7→ 0

taking the highest exterior powers we obtain∧nΩX/k⊗OY ∼=
∧hI/I2⊗

∧n−hΩY/k.

Daualizing and considering the fact that the formation of highest exterior powers com-
mutes with taking the dual sheaf we find ωX̌ ∼= ωY ⊗̌

∧hNY/X . Tensorizing by ωX⊗ωY
we have ωY = ωX⊗

∧hNY/X .
If h = 1 we have IY ∼= OX(Y )ˇ so I/I2 ∼= OX(Y )̌⊗OY and NY/X ∼= OX(Y )⊗OY . For
the previous result with r = 1 we have ωY = ωX⊗OX(Y )⊗OY .

2

As a special case we will prove the adjunction formula for a nonsingular curve on a
surface.

Proposition 9. (Adjunction Formula) Let C be a nonsingular curve of genus g on a
surface X and let KX be the canonical divisor of X, then

2g - 2 = C·(C + KX)

Proof : We have ωC = ωX⊗OX(C)⊗OC and deg(ωC) = 2g - 2. But we also have
deg(ωX⊗OX(C)⊗OC) = C·(C + KX). 2

Let X = Pnk . Dualizing the exact sequence

0 7→ ΩX/k → OX(−1)n+1 → OX 7→ 0
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we have

0 7→ OX → OX(1)n+1 → TX 7→ 0.

Now rank(ΩX/k) = n, rank(OX(−1)n+1) = n+1 and rank(OX) = 1 so taking the highest
exterior power in the first sequence we find∧n+1OX(−1)n+1 ∼=

∧nΩX/k⊗OX

then we have KPn ∼= OPn(-n-1).

Remark 3. We can compute the canonical sheaf of Pn directly. We consider the differ-
ential forms on Pn.
Let [x0, ..., xn] be the homogeneous coordinated on Pn, and let

U0 = {[x0, ..., xn]|x0 6= 0} ∼= An.

On U0 we have the coordinates (y1, ..., yn) where yi = xi/x0, and a basis of the differential
forms is dy1 ∧ ... ∧ dyn.
Now we consider the open subset U1, whit coordinates (z1, ..., zn) where zi = xi/x1. We
note that y1 = x1/x0 = 1/z1 and yk = xk

x1

x1
x0

= zky1 for any k ≥ 2. By differentiation we
have

dy1 = − 1
z21
dz1 and dyk = zkdy1 + dzky1 = − zk

z21
dz1 + 1

z1
dzk for any k ≥ 2.

Then

dy1 ∧ ... ∧ dyn = − 1
z21
dz1 ∧ (− z2

z21
dz1 + 1

z1
dz2)... ∧ (− zn

z21
dz1 + 1

z1
dzn).

Since dz1 ∧ dz1 = 0 we have

dy1 ∧ ... ∧ dyn = − 1
z21
dz1 ∧ 1

z1
dz2 ∧ ... ∧ 1

z1
dzn = − 1

zn+1
1

dz1 ∧ dz2 ∧ ... ∧ dzn.

Since z1 = x0/x1 we see that the canonical divisor of Pn is given by KPn = −(n+ 1)H0,
where H0 is the hyperplane defined by x0 = 0. Then we have again that the canonical
sheaf of Pn is ωPn ∼= OPn(−n− 1).

Now prove a proposition that will be very useful.

Proposition 10. Let Y be a closed subscheme of Pnk .

1. If Y is a nonsingular hypersurface of degree d then ωY ∼= OY (d-n-1).

2. If Y = H1 ∩...∩ Hr is a nonsingular complete intersection of hypersurfaces Hi of
degree deg(Hi) = di then ωY ∼= OY (

∑
di-n-1).

3. If Y is a nonsingular hypersurface of degree d then pg(Y) =
(
d−1
n

)
. In particular, if

Y is a nonsingular plane curve of degree d, then pg(Y) = 1
2(d-1)(d-2).

4. If Y is a nonsingular curve in P3
k, which is a complete intersection of nonsingular

surfaces of degree d,e, then pg(Y) = 1
2d·e(d+e-4)+1.
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Proof : 1) We know that ωY = ωX⊗OX(Y )⊗OY . If Y is a hypersurface of degree
d we have ωX ∼= OX(-n-1) and OX(Y ) ∼= OX(d). We find ωY ∼= OX(-n-1+d)⊗OY ∼=
OY (d-n-1).
2) We proceed by induction on r. For Y = H1 we have ωY ∼= OY (d1-n-1) by 1).
For the complete intersection Z = H1 ∩...∩ Hr−1 we have, by induction hypothesis ωZ ∼=
OZ(d1+...+dr−1-n-1).
Now Y is a divisor of Z and it is nonsingular, we have ωY = ωZ⊗OZ(Y )⊗OY . We note
that Z is determined on Y by a hypersurface Hr of degree dr so OZ(Y ) ∼= OZ(dr). We
conclude that

ωY ∼= OZ(d1+...+dr−1-n-1)⊗OZ(dr)⊗OY∼=OY (d1 + ...+ dr − n− 1).

3) If Y ⊆ Pnk is an hypersurface of degree d then the natural map

H0(Pnk ,OPn(d)) → H0(Y,OY (d))

is a bijection. From ωY ∼= OY (d-n-1) we have

pg(Y) = dimkH0(Y,ωY ) = dimk H0(Pnk ,OPn(d− n− 1)) =
(
d−1
n

)
.

4) We have ωY ∼= OY (d+e-3-1) ∼= OY (d+e-4). The degree of the canonical divisor is
deg(KY ) = deg(Y)(d+e-4) = d·e(d+e-4), but we also have deg(KY ) = 2g - 2. Equaling
the two expressions we obtain

pg(Y) = g = 1
2d·e(d+e-4)+1.

2

We consider the special case of the Grassmannian G(h, n) parametrizing the h-planes
of Pn. We have the universal exact sequence

0 7→SG−→EG−→QG 7→0

We recall that the tangent sheaf of G(h, n) is TG(h, n) ∼= SˇG⊗QG, and we take the dual
of the exact sequence tensorized by QG,

0 7→Qˇ
G ⊗QG−→EˇG ⊗QG−→TG(h, n)7→0

We recall that if F is a locally free sheaf of rank r the multiplication map∧t F ⊗∧r−t F −→ ∧r F
is a perfect pairing for any t, i.e. it induces an isomorphism of

∧t F with (
∧r−t F)ˇ⊗

∧r F .
Now rank(Qˇ

G ⊗ QG) = (n − h)2, rank(EˇG ⊗ QG) = (n + 1)(n − h), rank(TG(h, n)) =
(h+ 1)(n− h), and taking the highest exterior powers we have∧(n+1)(n−h) EˇG ⊗QG ∼=

∧(n−h)2(Qˇ
G ⊗QG)⊗

∧(h+1)(n−h) TG(h, n).

Taking the highest exterior powers in the universal exact sequence we have
∧n+1 EG ∼=∧h+1 SG ⊗

∧n−hQG, and since the determinant of SG is the invertible sheaf giving the
Plücker embedding we write
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∧h+1 SG ∼=
∧n−hQˇ

G = OG(1).

Then we get OG(n + 1) ∼= OG(1) ⊗ OG(−1) ⊗ ωˇ
G. We conclude that the anticanonical

and the canonical shaves of G(h, n) are respectively

ωˇ
G
∼= OG(n+ 1) and ωG ∼= OG(−n− 1).

Remark 4. We think to Pn as the Grassmannian G(0, n). Then the universal bundle SG
becomes the tautological bundle OPn(−1). Then the universal sequence becomes

0 7→ OPn(−1) −→ On+1
Pn −→ TPn(−1) 7→ 0

tensorizing by OPn(1) and taking the dual we recover the Euler sequence

0 7→ ΩPn −→ On+1
Pn (−1) −→ OPn 7→ 0.

In particular from ωG ∼= OG(−n− 1) we recover ωPn ∼= OPn(−n− 1).

1.5 Surfaces

In this section we briefly describe the Enriques-Kodaira classification of compact complex
surfaces. We begin listing the most important objects for the classification. Let X be a
projective variety, we consider

• The canonical sheaf ωX of holomorphic 2-forms.

• The plurigenera Pn = dimkH
0(nK) for n ≥ 1 that are invariant under blowing-up.

• The Hodge invariants hij = dimkH
j(Ωi) where Ωi is the sheaf of regular i-forms.

Since dim(X) = 2 on a surfaces X we have only

h0,0, h0,1, h0,2, h1,0, h1,1, h1,2, h2,0, h2,1, h2,2.

The Hodge invariants are arranged in the Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

By Serre duality we have

hij = dimkH
j(Ωi) = dimkH

2−i(Ω2−j) = h2−i,2−j and
h0,0 = h2,2 = dimkH

0(Ω0) = 1.

If the surface is algebraic we have hji = hij and we have only three independent
Hodge invariants.
The invariant q = h0,1 is called the irregularity of X, pa = h0,2 − h0,1 is the
arithmetic genus of X and pg = h0,2 = h2,0 is the geometric genus of X. We note
that q = pg − pa.



1.5 Surfaces 29

1.5.1 Kodaira Dimension

Let X be a projective variety over a field k. We consider the canonical divisor K of X
and the linear systems |nK| for any n ≥ 1.
The Kodaira dimension K(X) of X is the largest dimension of the image of X in PN under
the rational map determined by the linear system |nK| for some n ≥ 1 or K(X) = −1 if
|nK| = ∅ for all n ≥ 1.
It is known that -1≤ K ≤ n for a variety of dimension n.

1.5.2 Surfaces Classification

Any surface is birational to a nonsingular surface. A nonsingular surface is called minimal
if it cannot be obtained from another nonsingular surface by blowing up a point. Every
surface X is birational to a minimal nonsingular surface, and this minimal nonsingular
surface is unique if X has Kodaira dimension at least 0 or is not algebraic. Now we
classify the nonsingular surfaces using Kodaira dimension.
One can prove the following three results

1. K = -1⇔ |12K| = ∅⇔ X is either rational or ruled. And Castelnuovo proved that
X is rational if and only if pa = P2 = 0.

2. A surface with K = 1 is an elliptic surface, which is a surface X with a morphism
π : X → C to a curve C such that almost all fibres of π are nonsingular elliptic
curves (here we are assuming char(k) 6= 2,3).

3. K = 2 if and only if |nK| determines a birational map of X onto its image in PN

for some n > 0. These are called surfaces of general type.

It remains the case K = 0. One can prove that K = 0 ⇔ 12K = 0. A surface in this
class must be one of the following (assume char(k) 6= 2,3).

• A K3 surfaces, which is defined as a surface with K = 0 and irregularity q = 0.
These have pa = pg = 1.

• An Enriques surface, which has pa = pg = 0 and 2K = 0.

• A two-dimensional abelian variety, which has pa = -1 and pg = 1.

• A hyperelliptic surface, which is a surface fibred over P1 by a pencil of hyperelliptic
curves.

We resume these facts in the following table

h1,0 h2,0 = pg h1,1 pa q Type
0 0 10 0 0 Enriques
1 0 2 -1 1 Hyperelliptic
0 1 20 1 0 K3
2 1 4 -1 2 2-dimensional Abelian Variety

Now we consider K3 surfaces. The Hodge diamond of a K3 surface is in the form
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1
0 0

1 20 1
0 0

1

An example of K3 surface are the smooth quartic surfaces in P3. Let X ⊆ P3 a smooth
surface with deg(X) = 4. For the canonical sheaf we have

ωX = OX(4-3-1) = OX so K = 0 and pg = dimkH
0(ωX) = 1.

We compute

h0,2 = h2,0 = dimkH
0(Ω2) = dimkH

0(ωX) = 1
h0,1 = h1,0 = dimkH

1(Ω0) = dimkH
1(OX) = 0.

Then pa = h0,2 − h0,1 = 1 and q = pg − pa = 0. We see that X is a K3 surface.

1.5.3 Fano Varieties

We give the definition of Fano variety and state some property of these varieties omitting
the proofs. For a deeper understanding of Fano varieties see Parshin-Shafarevich Algebraic
Geometry V.

Definition 11. A Fano variety is a projective variety X whose anticanonical sheaf ωX
is ample.

Fano varieties of dimension 1 and 2 are all rational and Fano varieties of dimension
2 are called Del Pezzo surfaces. Any Del Pezzo surface can be obtained by blowing-up
P2 with the linear system of plane cubics passing through r = 0,1,...,6. By blowing-up r
points we obtain a Del Pezzo surface of degree 9-r in P9−3. For example if r = 6 we get
a smooth cubic surface in P3.
Fano varieties have all Kodaira dimension -1.

1.6 Determinantal Varieties

A matrix A ∈ Mm,n(k) defines a vector in the k-vector space knm and a point in the
associated projective space Pmn−1. For each positive integer h let Mh be the subset of
matrices of rank h or less. This is just the common zero locus of (h+ 1)× (h+ 1) minor
determinants, which are homogeneous polynomials of degree h+1 on the projective space
Pmn−1. Then this subset of matrices is a projective variety. We introduce the incidence
correspondence

I = {(A,Λ)|Λ ⊆ Ker(A)} ⊆ Pmn−1 ×G(n− h, n).

We fix Λ ∈ G(n− h, n), the space of linear maps A : kn → km such that Λ ⊆ Ker(A) is
just Hom(kn/Λ, km). Then the fibres of the second projection

π2 : I −→ G(n− h, n)
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are projective spaces of dimension hm− 1. Clearly π2 is surjective and we conclude that
I is an irreducible variety of dimension

dim(I) = dim(G(n− h, n)) + hm− 1 = h(m+ n− h)− 1.

The first projection

π1 : I −→ Pmn−1

is generically injective on Mh. Then we have proved the following

Proposition 11. The variety Mh ⊆ Pmn−1 of m × n matrices of rank at most h is an
irreducible projective variety of codimension (m− h)(n− h) in Pmn−1.

Let A ∈Mh \Mh−1 a matrix of rank h. We choose bases for km and kn so that A is
represented by the matrix (

Ih 0
0 0

)
where Ih is the h× h identity matrix. We consider the affine neighborhood U of A given
by {X1,1 6= 0} and fix the euclidean coordinates xi,j = Xi,j/X1,1. Now we write a general
element of U as

1 x1,2 x1,3 . . . . . . . . . x1,m

x2,1 1 + x2,2 x2,3 . . . . . . . . . x2,m

...
. . . . . . . . . . . . . . .

...
xh,1 . . . . . . 1 + xh,h xh,h+1 . . . xh,m

xh+1,1 . . . . . . 1 + xh+1,h xh+1,h+1 . . . xh+1,m

...
. . . . . . . . . . . . . . .

...
xn,1 xn,2 xn,3 . . . . . . . . . xn,m


where A corresponds to the origin in this coordinate system. We note that the only
(h+ 1)× (h+ 1) minors of this matrix with nonzero differential at the origin A are those
involving the first h rows and columns. Their linear terms are exactly the coordinates
xi,j with i, j > h. Since there are exactly (m− h)(n− h) of these, we conclude that Mh

is smooth at any point of Mh \Mh−1.

Remark 5. We consider the case of symmetric matrices with n = m = 3 and h = 2. Let
U = {X1,1 6= 0} ⊆ P5. We write the generic matrix A ∈ U in M2 \M1 in the form 1 x1,2 x1,3

x1,2 1 + x2,2 x2,3

x1,3 x2,3 x3,3


Let F (x1,2, ..., x3,3) = det(A). We see that ∂F

∂x3,3
(A) 6= 0. Then the points in M2 \M1

are smooth for M2. Note that M2 is the secant variety Sec2(V 2
4 ) of the Veronese surface

V 2
4 ⊆ P5. The variety Sec2(V 2

4 ) is smooth outside V 2
4 and Sing(Sec2(V 2

4 )) = V 2
4 .
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Chapter 2

Varieties of Sums of Powers

In this chapter we define the concept of variety of power sums and we prove the main
properties of these varieties.
Let V be a k -vector space of dimension n+1 over the algebraically closed field k. For
any F ∈ SdV we denote by V(F) the hypersurface defined by F in the projective space
PV ∼= Pn. A linear form l:V→k defines a point [l] in PV* and a hyperplane V(l) in PV.

2.1 Tensor Algebra and homogeneous polynomials

We consider the n-th tensorial product V⊗n of V and write

V⊗n=V ⊗ ...⊗ V︸ ︷︷ ︸
n−times

,

We take the direct sum of the V⊗n for n=0,1,2...,

T(V)=
⊕∞

n=0V
⊗n.

We define on T(V) a multiplication using the canonical isomorphism

ϕ:V⊗k⊗V⊗h→V⊗k+h, (x1⊗...⊗xk)⊗(y1⊗...⊗yh) 7→x1⊗...⊗xk⊗y1⊗...⊗yh.

With this multiplication T(V) is a graduate k -algebra and V⊗n is the n-th graduate com-
ponent.
The k -Algebra T(V) is the Tensor Algebra of V.
Let J be the ideal of T(V) generated by the elements of the form v⊗w-w⊗v with v,w∈T(V).
The quotient algebra S(V)=T (V )

J is the Symmetric Algebra of V. We observe that S(V)
is a graduate k -algebra as quotient of T(V), we denote by Sk(V) the k-th graduated com-
ponent of S(V).

2.2 Polar Forms

We fix a basis {t0,...,tn} of V and the dual basis {ξ0,...,ξn} of V*. The ring morphism
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Sk(V)→Polk(V), ti1⊗...⊗tik 7→ti1 ...tik

allows us to identify Sd(V) with the ring of homogeneous polynomials of degree d on V.
The multilinear form plz(P) is symmetric and P can be reconstructed from plz(P).

Proposition 12. If plz(P) is the symmetric multilinear form associated to a homogeneous
polynomial of degree k on V we have

k!P(v)=plz(P)(v,...,v).

Proof : We have plz(P)(v,...,v)=
∑
I⊆k(-1)

k−Card(I)P(Card(I)v). Now for any i≤k we
have

(
k
i

)
subsets of k of cardinality i. So

plz(P)(v,...,v)=(-1)k−1
(
k
1

)
P(v)+(-1)k−2

(
k
2

)
P(2v)+...+(-1)1

(
k
k−1

)
P((k-1)v)+(-1)0

(
k
k

)
P(kv)=

(-1)k−1
(
k
1

)
P(v)+(-1)k−2

(
k
2

)
2kP(v)+...+(-1)1

(
k
k−1

)
(k-1)kP(v)+(-1)0

(
k
k

)
kkP(v)=

((-1)k−1
(
k
1

)
+(-1)k−2

(
k
2

)
2k+...+(-1)1

(
k
k−1

)
(k-1)k+(-1)0

(
k
k

)
kk)P(v).

Finally plz(P)(v,...,v)=P(v)
∑k
i=1(-1)

k−i(k
i

)
ik=k!P(v). 2

Let F:Vk→k be a symmetric multilinear form. We consider the map

Res(F):V→k, Res(F)(v)=F(v,...v).

We observe that Res(F)∈Sk(V), moreover plz(Res(F))=k!F. From char(k)=0 we have that
any polynomial P∈Sk(V) can be obtained by Res from a unique symmetric multilinear
form.

Definition 12. The symmetric multilinear form plz(P) is called the polarization of P
and the map Res(F) is called the restitution of F.

Example 9. Let Q be a quadratic form on V.

plz(Q)(v,w)=(-1)2−1Q(v)+(-1)2−1Q(w)+(-1)2−2Q(v+w)=Q(v+w)-Q(v)-Q(w).
Res(plz(Q)(v,w))=Res(Q(v+w)-Q(v)-Q(w))=Q(2v)-Q(v)-Q(v)=2Q(v).

2.3 Apolar Forms

Let V be a k -vector space of dimension n+1 and let V* be the dual vector space. We
have the map

V×V*→k, (v,L)7→L(v).

We want to generalize this fact constructing a map Sk(V)×Sd(V*)7→Sd−k(V*). To do
this we fix a system of coordinates {t0,...,tn} on V and the dual coordinates {ξ0,...,ξn}
on V*.
Let ϕ=ϕ(t0,...,tn) be a homogeneous polynomial of degree k on V. We consider the
differential operator

Dϕ=ϕ(∂0,...,∂n), with ∂i= ∂
∂ξi

.

This operator acts on ϕ substituting the variable ti with the partial derivative ∂i= ∂
∂ξi

.
For any ϕ∈Sk(V) and for any F∈Sd(V*) we write
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<ϕ,F> = Dϕ(F).

We call this pairing the apolarity pairing.
In general ϕ is of the form ϕ(t0,...,tn)=

∑
i0+...+in=kαi0,...,in t

i0
0 ...tinn and F is of the form

F(ξ0,...,ξn)=
∑
j0+...+jn=dfi0,...,inξ

j0
0 ...ξjnn . Then

Dϕ(F)=(
∑
i0+...+in=kαi0,...,in∂0

i0 ...∂nin)(F).

We see that F is derived i0 + ...+ in=k times. So we obtain a homogeneous polynomial
of degree d-k on V*.
Fixed F∈Sd(V*) we have the map

apkF :S
k(V)→Sd−k(V*), ϕ7→Dϕ(F).

The map apkF is linear and we can consider the subspace Ker(apkF ) of Sk(V).

Definition 13. A homogeneous form ϕ ∈ Sk(V) is called apolar to a homogeneous form
F ∈ Sd(V*) if Dϕ(F)=0 ,in other words if ϕ∈Ker(apkF ). The vector subspace of Sk(V) of
apolar forms of degree k to F is denoted by APk(F).

Example 10. We consider the case d=2, n=2, k=1. Let Q∈S2(V*) be a quadratic form
on V*, we write Q(ξ0,ξ1,ξ2)=

∑2
i,j=0qijξiξj, then

∂(Q)
∂ξ0

=2q00ξ0+2q01ξ1+2q02ξ2
∂(Q)
∂ξ1

=2q01ξ0+2q11ξ1+2q12ξ2
∂(Q)
∂ξ2

=2q02ξ0+2q12ξ1+2q22ξ2

We consider ϕ(t0,t1,t2)=α0t0+α1t1+α2t2. Then Dϕ=α0
∂
∂ξ0

+α1
∂
∂ξ1

+α2
∂
∂ξ2

. The apolar-
ity map is
ap1
Q(ϕ)=Dϕ(Q)=ξ0(2q00α0+2q01α1+2q02α2)+ξ1(2q01α0+2q11α1+2q12α2)+

ξ2(2q02α0+2q12α1+2q22α2). In a compact form

ap1
Q(ϕ)=

∑2
i=0

∂(Q)
∂ξi

(ϕ)ξi.

In general if dim(V)=n+1 we have ap1
Q:V→V* defined by

ap1
Q(ϕ)=

∑n
i=0

∂(Q)
∂ξi

(ϕ)ξi.

2.4 Dual homogeneous Forms

We fix d = 2 and consider the space S2V* of quadric forms on V. On a form Q ∈ S2V*
is associated a matrix A = (aij) and we can write

Q =
∑n
i,j=0ai,jtitj.

The apolarity map is given by

ap1
Q:V→V*, v7→Dv(Q) =

∑n
i=0

∂Q
∂ti

(v)ti.

Now we define a bilinear form BQ:V×V→k by BQ(v,w) = <w,ap1
Q(v)>.



36 Varieties of Sums of Powers

Example 11. The case d=2, n=2, k=1. Let Q∈S2V* be a quadratic form on V, we write
Q =

∑2
i,j=0qijtitj, then

ap1
Q(v)=(2q00v0+2q01v1+2q02v2)t0+(2q11v1+2q01v0+2q12v2)t1+(2q22v2+2q02v0+2q12v1)t2

=(2q00v0+2q01v1+2q02v2, 2q11v1+2q01v0+2q12v2, 2q22v2+2q02v0+2q12v1).
We see that Mat(ap1

Q) = 2(qij) and so Q is nondegenerate if and only if the linear map
ap1
Q is invertible.

Also in the general case the quadric form Q is nondegenarate if and only if the linear
map ap1

Q:V→V* is invertible. In this case we have the inverse map (ap1
Q)
−1:V*→V that

induces a bilinear map

B−1
Q :V*×V*→k, defined by B−1

Q (f,g) = <g,(ap1
Q)
−1(f)>.

From the construction we deduce that the quadric forms Q* on V* is given by the inverse
of the matrix of Q and is the unique quadric forms on V* such that BQ∗ = B−1

Q . The
quadric form Q* is called the dual quadric form of Q. By the definition of ap1

Q we see
that this map sends the vector v in the tangent space of V(Q) in v, so the dual quadric
Q* is the locus in PV* of tangent hyperplanes of the quadric Q ⊆ PV.

Example 12. We fix n=3 and consider the quadric Q = 2t20+3t21+2t22+t23. The apolar
map is given by

ap1
Q(v) =

∑3
i=0

∂Q
∂ti

(v)ti = 4v0t0+6v1t1+4v2t2+2v3t3.

The associated matrix and the inverse matrix are

Mat(ap1
Q)=


4 0 0 0
0 6 0 0
0 0 4 0
0 0 0 2

 = 2Mat(Q) and Mat(ap1
Q
−1) =


1
4 0 0 0
0 1

6 0 0
0 0 1

4 0
0 0 0 1

2


We conclude that the dual quadric form is Q* = 1

4ξ
2
0+

1
6ξ

2
1+

1
4ξ

2
2+

1
2ξ

2
3 .

2.4.1 Catalecticant matrices and dual homogeneous forms

We want to generalize the notion of dual quadric form in the case d = 2k with d > 2.
We begin constructing the k-th catalecticant matrix associated to a homogeneous form
F ∈ SdV ∗. We consider the apolarity map

apkF : SkV−→Sd−kV*, ϕ7→Dϕ(F).

We write the polynomials F and ϕ in the form

F =
∑
i0+...+in=d

d!
i0!...in! fi0,...,in t

i0
0 ...tinn ,

ϕ =
∑
j0+...+jn=k

k!
j0!...jn!ϕj0,...,jnξ

i0
0 ...ξinn .

Let { k!
j0!...jn! t

j0
0 ...tjnn } be a basis of SkV* and { (d−k)!

i0!...in! t
i0
0 ...tinn } be a basis of Sd−kV*,

both ordered lexicographically, then the matrix of the linear map apkF is called the k-th
catalecticant matrix of the form F and denoted by CatF (k,d-k,n+1). It is a matrix of size

dim(SkV)×dim(Sd−kV) =
(
n+k
n

)
×
(
n+d−k
n

)
.
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If we consider the basis {ti00 ...tinn }i0+...+in=k of SkV*, the basis {tj00 ...tjnn }j0+...+jn=d−k of
Sd−kV* and write

F =
∑
i0+...+in=dfi0,...,in t

i0
0 ...tinn ,

ϕ =
∑
j0+...+jn=kϕj0,...,jnξ

i0
0 ...ξinn .

The matrix of apkF with respect these basis is (d−k)!
d! ·CatF (k,d-k,n+1).

Example 13. The case n=2, d=3, k=1.
We have ap1

F :S
1V→S2V* with F ∈ S3V*

F=f3,0,0t30+3f2,1,0t20t1+3f2,0,1t20t2+3f1,2,0t0t21+3f1,0,2t0t22+6f1,1,1t0t1t2+f0,3,0t31+
3f0,2,1t21t2+3f0,1,2t1t22+f0,0,3t32.

ϕ = ϕ0ξ0+ϕ1ξ1+ϕ2ξ2.
ap1
F (ϕ) = Dϕ(F) =

t20(3f3,0,0ϕ0+3f2,1,0ϕ1+3f2,0,1ϕ2)+2t0t1(3f2,1,0ϕ0+3f1,2,0ϕ1+3f1,1,1ϕ2)+
2t0t2(3f2,0,1ϕ0+3f1,1,1ϕ1+3f1,0,2ϕ2)+t21(3f1,2,0ϕ0+3f0,3,0ϕ1+3f0,2,1ϕ2)+
2t1t2(3f1,1,1ϕ0+3f0,2,1ϕ1+3f0,1,2ϕ2)+t22(3f1,0,2ϕ0+3f0,1,2ϕ1+3f0,0,3ϕ2).
So the catalecticant matrix is

CatF (1, 2, 2) =



3f3,0,0 3f2,1,0 3f2,0,1

3f2,1,0 3f1,2,0 3f1,1,1

3f2,0,1 3f1,1,1 3f1,0,2

3f1,2,0 3f0,3,0 3f0,2,1

3f1,1,1 3f0,2,1 3f0,1,2

3f1,0,2 3f0,1,2 3f0,0,3


Now we consider the special case d = 2k, F ∈ S2kV* and the apolarity map

apkF :S
kV−→SkV*.

We define a symmetric bilinear form

ΩF :SkV×SkV−→k, (ϕ1,ϕ2) 7→<ϕ2,apkF (ϕ1)>.

The restriction of ΩF to the diagonal gives a quadratic form on SkV. The matrix associated
to the quadric form ΩF is the catalecticant matrix CatF (k,k,n). It is a square matrix of
size dim(SkV) =

(
n+k
k

)
. For n=1 this matrix is known as a Hankel matrix. The quadratic

form ΩF is called nondegenerate if and only if det(CatF (k,k,n)) 6= 0.

Definition 14. Let F ∈ S2kV* be a homogeneous form on V. Then F is called nonde-
generate if ΩF is a nondegenerate quadratic form on SkV.

Example 14. Case d=4, n=1. We have F = f4,0t40+f3,1t30t1+f2,2t20t21+f1,3t0t21+f0,4t41.
The catalecticant matrix of F is

CatF (2, 2, 1) =

 f4,0 f3,1 f2,2

f3,1 f2,2 f1,3

f2,2 f1,3 f0,4


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Proposition 13. Let F ∈ S2kV* be a nondegenerate form. Then there exists a unique
homogeneous form F̌ ∈ S2kV such that ΩF̌ = Ω̌F .

Proof : The quadratic form Ω̌F is defined by the matrix adj(Catk(F)) = (cuv*) and
we have

Ω̌F =
∑

cun*ξuξv.

We consider the form F̌ ∈ S2kV defined by

F̌ =
∑
|u+v|=2k

d!
(u+v)!cuv*ξ

u+v.

Then for any ti = ti00 ...tinn ∈ SkV* we have

Dti(F̌) =
∑
u+v≥i

d!
(u+v)!cuv*

(u+v)!
(u+v−i)!ξ

u+v−i =
∑
|j|=k

d!
j! cij*ξ

j.

So the matrix of the linear map SkV*→SkV defined by ΩF̌ is equal to the matrix
adj(Catk(F)) and the quadratic form ΩF̌ is the dual of the quadratic form ΩF . 2

Definition 15. Let l,L ∈ V* be two linear form. We say that l and L are conjugate with
respect to a nondegenerate form F ∈ S2kV* if

ΩF̌ (lk,Lk) = 0.

2.5 Sums of Powers

For any finite set of points p1,...,ph ∈ PV we consider the linear space of homogeneous
forms F of degree d on PV such that V(F) contains the points p1,...,ph and we denote
it by

Ld(PV,p1,...,ph)={F ∈ SdV | pi ∈ V(F) ∀ 1≤i≤h}.

Definition 16. An unordered set of points {[l1],...,[lh]} in PV* is a polar h-polyhedron
of F ∈ SdV if

F=λ1ld1+...+λhldh

for some nonzero scalars λ1,...,λh ∈ k and moreover the ldi are linearly independent in
SdV*.

Proposition 14. Let F ∈ S2kV* and let {l1,...,lh} be a polar h-polyhedron for F, where
the lki are linearly independent in SkV*. Then each pair li,lj is conjugate with respect to
the polynomial F.

Proof : We have F = l2k1 +...+l2kh and

ΩF =
∑h
i=1Ωl2k

i
=
∑h
i=1(l

k
i )2.
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So it is sufficient to prove the assertion for quadratic forms. We choose a coordinate sys-
tem such that li = t0, lj = t1 and F = t20+t22+...+t2n. Then F̌ = ξ2

0+...+ξ2
n and ΩF̌ (lki ,lkj )

= ΩF̌ (tk0 ,tk1) = 0. 2

The ground field is algebraically closed so we can write F=Ld1+...+Ldh as sums of
powers of linear forms. This fact admits a geometrical interpretation. Let

νd:Pn→PN , [x0:...:xn] 7→[xd0:x
d−1
0 x1:...:xdn], with N=

(
n+d
d

)
-1,

be the d -Veronese embedding of Pn in PN . The projective space PN with N=
(
n+d
d

)
-1

parametrizes the homogeneous forms of degree d on PV. The Veronese variety Vndn=νd(Pn)
is the locus of polynomials that are powers of linear forms on PV.
So l1,...,lh is a polar h-polyhedron of F if and only if F lies on the secant (h-1)-plane of
Vndn passing through ld1,...,ldh.
We know that for the Veronese variety we have

expdim(Sech−1(Vndn)) = min{h·n+h-1, N}.

It is clear that for sufficiently large values of h the variety of secant (h-1)-planes is the space
PN and each homogeneous polynomial of degree d admits a decomposition in the sums
of h d -powers of linear factors. It is as much clear that for some values of h Sech−1(Vndn)
is a proper subvariety of PN and there is a open Zariski subset of PN whose points are
polynomials that don’t admit a decomposition in h d -powers. Let V2

4 be the Veronese
surface in P5. One expects that dim(Sec1(V2

4))=5 but we have seen that Sec1(V2
4) is a

cubic hypersurface in P5 and that the generic conic does not admit a decomposition in
the sum of two squares of linear forms.

Lemma 1. The set P={[l1],...,[lh]} is a polar h-polyhedron of F if and only if

Ld(PV,[l1],...,[lh]) ⊆ APd(F)

and the inclusion is not true if we delete any [li] from P.

Proof : Let ϕ ∈ SdV be a homogeneous polynomial of degree d and let li ∈ V* a
linear form on V.
We have <ϕ,ldi>=0 if and only if (

∑
i0+...+in=kϕi0,...,in∂0

i0 ...∂nin)(ldi )=0 if and only if
(
∑
i0+...+in=kαi0,...,in l

i0
0 ...linn in)=0 if and only if ϕ([li])=0, where [li] = [l0:...:ln]. There-

fore

<ld1,...,ldh>
⊥={ϕ ∈ SdV | <ϕ,ldi>=0}={ϕ ∈ SdV | ϕ([li])=0}=Ld(PV,[l1],...,[lh]).

If the conditions of the lemma are satisfied we have

F ∈ APd(F)⊥ ⊆ Ld(PV,[l1],...,[lh])⊥ = <ld1,...,ldh>

and F is a linear combination of the ldi . If the ld1,...,ldh are linearly dependent there exists
a proper subset P ′ of P such that <P ′>=<P>, we can suppose P ′ = {[l1];...;[lh−1]}.
Then

APd(F)⊥ ⊆ Ld(PV,p1,...,ph)⊥ = <P ′>.
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We have <P ′>⊥ = Ld(PV,[l1],...,[lh]) ⊆ APd(F) contradicting the hypothesis. This prove
that P is a polar polyhedron of F.
Now suppose that P is a polar polyhedron of F. Then F ∈ <P> and Ld(PV,[l1],...,[lh])
= <P>⊥ ⊆ <F>⊥ = APd(F).
Suppose that Ld(PV,[l1],...,[lh]) ⊆ APd(F). Then F ∈ APd(F)⊥ ⊆ Ld(PV,[l1],...,[lh])⊥ =
<ld1,...,ldh−1>. So we can write

F=λ1ld1+...+λhldh = α1ld1+...+αh−1ldh−1.

This implies

(λ1-α1)ld1+...+(λh−1−αh−1)ldh−1+λhl
d
h=0

in contradiction whit the linear independence of the ldi . 2

Now we consider (PV*)h whit its structure of algebraic variety. Under the action of the
symmetric group we obtain another algebraic variety, the symmetric power

(PV*)(h)= (PV ∗)h

Sh
.

We denote by VSP(F,h)o the subset of (PV*)(h) consisting of polar h-polyhedra of F. It
is natural to see VSP(F,h)o in the symmetric power in fact we are not interested in the
order of the linear forms li.
By lemma 1 VSP(F,h)o is a locally closed subset of (PV*)(h) but it is not compact.
For example consider the family of polynomials λ(X0+X1)2-X2

0-X2
1. For any λ /∈ {0,1}

we have a decomposition in three factors but for λ=0 we have two factors and for λ=1
we obtain the product 2X0X1. This shows that the limit of an additive decomposition in
general is not additive.
Now it is natural to look for a compactification of the set VSP(F,h)o. We have different
possibilities. Let F be a generic homogeneous polynomial of degree d in n+1 variables
and let {L1,...,Lh} be a h-polar polyhedron of F. We write

F = λ1Ld1+...+λhLdh.

The polynomials L1,...,Lh are points in (Pn)* so Z = {L1,...,Lh} is a subscheme of
dimension zero and length h in (Pn)* and so Z is a point in the Hilbert scheme Hilbh(Pn)*
of the subschemes of dimension zero and length h of (Pn)*. Via the injective morphism

VSPo(F,h) → Hilbh(Pn)*, defined by {L1,...,Lh} 7→ Z

we can see VSPo(F,h) ⊆ Hilbh(Pn)* and so we have a compactification of the variety of
power sums

VSPH(F,h) = VSPo(F,h)⊆ Hilbh(Pn)*.

From another viewpoint we can consider Ld1,...,Ldh as points on the Veronese variety Vndn

⊆ PN with N =
(
n+d
d

)
- 1. These points generate a (h-1)-plane in PN and define a point

in the Grassmannian G(h-1,N). For h < N - n We have an injective morphism

VSPo(F,h) → G(h-1,N), defined by {L1,...,Lh} 7→ <Ld1,...,Ldh>.
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In this way we can see VSPo
G(F,h) ⊆ G(h-1,N) and we obtain another compactification

VSPG(F,h) = VSPo(F,h)⊆ G(h-1,N).

The points in the set VSP(F,h)\VSP(F,h)o are called generalized polar polyhedra and
the variety VSP(F,h) is called the variety of power sums of F.

Lemma 2. The Hilbert scheme Hilbh(P1) of 0-subschemes of length h of P1 is a nonsin-
gular scheme of dimension h.

Proof : Any homogeneous polynomial P ∈ ShV vanishes at exactly h points in P1

counted with multiplicity and so determine a point in Hilbh(P1). Conversely any point in
Hilbh(P1) is a collection of h points with multiplicity and so can be seen as the locus of
zeros of an homogeneous polynomial P ∈ ShV. We have a map

ϕ:P(ShV) → Hilbh(P1) , PZ 7→ Z.

Where Z is the locus of zeros of PZ . If PZ = λQZ with λ ∈ k*, then PZ and QZ vanish
at the same subscheme Z and the map ϕ is well defined. If PZ ,QZ ∈ ShV vanish at the
same subscheme Z then they differ for a non zero constant and defines the same point in
P(ShV). So the map ϕ is injective.
Let Z = {p1, ..., pr} be a point in Hilbh(P1), where the element pi has multiplicity ki and
k1 + ...+ kr = h. We write pi = [αi : βi] ∈ P1, then the polynomial

PZ = (β1x0 − α1x1)k1 ...(βrx0 − αrx1)kr

is the unique, up to scalar, homogeneous polynomial of degree h vanishing on Z. We get
the morphism

ψ : Hilbh(P1)→ P(ShV ), Z 7→ PZ .

Clearly ψ is the inverse of ϕ, so ϕ is an isomorphism and Hilbh(P1) ∼= P(ShV ) is a non-
singular scheme of dimension h. 2

Proposition 15. In the cases n=1,2 for a general polynomial F ∈ SdV the variety
VSP(F,h) is either empty or a smooth variety of dimension

dim(VSP(F,h))=h(n+ 1)−
(
n+d
d

)
.

Proof : We consider VSP(F,h) as the closure of VSP(F,h)o in the Hilbert scheme
Hilbh(Pn)*. We have already seen that VSP(F,h) can be empty if h is too small. Let X
be the incidence variety defined as follow

X = {(Z,F) ∈ Hilbh(Pn)* × SdV | Z ∈ VSP(F,h)}.

We have two projection maps

ϕ:X→Hilbh(Pn)*, (Z,F)7→Z and ψ:X→SdV, (Z,F)7→F.
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Let Z ∈ Hilbh(Pn)* be a point in the Hilbert scheme. We can see Z as a set {l1,...,lh}
with li ∈ PV*. The polynomial F=ld1+...+ldh is such that Z ∈ VSP(F,h) and ϕ(Z,F)=Z,
so ϕ is surjective.
Let F ∈ SdV be a polynomial. If VSP(F,h) is not empty there is a decomposition of F
in h factors {l1,...,lh} that is a point Z in the Hilbert scheme such that ψ(Z,F)=F. This
proves that ψ is surjective.
Note that
ϕ−1(Z)={(Z,F) | F has Z={l1,...,lh} as polar h-polyhedron}={(Z,F) | F=λ1l1+...+λhlh},
so dim(ϕ−1(Z)) = h. Moreover

ψ−1(F)={(Z,F) | Z is a polar h-polyhedron of F} = VSP(F,h).

Applying the theorems on the dimension of the fibres we have

dim(X) = dim(ϕ−1(Z)) + dim(Hilbh(Pn)*) = h+nh = (n+1)h,
dim(X) = dim(ψ−1(F)) + dim(SdV) = dim(VSP(F,h)) +

(
n+d
d

)
.

Equaling the two expressions we obtain dim(VSP(F,h)) = h(n+ 1)−
(
n+d
d

)
.

We can identify a point Z ∈ Hilbh(Pn)* with a unordered set {[l1],...,[lh]}. We have
dim(Ld(PV*,Z)=dim(SdV)-h if and only if dim(<ld1,...,ldh>,S

dV)=h.
Recall that Ld(PV*,Z)=<ld1,...,ldh>

⊥. The h-uples of linearly independent vectors are an
open Zariski subset of (SdV)h. So we have an open Zariski subset U ⊆ Hilbh(Pn)* such
that for any point Z ∈ U, dim(Ld(PV*,Z))=dim(SdV)-h.
We fix a point Z ∈ U and consider the fibre

ϕ−1(Z) = {F ∈ SdV | Z is a polar h-polyhedron of F} = {F ∈ SdV | F=λ1ld1+...+λhldh}
= {F ∈ SdV | F ∈ <ld1,...,ldh>} ⊆ Ld(PV*,[l1,...,[lh])⊥.

But Z ∈ U implies that ld1,...,ldh are linearly independent and this is a open condition
on the coefficients of the linear combinations F=λ1ld1+...+λhldh. So the fibre ϕ−1(Z) is
an open Zariski subset of the linear space Ld(PV*,Z)⊥, moreover the Hilbert scheme of
0 -subscheme of length h of Pn is nonsingular in the cases n = 1,2. This show that ϕ−1(Z)
is nonsingular for any Z ∈ U.
If X has a singular point it will be a singular point for some fibre ϕ−1(Z) then X is
nonsingular.
The fibres of the second projection are the varieties VSP(F,h). From Bertini theorem we
deduce that for an open Zariski subset of SdV the varieties VSP(F,h) are smooth. 2

2.5.1 Waring rank and Alexander-Hirschowitz’s theorem

To any quadratic form Q ∈ S2V one can associate its rank defined as the smallest number
r such that Q = l21+...+l2r, for some linear forms l1,...,lr. We want to generalize this
definition to any homogeneous polynomial F ∈ SdV.

Definition 17. The waring rank of F ∈ SdV is the smallest number r such that

F = ld1+...+ldr
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for some linear forms l1,...,lr. We denote the Waring rank of F by wrk(F).

On the other hand wrk(F) is the smallest number h such that VSP(F,h) is not empty
so for a generic F ∈ SdV one expects that

wrk(F ) =
⌈

1
n+1

(
n+d
d

)⌉
.

This is almost always true, J. Alexander and A. Hirschowitz proved, using Terracini’s
lemma, that the following are the only exceptional cases:

d n wrk(F)
2 arbitrary n+ 1
3 4 8
4 2 6
4 3 10
4 4 15

For a proof see
A.Hirschowitz, J.Alexander, Polynomial interpolation in several variables. J. of Algebraic
Geometry, 4 (1995).
The theorem in its original form is the answer to the following interpolation problem.
Let P1, ..., Ph ∈ An be points in general position. Consider the vector space H of polyno-
mials f ∈ k[x1, ..., xn]≤d of degree ≤ d such that f(Pi) = ai and ∂

∂xj
f(Pi) = bi,j for any

i = 1, ..., s and j = 1, ..., n. What is the codimension of H?
It is clear that the expected codimension of H is

expcodim(H) = min{(n+ 1)h,
(
n+d
d

)
}.

Alexander and Hirschowitz classified the defective cases.

Theorem 8. (Alexander-Hirschowitz) The vector space H has the expected codimension
with the following exceptions

• d = 2, 2 ≤ h ≤ n;

• n = 2, d = 4, h = 5;

• n = 3, d = 4, h = 9;

• n = 4, d = 3, h = 7;

• n = 4, d = 4, h = 14.

Via Terracini’s lemma it is possible to reformulate the theorem in terms of defectivity
of some secant varieties to the Veronese varieties. We reformulate our problem in projec-
tive terms as follows.
Let P1, ..., Ph ∈ Pn be points in general position. Consider the vector space H of hyper-
surfaces Xf = V(f) ⊆ Pn, where f is a homogeneous degree d polynomials, such that Xf

passes through Pi and Xf is singular in Pi for any i = 1, ..., s. What is the codimension
of H?
Let νd : Pn → PN be the d -Veronese embedding and let V be the corresponding Veronese
variety. Then the hypersurface Xf ⊆ Pn corresponds to an hyperplane section Hf ∩ V of
V. Since νd is an isomorphism we have that
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Xf is singular in Pi for any i = 1, ..., h ⇔ Hf ⊇ Tνd(Pi)V for any i = 1, ..., h.

Lemma 3. (Terracini) If X ⊆ Pnk is an irreducible variety, with char(k) = 0, then

<TP1X,...,TPh
X> = TzSech(X)

for any z in a open subset U ⊆ Sech(X), with P1,...,Ph ∈ X and z ∈ <P1,...,Ph>.

An immediate corollary is that

dim(Sech(X)) = dim(<TP1X,...,TPh
X>)

So to know the dimension of Sech(X) is equivalent to know the dimension of the space
generated by the tangent spaces of X in h points.
For the Veronese variety V we have that dim(Sech(V)) = dim(<TP1V,...,TPh

V>) =
min{hn+(h-1),N} if and only if the TPiV are independent. From this point of view
Alexander-Hirschowitz’s theorem says that the only defective Veronese varieties are the
following

V2
42 , V3

43 , V4
44 , V4

34 and Vn2n for any n>0.

The next proposition compares the Waring rank of a homogeneous form F ∈ S2kV*
with the rank of the associated quadratic form ΩF .

Proposition 16. Let F ∈ S2kV* be a homogeneous form and let ΩF be the associated
quadric form. Then the Waring rank of F is grater or equal than the rank of ΩF . In
particular if F is nondegenerate then

wrk(F) ≥
(
k+n
n

)
.

Proof : Let h = wrk(F) be the Waring rank of F ∈ SdV* with d = 2k. We write

F = Ld1+...+Ldh.

Since ΩF is linear with respect to F we have ΩF =
∑h
i=1ΩL2k

i
. We can choose coordinates

such that Li is the coordinate function t0. In this way the catalecticant matrix of L2k
i is

the matrix with 1 at the upper left corner and 0 elsewhere. The associated quadric form
is (tk0)2 so ΩL2k

i
= (Lki )2 and we have

ΩF =
∑h
i=1ΩL2k

i
=
∑h
i=1(L

k
i )2.

We have written ΩF as sum of h squares of linear forms so we conclude that

rank(ΩF ) ≤ h = wrk(F).

If F is nondegenerate then ΩF is a non degenerate quadratic form, its associated matrix
is CatF (k,k,n) that is a square matrix of size

(
k+n
n

)
= rank(ΩF ). 2

Proposition 17. Let F ∈ S2kV* be a general homogeneous form of degree 2k. Then

wrk(F) > rank(ΩF )
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except in the following cases, where the equality take place:

• k = 1;

• n = 1;

• n = 2, k ≤ 4;

• n = 3, k = 2.

Proof : If k = 1 then F is a quadratic form and so wrk(F) = rank(F) = rank(ΩF ).
If n = 1 then we have wrk(F) = k+1. The catalecticant matrix of F is a square matrix
of size k+1 and so rank(ΩF ) = k+1 = wrk(F).
If n = 2 we get wrk(F) ≥ 1

3(k+1)(2k+1) and rank(ΩF ) = 1
2(k+1)(k+2). We have wrk(F)

> rank(ΩF ) if and only if k2-3k-4 > 0 if and only if k > 4. By Alexander-Hirschowitz’s
theorem we have
wrk(F) = 6 = rank(ΩF ) if k = 2;
wrk(F) = 10 = rank(ΩF ) if k = 3;
wrk(F) = 15 = rank(ΩF ) if k = 4.
If n = 3 we have wrk(F) > 1

24(2k+3)(2k+2)(2k+1) >
(
k+3

3

)
= 1

6(k+3)(k+2)(k+1) if and
only if 2k2-2k-9 > 0 if and only if k > 2. For k = 2 we get wrk(F) = 10. Finally for n >
3 the disequality wrk(F) ≥ 1

n+1

(
2k+n
n

)
>
(
k+n
n

)
is verified for any k > 1. 2
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Chapter 3

Mukai’s Theorem

The interest in varieties of power sums theory has been reawaken in 1992 by a work of
S.Mukai, who gave a construction of VSP(Fd, h)o in the cases

(n,d,h)=(2, 2, 3), (2, 4, 6), (2, 6, 10)

for a general polynomial Fd and also constructed a smooth compactication VSP(Fd, h)
which turned out to be a Fano threefold in the first two cases and a K3 surface in the
third case. The construction of Mukai employs a generalization of the concept of the
dual quadratic form to forms of arbitrary even degree d = 2k. The Mukai’s theorem is
probably the best work in varieties of power sums theory.

3.1 Mukai’s skew-symmetric form

Let ω ∈
∧2V be a skew-symmetric bilinear form on V*. We consider a basis {t0,...,tn} of

V and the dual basis {ξ0,...,ξn} of V*. Then ω ∈
∧2V that is generated by the elements

of type ωij = ξi ∧ ξj . We define a Poisson bracket on generators in the following way

{,}ωij
: Sk+1V* × Sk+1V* → S2kV*

{f,g}ωij = {f,g}ξi∧ξj = Dξi(f)Dξj (g) + Dξj (f)Dξi(g).

Extending by linearity we obtain a skew-symmetric bilinear form

{,}ω: Sk+1V* × Sk+1V* → S2kV*.

Let F ∈ S2kV* be a nondegenerate form and F̌ ∈ S2kV be its dual form. For each
ω ∈

∧2
V we define σω,F ∈ (

∧2k+1V)* by

σω,F (f,g) = F̌ ({f,g}ω).

Theorem 9. (S. Mukai) Let F be a nondegenerate form in S2kV* and let N be its Waring
rank. Let ΩF be the quadratic form associated to F and assume that N = rank(ΩF ) =(
n+2k
n

)
. For any P = {[l1],...,[lN ]} ∈ VSP(F,N)o let E(P) be the linear span of the

powers lk+1
i in Sk+1V*

E(P) = <lk+1
1 ,...,lk+1

N > ⊆ Sk+1V*.
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Then we have

i E(P) is isotropic with respect to each form σω,F ;

ii apk−1
F (Sk−1V) ⊆ E(P);

iii For any ϕ ∈ Sk−1V, G ∈ Sk+1V* and any ω ∈
∧2V*, we have σω,F (Dϕ(F),G) = 0.

In other words apk−1
F (Sk−1V) is contained in the radical of each σω,F .

Proof : We check that σω,F (lk+1
i ,lk+1

j ) = 0 for any i,j. We compute
σω,F (lk+1

i ,lk+1
j ) = F̌ ({lk+1

i ,lk+1
j }ω) = F̌ ({lki ,lkj })ω(li,lj) = ΩF̌ (l

k
i ,lkj )ω(li,lj) = 0, since by

proposition 14 of chapter 2 the pair lki , lkj is conjugate with respect to F.
We note that for ϕ ∈ Sk−1V we have Dϕ(l2ki ) = (2k)!

(k+1)!

∑N
i=1Dϕ(l

k−1
i )lk+1

i , in fact we
derive the l2ki k-1 times. Therefore the elements in apk−1

F (Sk−1V) are in the form∑N
i=1λil

k+1
i ∈ E(P).

To prove the last assertion we compute
{Dϕ(F),G}ωij = {Dϕ(F),G}ξi∧ξj = Dξi(Dϕ(F))Dξj (G) + Dξj (Dϕ(F))Dξi(G) =
Dϕξi(F)Dξj (G) - Dϕξj (F)Dξi(G).
Now for any A,B ∈ SkV* we have F̌ (AB) = ΩF̌ (A,B) = <Ω−1

F̌
(A),B>. Therefore

σωij ,F (Dϕ(F),G) = F̌ ({Dϕ(F),G}ωij
) = F̌ ( Dξi

Dϕ(F)Dξj
(G) - Dξj

Dϕ(F)Dξi
(G)) =

F̌ (Dξi
Dϕ(F)Dξj

(G)) - F̌ (Dξj
Dϕ(F)Dξi

(G)) = <ϕξi,Dξj
(G)> - <ϕξj,Dξi

(G)> =
Dϕ(Dξiξj

(G) - Dξjξi
(G)) = Dϕ(0) = 0. 2

3.2 The Mukai Map

Lemma 4. Let V be a k-vector space and let W be a subspace of V. Then V
W
∼= W⊥.

Proof : Let Π:V → W⊥ be the projection map. Then Π is a surjective k -linear mor-
phism and we note that

ker(Π) = {v ∈ V | Π(v) = 0} = W.

Therefore the map Π: VW → W⊥ defined by v+W 7→ Π(v) is an isomorphism of k -vector
spaces. 2

Lemma 5. We identify SkV with (SkV*)* and let d = deg(F). Then

apkF (S
kV)⊥ = APd−k(F).

Proof : For any ϕk ∈ SkV and ϕ′d−k ∈ Sd−kV we have <ϕ′d−k,ap
k
F (ϕk)> =

<ϕ′d−k,<ϕk,F> > = <ϕ′d−kϕk,F> = <ϕk,<ϕ′d−k,F> > = apd−kF (ϕ′d−k)(ϕk).
Thus, if <ϕ′d−k,ap

k
F (ϕk)> = 0 for all ϕk we have apd−kF (ϕ′d−k)(ϕk) = 0 for all ϕk. By

nondegenerancy of the apolarity pairing we get apd−kF (ϕ′d−k) = 0 i.e. ϕ′d−k ∈ APd−k(F).
Conversely if ϕ′d−k ∈ APd−k(F) then apd−kF (ϕ′d−k) = 0 and apd−kF (ϕ′d−k)(ϕk) = 0 for all
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ϕk. So <ϕ′d−k,ap
k
F (ϕk)> = 0 for all ϕk i.e. ϕ′d−k ∈ apkF (S

kV)⊥. 2

Let F ∈ S2kV* be a nondegenerate form and assume that (k,n) is one of the exceptional
cases of proposition 17 of chapter 2, then

Nk = wrk(F) = rank(ΩF ) =
(
n+k
n

)
.

We know that VSP(F,Nk)o 6= ∅ for general enough F. Let P ∈ VSP(F,Nk)o and

E(P) =
<lk+1

1 ,...,lk+1
Nk

>

apk−1
F (Sk−1V )

.

The space E(P) is a subspace of W = Sk+1V

apk−1
F (Sk−1V )

.

By lemma 4 we have W ∼= apk−1
F (Sk−1V )⊥ and so W* ∼= apk−1

F (Sk−1V )⊥. By lemma 5
we get

W* ∼= apk−1
F (Sk−1V )⊥ ∼= APk+1(F) hence W ∼= APk+1(F)*.

In this way we can see E(P) ⊆ APk+1(F)* as a subspace of APk+1(F)*.

Proposition 18. In the preceding notation we have

i dim(APk+1(F)*) =
(
n+k
n−1

)
+
(
n+k−1
n−1

)
;

ii dim(E(P)) = Nk =
(
n+k
n

)
;

iii dim(E(P)) =
(
n+k−1
n−1

)
.

Proof :

i Since F is nondegenerate APk(F) = ker(apkF ) = {0}, hence ker(apk−1
F ) = {0}. Therefore

the map apk−1
F :Sk−1V → Sk−1V* is an isomorphism of vector spaces and

dim(apk−1
F (Sk−1V)) = dim(Sk−1V*) =

(
n+k−1
n

)
.

Now APk+1(F)* ∼= W = Sk+1V ∗
apk−1

F (Sk−1V )
, therefore we have

dim(APk+1(F)*) =
(
k+1+n
n

)
-
(
k−1+n
n

)
= (n+k−1)!

(n−1)!(k+1)!(n+k+k+1) =
(
n+k
n−1

)
+
(
n+k−1
n−1

)
.

ii Let P = {[l1],...,[lNk
]} be aNk-polar polyhedron of F. We have to prove that lk+1

1 ,...,lk+1
Nk

are linearly independent that is equivalent to prove that the space of hypersurfaces
containing [l1],...,[lNk

] has dimension
(
n+k+1
n

)
- Nk =

(
n+k
n−1

)
i.e.

dim(Lk+1(PV*,[l1],...,[lNk
])) =

(
n+k
n−1

)
.

Case n = 1 ) We have to prove that dim(Lk+1(PV*,[l1],...,[lNk
])) =

(
1+k

0

)
= 1 where

Nk =
(

1+k
1

)
= k+1. This is clear because given k+1 points in P1 we have only one

degree k+1 homogeneous polynomial vanishing on the k+1 points.
Case k = 1. In this case Nk =

(
1+n
n

)
= n+1. We have to prove that

dim(L2(PV*,[l1],...,[ln+1])) =
(

1+n
n−1

)
= n(n+1).
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The space of quadrics has dimension
(
n+2
n

)
so the space of quadrics containing

[l1],...,[ln+1] has dimension
(
n+2
n

)
- 1 - (n+1) = n(n+1) because the l2i are inde-

pendent.
Case n = 2, k = 2 ) We have to prove that dim(L3(PV*,[l1],...,[l6]))=

(
2+2

1

)
=4, in this

case Nk =
(

4
2

)
= 6. Suppose that dim(L3(PV*,[l1],...,[l6])) > 4. Since AP2(F ) = {0}

no conics passes through the 6 points, in particular no 4 points are collinear. We
take a conic K through the five points [l1],...,[l5] and two points x,y on K such that
each component of C contains ≥ 4 points.
Since dim(L3(PV*,[l1],...,[l6],x,y)) > 2 there exists three linearly independent cu-
bics Cj such that Ci has 7 common points with K. By Bezout’s theorem we see
that the cubics contain K. The residual lines have to pass through [l6] and we get
a 2 -dimensional family of lines through a point but this is impossible.
Case n = 2, k = 3 ) In this case Nk =

(
5
2

)
= 10. We have to prove that

dim(L4(PV*,[l1],...,[l10])) =
(

5
1

)
= 5.

Suppose that dim(L4(PV*,[l1],...,[l10])) > 5, since AP3(F) = {0} no cubics passes
through the ten points in particular no 5 points are collinear and no 8 points are
on a conic. Let K be a conic through [l1],...,[l5] and let x,y,z,w four points of K
such that each component on K contains ≥ 5 points.
Then dim(L4(PV*,[l1],...,[l10],x,y,z,w)) > 1 and there exist two independent quar-
tics Qi such that Qi and K have 9 common points. By Bezout’s theorem K is a
component of Qi. So there exists a line of conics through [l6],...,[l10] and this forces
[l6],...,[l9] to be collinear. Repeating the same argument for the points [l6],...,[l10]
yields the collinearity of [l1],...,[l4]. Then [l1],...,[l4],[l6],...,[l9] are on a conic, a
contradiction.
Case n = 2, k = 4 ) In this case Nk =

(
6
4

)
= 15. We have to prove that

dim(L5(PV*,[l1],...,[l15])) =
(

6
1

)
= 6.

Since AP4(F) = {0} no quartics passes through the 15 points in particular no 13
points are on a cubic, no 10 points are on a conic and no 6 points are collinear.
Suppose that dim(L5(PV*,[l1],...,[l15])) > 6. Let L be the line generated by [l1],[l2],
we take 4 points x,y,z,w ∈ L. Then dim(L5(PV*,[l1],...,[l15],x,y,z,w)) > 2 and there
exist 3 independent quintics Ci such that Ci and L have 6 common points. In this
way we find a projective plane of quartics containing the 13 points [l3],...,[l15] but
generically the space of quartics through 13 points is a projective line. We have
three possibilities.
The family of quartics is the union of a cubic for the 13 points with the lines of P2,
but this is impossible because no 13 points are on a cubic.
The family of quartics is the union of a conic for the 10 points with the conics of
P2 through 3 points, but this is impossible because no 10 points are on a conic.
The family of quartics is the union of a line for the 6 points with the cubics of P2

through 7 points, but this is impossible because no 6 points are collinear.
Case n = 3, k = 2 ) In this case Nk =

(
3+2

3

)
= 10. We have to prove that
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dim(L3(PV*,[l1],...,[l10])) =
(

3+2
2

)
= 10. Suppose dim(L3(PV*,[l1],...,[l10])) > 10.

Since AP2(F) = {0} no quadrics passes through the 10 points, in particular no
7 points are on plane. There exists a unique quadrics Q through the 9 points
[l1],...,[l9]. Then the 9 points impose independent conditions to the quadrics and
the 10 points [l1],...,[l10] impose independent conditions to the cubics.

iii We have E(P) =
<lk+1

1 ,...,lk+1
Nk

>

apk−1
F (Sk−1V )

. We compute

dim(E(P)) = Nk - dim(apk−1
F (Sk−1V )) =

(
n+k
n

)
-
(
n+k−1
n

)
= (n+k−1)!

k!(n−1)! =
(
n+k−1
n−1

)
.

2

We have seen that for any P = {[l1],...,[lNk
]} ∈ VSP(F,Nk)o the space

E(P) =
<lk+1

1 ,...,lk+1
Nk

>

apk−1
F (Sk−1V )

is a subspace of dimension
(
n+k−1
n−1

)
of the

(
n+k
n−1

)
+
(
n+k−1
n−1

)
dimensional vector space

APk+1(F)* i.e. a point in the Grassmannian G(
(
n+k−1
n−1

)
,APk+1(F)*). We get the regular

map

MuK: VSP(F,Nk)o −→ G(
(
n+k−1
n−1

)
,APk+1(F)*), P 7→ E(P).

We call this map the Mukai map.

Proposition 19. The Mukai map is injective.

Proof : Let Pl = {[l1],...,[lNk
]}, PL = {[L1],...,[LNk

]} ∈ VSP(F,Nk)o such that
MuK(Pl) = MuK(PL) then

< lk+1
1 , ..., lk+1

Nk
>=< Lk+1

1 , ..., Lk+1
Nk

> mod(apk−1
F (Sk−1V )).

Since F is nondegenerate we have APk(F) = {0} and so APk−1(F) = {0}. We have
< lk+1

1 − Lk+1
1 , ..., lk+1

Nk
− Lk+1

Nk
> ⊆ apk−1

F (Sk−1V ) = Sk−1V ∗. This forces

< lk+1
1 − Lk+1

1 , ..., lk+1
Nk
− Lk+1

Nk
> = {0}

and so lk+1
j = Lk+1

j for any j. This implies

< lk+1
1 , ..., lk+1

Nk
>=< Lk+1

1 , ..., Lk+1
Nk

> and
dim(Lk+1(PV*,[l1],...,[lNk

])) = dim(Lk+1(PV*,[L1],...,[LNk
])).

Without loss of generality we can assume that [l1] 6= [Lj] for any j. Since

dim(Lk(PV*,[l2],...,[lNk
])) =

(
n+k
n

)
- (Nk - 1) =

(
n+k
n

)
-
(
n+k
n

)
+ 1 > 0

we can find a form ϕ of degree k vanishing on the last Nk - 1 points. If L ∈ V is a linear
form onV* vanishing on [l1] but not containing any [Lj] then ϕL ∈ Lk+1(PV*,[l1],...,[lNk

])
= Lk+1(PV*,[L1],...,[LNk

]). The form ϕL vanishes on any [Lj] and this force ϕ to van-
ish on any [Lj]. Therefore we have ϕ ∈ Lk(PV*,[L1],...,[LNk

]) ⊆ APk(F). This implies
APk(F) 6= {0}, a contraddiction because F is nondegenerate.
Therefore we may assume [l1] = [L1]. Now if [l2] 6= [Lj] for any k ≥ 2, we repeat the
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argument replacing [l1] with [l2] and obtain another contraddiction. Proceeding in this
way we show that Pl = PL.
The same proof works for generalized polar polyhedra. Let Z and Z

′
be two generalized

polar polyhedra such that

Lk+1(PV ∗,Z) = Lk+1(PV ∗,Z
′
).

We suppose Z 6= Z
′
and choose a subscheme ZP of Z of length Nk-1 which is not a

subscheme of Z
′
. Since

dim(Lk(PV ∗,ZP )) ≥
(
n+k
n

)
- Nk - 1 > 0

there exists a nonzero ϕ ∈ Lk(PV ∗,ZP ). The sheaf IZ/IZP
is a skyscraper sheaf con-

centrated in P and it is annihilated by the maximal ideal mP , so mPIZP
⊆ IZ . We

choose a linear form L vanishing at P but not vanishing at any subscheme of Z
′
. Then

Lϕ ∈ Lk+1(PV ∗,Z) = Lk+1(PV ∗,Z
′
) and hence ϕ ∈ Lk(PV ∗,Z

′
), a contradiction since F

is nondegenerate. 2

3.3 Mukai’s Theorem

Recall that we have the linear map∧2V −→
∧2VSk+1V, ω 7→ σω,F .

We know that for any ϕ ∈ Sk−1V, G ∈ Sk+1V*, ω ∈
∧2V*, σω,F (Dϕ(F),G) = 0. There-

fore the previous map defines an injective map∧2V −→
∧2APk+1(F).

Let N ⊆
∧2APk+1(F) be the image of this map, then N is a subspace of the space of

the 2 -forms on APk+1(F)*. Let

G(
(
n+k−1

k

)
,APk+1(F)*)N ⊆ G(

(
n+k−1

k

)
,APk+1(F)*)

be the subvariety of the Grassmannian consisting of the subspaces of
∧2APk+1(F) that

are isotropic with respect all the 2 -forms in N . Since E(P) is isotropic with respect all
the 2 -forms in N we have

MuK(VSP(F,Nk)) ⊆ G(
(
n+k−1

k

)
,APk+1(F)*)N .

We know that the map MuK: VSP(F,Nk) −→ G(
(
n+k−1
n−1

)
,APk+1(F)*) is injective.

Therefore we have
dim(MuK(VSP(F,Nk))) = dim(VSP(F,Nk)) = (n+1)Nk -

(
n+2k
n

)
= (n+1)

(
n+k
n

)
-
(
n+2k
n

)
.

We report in the following table the cases in which we are interested

n k dim(MuK(VSP(F,Nk)))
1 arbitrary 1

arbitrary 1
(
n+1

2

)
2 2 3
2 3 2
2 4 0
3 2 5
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We denote by G = G(h,E) the Grassmannian of h-subspace of a vector space E. Recall
the exact sequence on the Grassmannian

0 7→ SG −→ EG −→ QG 7→ 0

where SG is the universal bundle whose fibre in x ∈ G is the h-subspace corresponding
to x. To give a section s: G → SG of SG is equivalent to give h-regular function G → kh

in fact SG is locally trivial of rank h. The locus of zeros of this h regular function defines
a subvariety of codimension ≤h of the Grassmannian and the equality holds for a Zariski
open subset of sections because generically the h functions are independent. In this way
we can associate to a section s: G → SG of SG a subvariety of G that we denote by Z(s).
In our case the universal bundle on G(

(
k+1

1

)
,APk+1(F)*) has rank k+1. A 2 -form on

EG defines by restriction a 2 -form on
∧2SG whose associated subvariety has codimension

≤
(
k+1

2

)
= rank(

∧2SG) and the equality holds for a Zariski open subset of sections.
For any h-dimensional subspace of section the locus of common zeros has codimension
≤h
(
k+1

2

)
and again the equality hold for a Zariski open subset of sections.

Since dim(N ) = dim(
∧2

V ) =
(
n+1

2

)
in our case the expected codimesnion and the

expected dimension for G(
(
n+k−1

k

)
,APk+1(F)*)N are

expcodim(G(
(
n+k−1

k

)
,APk+1(F)*)N ) =

((n+k−1
k )
2

)
1
2n(n+1);

expdim(G(
(
n+k−1

k

)
,APk+1(F)*)N ) =

(
n+k−1
n−1

)(
n+k
n−1

)
-
((n+k−1

k )
2

)
1
2n(n+1).

For n = 1 expcodim(G(1,APk+1(F)*)N ) = 0, G(1,APk+1(F)*)N = G(1,APk+1(F)*)
and dim(G(1,APk+1(F)*)N ) = 1.
For n = 2 we have expcodim(G(

(
k+1
k

)
,APk+1(F)*)N ) = 3

(
k+1

2

)
and

expdim(G(
(
k+1
k

)
,APk+1(F)*)N ) = 3

(
k+1

2

)
= (k+1)(k+2) - 3

(
k+1

2

)
= 1

2(1+k)(4-k).

In the cases k = 1,2,3,4 we have

k expdim(G(
(
k+1
k

)
, APk+1(F )∗)N )

1 3
2 3
3 2
4 0

We see that the expected dimension of G(
(
n+k−1

k

)
,APk+1(F)*)N is equal to the dimension

of VSP(F,Nk) in the cases n = 1 and n = 2, k = 1,2,3,4. In all other cases it is strictly
less.

Theorem 10. (S. Mukai) Let F ∈ SdV* be a generic polynomial of degree d = 2k. We
assume n = 3 and k ≤ 4. Then

VSP(F,Nk) = VSP(F,
(
k+2

2

)
) ∼= G(

(
k+1
k

)
,APk+1(F)*)N = G(k+1,APk+1(F)*)N .

M1 If n = 2 and k = 1 then d = 2, Nk = 3 and dim(VSP(F2,3)) = 3.
The variety VSP(F2,3) is a smooth Fano 3-fold of genus 21 and index 2.

M2 If n = 2 and k = 2 then d = 4, Nk = 6 and dim(VSP(F2,3)) = 3.
The variety VSP(F4,6) is a smooth Fano 3-fold of genus 12 and index 1.
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M3 If n = 2 and k = 3 then d = 6, Nk = 10 and dim(VSP(F2,3)) = 2.
The variety VSP(F6,10) is a smooth K3 surface.

M4 If n = 2 and k = 4 then d = 8, Nk = 15 and dim(VSP(F2,3)) = 0.
The variety VSP(F4,6) is a set of 16 points.

Proof : We know that for n = 2 the varieties VSP(F,
(
k+2

2

)
) are irreducible and

smooth. We compute their dimensions

k dim(VSP(F,
(
k+2

2

)
))

1 3
2 3
3 2
4 0

Via the Mukai map we are associating to each polyhedra P ∈ VSP(F,
(
k+2

2

)
) a point in

G(k+1,(APk+1F)*). We have dim((APk+1F)*) = 2k + 3 and dim(G(k+1,(APk+1F)*))
= (k + 3)(k + 1). In our cases

k dim((AP k+1F)*) G(k + 1, (AP k+1F)*) dim(G(k + 1, (AP k+1F)*))
1 5 G(2, 5) 6
2 7 G(3, 7) 12
3 9 G(4, 9) 20
4 11 G(5, 11) 30

A basis for a 3 -dimension space N of sections of E =
∧2SG* defines a section of the

vector bundle E⊕3 = E ⊕ E ⊕ E . The bundle E is generated by global section and by
Bertini theorem on sections of a vector bundle we know that a generic section of E is
smooth.
Therefore the locus of zeros Z(s) of a generic section s of E is a smooth subvariety of
G(k+1,(APk+1F)*) and its codimesnion in equal to 3

(
k+1

2

)
= 3

2k(k+1). We compute

dim(Z(s)) =
(
n+k−1
n−1

)(
n+k
n−1

)
- 3

2k(k+1) = 1
2(1+k)-(4-k).

We assume k ≤ 4 and so dim(Z(s)) ≥ 0.
The normal bundle NZ(s),G is isomorphic to E⊕3. It is know that the determinant of the
tangent bundle of G = G(h,N) is given by

c1(G) = Nc1(SG*)

and that the determinant of
∧2SG is given by

c1(
∧2SG) = (h-1)c1(SG*).

In our case we have N = dim((APk+1F)*) = 2k + 3, h = k + 1 and

c1(E⊕3) = 3c1(E) = 3c1(
∧2SG*) = 3(k + 1 - 1)c1(SG*) = 3kc1(SG*);

c1(G) = (2k + 3)c1(SG*).

By adjunction formula we have KZ(s) = KG + det(NZ(s),G) i.e. on the Chern classes we
have
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c1(Z(s)) = c1(G) + c1(E⊕3) = (2k + 3 -3k)c1(SG*) = (3-k)c1(SG*).

We write c1(Z(s)) = (3-k)c1(OZ(s)(1)), where OZ(s)(1) is the restriction of det(SG*) on
Z(s). We note that

OZ(s)(1) ∼= det(SG*) ⊗ OZ(s)

is the sheaf associated to the Plücker embedding of the Grassmannian and the global
sections of OZ(s)(1) are the hyperplane sections of the Grassmannian in its Plücker em-
bedding. Therefore OZ(s)(1) is ample.
If k < 3 then c1(Z(s)) = (3-k)c1(OZ(s)(1)) with 3-k > 0. Then the anticanonical sheaf
is ample and Z(s) is a smooth Fano 3 -fold.
If k = 3 then c1(Z(s)) = 0 and the canonical sheaf is trivial. Then Z(s) is a smooth K3
surface.
If k = 4 then dim(Z(s)) = 0 and the rank of E⊕3 is given by

rank(E⊕3) = 3·rank(E) = 3
(
k+1

2

)
= 30 = dim(G(5,11)).

The generic section of E⊕3 vanishes on a finite number of points equal to the Chern num-
ber c30(E⊕3) = 16. 2
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Chapter 4

A New Viewpoint on VSP

In this chapter we state some new results in varieties of power sums theory. First we prove
by geometrical methods Hilbert and Sylvester theorems. Then we give an alternative proof
of Dolgachev - Kanev theorem and with the same method we will find that VSP(F2,4)
is a Grassmannian. Furthermore we give a method to reconstruct a 4-polar polyhedron
for a plane cubic. Finally we prove a theorem on varieties of power sums rationality.

Remark 6. (Partial Derivatives) Let {L1, ..., Lh} be a h-polar polyhedron for the homo-
geneus polynomial F ∈ k[x0, ..., xn]d. We write

F = λ1L
d
1 + ...+ λhL

d
h.

The partial derivatives of F are homogeneus polynomials of degree d− 1 decomposed in h
linear factors

Fxi
= λ1αi1dL

d−1
1 + ...+ λhαihdL

d−1
h , for any i = 0, ..., n.

Then VSP(F, h)o ⊆ VSP(Fxi
, h)o, taking clousures we have VSP(F, h) ⊆ VSP(Fxi

, h).
The polynomial F has

(
n+l
l

)
partial derivatives of order l. Cleary these derivatives are

homogeneus polynomials of degree d − l decomposed in h-linear factors. Then we have
VSP(F, h) ⊆ VSP(F

x
l1
1 ,...,x

ln
n
, h), where l1 + ...+ ln = l.

Remark 7. (Projections) Let H ⊆ PN be a l-plane. We consider a (N − l − 1)-plane
E such that H ∩ E = ∅. Then any l + 1 - plane containing H intersects E in a point.
Conversely for any point p ∈ E is uniquely determined an l+1 - plane < p,H > containing
H. We con project PN in E ∼= PN−l−1 via the rational map

π : PN \H 99K PN−l−1, defined by p 7→< p,H > ∩E.

4.1 Hilbert’s and Sylvester’s Theorems

In this section we study two cases where the variety of power sums is a single point. We
will give two proofs for the Hilbert’s theorem.

Theorem 11. (Hilbert) The variety of power sums VSP(F5,7), parameterizing all decom-
positions in seven linear factors of a homogeneous quintic polynomial in three variables,
is a point.
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Proof :

1. We consider F5 as point in P20. We have the Veronese embedding

ν5:P2 → P20

whose image is the Veronese variety V = V2
25. By Alexander-Hirschowitz’s theorem

we know that he variety of secant 6 -plane of V has dimension

dim(Sec6(V)) = 7·2+7-1 = 20

so any quintic homogeneous polynomial in three variables admits a decomposition
in seven linear factors.
Let {l1,...,l7} be a polar 7 -polyhedron of F5. We write

F5 = λ1l51+...+λ7l57.

The partial derivatives of F5 are homogeneous polynomials of degree four and the
second partial derivatives of F5 are homogeneous polynomials of degree three. By
Schwarz theorem the second mixed derivatives are equal so we have six second
partial derivatives of F5 that we denote by Fxx, Fyy, Fzz, Fxy, Fxz, Fyz.
The second partial derivatives are decomposed in the seven linear factor l1,...,l7.
Now we look at the P9 parameterizing the homogeneous polynomial of degree three
in x,y,z. We consider the Veronese embedding

ν3:P2 → P9, with V
′
= V2

9 = ν3(P2).

In P9 we have the seven points l31,...,l37 ∈ V
′
, the P5 spanned by the second partial

derivatives and denoted by H5
∂ = <Fxx,...,Fyz>. Moreover we have the P6 spanned

by l31,...,l37 that contains H5
∂ , we denote it by H6

l = <l31,...,l37>.
Now we suppose that there is a second decomposition of F5 in seven linear factors

F5 = η1L5
1+...+η7L5

7.

This gives rise to a second decomposition for the second partial derivatives in the
factors L3

1,...,L3
7. In P9 we have the P6 spanned by L3

1,...,L3
7 that contains H5

∂ , we
denote it by H6

L = <L3
1,...,L3

7>. Since

dim(H6
l ) + dim(V

′
) = dim(H6

L) + dim(V
′
) = 8 < 9

the 6 - planes H6
l , H

6
L intersects V

′
exactly in the points L3

i and l3i respectively, and
since there exist i, j such that Li 6= lj , we have that H6

l 6= H6
L.

Moreover H5
∂ does not intersect V

′
since dim(V

′
) + dim(H5

∂) < 9. We project P9

in P3 via the 6 -planes containing H5
∂ . We denote the projection by

π: P9\H5
∂ 99K P3.
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The variety V = π(V
′
) is a surface in P3 with deg(V ) = 9. The projections of H6

l

and H6
L determine on V two points x,y ∈ V of multiplicity 7. We consider the line

R = <x,y> that intersect V with multiplicity at least 14, but deg(V ) = 9 implies
that R ⊆ V .
The line R determine a 7 -plane H7 in P9 whose intersection with V

′
contains a

curve Γ ⊆ H7∩V ′ . The 7 -plane H7 contains H6
l and H6

L so we can estimate deg(Γ)
intersecting with H6

l . We have Γ·H6
l ≤ 7.

We know that any curve in V
′
has degree multiple of three, so we have only two

possibilities

deg(Γ) = 3 or deg(Γ) = 6.

We write H7 = H8
1 ∩ H8

2 as intersection of two hyperplanes. Then H8
1 ∩ V

′
= X1 and

H8
2 ∩ V

′
= X2 are curves of degree 9 with Γ as a common component. The curves

X1, X2 corresponds in P2 to two cubic curves C1, C2 with a common irreducible
component Γ. We have two cases:

• C1 = Γ ∪ K1 and C2 = Γ ∪ K2 with K1, K2 conics.

• C1 = Γ ∪ R1 and C2 = Γ ∪ R2 with R1, R2 lines.

In the first case Γ = ν3(Γ) is a twisted cubic curve contained in H7 and

H6
l ·Γ = H6

L·Γ = 3,

say H6
l ∩ Γ = {l31, l32, l33} and H6

L ∩ Γ = {L3
1, L

3
2, L

3
3}. The image of K1 via ν3 is a

curve of degree 6, K1 that passes through {l34, l35, l36, l37} and intersects Γ in Γ1 = 2
points. Similarly the image of K2 via ν3 is a curve of degree 6, K2 that passes
through {L3

4, L
3
5, L

3
6, L

3
7}. Now the set {l34, l35, l36, l37} is contained in the hyperplane

section H8
2 ∩ V

′
= Γ ∪K2. Conversely the set {L3

4, L
3
5, L

3
6, L

3
7} is contained in the

hyperplane sectionH8
1∩V

′
= Γ∪K1. ButK1 andK1 intersect in exactlyK1 ·K2 = 4

points and so {L3
4, L

3
5, L

3
6, L

3
7} = {l34, l35, l36, l37}. In particular there are four points

on H6
l ∩H6

L that don’t lie in H5
∂ .

In the second case Γ = ν3(Γ) is a rational normal curve of degree 6 and

H6
l ·Γ = H6

L·Γ = 6.

Then the images of R1 and R2 are two conics R1 and R2 that passes through the
remaining points say l37 and L3

7 respectively. We note that L3
7 is in the hyperplane

section H8
1 ∩ V

′
= Γ ∪ R1 and l37 is in the hyperplane section H8

2 ∩ V
′
= Γ ∪ R2.

Since R1 and R2 intersect in R1 ·R2 = 1 point, we have l37 = L3
7 and we find a point

on H6
l ∩H6

L that don’t lie in H5
∂ .

In any case we find a point on H6
l ∩ H6

L that does not lie on H5
∂ because it lies on

V
′
. So H6

l = H6
L, a contradiction. 2

2. The partial derivatives of F5 are three homogeneous polynomials of degree four
Fx,Fy,Fz decomposed in seven factors. We consider the Veronese embedding
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ν4:P2 → P14, with V = V2
16 = ν4(P2).

We suppose to have two different 7 -polar polyhedra {l1,...,l7} and {L1,...,L7}. In
P14 we have the two 6 -plane H6

l and H6
L, the 2 -plane H2

∂ = <Fx,Fy,Fz> and the
k -plane Hk = <H6

l ,H
6
L>.

Let H13 be a generic hyperplane in P14 containing Hk. Then H13 ∩ V = Γ is a
curve of degree 16. Now we prove that the intersection H13 ∩ V is transversal and
so the curve Γ is smooth.
By Bertini’s theorem if the generic hyperplane containing Hk has non transversal
intersection in x at V then x ∈ Hk. Let {x1,...,xs} = Hk∩V such that Hk⊇TxiV

for any i=1,...,l. Let H12 be a 12 -plane contained in H13 such that H12⊇Hk then
H12·V = 16. Now the xi have multiplicity at least two for any i=1,...,l and so
H12 ·V = 16 ≥ 12−k+s+ l. Now s=14 implies k=10 and 16≥12-10+14+l implies
l=0. When s decreases of one also k decreases of one and so l is constant and equal
to zero.
Then Γ is smooth and corresponds to a smooth quartic curve in P2, so g(Γ) = 3.
Then Hk · Γ ≤ 14. Let Π be a hyperplane in H13 such that Hk ⊆ Π. We have
Π·Γ = 16. Let ∆ be the linear system determined on Γ by the hyperplanes in H13

containing Hk, we have

∆ = Hk·Γ + {12-k points} = Hk·Γ + g12−k
12−k.

In fact the family of the hyperplanes in P13 containing a fixed k -plane have di-
mension 13-k-1 = 12-k. Now we have a divisor D on Γ with deg(D) = 12-k and
dim(H0(Γ,OΓ(D))) = 13-k. By Riemann-Roch theorem on the divisor D we have

h0(D) - h0(KΓ - D) = deg(D)+1-g(Γ) = 12-k+1-3 = 10-k.

Now h0(D) = 13-k implies h0(KΓ - D) = 3. For the canonical divisor KΓ we have
that KΓ is the divisor associated to the sheaf

OP2(-3+4) ⊗ OΓ = OP2(1) ⊗ OΓ.

In other words KΓ is the class of divisors determined on Γ by the lines of P2. We
write D = p+q, the KΓ - D is the class of divisor in KΓ vanishing on D so is the
divisor cut on Γ by the line <p,q> and h0(KΓ - D) = 1, a contradiction. 2

Theorem 12. (Sylvester) Let F3 = F3(x,y,z,w) be a homogeneous polynomial of degree
three. The variety of power sums VSP(F3,5), parameterizing all decompositions in five
linear factors of a homogeneous cubic polynomial in four variables, is a point.

Proof : The polynomial F3 is a point in P19. We consider the Veronese variety V =
V3

27 parameterizing the 3 -powers of linear factor on P3 and its variety of secant 4 -planes.
We have

dim(Sec4(V )) = 5·3+5-1 = 19.
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So the generic cubic polynomial on P3 admits a decomposition in five linear factors.
We suppose that there are two different 5 -polar polyhedra {l1,...,l5} and {L1,...,L5} for
F3. So we have two different decomposition for the partial derivatives of F3. The partial
derivatives of F3 are four quadric polynomials decomposed in five linear factors in two
different ways.
The partial derivatives generate a P3 denoted by H3

∂ = <Fx,Fy,Fz,Fw> in the P9 param-
eterizing the quadric polynomials. We consider the Veronese embedding

ν2:P3 → P9 with V
′
= V3

8 = ν2(P3).

The two 5 -polar polyhedra are two sets of five points on V
′
that generate two P4 denoted

by

H4
l = <l21,...,l25> and H4

L = <L2
1,...,L2

5>.

The 4 -planes H4
l and H4

L both contain the 3 -plane H3
∂ .

We project P9 in P5 via the 4 -planes containing H3
∂ . We have a well defined map

π:P9\H3
∂ 99K P5.

In P5 we have the 3 -fold V
′
= π(V

′
) of degree 8. On V

′
we have two 5 -fold points

x = π(H4
l ) and y = π(H4

L). The line R = <x,y> intersects V
′
with multiplicity 10 and

deg(V
′
) = 8 implies that R is contained in V

′
.

Now π−1(R) = H5 ∼= P5 and we have a curve Γ ⊆ H5 ∩ V
′
corresponding to the line

R. We note that Γ, H4
l and H4

L are contained in H5 ∼= P5. So we can estimate deg(Γ)
intersecting it with H4

l . We have

Γ·H4
l ≤ V

′ ·H4
l = 5.

So deg(Γ) ≤ 5, but the curves in V
′
are all of even degree and we have only two possibilities

deg(Γ) = 2 or deg(Γ) = 4.

• We suppose deg(Γ) = 2. Then Γ·Hl = Γ·HL = 2 and we can assume

H5∩V ′ ⊇ Γ∪l21∪l22∪l23∪L2
1∪L2

2∪L2
3.

Now we consider the linear system |IH5(1)| of the hyperplanes in P9 containing H5.
Then dim( |IH5(1)|) = 9-5-1 = 3. Any hyperplane of the linear system |IH5(1)| cuts
a surface of degree 8 on V

′
that corresponds to a quadric surface of P3 containing

the line X = ν−1
2 (Γ) and the points li, Li for i = 1, 2, 3. In this way we get a

linear system of quadrics Λ ⊆ |OP3(2)| and dim(Λ) = 3, we write Λ = <Q1,...,Q4>.
Suppose that all the quadric in Λ are singular, the singular locus is contained in
the base locus. If L1 is a singular point then all the lines < L1, Lj >, < L1, lj >

are contained in any quadric of Λ and so are in the base locus, a contradiction. If
any quadric in Λ has a singular point on X then X and the singular point impose
4 conditions, if we impose to the quadrics to contain the Li, li the dimension of Λ
becomes smaller that 3, a contradiction. Then Λ contains a smooth quadric and so
the generic quadric in Λ is smooth.
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Now X = ν−1
2 (Γ) is a line and Q1∩Q2 = X∪R where R is a twisted cubic curve.

On a quadric X it is a divisor of type (1,0) and X∪R is of type (2,2) so R is of type
(a,b) where (1+a,b) = (2,2). We conclude that (a,b) = (1,2) and R·X = 2. Then
Q3·R = 6 and we have two points of R on X, so Q1∩Q2∩Q3 = X ∪ {4 points}. A
contradiction because we have Γ∪{6 points} in the base locus.

• Now we suppose deg(Γ) = 4. Then Γ·Hl = Γ·HL = 4 and we have H5∩V ′ ⊇
Γ∪l1∪L1. We consider the linear system |IH5(1)| of the hyperplanes in P9 containing
H5. Then dim( |IH5(1)|) = 9-5-1 = 3. The linear system |IH5(1)| gives a linear
system of quadrics Λ ⊆ |OP3(2)| and dim(Λ) = 3 and we write Λ = <Q1,...,Q4>,
as in the preceding point the generic quadric in Λ is smooth. Now X = ν−1

2 (Γ) is a
conic and Q1∩Q2 = X∪R where R is conic. On a quadric X it is a divisor of type
(1,1) and X∪R is of type (1,1) and so R·X = 2. Then Q3·R = 4 and we have two
points of R on X, so Q1∩Q2∩Q3 = X ∪ l1 ∪ L1. Finally we have Q1∩Q2∩Q3∩Q4

= X ∪ l1 ∪ L1, the intersection with Q4 does not change the base locus and Q4 is
in the span of Q1,Q2,Q3, a contradiction.

2

Using polar forms Sylvester’s theorem can be proved in another simple and beautiful way.
I thank Giorgio Ottaviani who suggested me the sketch of this proof.

Proof : Let F = F3 ∈ P9 be a homogeneous form of degree three. We know that a
5 -polar polyhedron of F exists. The polar form of F in a point ξ = [ξ0 : ξ1 : ξ2 : ξ3] ∈ P3

is the quadric

PξF = ξ0
∂F
∂x0

+ ξ1
∂F
∂x1

+ ξ2
∂F
∂x2

+ ξ3
∂F
∂x3

.

Let {L1, ..., L5} be a 5-polar polyhedron of F , then F = L3
1 + ...+ L3

5. The polar form is
of the type

PξF =
∑5
i=1 ξiλiL

2
i

and it has rank 2 on the points ξ ∈ P3 on which three of the linear form Li vanish
simultaneously. These points are

(
5
3

)
= 10.

Now we consider the subvariety X2 of P9 parametrizing the quadrics of rank 2. A quadric
Q of rank 2 is the union of two plane, the planes of P3 are parametrized by P3∗), then
dim(X2) = 6. To find the degree of X2 we have to intersect with a 3-plane, that is
intersection of 6 hyperplanes. So the degree of X2 is equal to the number of quadrics
of rank 2 passing through 6 general points of P3. If we choose three points then the
plane through these points is determined, and also the quadric is determined. Then these
quadric are 1

2

(
6
3

)
= 10. We have seen that dim(X2) = 6 and deg(X2) = 10.

Now the linear space

Γ = {PξF |ξ ∈ P3} ⊆ P9

is clearly a 3-plane in P9.
Then Γ ∩X2 = {PξF |rank(PξF ) = 2} is a set of 10 points. These points have to be the
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10 points we have found in the first part of the proof. Then the decomposition of F in
five linear factor is unique. 2

4.2 Dolgachev - Kanev’s Theorem

In this section we study some cases of varieties of power sums that are not single points.
We will recover some well known varieties as the projective plane P2 and the Grassmannian
of lines G(1,4).

4.2.1 Conics

We study the variety of power sums of a homogeneous polynomial of degree two in three
variables decomposed in four linear factors. We give an explicit method to find all 4 -polar
polyhedra of a given quadratic polynomial.

Theorem 13. The variety VSP(F2,4), parameterizing the decomposition of a homo-
geneous polynomial of degree 2 in 3 variables in 4 linear factors, is birational to the
Grassmannian G(2,4).

Proof : We consider the Veronese variety V = V 2
4 ⊆ P5 and F2 ∈ P5 as a point. Any

4 -polar polyhedron {L1, ..., L4} of F2 determines the 4 points L2
1, ..., L

2
4 ∈ V which span

a 3 -plane HL = <L2
1, ..., L

2
4>. In this way we get the morphism

ψ: VSP(F2,4 )−→G(3,5 ), defined by {L1, ..., L4}7→HL.

Now a generic 3 -plane in P5 intersects V in exactly 4 points counted with multiplicity,
then the morphism ϕ is generically injective. We note that any 3 -plane spanned by
a 4 -polyhedron passes trough the point F2. Then the image of ϕ is contained in the
subvariety G(3,5,F2) ⊆ G(3,5 ), whose points are the 3 -planes passing through F2. We
know that G(3,5,F2) is isomorphic to the Grassmannian G(2,4 ). We get a generically
injective morphism

ψ: VSP(F2,4 )−→G(2,4 ), defined by {L1, ..., L4}7→HL.

We know that VSP(F2,4 ) and G(2,4 ) are both smooth. Furthermore

dim(VSP(F2, 4)) = 12− 6 = 6 and dim(G(2, 4)) = 6.

Then ψ is a generically injective between two smooth varieties of the same dimension, we
conclude that it is birational map and VSP(F2,4 ) is birational to G(2,4 ). 2

Remark 8. In the preceding proposition we associate to a conic F the Grassmannian
G(2, HF ), where HF is the hyperplane in P5∗ dual to the point F . Clearly in this con-
struction every hyperplane H gives the varieties of power sums VSP(H∗, 4) of F = H∗,
that is G(2, H). We want to understand when the conic associated to an hyperplane H is
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singular. The answer is the following.
If H is an hyperplane in P5∗ then the Grassmannian G(2, H) is the varieties of power
sums of a singular conic if and only if there exists a 3-plane Λ ⊆ H such that

Λ = (L2
1)∗ ∩ (L2

2)∗.

In fact in this case Λ∗ is a line passing through H∗ = F and Λ∗ =< L2
1, L

2
2 >, then F

can be written has sum of two squares and it is singular.

We can interpret the preceding construction in another way. The 3 -planes containing
F are the lines in the hyperplane F ∗, then VSP(F2, 4) is isomorphic to G(1, 4), that
indeed is isomorphic to G(2, 4). Then any hyperplane H in P5 determines the varieties
of power sums of the polynomial H∗ by VSP(H∗, 4) ∼= G(1, H). Fixed an hyperplane H
in P5 it is easy to reconstruct the corresponding polynomial that is simply H∗.

Example 15. If we consider the hyperplane ξ0 + ξ1 + ξ2 − 2ξ3 − ξ4 + ξ5 = 0 then the
corresponding polynomial is [1 : 1 : 1 : −2 : −1 : 1] i.e. F = x2 + y2 + z2 − 2xy− xz + yz.

By apolarity lemma we know that if F is a homogeneous polynomials of degree 2,
{L1, ..., L4} is a 4 -polar polyhedron of F if and only if

L2(PV ∗, [L1], ..., [L4]) ⊆ AP2(F )

and the inclusion is no more true if we delete one of the Li.
Now AP2(F ) is the kernel of the linear map

ap2
F : S2V → k, ϕ 7→ DϕF .

By dimension theorem dimk(AP2(F )) = 6 − 1 = 5 i.e. P(AP2(F )) is an hyperplane in
P(S2V ) ∼= P5.
Let R be a line contained in P(AP2(F )). The line R determines a pencil of conics, by
apolarity lemma we know that 4, counted with multiplicity, base points of this pencil are a
4 -polar polyhedron of F if and only if deleting one of the be base points, say L4, the plane
of conics L2(PV ∗, [L1], ..., [L3]) is contained in P(AP2(F )). But the lines in P(AP2(F ))
are parametrized by G(1,P(AP2(F ))) that has dimension 6, and also VSP(F, 4) has di-
mension 6, so any line in P(AP2(F )) determines a 4 -polar polyhedron of F .

Remark 9. By the preceding argumentation we can give another proof of theorem 13. Let
{L1, ..., L4} be a 4-polar polyhedron of F , we can consider the pencil of conics

L2(PV ∗, [L1], ..., [L4]) ⊆ AP2(F ).

We get an injective morphism

ϕ : VSP(F, 4) −→ G(1,P(AP2(F ))), {L1, ..., L4} 7→ L2(PV ∗, [L1], ..., [L4]).

Since dim(VSP(F, 4)) = dim(G(1,P(AP2(F )))) = 6, and since both the varieties are
smooth ϕ has to be an isomorphism.
This interpretation allow us to write explicitly an inverse morphism. Let H be an hy-
perplane in (P5)∗ then G(1, H) is the variety of power sums of F = H∗. Take a line
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R ∈ G(1, H), choose two conics K1, K2 in the pencil determined by R, compute the in-
tersection K1 ·K2. The 0-subscheme K1 ·K2 of length 4 is a 4-polar polyhedron of F . In
this notation the morphism

ψ : G(1, H) −→ VSP(F, 4), R 7→ K1 ·K2

is the inverse of ϕ.
In this way we get a direct method to construct all 4-polar polyhedra of a given homoge-
neous polynomial of degree 2.

We give an explicit example

Example 16. Consider the polynomial F = x2 +2y2−z2 +4xy−xz+yz. The differential
operator associated to a homogeneous polynomial ϕ of degree 2 is

Dϕ = α0
∂2

∂x2 + α1
∂2

∂y2 + α2
∂2

∂z2 + α3
∂2

∂x∂y + α4
∂2

∂x∂z + α5
∂2

∂y∂z .

Applying Dϕ to F we get the hyperplane in P5

P(AP 2
F ) = V(2α0 + 4α1 − 2α2 + 4α3 − α4 + α5).

Note that F can be recovered by P(AP 2
F ) simply dividing by 2 the coefficients of the pure

derivatives. In this way we get the point [1 : 2 : −1 : 4 : −1 : 1] that corresponds to F .
We choose the line

R = V(α0, α1, α2, 2α0 + 4α1 − 2α2 + 4α3 − α4 + α5)

contained in P(AP 2
F ). On R we consider the points [0:0:0:1:2:-2] and [0:0:0:0:1:1], i.e.

the conics

K1 = V(xy + 2xz − 2yx) and K2 = V(xz + yz)

in the pencil determined by R. An easy computation show that

K1 ·K2 = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [4 : −4 : 1]}.

Then the linear forms

L1 = x, L2 = y, L3 = z, L4 = 4x− 4y + z

determine a 4-polar polyhedron of F . Indeed we have

F = 3x2 + 4y2 − 7
8z

2 − 1
8 (4x− 4y + z)2 = 3L2

1 + 4L2
2 − 7

8L
2
3 − 1

8L
2
4.

Remark 10. We have proved, in theorem 13, that if F is a generic polynomial of degree
two in three variables (n=2) then VSP(F, 4) ∼= G(1, 4). Ranestad and Schreier proved
that if G is a generic polynomial of degree two in four variables (n=3) then we have
VSP(G, 4) ∼= G(1, 4). We conclude that

VSP(F, 4) ∼= VSP(G, 4).

It can be interesting to write explicitly an isomorphism.
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4.2.2 Plane Cubics

Now we consider the special case (d,n,h)=(3,2,4) of the plane cubic curves in four factors.
Let F3 be a homogeneous polynomial in three variables F3 = F3(x,y,z). In this case we
have wrk(F3) = 4. We know that the variety VSP(F3,4), parameterizing all decompo-
sition of F3 in powers of four linear factors, is an irreducible and nonsingular variety of
dimension dim(VSP(F3,4)) = 2.

Theorem 14. (Dolgachev - Kanev) The variety of power sums VSP(F3,4), parameter-
izing all decompositions in four linear factors of a homogeneous cubic polynomial in three
variables, is isomorphic to the projective plane P2.

Proof : Let F3 be a generic cubic polynomial. We are in P9 and we consider the
Veronese variety V = V2

9. For the variety of its secant 3 -planes we have

dim(Sec3(V)) = min{4·2 + 3,9} = 9.

So the generic cubic polynomial admits a decomposition as sums of four linear factors.
The partial derivatives of F3 are three quadric polynomials ∂F3

∂x , ∂F3
∂y , ∂F3

∂z that generate
a projective plane Π in the P5 parameterizing the plane conics.
Let {[l1],...,[l4]} be a polar 4 -polyhedron of F3. We have

F3 = λ1l31+λ2l32+λ3l33+λ4l34.

The partial derivatives of F3 are

∂F3
∂x = 3λ1α1l21+3λ2α2l22+3λ3α3l23+3λ4α4l24
∂F3
∂y = 3λ1β1l21+3λ2β2l22+3λ3β3l23+3λ4β4l24
∂F3
∂z = 3λ1γ1l21+3λ2γ2l22+3λ3γ3l23+3λ4γ4l24.

The polynomials l21, l22, l23, l24 are four points on the Veronese surfaces V2
4 ⊆ P5. This

points generate a P3 that contains Π. Let G(5,3 ) be the Grassmanian of the projective
spaces of P5 and let G(5,3,Π) the subvariety of G(5,3) parameterizing the projective
spaces of P5 that contains Π. We have the morphism

ϕ: VSP(F3,4)o → G(5,3,Π) defined by {[l1],[l2],[l3],[l4]} 7→ <l21,l22,l23,l24>.

We denote by VSP(∂,F3,4)o the sums of power variety of the partial derivatives of F3.
We see that VSP(F3,4)o ⊆ VSP(∂,F3,4)o and taking the closure we have VSP(F3,4)
⊆ VSP(∂,F3,4). We have a morphism

ϕ: VSP(F3,4) → G(5,3,Π), {[l1],[l2],[l3],[l4]} 7→ <l21,l22,l23,l24>.

Now let Λ be a projective space that contains Π. Let V
′
be the Veronese surface in P5,

we know that deg(V
′
) = 4 so Λ ∩ V

′
consists of four points counted with multiplicity

l21,l22,l23,l24, and the morphism ϕ is injective. By duality the variety G(5,3,Π) is isomorphic
to G(1,2) ∼= P2, and we have a injective morphism

ϕ: VSP(F3,4) −→ P2

{[l1],[l2],[l3],[l4]} 7−→ <l21,l22,l23,l24>
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We know that VSP(F3,4) is a smooth variety of dimension two. The map ϕ is a bijective
morphism between smooth varieties of the same dimension then it is an isomorphism and
VSP(F3,4) ∼= P2. 2

4.2.3 Reconstructing polar Polyhedra

We have associated to any homogeneous polynomial F of degree 3 a plane in P5. Now
we give a method to reconstruct all 4 -polar polyhedra of F . We begin this section with
another proof of Dolghachev-Kanev theorem, involving apolar forms.

Theorem 15. (Dolgachev - Kanev) The variety of power sums VSP(F3,4), parameter-
izing all decompositions in four linear factors of a homogeneous cubic polynomial in three
variables, is isomorphic to the projective plane P2.

Proof : Let {L1, ..., L4} be a 4 -polar polyhedron of F , then it is also a 4 -polar poly-
hedron for the partial derivatives Fx, Fy, Fz of F .
By apolarity lemma we have that the linear space L2(PV ∗, [L1], ..., [L4]) is contained in
the hyperplanes P(AP2(Fx)), P(AP2(Fy)), P(AP2(Fz)). Since F is general these three
hyperplanes intersect in a plane H = P(AP2(Fx)) ∩ P(AP2(Fy)) ∩ P(AP2(Fz)).
We get a morphism

ϕ : VSP(F3, 4) −→ H∗, {L1, ..., L4} 7→ L2(PV ∗, [L1], ..., [L4]).

If two pencil of conics are equal clearly they have the same base points i.e. the morphism
ϕ is injective. Since dim(VSP(F3, 4)) = 2 = dim(H∗) it is an isomorphism. 2

Fix a plane H in P5 then it represents the varieties of power sums of a polynomial
FH . Let R be a line in H then R represents a pencil of conics and by apolarity lemma the
base locus of this pencil is a 4 -polar polyhedron of FH . To find the linear forms we can
take two conics K1,K2 and compute their intersection. In this notation the morphism

ψ : H∗ −→ VSP(F3, 4), R 7→ K1 ·K2,

is the inverse of ϕ.

Example 17. We consider the cubic polynomial

F = x3 + y2z + xz2.

Its partial derivatives are

Fx = 3x2 + z2, Fy = 2yz, Fz = y2 + 2xz.

Applying the differential operator

Dϕ = α0
∂2

∂x2 + α1
∂2

∂y2 + α2
∂2

∂z2 + α3
∂2

∂x∂y + α4
∂2

∂x∂z + α5
∂2

∂y∂z .

to the partial derivatives we obtain
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P(AP2(Fx)) = V(3α0 + α2),P(AP2(Fy)) = V(α5),P(AP2(Fz)) = V(α1 + α4).

So the plane H is given by

H = (3α0 + α2 = α5 = α1 + α4 = 0).

We consider the line R contained in H given by

R = (3α0 + α2 = α5 = α1 + α4 = α3 = 0)

and on R we choose the points [0 : 1 : 0 : 0 : −1 : 0] and [1 : 0 : −3 : 0 : 0 : 0] corresponding
to the conics

K1 = (y2 − xz = 0) and K2 = (x2 − 3z2 = 0).

These conics intersects in the four points

[
√

3 : 4
√

3 : 1], [
√

3 : − 4
√

3 : 1], [−
√

3 : i 4
√

3 : 1], [−
√

3 : −i 4
√

3 : 1]

and so

L1 =
√

3x+ 4
√

3y+z, L2 =
√

3x− 4
√

3y+z, L3 = −
√

3x+i 4
√

3y+z, L4 = −
√

3x−i 4
√

3y+z.

is a 4-polar polyhedron of F .

4.3 The Grassmannian G(1,4)

In this section we prove that in the case n = 3, d = 2, h = 4 the variety VSP(F2,4) is bira-
tional to the Grassmannian G(1,4) giving explicitly a birational morphism of VSP(F2,4)
in G(1,4). For our proof we need to see the Veronese variety V4

16 as a subvariety of the
Grassmannian G(1,4).
Ranestad and Schreier proved by more complicated methods that VSP(F2,4) and G(1,4)
are isomorphic.

Proposition 20. The projective space Pn can be embbedded in the Grassmannian G(1,n+1)
as the 2-Veronese embedding of Pn in PN with N =

(
n+2

2

)
-1. In other words the Veronese

variety Vn2n is a subvariety of the Grassmannian of lines G(1,n+1).

Proof : Let [x0,...,xn] be a point in Pn. We consider [x0,...,xn,0] and [0:x0,...,xn] as
two points in Pn+1 that generate the line

L[x0,...,xn] = <[x0,...,xn,0],[0:x0,...,xn]> ⊆ Pn+1.

In this way we have a morphism

ϕ:Pn → G(1,n+1), defined by [x0,...,xn] 7→ L[x0,...,xn]

Now we consider a line R = <[u0,...,un+1],[v0,...,vn+1]> in G(1,n+1) and the Plücker
embedding

pk:G(1,n+1) → PN , R 7→ [∆0,1:...:∆i,j:...:∆n,n+1].

Where ∆i,j is the 2×2 minor given by the columns i,j of the matrix
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∆=

(
u0 u1 · · · un un+1

v0 v1 · · · vn vn+1

)
On Pn we have the composition

Pn ϕ−→ G(1,n+1) pk−→ PN .

We note that

(pk◦ϕ)(x0,...,xn) = pk

(
x0 x1 · · · xn 0
0 x0 · · · xn−1 xn

)
= [∆0,1:...:∆i,j:...:∆n,n+1] =

= [x2
0:x0x1:...:xn−1xn:x2

n] = ν2(Pn).

So pk◦ϕ gives an embedding of Pn in G(1,n+1) ⊆ PN whose image is the Veronese variety
Vn2n . 2

Theorem 16. Let F = F2(x,y,z,w) be a homogeneous polynomial of degree two and let
VSP(F2,4) be the variety of power sums, parameterizing all decompositions in four linear
factors of a homogeneous quadric polynomial in four variables. The variety VSP(F2,4)
is birational to the Grassmannian of lines G(1,4).

Proof : We consider F as a point in P9. We have the Veronese embedding

ν2:P3 → P9, with V = V3
8 = ν2(P2)

Then we consider the Plücker embedding

pk:G(1,4) → P(
∧2(k5)) = P9.

We know that dim(G(1,4)) = (1+1)(4-1) = 6 and

deg(G(1,4)) = deg(G(2,5)) = (2(5-2))!
∏2
j=1

(j−1)!
(5−2+j−1)! = 5.

Now for any 4 -polar polyhedra {l1,...,l4} of F we consider the 3 -plane Λl = <l21,...,l24>.
We have dim(G(1,4) ∩ Λl) = 6+3-9=0 and deg(G(1,4)) = 5 implies that the intersection
consists of exactly 5 points {p1,...,p5} counted with multiplicity.
By the proposition 20 P3 can be embedded in G(1,4) as the Veronese variety V. So any
P3 generated by a 4 -polar polyhedra {l21,...,l24} intersects G(1,4) in the four points l21,...,l24
and in a additional point P̃ . In this way we have a map

ψ:VSP(F2,4) → G(1,4), defined by {l1,...,l4} 7→ P̃ .

Let {l1,...,l4} and {L1,...,L4} two 4 -polar polihedra of F and let Hl and HL the two
associated 3 -spaces. If P̃l = P̃L then Hl∩HL contains the line R = <P̃l,F>.
We can assume P̃l /∈ V. If li 6= Lj for any i,j=1,...,4, then Hl and HL generate a 5 -plane
Λ that intersects V in 8 points. Let Q ∈ V be a point different from li and Li. Then
<Λ,Q> is a 6 -plane that intersects V in 9 points but deg(V) = 8, a contraddiction.
If l1 = L1 and li 6=Li for any i>1 then Hl∩HL contains the plane <F,l1,Pl>. Then
Λ =< Hl, HL > is a 4 -plane that intersects V in 7 points.
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We choose two points Q1,Q2 ∈ V different form li, Li. Then <Λ,Q1,Q2> is a 6 -plane
that intersects V in 9 points, a contraddiction.
If l1 = L1 and l2 = L2 we note that the variety V is defective and so dim(Sec1(V)) = 6
and we can assume that the lines <l1,l2> and <F,P̃l> are skew. Then Hl∩HL contains
the 3 -plane <F,l1,l2,Pl> and <l21,...,l24> = <L2

1,...,L2
4>.

In this way we have proved that the map ψ is generically injective, furthermore
dim(VSP(F2,4)) = dim(G(1,4)) implies that ψ is birational. 2

4.4 Polynomials on P1

In this section we prove some results, probably well known to the experts, about polyno-
mials in two variables.
We fix n = 1. We consider the variety of power sums VSP(Fd,h) for a fixed h. If
d = 2h− 1 then the waring rank of F2h−1 is

wrk(F) = 1
2

(
2h

2h−1

)
= h.

Sylvester proved that VSP(F2h−1,h) is a point. In this section we prove that VSP(Fh,h)
is isomorphic to Ph−1.
Then we determine the variety VSP(Fd,h) for any h ≤ d ≤ 2h-1. Note that for h = 1
we have h = 2h-1, for h = 2 we have 2h-1 = 3, so the first interesting case is for h = 3.
Let d be an integer h ≤ d ≤ 2h-1 and let νd:P1 → Pd be the d -uple embedding then
X = νd(P1) is the rational normal curve of degree d in Pd. A h-polar polyhedron of Fd
determines an (h-1)-plane. The dimension of the variety of secant (h-1)-planes of X is

dim(Sech−1(X)) = min{h+ h− 1, d} = min{2h− 1, d}.

Since d ≤ 2h-1 we see that Sech−1(X) covers Pd. This observation shows that for any
h ≤ d ≤ 2h−1 the generic homogeneous polynomial Fd of degree d admits a decomposition
in h linear factors.

Theorem 17. (Sylvester) Let F2h−1 be a homogeneous polynomial of degree 2h-1 in two
variables. The variety of power sums VSP(F2h−1,h) parameterizing all decomposition of
F2h−1 in h linear factors is a single point.

Proof : We consider F2h−1 as a point in P2h−1 and let X be the rational normal curve
of degree 2h-1 in P2h−1.
We suppose that {l1,...,lh} and {L1,...,Lh} are two distinct h-polar polyhedra of F2h−1.
Let Λl and ΛL the two (h-1)-planes generated by the decompositions. The point F2h−1

belongs to Λl ∩ ΛL so the linear space Γ = <Λl,ΛL> has dimension

dim(Γ) ≤ (h-1)+(h-1) = 2h-2.

If Λl and ΛL have only F2h−1 as common point then dim(Γ) = (h-1)+(h-1) = 2h-2. So
Γ is an hyperplane in P2h−1 and Γ·X ≥ 2h. A contraddiction because deg(X) = 2h-1.
If Λl and ΛL have k common points then Λl and ΛL intersect in k+1 pointsQ1,...,Qk,F2h−1,
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Λl ∩ ΛL is a Pk and dim(Γ) = 2h-2-k. We choose k points P1,...,Pk on X in general
position so H = <Γ,P1,...,Pk> is a hyperplane such that H·X≥2h-k+k = 2h, a contrad-
diction. We conclude that the decomposition of F2h−1 in h linear factors is unique. 2

Now we consider some specific cases.

• Case d = 3 and h = 3. Let F be a cubic polynomial and let X be the twisted cubic
curve in P3. A 3 -polar polyhedron of F determines a plane containing F. Conversely
any plane containing F intersects X in three points counted with multiplicity. The
plains of P3 containing a fixed point are parametrized by P2. So we have a well
defined injective morphism

ϕ:VSP(F3,3) → P2, defined by {l1,...,l3} 7→ <l31,...,l32>.

Since dim(VSP(F3,3)) = 2 we conclude that ϕ is an isomorphism and VSP(F3,3)
is isomorphic to P2.

• Case d = 4 and h = 4. In this case F is a quartic polynomial and X is the rational
normal curve of degree 4 in P4. By analogy with the preceding case we have a
bijective correspondence between the 4 -polar polyhedra of F and the 3-planes in P4

containing the point F, that are parametrized by a P3. So we have a well defined
injective morphism

ψ:VSP(F4,4) → P3, defined by {l1,...,l4} 7→ <l31,...,l34>.

As in the preceding case we conclude that VSP(F3,3) is isomorphic to P3.

This two observations suggest us that VSP(Fh,h) will be isomorphic to Ph−1.

Proposition 21. The variety of power sums VSP(Fh,h) is isomorphic to Ph−1.

Proof : Let F be a homogeneous polynomial of degree h. We consider the rational
normal curve X of degree h in Ph.
Any h-polar polyhedron {l1,...,lh} of F determines h points lh1 ,...,lhh ∈ X. This h points
span the hyperplane Hl containing F. Let G(h-1,h,F) be the variety of the hyperplanes
containing F. We have a well defined morphism

ϕ:VSP(Fh,h) → G(h-1,h,F), defined by {l1,...,lh} 7→ <lh1 ,...,lhh>.

Any hyperplane containing F intersects X in h points counted with multiplicity so ϕ is
injective. Moreover the variety G(h-1,h,F) is isomorphic to Ph−1 and dim(VSP(Fh,h))
= h-1. So ϕ is an injective morphism between smooth varieties of the same dimension
then it is an isomorphism and VSP(Fh,h) ∼= Ph−1. 2

By Sylvester theorem we know that VSP(F2h−1,h) is a single point and by the preceding
proposition VSP(Fh,h) is Ph−1. Now it is natural to ask what happens for a generic
integer d such that h ≤ d ≤ 2h-1. We begin with some particular observations.
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• We fix h = 3 so 2h-1 = 5. We have to controll the case d = 4. Let F be a
homogeneous polynomial of degree 4, we consider the decompositions of F in three
linear factors. The partial derivatives of F are two homogeneous polynomials Fx,Fy
of degree 3 in 3 linear factors. In P3 we consider the twisted cubic curve X. Any
decomposition {l41,...,l43} of F in 3 linear factors determine a decomposition {l31,...,l33}
for Fx and Fy. The plane spanned by the points l31,...,l33 ∈ X contains the line R =
<Fx,Fy>. Conversely any plane containing R intersects X in three points counted
with multiplicity. The planes containing a line in P3 are parametrized by a P1. So
we have a well defined injective morphism

ϕ:VSP(F4,3) → P1, defined by {l1,...,l3} 7→ <l31,...,l33>.

Since dim(VSP(F4,3)) = 1 this morphism is an isomorphism and VSP(F4,3) is
isomorphic to P1.

• Now we fix h = 4 so 2h-1 = 7. We have to controll the cases d = 5,6.
For d = 5 we consider the partial derivatives of F that are two polynomials Fx,Fy
of degree 4 in 4 linear factors. In P4 we are considering the rational normal curve
X of degree 4 and the 3 -planes containing the line R = <Fx,Fy>. By analogy
with the preceding case we have a bijective correspondence between the 4 -polar
polyhedra of F and the 3 -planes of P4 containing the line R that are parametrized
by a P2 so we have VSP(F5,4) ∼= P2.
The case d = 6 is a bit more difficult in fact it is clear that it is not sufficient to con-
sider the first partial derivatives of F to have a good correspondence. So we consider
the second partial derivatives Fxx,Fyy,Fxy that are three homogeneous polynomi-
als of degree 4 in 4 linear factors. Let X be the rational normal curve of degree
4 in P4. The second partial derivatives span a plane H = <Fxx,Fyy,Fxy>. Any
decomposition {l61,...,l64} determine a decomposition {l41,...,l44} of the second partial
derivatives and a 3 -plane Γl spanned by l41,...,l44 ∈ X containing H. Conversely any
3 -plane containing H intersects X in three points counted with multiplicity. The
3 -planes in P4 containing a fixed plane are parametrized by a P1. So we have an
injective morphism

ϕ:VSP(F4,3)→ P1, defined by {l1,...,l4} 7→ <l41,...,l44>.

Now dim(VSP(F4,3)) = 1 and so ϕ is an isomorphism.

The preceding observations suggest as that for any integer d such that h ≤ d ≤ 2h-1 the
variety VSP(Fd,h) will be a linear space and that in order to prove this we have only to
consider the right order of the partial derivatives of F.

Theorem 18. Let h > 1 be a fixed integer. For any integer d such that h ≤ d ≤ 2h-1 the
variety of power sums VSP(Fd,h), parameterizing all decompositions of a homogeneous
polynomial of degree d in h linear factors, is isomorphic to P2h−d−1.

Proof : Let F be a homogeneous polynomial of degree d and let {L1,...,Lh} be a
h-polar polyhedron of F. We write
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F = λ1Ld1+...+λhLdh.

We consider the partial derivatives of order d-h > 0 of F. This partial derivatives are(
d−h+1
d−h

)
= d-h+1

polynomials of degree h.
Let X be the rational normal curve of degree h in Ph.
The partial derivatives span a (d-h)-plane H and Ld1,...,Ldh ∈ X span a hyperplane in Ph

containing H. We note that d < 2h-1 implies d-h < h-1. Let G(h-1,h,H) be the variety
of the hyperplanes of Ph containing H. We have a well defined morphism

ϕ:VSP(Fd,h) → G(h-1,h,H) , defined by {L1,...,Lh} 7→ <Lh1 ,...,Lhh>.

Now any hyperplane containing H intersects X in h points counted with multiplicity so
ϕ is injective. We note that G(h-1,h,H) is isomorphic to P2h−d−1. Moreover

dim(VSP(Fd,h)) = 2h -
(
d+1
d

)
= 2h - d - 1.

So ϕ is an injective morphism between smooth varieties of the same dimension and then
it is an isomorphism. We conclude that VSP(Fd,h) ∼= P2h−d−1. 2

4.5 Morphisms into Grassmannians of lines

In this section we prove that some varieties of power sums admits a finite morphism to
G(1,r) for a particular r. For example we see in theorem 15 that VSP(F3, 4) admits a
finite morphism to G(1,2) that indeed is injective.
Let F = Fd ∈ k[x, y, z]d be a homogeneous polynomial of odd degree d = 2k + 1 in three
variables. For any k ∈ N we consider the partial derivatives of order k of F . These
derivatives are (

d−k+2
2

)
= 1

2 (d− k + 2)(d− k + 1)

homogeneous polynomials of degree d− k. We set

Nk =
(
d−k+2

2

)
− 1 and hk = Nk − 1 = 1

2 (d− k + 2)(d− k + 1)− 2.

Then we consider the Grassmannian of lines G(1,k+1) and the variety of power sums
VSP(F, hk).

Remark 11. We note that hk is exactly the Waring rank of F for k = 0,1,2,3,4,5 but
for k ≥ 6 the variety VSP(F, hk) is empty. Moreover since n = 2 is fixed the varieties
VSP(F, hk) are smooth.

Now we are ready to prove the following

Proposition 22. For any 0 ≤ k ≤ 5 there exists a generically
(

(k+1)2

hk

)
to one morphism

of the variety of power sums VSP(F, hk) to the Grassmannian of lines G(1,k+1). Where
deg(F) = d = 2k+1.
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Proof : We consider the partial derivatives of order k of F . As we have observed before
these are

(
d−k+2

2

)
= 1

2 (d− k + 2)(d− k + 1) points in the projective space PNk and span
an 1

2 (d− k + 2)(d− k + 1)− 1 - plane H.
If {L1, ..., Lhk

} is an hk polar polyhedron of F then each partial derivative is decomposed
on the factor Ld−k1 , ..., Ld−khk

. Then any hk polar polyhedron {L1, ..., Lhk
} of F determine

an (hk − 1) - plane ΠL =< Ld−k1 , ..., Ld−khk
> that contains H.

By dualization the (hk−1) - planes of PNk containing a fixed ( 1
2 (d−k+2)(d−k+1)−1) -

plane are the (Nk−(hk−1)−1) - planes contained in a (Nk−( 1
2 (d−k+2)(d−k+1)−1)−1)

- plane. We compute

Nk − (hk − 1)− 1 =
(
d−k+2

2

)
− 1− 1

2 (d− k + 2)(d− k + 1) + 2 = 1
Nk − ( 1

2 (d− k + 2)(d− k + 1)− 1)− 1 = 1
2d

2 + 3
2d− dk − 3k − 1 = k + 2− 1 = k + 1.

We get the morphism

ϕk :VSP(F,hk) −→ G(1,k+1 ), {L1, ..., Lhk
} 7→ < Ld−k1 , ..., Ld−khk

>.

Let νd−k : P2 −→ PNk be the (d− k) - Veronese embedding and let V = νd−k(P2) be the
Veronese surface. Since the Ld−ki are points on the Veronese surface V and

dim(V ) + (hk − 1) = 2 + 1
2 (d− k + 2)(d− k + 1)− 3 = Nk,

we see that the morphism ϕ is generically finite. Moreover

deg(V ) = (d− k)2 = (k + 1)2,

so any (hk − 1) - plane determines (k + 1)2 points counted with multiplicity on V . With
this (k + 1)2 points we can construct

(
(k+1)2

hk

)
polar polyhedra of F . Then the morphism

ϕk is
(

(k+1)2

hk

)
to one. 2

We report in the following table the cases of preceding proposition

k d h dim(VSP(Fd, h)) dim(G(1, k + 1))
0 1 1 0 0
1 3 4 2 2
2 5 8 3 4
3 7 13 3 6
4 8 19 2 8
5 11 26 0 10

Remark 12. In particular the morphism

ϕ2 : VSP(F5, 8) −→ G(1, 3)

maps VSP(F5, 8) in a divisor of the Klein quadric G(1, 3). Furthermore we note the the
morphism

ϕ1 : VSP(F3, 4) −→ G(1, 2) ∼= P2

is
(

(k+1)2

hk

)
=
(

(1+1)2

4

)
= 1 to one. Then dim(VSP(F3, 4)) = 2 = dim(G(1, 2)) and we

recover the isomorphism of theorem 15. Unfortunately this is the only case in which this
observation works.
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Let F = Fd ∈ k[x, y, z]d be a homogeneous polynomial of degree d, let C = V(F ) ⊆ P2

be the plane curve of degree d defined by F . Let {L1, ..., Lh} be an h-polar polyhedron
of F . We consider L1, ..., Lh ∈ (P2)∗ as points in the dual projective plane, then we have
the lines RL1 = L∗1, ..., R

L
h = L∗h ⊆ P2. The curve

XL1,...,Lh
= RL1 ∪ ... ∪RLh ⊆ P2

is a plane curve of degree h. Then C∩XL1,...,Lh
= ZL1,...,Lh

is a zero subscheme of length
hd of the curve C, i.e. a point in the Hilbert scheme Hilbhd(C). We get a morphism

ϕd,h : VSP(F, h) −→ Hilbhd(C), defined by {L1, ..., Lh} 7→ ZL1,...,Lh
.

It can be interesting to understand when this morphism fails to be injective.

4.6 Birational geometry of VSP

In this section we state some original results about varieties of power sums rationality. In
the first part we give some examples that show how to construct a cone of given degree
and dimension on a Veronese variety.

4.6.1 Cones on some Veronese varieties

We construct cones of given degree and dimension on some Veronese varieties. This can
be useful to write a rational map from a variety of power sums to a rational variety.

• Case d=2, n=2, h=3. Let F2 ∈ P5 a homogeneous polynomial of degree two and
let V = V2

4 the Veronese surface in P5.
Let O be a point of P5 that does not lie on V and let Y be the cone of the lines
over V with vertex O. Then Y contains V and dim(Y) = dim(V)+1 = 3, deg(Y)
= deg(V) = 4.
Any 3 -polar polyhedron {L1,...,L3} of F2 generate a plane HL = <L2

1,...,L2
3> with

L2
i ∈ V2

4, that intersects Y in 4 points counted with multiplicity, the 3 points
L2

1,L2
2,L2

3 and an additional point P̃ . So we have a map

ϕ:VSP(F2,3) 99K Y, defined by {L1,...,L3} 7→ P̃ .

• Case d=2, n=3, h=4. Let F2 ∈ P9 be a homogeneous polynomial of degree two and
let V = V3

8 the Veronese variety in P9.
Let P1,P2,P3 ∈ V three points in general position, the Pi generate a P2 denoted by
H. We project P9 in P6 via the P3 containing H. Let Π:P9\H 99K P6 the projection.
Then V

′
= Π(V) is a variety in P6 with dim(V

′
) = dim(V) = 3 and deg(V

′
) =

deg(V)-3 = 5.
Let X = Π−1(V ′) be the cone over V

′
. Then X ⊆ P9 is a variety of dimension

dim(X) = dim(V
′
)+3 = 6 and degree deg(X) = deg(V

′
) = 5.

Now we have X ⊆ P9 of dimension 6 and degree 5 containing V.
Any 4 -polar polyhedron {L1,...,L4} of F2 generate a plane HL = <L2

1,...,L2
4> with

L2
i ∈ V, that intersects X in 5 points counted with multiplicity, the 4 points

L2
1,L2

2,L2
3,L2

4 and an additional point P̃ . So we have a map
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ψ:VSP(F2,4) 99K X, defined by {L1,...,L4} 7→ P̃ .

Let {l1,...,l4} and {L1,...,L4} two 4 -polar polyhedra of F and let Hl and HL the
two associated 3 -spaces. If P̃l = P̃L then Hl∩HL contains the line R = <P̃l,F>.
We can assume P̃l /∈ V. If li 6= Lj for any i,j=1,...,4, then Hl and HL generate a
5 -plane Λ that intersects V in 8 points. Let Q ∈ V be a point different from li
and Li. Then <Λ,Q> is a 6 -plane that intersects V in 9 points but deg(V) = 8, a
contradiction.
If l1 = L1 and li 6=Li for any i>1 then Hl∩HL contains the plane <F,l1,Pl>. So
Λ = <Hl,HL> is a 4 -plane that intersects V in 7 points. We choose two points
Q1,Q2 ∈ V different form li, Li. Then <Λ,Q1,Q2> is a 6 -plane that intersects V
in 9 points, a contraddiction.
If l1 = L1 and l2 = L2 we note that the variety Sec1(V) is defective and so
dim(Sec1(V)) = 6, we can assume that the lines <l1,l2> and <F,P̃l> are skew.
Then Hl∩HL contains the 3 -plane <F,l1,l2,Pl> so <l21,...,l24> = <L2

1,...,L2
4>.

In this way we have proved that the map ψ is generically injective, furthermore
dim(VSP(F2,4)) = dim(X) implies that ψ is birational. So VSP(F2,3) is bira-
tional to X.

• Case d=2, n=4, h=5. Let V = V4
16 the Veronese variety in P14 and let L,R ⊂ P4 two

skew lines. We consider the linear system |IL∪R(2)| of the quadric hypersurfaces of
P4 containing L ∪ R.
The linear system |IL∪R(2)| is a subsystem of the complete linear system |OP4(2)|
whose sections are the quadric hypersurfaces of P4, moreover |IL∪R(2)| does not
have unassigned base points.
To prove the last assertion we must show that for any point P /∈ L ∪ R there exist
a quadric in |IL∪R(2)| that does not contain P.
Modulo an automorphism of P4 we can suppose

L = {X0 = X1 = X2 = 0}, R = {X0 = X3 = X4 = 0}, P = [1:0:0:0:0].

The quadric hypersurfaces Q = V(X2
0+X1X3+X2X4) contains L and R but P does

not lie on Q. Two quadrics Q1,Q2 ∈ |IL∪R(2)| intersect in a surface Y = Q1 ∩ Q2

of degree 4 such that e Y = Q1 ∩ Q2 of degree 4 such that

ωY = OY (2 + 2− 4− 1) = OY (−1).

So Y is a Del Pezzo surface of degree 4 in P4 and we can see it as the blow up of
the linear system of the plane cubics with 5 assigned base points P1,...,P5 not three
collinear and no five on a conic.
Let Q3 ∈ |IL∪R(2)| another quadric, Q3 intersects Y in a curve of degree 8 that is
union of the two line L,R and a curve Γ with deg(Γ) = 6. The curve Γ is obtained
by cutting Y with a quadric so it corresponds to a curve of degree 6 in P2 with
P1,P2 as 3 -fold points and the other Pi as 2 -fold points. We can suppose that L,R
are the exceptional divisors of the blow up corresponding to P1 and P2. So on Y
we have
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Γ·L = Γ·R = 3.

Intersecting with a new quadric Q4 ∈ |IL∪R(2)| we obtain 12 points on Γ but 3
points are on L an 3 are on R so if Ỹ = BlL∪R(P4) is the blow up of P4 in L ∪ R
on Ỹ we miss 3+3 = 6 points.
We note that the complete linear system |OP4(2)| has dimension

dim(H0(|OP4(2)|)) - 1 =
(

4+2
2

)
- 1 = 14.

Imposing to a quadric to contain two skew lines is equivalent to impose to the system
|OP4(2)| six independents conditions, so we have dim(|IL∪R(2)|) = 14 - 3 - 3 = 8.
The blow up linear system BlL∪R(|IL∪R(2)|) has degree 12 - 3 - 3 = 6 and it has
dimension dim(BlL∪R(|IL∪R(2)|)) = dim(|IL∪R(2)|) = 8. Moreover the new linear
system on Ỹ is without base points and induces a morphism of Ỹ in P8 as a 4 -fold
of degree 6.

Ỹ

BlL∪R ��?
?

?
?

ϕ // P8

P4

>>~~~~~~~~

So via ϕ:Ỹ → P8 we obtain a variety Ỹ of dimension 4 and degree 6. In P14 we
consider the cone of the P6 containing a fixed P3 over Ỹ . This cone is a variety X
of dimension dim(X) = 4+6 = 10 and deg(X) = 6. Moreover Ỹ is obtained by the
blow up of the linear system |IL∪R(2)| that is a subsystem of the complete linear
system |OP4(2)| giving the 2 -uple embedding of P4 in P14, so the cone X contains
the Veronese variety V. Now any 5 -polar polyhedra {L1,...,L5} of F determines a
4 -plane HL = <L2

1,...,L2
5> whose intersection with X consists of 6 points counted

with multiplicity. Five points are the L2
i and we have an additional point P̃ . Since

dim(VSP(F2,5)) = 10 we have a rational map

ψ:VSP(F2,5) 99K X, defined by {L1,...,L5} 7→ P̃ .

4.6.2 Quadrics and Cubics

In this section we state the rationality of some varieties of power sums. In particular
we consider homogeneous polynomials of degree two F2 ∈ k[x0, ..., xn]2 decomposed in
h = n + 1 = wrk(F2) linear factors and we prove that the varieties VSP(F2,n+1) are
rational.

Proposition 23. The variety VSP(F2,3) is birational to a smooth quartic Del Pezzo
threefold.

Proof : Let F2 ∈ P5 a homogeneous polynomial of degree two and let V =V2
4 the

Veronese surface in P5.
The homogeneous ideal I(V) is generated by quadric forms. Let Q1 and Q2 two quadric
forms in the ideal I(V) then X = Q1 ∩ Q2 has dimension 3, degree 4 and contains V.
Moreover the canonical sheaf of X is
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ωX ∼= OX(2+2-5-1) = OX(-2).

So the anticanonical divisor is -KX = 2H = (dim(X)-1)H, where H is the hyperplane
section. So X is a smooth quartic Del Pezzo threefold in P5.
Any 3 -polar polyhedron {L1,...,L3} of F2 generate a plane HL = <L2

1,...,L2
3> with L2

i

∈ V2
4. The plane HL intersects X in 4 points counted with multiplicity, the 3 points

L2
1,L2

2,L2
3 and an additional point P̃ . So we have a rational map

ϕ:VSP(F2,3) 99K X, defined by {L1,...,L3} 7→ P̃L.

If P̃L = P̃l we have two planes ΠL and Πl containing the line <F,P̃L>. The point F is
very general we can assume F /∈ V.
If L1 = l1 and Li 6= li for any i>1 then ΠL and Πl generate a P2 since F and P̃L ∈ X
are genaral and we can assume li /∈ <F,P̃L>.
If Li 6= li for any i then ΠL and Πl generate a 3 -plane Λ and the intersection Λ∩V can
have dimension 0 or 1. If dim(Λ∩V) = 0 then Λ intersects V in 6 points, a contraddiction
because deg(V) = 4. If Λ∩V is a curve C. We write Λ = H1∩H2 as intersection of two
hyperplanes, then C corresponds to a plane curve Ĉ that is a common component of two
conics, so deg(Ĉ) = 1 and deg(C) = 2. But we have HL·C = 3, a contradiction. Then
ΠL = Πl and the map ϕ is generically injective. Now dim(VSP(F2,3)) = 3 = dim(X)
implies that ϕ is birational. 2

We have seen in chapter 3 The Mukai’s theorem which states thatVSP(F2,3) is a
smooth Fano threefold that indeed is birational to a smooth quartic Del Pezzo threefold.
Now we come to an important theorem. Let F ∈ k[x0 : ... : xn]2 be a homogeneous
polynomial, by Alexander-Hirschowitzs theorem we know that wrk(F ) = n + 1, and we
have the following

Theorem 19. Let F be a homogeneous polynomial of degree two in the n+1 variables
x0,...,xn. Then for any n>0 the variety VSP(F,n+1) is rational.

Proof : We have d = deg(F) = 2,h = n+1 and N = 1
2(n+2)(n+1)-1.

Modulo an automorphism of Pn we can write F in the form

F = x2
0 +...+ x2

n.

Let ΛN−n be a generic (N-n)-plane in PN that does not contain F. We consider the generic
quadric G ∈ ΛN−n and the pencil of quadrics λF-G generated by F and G.
Let Q ∈ M(n+1) be the symmetric matrix representing the generic quadric on Pn then
the hypersurface X = V(det(Q)) is a hypersurface of degree n+1 in PN parameterizing
the singular quadrics.
Since F and G are generic quadratic forms the line <F,G> will intersect X in n+1 points
that represent the cones C0,...,Cn in the pencil λF-G. If we denote by vi ∈ Pn the vertex
of the cone Ci for i=0,...,n, then via the Veronese embedding ν2:Pn→PN we find n+1
points ν2(vi) on the Veronese variety Vn2n .
If A is the matrix of G then the cones in the pencil λF-G are determined by the values
of λ such that det(λI-A) = 0, in other words the cones are determined by the eigenvalues



4.6 Birational geometry of VSP 79

λ0,...,λn of A that we can suppose distinct because G is general. Then for any i=0,...,n
we have

λiI-A = Mat(Ci) and vi = Sing(Ci) = Ker(λiI-A).

We see that the vertex vi of the cone Ci is the eigenvector of A corresponding to the
eigenvalue λi. In the basis {v0,...,vn} the matrix A is in the form

A =


λ0 · · · 0
...

. . .
...

0 · · · λn


and G is in the form G = λ0v2

0+...+λnv2
n. We note that

λiI −A =



λi − λ0 · · · · · · · · · 0
...

. . .
...

. . .
...

...
. . . 0

. . .
...

...
. . .

...
. . .

...
0 · · · · · · · · · λi − λn


Since λi 6= λj for i 6=j we have

vi = Ker(λiI −A) = (0,..., 1︸︷︷︸
i−thplace

,...,0).

Note that the basis {v0,...,vn} is orthonormal, so the matrix of F remains the identity
after the change of basis. For the Veronese embedding we have

ν2(α0x0+...+αnxn) = α2
0x2

0+...+α2
nx2
n+{mixed terms}

ν2(v0) = ν2([1:0:...:0]) = x2
0,...,ν2(vn) = ν2([0:0:...:1]) = x2

n.

In this way we see that F,G ∈ <x2
0,...,x2

n> and we can define a map

ψ:ΛN−n99KVSP(F,n+1), defined by G 7→ {v0,...,vn}.

Now we define another map

ϕ:VSP(F,n+1)99KΛN−n, defined by {L0,...,Ln} 7→ GL = <L2
0,...,L2

n> ∩ΛN−n.

We want to prove that ψ is the inverse of ϕ.
If GL = <L2

0,...,L2
n> ∩ ΛN−n with {L0,...,Ln} ∈ VSP(F,n+1) then we can write

G = λ0L2
0+...+λnL2

n

and since the diagonalizing bases is orthonormal we can assume

F = L2
0+...+L2

n.

We consider the pencil λF-GL whose associated matrix in the basis {L0,...,Ln} is

B =


λ− λ0 · · · 0

...
. . .

...
0 · · · λ− λn


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Then for λ = λi, i=0,...,n we have the cones in the pencil λF-GL.
For λ = λj we get

Ker(λjI-B) = (0,..., 1︸︷︷︸
j−thplace

,...,0)

that represents the form Lj . So we have ψ(GL) = {L0,...,Ln} and this prove that

ψ ◦ ϕ = IdVSP(F,n+1)o .

Now we fix G ∈ ΛN−n and we have ψ(G) = {L0,...,Ln} with G ∈ <L2
0,...,L2

n>. On
the other hand ϕ({L0,...,Ln}) = GL = <L2

0,...,L2
n> ∩ΛN−n, but the points G,GL are

containes in <L2
0,...,L2

n> ∩ ΛN−n implies G = GL and this prove that

ϕ ◦ ψ = IdΛN−n .

We conclude that the maps ψ and ϕ defines a birational isomorphism betweenVSP(F,n+1)
and ΛN−n. 2

Remark 13. We consider two particular cases when d = 3.

• Let F3 ∈ P9 be a homogeneous polynomial and let V = V 2
9 ⊆ P9 be the Veronese

variety. Let P1,P2,P3 ∈ P2 be three points in general position.
Let |IPi

(3)| ⊆ |OP 2(3)| be the linear system of the plane cubics containing P1,P2,P3.
Then we have

deg(|IPi
(3)|) = 9 and h0(|IPi

(3)|) = 9-3 = 7.

The linear system |IPi
(3)| is without unassigned base points and so blowing up P2

in P1,P2,P3 we obtain a very ample linear system BlPi
(|IPi

(3)|) such that

deg(BlPi
(|IPi

(3)|)) = 9-3 = 6 and h0(BlPi
(|IPi

(3)|)) = 7.

The linear system BlPi
(|IPi

(3)|) gives an embedding of P̂2 = BlPi
(P2) in P6 as a

Del Pezzo surface of degree 6 that we denote by Y.

P̂2

BlPi ��@
@

@
@

// P6

P2

??~~~~~~~~

Now let X be the cone over Y constructed by the 3-planes containing the plane
<ν3(P1),ν3(P2),ν3(P3)>, then deg(X) = 6 and dim(X) = 2+3 = 5. Let {L1,...,L5}
be a 5-polar polyhedron of F3. We consider the 4-plane HL =< L3

1, ..., L
3
5 > with

L3
i ∈ V2

3. The 4-plane HL intersects X in 6 points counted with multiplicity, the 5
points and an additional point PL ∈ X. In this way we get a rational map

ϕ: VSP(F3,5) 99KX, {L1,...,L5} 7→ PL.
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• Let F3 ∈ P19 be a homogeneous polynomial of degree 3 in four variables. The partial
derivatives of F3 are homogeneous polynomials of degree two Fx,Fy,Fz,Fw ∈ P9.
We denote by H3

∂ = <Fx,Fy,Fz,Fw> the 2-plane spanned by the derivatives. We
consider the Veronese variety V = V3

8 ⊆ P9, then any 6-polar polyhedron {L1,...,L6}
determines a 5-plane H5

L = <L1,...,L6> that contains H3
∂ and intersects V in exactly

L1,...,L6 since 5+3<9.
Now we consider a 4-plane Λ4 such that Λ4∩H3

∂ = ∅ so H5
L∩Λ4 = {PL}. We define

the rational map

ϕ: VSP(F3,6)99KΛ4, defined by {L1,...,L6} 7→PL.

4.7 Maps between VSP

Let F be a homogeneous polynomial of degree d in n+ 1 variables and let {L1, ..., Lh} be
an h-polar polyhedron of F , we write

F = Ld1 + ...+ Ldh.

Let H be an hyperplane in Pn, we denote by F̂ the restriction to H of F . Then F̂ is a
homogeneous polynomial of degree d in n variables. Since L̂di = L̂i

d
we have

F̂ = L̂1

d
+ ...+ L̂h

d

where the L̂i = Li|H are linear forms on Pn−1. In this way we get a rational map

ϕH : VSP(F, h) 99K VSP(F̂ , h), {L1, ..., Lh} 7→ {L̂1, ..., L̂h}.

We want to give a geometrical description of this map. We can assume H = {xn = 0}.
The polynomial F is of the form

F =
∑
i0+...+in=d fi0,...,inx

i0
0 ...x

in
n .

To restrict F on H means to kill the monomials in which xn compares. This monomials
form a space of dimension

(
n+d−1
d−1

)
.

So we are projecting PN in PN̂ from a
(
n+d−1
d−1

)
− 1− plane Π, where N =

(
n+d
d

)
− 1 and

N̂ =
(
n−1+d

d

)
. The projection maps F in F̂ . The h− polyhedron {L1, ..., Lh} determine

the zero subscheme of length h, {Ld1, ..., Ldh} on the Veronese variety V ndn that spans a
(h− 1)− plane HL passing through F . This h− plane is projected in a (h− 1)− plane
passing through F̂ and h− secant to the Veronese variety V n−1

d(n−1) if and only if HL does
not intersect the center of projection Π. This is the reason why a priori we can not say
that ϕH is a morphism.

Example 18. We fix d = 2. We have

F = α0x
2
0 +α1x

2
1 +α2x

2
2 +α3x

2
3 +α4x0x1 +α5x0x2 +α6x0x3 +α7x1x2 +α8x1x3 +α9x2x3.

F̂ = α0x
2
0 + α1x

2
1 + α2x

2
2 + α4x0x1 + α5x0x2 + α7x1x2.

We are projecting P9 in the 5-plane given by the equation

{X3 = X6 = X8 = X9 = 0}
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from a 3-plane.

Since the dimension of VSP(F, h) is h(n+ 1)−
(
n+d
d

)
the expected dimension of the

varietyX ⊆ Sech−1V
n
dn of the (h−1)−planes passing though F is h(n+1)−

(
n+d
d

)
+(h−1).

If h(n+1)−
(
n+d
d

)
+(h−1)+dim(Π) < N the X does not intersect Π, but this inequality

is equivalent to h(n+ 2) < 1−
(
n+d−1
d−1

)
that is never verified. So we expect that the maps

of the form ϕH are never morphisms.
However it can be interesting to understand if for some n, h, d one can find a plane H
such that ϕH is generically injective. In this way we can study the birational geometry
of varieties of power sums from another viewpoint.
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Conclusions

As we have seen few varieties of sums of powers have been classified. To resume the main
results of this work we report a table updated with our contributions.

d n h VSP(Fd,h) Reference
2h-1 1 h 1 point Sylvester

h≤ d ≤ 2h-1 1 h P2h-d-1 Massarenti and Mella
2 2 3 quintic Fano threefold Mukai [Muk92]
3 2 4 P2 Dolgachev and Kanev [DK93]
3 2 4 New proof of D-K Th. Massarenti and Mella
2 2 4 birational to G(1,4) Massarenti and Mella

2,3 2 4 Reconstruction of Decompositions Massarenti and Mella
4 2 6 Fano threefold of genus twelve Mukai [Muk92]
5 2 7 1 point Hilbert, Richmond, Palatini
5 2 7 New proof of Hilbert Th. Massarenti and Mella
6 2 10 K3 surface of genus 20 Mukai [Muk92]
7 2 12 5 points Dixon and Stuart
8 2 15 16 points Mukai [Muk92]
2 3 4 G(1,4) Ranestad and Schreier [RS00]
3 3 5 1 point Sylvester’s Pentahedral Theorem
3 3 5 New proof of Sylvester Th. Massarenti and Mella
3 4 8 W Ranestad and Schreier [RS00]
3 5 10 S Iliev and Ranestad [IR01b]
2 n n+1 VSP(F,n+1) rationality Massarenti and Mella

Our next object is the study the birational geometry and the rational connection of
varieties of power sums in the case d ≥ 3.
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