
Some Examples of Quantum Algebras

Abstract

The term quantum groups stands for certain special Hopf algebras which are non-
trivial deformations of the enveloping Hopf algebras of Lie algebras. Quantum groups
have close connections with varied areas of mathematics and physics. In these notes
we first introduce the concepts of Lie algebra, Hopf algebra and envoloping algebra.
Then we will describe some important relations between two specific bialgebras or Hopf
algebras. We will see some examples of quantum algebras that are deformations of well
known algebras as M(2 ) and SL(2 ).
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1 Lie Algebras

Definition 1.1. Let k be a field. A Lie algebra is a k-vector space L with an operation

L×L → L, denoted by (x,y) 7→ [x,y]

and called the bracket or commutator of x and y, such that:

L1 The bracket operation is bilinear.

L2 [x,x] = 0 for all x ∈ L.

L3 [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 for all x,y,z ∈ L. (Jocobi Identity)

We note that [x+y,x+y] = [x,x] + [x,y] + [y,x] + [y,y] = 0 implies [x,y] = -[y,x] and the
bracket is anticommutative. Conversely if char(k) 6= 2 we have that [x,y] = -[y,x] for all
x,y ∈ L implies [x,x] = -[x,x], 2[x,x] = 0 and char(k) 6= 2 implies [x,x] = 0.
A morphism of Lie algebras is a morphism of k-vector spaces that is compatible with the
bracket operations.

Definition 1.2. Let L,L
′
be two Lie algebras. A morphism of Lie algebras is a k-linear

map ϕ:L → L
′
such that ϕ([x,y]) = [ϕ(x),ϕ(y)] for all x,y ∈ L.

An isomorphism of Lie algebras is a morphism that is an isomorphism of k-vector spaces.

A Lie subalgebra of a Lie algebra L is a subvector space W of L such that [x,y] ∈ W for
all x,y ∈ W. In this way (W,[,]) becomes a Lie algebra. Note that any nonzero element
x ∈ L defines a one dimensional subalgebra k·x with a trivial multiplication since for
any u,v ∈ k·x we have [u,v] = [αx,βx] = αβ[x,x] = 0. Now we give some example of Lie
algebras.

1.1 Linear Lie Algebras

LL1 If V is a finite dimension k -vector space with dim(V) = n then

End(V) = {f:V → V | f is k-linear}

is a k -vector space of dimension n2. We define the following operation on End(V)

End(V)×End(V) → End(V), (f,g) 7→ fg - gf.

Now we verify the axioms of definition 1.1, (L1) and (L2) are immediate, for (L3)
we compute [f,[g,h]] + [g,[h,f ]] + [h,[f,g]] = [f,gh - hg] + [g,hf - fh] + [h,fg - gf ] =
fgh - fhg - ghf + hgf + ghf - gfh - hfg + fhg + hfg - hgf - fgh + gfh = 0.
We note that End(V) is a k -algebra with the usual associative decomposition of
function. To distinguish the new algebra structure we write gl(V ) for End(V) and
call this Lie algebra the general linear algebra, since it is closely related to the general
linear group GL(V) consisting of all invertible endomorphisms of V. Any subalgebra
of gl(V ) is called a linear Lie algebra.

LL2 We denote by sl(V ) the set of endomorphism of V having trace zero. Since Tr(f
+ g) = Tr(f) + Tr(g) and Tr(fg) = Tr(gf) implies Tr(fg - gf) = Tr([f,g]) = 0 we
have that sl(V ) is a Lie subalgebra of gl(V ) called the special linear algebra. It
is closely related to the special linear group consisting of all endomorphism of V
having determinant equal to one. The map
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Tr:End(V) → k, f 7→ Tr(f)

is a surjective k -linear map and we note that ker(Tr) = sl(V ), by dimension theorem
we have dim(sl(V )) = dim(End(V)) - 1 = n2 - 1. We see that sl(V ) is a hyperplane
in End(V).

LL3 Let dim(V) = 2n and let (v1,...,v2n) be a basis of V. We define a skew-symmetric
form F on V by the matrix

M =

(
0 In

−In 0

)

The set sp(V ) of endomorphisms of V such that Mf = ftM. In terms of the skew-
symmetric form F we have that f ∈ sp(V) if and only if F(f(v),w) = -F(v,f(w)).
Let f,g ∈ sp(V) then M[f,g] = M(fg - gf) = Mfg - Mgf = ftMg - gtMf = ftgtM -
gtftM = ((gf)t - (fg)t)M = [f,g]tM. So sp(V) is a Lie subalgebra of gl(V ) called the
symplectic algebra. We note that the condition Mf = ftM forces Tr(f) = 0 so sp(V )
⊆ sl(V ).

LL4 Let dim(V) = 2n + 1 be odd and let F be a nondegenerate bilinear form on V
whose matrix is

N =

 1 0 0
0 0 In

0 In 0


The orthogonal algebra O(V ) consists of all endomorphisms f of V satisfying
F(f(v),w) = -F(v,f(w)) in other words such that Nf = ftN.

LL5 In the case dim(V) = 2n even and with the simpler matrix

N =

(
0 In

In 0

)

We consider the algebra consisting of all endomorphisms f such that Nf = ftN. This
new algebra is called again orthogonal algebra.

LL6 We denote by t(V ) the set of upper triangular matrices. The product and the sum
of upper triangular matrices are again upper triangular matrices, so t(V ) is closed
under the bracket. The same is true for the set n(V ) of strictly upper triangular
matrices and for the set d(V ) of diagonal matrices. Then t(V ), n(V ), d(V ) are Lie
subalgebras of gl(V ).

1.2 Lie Algebras of Derivations

In what follows by a k -algebra (not necessarily associative) we mean a k -vector space A
endowed with a bilinear map A×A → A (if A is a Lie algebra we use the bracket).

Definition 1.3. A derivation of A is a k-linear map δ:A → A such that

δ(xy) = xδ(y) + δ(x)y for all x,y ∈ A (Leibniz rule).

The set of all derivations of A is denoted by Der(A).
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Let δ,δ′:A → A be two derivations of A. We compute
(δ + δ′)(xy) = δ(xy) + δ′(xy) = xδ(y) + δ(x)y + xδ′(y) + δ′(x)y = x(δ + δ′)(y) + (δ +
δ′)(x). So δ + δ′ ∈ Der(A) and Der(A) is a subvector space of End(A).
Now we note that the usual pointwise product of two derivations is not necessarily a
derivation. For example consider the R-algebra

C∞(R2) = {f:R2 → R | f is indefinitely differentiable}.

We choose the functions f(x,y) = xy, g(x,y) = ex and as derivations the usual partial
derivatives ∂x,∂y:C∞(R2) → C∞(R2). Then

(∂x·∂y)(yex) = ∂x(yex)·∂y(yex) = ye2x and y(∂x·∂y)(ex) + (∂x·∂y)(y)ex = 0.

We see that (∂x·∂y)(fg) 6= f(∂x·∂y)(g) + (∂x·∂y)(f)g. On then contrary the following
lemma is true

Lemma 1.4. Let δ,δ′ ∈ Der(A) be two derivations of A. Then the bracket

[δ,δ′] = δδ′ - δ′δ

is a derivation of A.

Proof : We compute [δ,δ′](xy) = δδ′(xy) - δ′δ(xy) = δ(xy)δ′(xy) - δ′(xy)δ(xy) = x(δδ′)(y)
+ δ(x)δ′(y) + δ′(x)δ(y) + (δδ′)(x)y - x(δ′δ)(y) - δ′(x)δ(y) - δ(x)δ′(y) - (δ′δ)(x)y = x(δδ′

- δ′δ)(y) + (δδ′ - δ′δ)(x)y = x[δ,δ′](y) + [δ,δ′](x)y. 2

Then Der(A) is a Lie subalgebra of gl(A).

2 Examples of Bialgebras and Hopf algebras

Definition 2.1. Let k be a field. A k-bialgebra is a 5th-uple (B,m,u,∆,ε) such that
(B,m,u) is a k-algebra, (B,∆,ε) is a k-coalgebra and

∆:B → B⊗B, ε:B → k are k-algebras morphisms.

Definition 2.2. A Hopf algebra is a 6th-uple (H,m,u,∆,ε,S) where (H,m,u,∆,ε) is a
bialgebra and S:H → H is a linear map that is an inverse for IdH in the convolution
algebra Hom(HC ,HA) with HC = (H,∆,ε) and HA = (H,m,u) i.e.

S ? IdH = u ◦ ε = IdH ? S

The map S is called an antipode for H.

Observation 2.3. Consider the polynomial ring k{X1,...,Xn} and let R be a k-algebra.
Then any algebra morphism of k{X1,...,Xn} in R is uniquely determined by its values ri

on Xi. We denote the evaluation morphism by

Er1,...,rn
: k{X1,...,Xn} → R, F 7→ F(r1,...,rn) = Er1,...,rn

(F).
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Let F(r1,...,rn) = Er1,...,rn(F) for any F ∈ k{X1,...,Xn}.
Let F1,...,Fn ∈ k{X1,...,Xn} and let I be the ideal of k{X1,...,Xn} generated by F1,...,Fn.
For any i=1,...,n we denote by xi = Xi+I the class of Xi and let A = k{X1,...,Xn}/I.
Let R be a k-algebra then to give a morphism of algebras Φ:A→R is equivalent to give
a n-uple (r1,...,rn) of elements of R such that Fi(r1,...,rn) = Er1,...,rn

(Fi) = 0 for any
i=1,...,n.

2.1 The Tensor Algebra

Let V be a k -vector space. We define

T0(V) = k, T1(V) = V and Tn(V) = V⊗n if n > 1.

The isomorphism Tn(V) ⊗ Tm(V) ∼= Tn+m(V) induces an associative product on the
vector space T(V) =

⊕
n≥0T

n(V) explicitly given by

(x1⊗...⊗xn)(xn+1⊗...⊗xn+m) = x1⊗...⊗xn⊗xn+1⊗...⊗xn+m

The k -vector space T(V) =
⊕

n≥0T
n(V) equipped with this structure is a k -algebra

called the Tensor Algebra of V.
One can prove the following universal property of T(V).
Let i0:k → T(V) and i1:V → T(V) the canonical embeddings. Then for any k-algebra A
if f1:V → A k-linear map, there exists a unique k-algebras morphisms F:T(V) → A such
that F◦i1 = f1.
We note that the k -algebra T(V) is graded and Tn(V) is the subspace of degree n ele-
ments.
In particular if V is finite dimensional and {e1,...,en} is a basis of V, then T(V) is iso-
morphic to the algebra k{X1,...,Xn} of the polynomials in the noncommutative variables
X1,...,Xn, where Xi = i1(ei).
We consider the two-sided ideal I of T(V) generated by the elements of type xy-yx where
x,y run in V. Then S(V) = T(V)/I is a k -algebra called the symmetric algebra of V. If
dim(V) = n then S(V) is isomorphic to k[X0,...,Xn].

2.2 The Quantum Plane

We consider the k -algebra k{X,Y}. Using the universal property of the tensor algebra we
define the following two algebras morphisms

∆:k{X,Y} → k{X,Y}⊗k{X,Y}, ∆(X) = X⊗X, ∆(Y) = Y⊗1 + X⊗Y
ε:k{X,Y} → k, ε(X) = 1, ε(Y) = 0.

By the fundamental theorem of the tensor algebra we get that (k{X,Y},∆,ε) is a bialge-
bra. Let q be an element in k such that q 6= 0 and let I be the two-sided ideal of k{X,Y}
generated by XY - qYX. We compute
∆(XY - qYX) = ∆(X)∆(Y) - q∆(Y)∆(X) = (X⊗X)(Y⊗1 + X⊗Y) - q(Y⊗1 +
X⊗Y)(X⊗X) = XY⊗X + XX⊗XY - q(YX⊗X + YX⊗X) = XY⊗X + XX⊗XY - YX⊗qX
- XX⊗qYX = (XY - qYX)⊗X + XX⊗(XY - qYX) ∈ I⊗k{X,Y} + k{X,Y}⊗I.
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ε(XY - qYX) = ε(X)ε(Y) - qε(Y)ε(X) = 0.
Then I is a biideal of k{X,Y} and k{X,Y}/I is a bialgebra. This bialgebra is denoted by
Oq(k2) or by kq[x,y] and is called the Quantum Plane. Let x = X + I and y = Y + I
then the comultiplication and the counit of Oq(k2) are defined by

∆Oq(k2)(x) = x ⊗ x, ∆Oq(k2)(y) = y ⊗ 1 + x ⊗ y,
εOq(k2)(x) = 1, εOq(k2)(y) = 0.

3 The bialgebra Mq(2)

We construct a deformation of the algebra M(2). Let q ∈ k, q 6= 0 and q2 6= -1. By using
the universal property of the tensor algebra we define on R = k{A,B,C,D} two algebras
morphisms

∆:R → R⊗R and ε:R → k

uniquely determined by

∆(A) = A⊗A + B⊗C, ∆(B) = A⊗B + B⊗D,
∆(C) = C⊗A + D⊗C, ∆(D) = C⊗B + D⊗D,

ε(A) = ε(D) = 1, ε(B) = ε(C) = 0.

In this way the algebra R becomes a bialgebra. Let us consider the two-sided ideal I of
R generated by the following elements

BA - qAB, DB - qBD,
CA - qAC, DC - qCD, BC - CB, AD - DA - (q−1 - q)BC,

(1)

where q ∈ k, q 6= 0 and q2 6= -1. We want to prove that I is a biideal of R.

Let p:R → R/I be the projection, we denote by

a = p(A), b = p(B), c = p(C), d = p(D)

the classes of A,B,C,D.

Theorem 3.1. The ideal I generated by relations 1 is a biideal of R and R/I is a bialgebra.
The comultiplication ∆:R/I → R/I×R/I and the counit ε:R/I → k are defined by

∆(a) = a⊗a + b⊗c, ∆(b) = a⊗b + b⊗d,
∆(c) = c⊗a + d⊗c, ∆(d) = c⊗b + d⊗d,

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0.

In matrix form we have

∆

(
a b

c d

)
=

(
a b

c d

)
⊗

(
a b

c d

)
ε

(
a b

c d

)
=

(
1 0
0 1

)
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Proof : We compute
∆(BA - qAB) = AA⊗BA + AB⊗BC + BA⊗DA + BB⊗DC - qAA⊗AB - qAB⊗AD -
qBA⊗CB - qBB⊗CD. Then
((p⊗p)◦∆)(BA - qAB) = qaa⊗ab + ab⊗bc + qab⊗da + qbb⊗cd - qaa⊗ab - qab⊗ad -
qba⊗cb - qbb⊗cd = ab⊗(qda - qad) + (ab - qba)⊗bc.
Now qad - qda = (1 - q2)bc, so ((p⊗p)◦∆)(BA - qAB) = ab⊗(q2 - 1)bc + (ab - qba)⊗bc
= ab⊗q2bc - ab⊗bc + ab⊗bc - qba⊗bc = q(qab - ba)⊗bd = 0⊗bc = 0.
We compute
∆(BC-CB) = (A⊗B+B⊗D)(C⊗A+D⊗C)-(C⊗A+D⊗C)(A⊗B+B⊗D). Then
((p⊗p)◦∆)(BC-CB) = ac⊗ba+(ad-da)⊗bc+bc⊗(da-ad)+bc⊗dc-ca⊗ab-db⊗cd =
ac⊗ba+(q−1-q)bc⊗bc-bc⊗(q−1-q)bc+bd⊗dc-ca⊗ab-db⊗cd = (qac-ca)⊗ab+(qbd-db)⊗cd =
0.
Finally we compute
∆(AD - DA - (q−1 - q)BC) = (A⊗A + B⊗C)(C⊗B + D⊗D) - (C⊗B
+ D⊗D)(A⊗A + B⊗C) - (q−1 - q)(A⊗B + B⊗D)(C⊗A + D⊗C) =
AC⊗AB+AD⊗AD+BC⊗CB+BD⊗CD-CA⊗BA-CB⊗BC-DA⊗DA-DB⊗DC-(q−1-
q)(AC⊗BA+AD⊗BC+BC⊗DA+BD⊗DC). Then ((p⊗p)◦∆)(AD - DA - (q−1

- q)BC) = q−1ac⊗ba+ad⊗ad+bc⊗bc+q−1db⊗cd-qac⊗ba-cb⊗bc-da⊗da-qbd⊗dc-
q−1ac⊗ba-q−1ad⊗bc-q−1bc⊗daq−1bd⊗dc+qac⊗ba+qad⊗bc+qbc⊗da+qbd⊗dc = ad⊗ad-
da⊗da+(ad⊗bc)(q-q−1)-(bc⊗da)(q-q−1) = ad⊗ad-da⊗da+ad⊗(ad-da)-(ad-da)⊗da = 0.
The other relations are similar. Furthermore we have ε(BA - qAB) = ε(BC-CB) = 0
and ε(AD - DA - (q−1 - q)BC) = 1-1 = 0.
We have seen that ∆(I) ⊆ R⊗I+I⊗R and ε(I) = 0. Then I is a biideal of R and R/I is
a bialgebra.

2

The k -algebra R/I is denoted by Mq(2). When q = 1 the algebra Mq(2) is isomorphic
to M(2).

Definition 3.2. Let R be a k-algebra. An R-point of Mq(2) is a quadruple (A,B,C,D) ∈
R4 such that

AB = qBA, BD = qDB,
AC = qCA, CD = qDC,

BC = CB, AD - DA = (q−1 - q)BC.

We consider the element detq = DA − qBC of R. Then detq = da − qbc is well defined
on Mq(2). If a = p(A) = p(A′),b = p(B) = p(B′),c = p(C) = p(C ′),d = p(D) = p(D′) we
have

p(D)p(A)− qp(B)p(C) = p(D′)p(A′)− qp(B′)p(C ′) and
p(DA− qBC) = p(D′A′ − qB′C ′).

In other words if [x] denote the class of the element x ∈ R we have

[detq] = [D][A]− q[B][C].
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Lemma 3.3. We have ∆(detq) = detq ⊗ detq and ε(detq) = 1.

Proof : We compute ∆(detq) = ∆(da-qbc) = ca⊗ba+cb⊗bc+da⊗da+db⊗dc-qac⊗ba-
qad⊗bc-qbc⊗da-qbd⊗dc = qac⊗ba+bc⊗bc+da⊗da+qbd⊗dc-qac⊗ba-qad⊗bc-qbc⊗da-
qbd⊗dc = (bc-qad)⊗bc+(da-qbc)⊗da. In view of the relation ad = da+(q−1-q)bc we have
qad = qda+(1-q2)bc so
∆(detq) = (bc-qda-bc+q2bc)⊗bc+(da-qbc)⊗da = (da-qbc)⊗(da-qbc) = detq⊗detq.
Finally ε(detq) = ε(da-qbc) = ε(d)ε(a) = 1. 2

Lemma 3.4. There exists a bijective correspondence between the algebra morphisms of
Mq(2) in R and the R-points of Mq(2).

3.1 The Hopf Algebra SLq(2)

The special linear group SL(2) consists of all matrices in M(2) whose determinant is
equal to one. We consider the ideal I of Mq(2) generated by detq - 1 = da - qbc - 1. We
will prove that Mq(2)/I has a structure of Hopf algebra and we will denote it by SLq(2).

Theorem 3.5. The ideal I = (detq - 1) is a biideal in Mq(2). The quotient algebra SLq(2)
is a Hopf algebra with antipode defined by

S

(
a b

c d

)
= det−1

q

(
d −qb

−q−1c a

)

Proof : We have ∆(detq-1) = detq⊗detq-1⊗1 = detq⊗detq-detq⊗1+detq⊗1-1⊗1 =
detq⊗(detq-1)+detq-1+ ∈ Mq(2)⊗I+I⊗Mq(2).
ε(detq-1) = 1-1 = 0.
Then ∆ and ε are well defined on SLq(2) and SLq(2) is a bialgebra.
We check that S is an antipode
(S?Id)(a) = S(a)a+S(b)c = det−1

q (da-qbc) = 1 = ε(a),
(S?Id)(b) = S(a)b+S(b)d = det−1

q (db-qbd) = 0 = ε(b).
In a similar way one prooves that (S?Id)(c) = ε(c) and (S?Id)(d) = ε(d). 2

3.1.1 Coaction of Mq(2) and SLq(2) on the quantum plane

We begin this section giving the definition of H -comodule-algebra.

Definition 3.6. Let (H,mH ,uH ,∆H ,εH) be a bialgebra and let (A,mA,uA) be an algebra.
We say that A is a left H-comodule-algebra if

1. The vector space A has a left H-comodule structure given by a map

ρA:A → H⊗A.

2. The maps

mA:A⊗A → A and uA:k → A

8



are morphisms of H-comodules.

Proposition 3.7. Let H be a bialgebra and let A be an algebra. Then A is a left H-
comodule-algebra if and only if

1. The vector space A has a left H-comodule structure given by a map

ρA:A → H⊗A.

2. The map ρA:A → H⊗A is a morphism of algebras.

Proof : The commutativity of the two following diagrams means that mA:A⊗A → A
and uA:k → A are morphisms of H-comodules.

H ⊗A⊗H ⊗A

H⊗τA,H⊗A

��

A⊗A
mA //ρA⊗ρAoo

ρA⊗A

��

A

ρA

��
H ⊗H ⊗A⊗A

mH⊗A⊗A
// H ⊗A⊗A

H⊗mA

// H ⊗A

k

ρk

��

l−1
k

zzuuuuuuuuuu
uA // A

ρA

��

k ⊗ k

uH⊗k $$IIIIIIIII

H ⊗ k
H⊗uA

// H ⊗A

The fact that ρA is a morphism of algebras is equivalent to the commutativity of the
following squares

H ⊗A⊗H ⊗A

mH⊗A

��

H⊗τA,H⊗A

uukkkkkkkkkkkkkk
A⊗A

mA

��

ρA⊗ρA

oo

H ⊗H ⊗A⊗A

mH⊗mA ))SSSSSSSSSSSSSS

H ⊗A A
ρAoo

k
l−1
k //

uA

��

uH⊗A

((QQQQQQQQQQQQQQ k ⊗ k

uH⊗uA

��
A ρA

// H ⊗A

Cleary the first two diagrams and the last two diagrams are equivalent.

2

Theorem 3.8. There exists a unique Mq(2)-comodule-algebra structure and a unique
SLq(2)-comodule-algebra structure on the quantum plane A = kq[x,y] such that
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ρA(x) = a⊗x + b⊗y and ρA(y) = c⊗x + d⊗y

We rewrite these formulas in the matrix form

ρA(x, y) =

(
a b

c d

)
⊗

(
x

y

)

Proof : We first check that ρA defines an algebra morphism from A to Mq(2)⊗A. In view
of 2.3 we have to verify that

ρA(y)ρA(x) = qρA(x)ρA(y).

We have
ρA(y)ρA(x) = (c⊗x+d⊗y)(a⊗x+b⊗y) = ca⊗x2+cb⊗xy+da⊗yx+db⊗y2 =
qac⊗x2+bc⊗xy+qda⊗xy+qbd⊗y2 = qac⊗x2+(bc+qda)⊗xy+qbd⊗y2.
On the other hand we have
qρA(x)ρA(y) = q(a⊗x+b⊗y)+(c⊗x+d⊗y) = q(ac⊗x2+ad⊗xy+bc⊗yx+bd⊗y2) =
qac⊗x2+qad⊗xy+qbc⊗yx+qbd⊗y2.
We note that qad⊗xy+qbc⊗yx = qad⊗xy+q2bc⊗xy = (qad+q2bc)⊗xy and ad =
da+(q−1-q)bc implies qad = qda+(1-q2)bc so (qad+q2bc)⊗xy = (qda+bc-q2bc+q2bc)⊗xy
= qda⊗xy+bc⊗xy.
Since the projection map of Mq(2) onto SLq(2) is a morphism of algebras the resulting
map A→SLq(2)⊗A is an algebra morphism. It remains to check that ρA defines a
comodule structure on the quantum plane. We compute
(Id⊗ρA)◦ρA(x) = (Id⊗ρA)(a⊗x+b⊗y) = a⊗ρA(x)+b⊗ρA(y) =
a⊗(a⊗x+b⊗y)+b⊗(c⊗x+d⊗y) = a⊗a⊗x+a⊗b⊗y+b⊗c⊗x+b⊗d⊗y.
On the other hand
(∆⊗Id)◦ρA(x) = (∆⊗Id)(a⊗x+b⊗y) = ∆(a)⊗x+∆(b)⊗y =
(a⊗a+b⊗c)⊗x+(a⊗b+b⊗d)⊗y = a⊗a⊗x+b⊗c⊗x+a⊗b⊗y+b⊗d⊗y.
Finally we have
(ε⊗Id)◦ρA(x) = (ε⊗Id)(a⊗x+b⊗y) = ε(a)⊗x+ε(b)⊗y = 1⊗x. 2

Lemma 3.9. For any i,j ≥ 0 we have

ρA(xiyj) =
∑i

r=0

∑j
s=0q

(i−r)s
(

i
r

)
q2

(
j
s

)
q2arbi−rcsdj−s⊗xr+syi+j−r−s.

Proof : Since ρA is a morphism of algebras we have ρA(xiyj) = ρA(xi)ρA(yj). Next we
have (b⊗y)(a⊗x) = ba⊗yx and q2(a⊗x)(b⊗y) = q(ab)⊗q(xy) = ba⊗yx so

(b⊗y)(a⊗x) = q2(a⊗x)(b⊗y).

Similarly (d⊗y)(c⊗a) = dc⊗ya and q2(c⊗a)(d⊗y) = q(cd)⊗q(ay) = dc⊗ya so

(d⊗y)(c⊗a) = q2(c⊗a)(d⊗y).

Then we have
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(b⊗y)(a⊗x) = q2(a⊗x)(b⊗y) and (d⊗y)(c⊗a) = q2(c⊗a)(d⊗y).

in the algebra Mq(2)⊗A.
We can apply the formula

(x+y)n =
∑

0≤k≤n

(
n
k

)
qxkyn−k

to both the expressions

ρA(x)i = (a⊗x+b⊗y)i and ρA(y)j = (c⊗a+d⊗y)j .

In this way we complete the proof. 2

We note that for the term xr+syi+j−r−s we have r+s+i+j-r-s = i+j. We see that the set
kq[x,y]n of homogeneous degree n elements of the quantum plane is a SLq(2)-subcomodule
of the quantum plane kq[x,y].

3.2 The algebra Uq(sl(2))

First we define the enveloping algebra of a Lie algebra

Definition 3.10. Let (L,[,]) be a Lie algebra. The enveloping algebra U(L) of L is the
quotient of the tensor algebra T(L) modulo the ideal I generated by the elements of the
form

i1([x,y]) - i2(x⊗y - y⊗x), where x,y ∈ L.

One can prove that the tensor algebra T(L) induces a Hopf algebra structure on U(L).
We have seen that sl(2) is a Lie algebra with the bracket defined by [x,y] = xy - yx. The
matrices

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
are linearly independent and since dim(sl(2)) = 3 form a basis of sl(2). We note that

[e,f ] = h, [h,e] = 2e, [h,f ] = -2f.

So the enveloping algebra U(sl(2)) is the quotient of the algebra k{E,F,H} in non com-
mutative variables modulo the ideal generated by

EF - FE - H, HE - EH - 2E, HF - FH + 2F.

We consider the algebra k{A,B,C,C ′} and define a comultiplication and a counit setting

∆(A) = 1⊗A + A⊗C, ∆(B) = C ′⊗B + B⊗1,
∆(C) = C⊗C, ∆(C ′) = C ′⊗C ′,

ε(A) = ε(B) = 0, ε(C) = ε(C ′) = 1.

In this way k{A,B,C,C ′} becomes a bialgebra. Let now q ∈ k, q 6= 0, q2 6= 1 and let I
be the two-sided ideal of k{A,B,C,C ′} generated by
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CC ′ - 1, C ′C - 1, AB - BA - C−C′

q−q−1 , CA - q2AC, CB - q2BC.

One can prove that I is a biideal of k{A,B,C,C ′} and that the map

S:k{A,B,C,C ′} → k{A,B,C,C ′}, S(A) = -AC ′, S(B) = -CB, S(C) = C ′, S(C ′) = C,

is such that S(I) ⊆ I and passing to the quotient defines an antipode on k{A,B,C,C ′}/I.
In this way k{A,B,C,C ′}/I becomes an Hopf algebra denoted by Uq(sl(2)). We denote
by E,F,K,K ′ the classes of A,B,C,C ′ in the quotient algebra Uq(sl(2)).

3.2.1 Action of Uq(sl(2)) on the Quantum Plane

We start with some generalities on skew-derivation of an algebra A. If a ∈ A is a element
we denote by

al:A → A, x 7→ ax and ar:A → A, x 7→ xa,

the left and right multiplications.
If σ:A → A is an automorphism we have

σal = σ(a)lσ and σar = σ(a)rσ.

In fact

σal(x) = σ(ax) = σ(a)σ(x) = (σ(a)lσ)(x)
σar(x) = σ(xa) = σ(x)σ(a) = (σ(a)rσ)(x)

Definition 3.11. Let σ,τ :A → A be two automorphisms of the algebra A. A linear
endomorphism δ:A → A is called a (σ,τ)-derivation if

δ(xx′) = σ(x)δ(x′) + δ(x)τ(x′) for all x,x′ ∈ A.

Lemma 3.12. Let δ be a (σ,τ)-derivation of A and a be an element of A. If there exist
two algebra automorphisms σ′, τ ′ such that

arσ
′ = alσ and alτ

′ = arτ

then the linear endomorphism alδ is a (σ′,τ)-derivation and arδ is a (σ,τ ′)-derivation.

Proof : We compute σ′(x)(alδ)(x′) + (alδ)(x)τ(x′) = σ′(x)aδ(x′) + aδ(x)τ(x′) =
alσ(x)δ(x′) + alδ(x)τ(x′) = al(σ(x)δ(x′) + δ(x)τ(x′)) = alδ(xx′).
σ(x)(arδ

′)(x′) + (arδ)(x′)τ(x′) = σ(x)δ(x′)a+aδ(x)τ(x′) = alσ(x)δ(x′) + alδ(x)τ(x′) =
(σ(x)δ(x′) + δ(x′)(arτ)(x)) = ar(σ(x)δ(x′) + δ(x)τ(x′)) = (arδ)(xx′). 2

We consider the algebra morphisms σx, σy of the quantum plane R = kq[x,y] defined by

σx(x) = qx, σx(y) = y, σy(x) = x, σy(y) = qy.
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When q = 1 we have σx = σy = Id. These morphisms are well defined, consider the
morphism ΦX : k{X,Y } → {X,Y } defined by X 7→ qX, Y 7→ Y then ΦX(Y X−qXY ) =
Y qX − q2XY = q(Y X − qXY ) ∈ I. Then the morphism ΦX passing to the quotient
defines the morphism σx.
For any n > 1 we define

[n] = qn−q−n

q−q−1 .

We define the q-analogues of the partial derivatives

∂q(xmyn)
∂x = [m]xm−1yn and ∂q(xmyn)

∂y = [n]xmyn−1.

for all m,n ≥ 0. Now we describe the commutation relation between the endomorphisms
xl,yl,xr,yr,σx,σy,

∂q

∂x , ∂q

∂y .

Within the algebra of linear endomorphisms of kq[x,y], all commutation relations
between the above six endomorphisms are trivial, except the following cases

ylxl = qxlyl, xryr = qyrxr,

σxxl,r = qxl,rσx σyyl,r = qyl,rσy,
∂q

∂xσx = qσx
∂q

∂x ,
∂q

∂yσy = qσy
∂q

∂y ,
∂q

∂xyl = qyl
∂q

∂x ,
∂q

∂yxr = qxr
∂q

∂y ,
∂q

∂xxl = q−1xl
∂q

∂x + σx = qxl
∂q

∂x + σ−1
x ,

∂q

∂yyr = q−1yr
∂q

∂y + σy = qyr
∂q

∂y + σ−1
y .

We also have

xl
∂q

∂x = σx−σ−1
x

q−q−1 and yr
∂q

∂y = σy−σ−1
y

q−q−1 .

Furthermore the endomorphism

∂q

∂x is a (σ−1
x σy,σx)-derivation and ∂q

∂y is a (σy,σxσ
−1
y )-derivation.

Definition 3.13. Let (H,mH ,uH ,∆H ,εH) be a bialgebra and let (A,mA,uA) be an algebra.
We say that A is a H-module-algebra if

1. The vector space A has a H-module structure.

2. The maps

mA:A⊗A → A and uA:k → A

are morphisms of H-modules.

We recall that A⊗A becomes a H -module defining

h(a⊗b) = ∆H(h)(a⊗b) = h1a⊗h2b.

Now mA(h(a⊗b)) = mA(h1a⊗h2b) = (h1a)(h2b) and hmA(a⊗b) = h(ab). Then the fact
that mA is a morphism of H -modules is equivalent to the relation

(2)
∑

(h1a)(h2b) = h(ab).

The ground field k becomes a H -module defining
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ht = εH(h)t for any h ∈ H, t ∈ k.

We have huA(t1k) = ht1A and uA(h(t1k)) = uA(εH(h)t1k) = εH(h)t1A.
Then uA is a morphism of H -modules is equivalent to the relation

εH(h)t1A = h(t1A) for any h ∈ H, t ∈ k

that is equivalent to the relation

(3) h1A = εH(h)1A, for any h ∈ H.

Theorem 3.14. For any P ∈ kq[x,y], set

EP = x∂qP
∂y , FP = ∂qP

∂x y,
KP = (σxσ

−1
y )(P), K’P = (σyσ

−1
x )(P).

Formulas above defines the structure of Uq(sl(2))-module-algebra on kq[x,y].

Proof : We consider the algebra morphism

Φ: k{A,B,C,C’} −→Endkkq[x,y], defined by
A 7→ x

∂q

∂y , B 7→ ∂q

∂xy, C 7→ σxσ
−1
y , C ′ 7→ σyσ

−1
x .

To say that kq[x,y] is a Uq(sl(2))-module is equivalent to give a ring morphism
Uq(sl(2))−→Endkkq[x,y]. Then to conclude that kq[x,y] is a Uq(sl(2))-module we have
only to check that Φ(I) = 0.
We compute
KEK ′ = σxσ

−1
y xl

∂q

∂yσyσ
−1
x = σxσ

−1
y xlqσy

∂q

∂yσ
−1
x = σxσ

−1
y xlqσyσ

−1
x

∂q

∂y = σ−1
y q2xlσy

∂q

∂y =

q2xl
∂q

∂y = q2E.
Then we have KK ′ = (σxσ

−1
y )(σyσ

−1
x ) = 1 and K’K = (σyσ

−1
x )(σxσ

−1
y ) = 1.

Finally we compute
EF - FE = xl

∂q

∂yyr
∂q

∂x -yr
∂q

∂xxl
∂q

∂y = xl(q−1yr
∂q

∂y+σy)
∂q

∂x -yr(q−1xl
∂q

∂x+σx)
∂q

∂y =

q−1xlyr
∂q

∂y
∂q

∂x+xlσy
∂q

∂x -q−1yrxl
∂q

∂x
∂q

∂y -yrσx
∂q

∂y = σyxl
∂q

∂x -σxyr
∂q

∂y = σy
σx−σ−1

x

q−q−1 -σx
σy−σ−1

y

q−q−1 =
σxσ−1

y −σyσ−1
x

q−q−1 = K−K′

q−q−1 .
Now we check relations 2 and 3. For any P,Q ∈ kq[x,y] we have to check that

E(PQ) =
∑

(E1P)(E2Q) = PE(Q)+E(P)K(Q)
F(PQ) =

∑
(F1P)(F2Q) = K’(P)F(Q)+F(P)Q

K(PQ) =
∑

(K1P)(K2Q) = K(P)k(Q)
K’(PQ) =

∑
(K’1P)(K’2Q) = K’(P)K’(Q)

u1 = ε(u)1 for any u ∈ Uq(sl(2)).

The endomorphism xl
∂q

∂y is a (Id,σxσ
−1
y )-derivation then we have

E(PQ) = xl
∂q(PQ)

∂y = Id(P)E(Q)+E(P)(σxσ
−1
y )(Q) = PE(Q)+E(P)K(Q).

The endomorphism yr
∂q

∂x is a (σ−1
x σy,Id)-derivation then we have

F(PQ) = yr
∂q(PQ)

∂x = (σ−1
x σy)(P)F(Q)+F(P)Id(Q) = K ′(P)F(Q)+F(P)Q.

We have K(PQ) = (σxσ
−1
y )(PQ) = σx(σ−1

y (P)σ−1
y (Q)) = (σx◦σ−1

y )(P)(σx◦σ−1
y )(Q) =

K(P)K(Q).
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A similar computation show that K ′(PQ) = K ′(P)K ′(Q).
We have E1 = 0 = ε(E)1, F1 = 0 = ε(F )1, K1 = 1 = ε(K)1, K ′1 = 1 = ε(K ′)1. 2

4 Duality between the Hopf Algebras Uq(sl(2)) and
SLq(2)

In this section we speak of duality in the sense of the following definition.

Definition 4.1. Let (U,mU ,uU ,∆U ,εU ) and (H,mH ,uH ,∆H ,εH) be bialgebras and let
<,> be a bilinear form on U×H. We say that the bilinear form realizes a duality between
U and H if we have

<uv,x> =
∑

<u,x′><v,x′′>;
<u,xy> =

∑
<u′,x><u′′,y>;

<1,x> = εH(x);
<u,1> = εU (u).

for all u,v ∈ V and x,y ∈ H, where ∆H(x) =
∑

x′⊗x′′ and ∆U (u) =
∑

u′⊗u′′.
If U and H are Hopf algebras with antipode S then they are said to be in duality if the
underlying bialgebras are in duality and if we have

<SU (u),x> = <u,SH(x)>

for all u ∈ U and x ∈ H.

We assume that k is an algebraically closed field and that q is not a root of unit. We
want to determine all simple Uq-module of finite dimension.
For any Uq-module V and any scalar λ 6= 0 we denote by Vλ the subspace of all vectors
in V such that Kv = λv.

Vλ = {v ∈ V | Kv = λv} ⊆ V.

The scalar λ is called a weight of V if Vλ 6= {0}.

Lemma 4.2. We have EVλ ⊂ Vq2λ and FVλ ⊂ Vq−2λ.

Proof : Let v ∈ Vλ we have

K(Ev) = q2E(Kv) = q2λEv and K(Fv) = q−2F(Kv) = q−2λFv.

2

Definition 4.3. Let V be an Uq-module and let λ be a scalar. An element v 6= 0 of V is
a highest weight vector of weight λ if Ev = 0 and if Kv = λv. An Uq-module is a highest
weight module of highest weight λ if it is generated by a highest weight vector of weight
λ.
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Proposition 4.4. Any Uq-module V 6= {0} of finite dimension contains a highest weight
vector.

Proof : The field k is algebraically closed and V is finite-dimensional. The characteristic
polynomial PK of K has its roots in k that are the eigenvalues of K. Then there exists
a non-zero vector w and a scalar α 6= 0 such that Kw = αw. If Ew = 0 then w is a
highest weight vector. If not, we consider the sequence of vectors Enw, with n ∈ Z n ≥
0. By lemma 4.2 it is a sequence of eigenvectors with distinct eigenvalues then there ex-
ists an integer n such that Enw 6= 0 and En+1w = 0. So Enw is a highest weight vector. 2

Now we state the following lemma omitting the proof

Lemma 4.5. Let v be a highest vector of weight λ. Set v0 = v and vp = 1
[p]!F

pv for p >
0. Then

Kvp = λq−2pvp, Evp = q−(p−1)λ−qp−1λ−1

q−q−1 vp−1, Fvp−1 = [p]vp

Theorem 4.6. Let V be a finite dimensional Uq-module generated by a highest weight
vector v of weight λ. Then

i The scalar λ is of the form λ = εqn with ε = ±1 and n is such that dim(V) = n+1.

ii Setting vp = F pv
[p]! , we have vp = 0 for p > n and the set {v = v0,v1,...,vn} is a basis

of V.

iii The operator K acting on V is diagonalizable with the n+1 distinct eigenvalues

{εqn,εqn−2,...,εq−n+2,εq−n}.

iv Any other highest weight vector in V is a scalar multiple of v and of weight λ.

v The module V is simple.

Furthermore any simple finite-dimensional Uq-module is generated by a highest weight
vector and two simple finite Uq-module generated by highest vectors of the same weight
are isomorphic.

Proof : By lemma 4.5 the sequence {vp} is a sequence of eigenvectors for K with distinct
eigenvalues. Now V is finite dimensional and then there exists an integer n such that vn

6= 0 and vn+1 = 0.

i,ii By formulas of lemma 4.5 we have vh = 0 for all h > n and vh 6= 0 for all h ≤ n.
By lemma 4.5 we also have

Evn+1 = q−nλ−qnλ−1

q−q−1 vn but Evn+1 = 0.

Then we have q−nλ = qnλ−1 which is equivalent to λ = ±qn.
We have vp = F pv

[p]! = F p−nvn

[p−n]! = 0 for any p > n. Any element of V, which is
generated by v as a module is a linear combination of the set {vi} so dim(V) = n+1
and {v0,...,vn} is a basis of V.

iii We note that

Kv0 = εqnv0, Kv1 = εqnq−2v1 = εqn−2v1,..., Kvn−1 = εqnq−2n+2vn−1 =
εq−n+2vn−1, Kvn = εqnq−2nvn = εq−nvn.
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Then the matrix of K in the basis {v = v0,v1,...,vn} is diagonal with
{εqn,εqn−2,...,εq−n+2,εq−n} in the diagonal.

iv Let v′ be another highest weight vector. Then v′ is an eigenvector for the action of K
and hence it is a scalar multiple of some vector vi. But E(vi) = 0 if and only if i =
0. So v′ = αv0.

v Let V′ be a non-zero Uq-submodule of V and let v′ be a highest weight vector of V′.
Then v′ is a highest weight vector of V and by [iv] it has to be a scalar multiple of
v0. Therefore v′ = αv0 and v0 = 1

αv′ is in V′. Then V ⊆ V′, we conclude that V =
V′ and V is simple.

Let v be a highest weight vector of V. Now V is simple and then the submodule generated
by v has to be equal to V and V is generated by a highest weight vector. If V and V′

are generated by highest weight vectors of the same weight then the linear map

V → V′, vi 7→ vi
′

is an isomorphism of Uq-modules. 2

By theorem 4.6 we have that, up to isomorphism, there exists a unique simple Uq-module
of dimension n+1 and generated by a highest weight vector of weight εqn. We denote this
module by Vε,n and with ρε,n:Uq → End(Vε,n) the corresponding morphism of algebras.
On Vε,n we have

Kvp = εqn−2pvp, Evp = εqn−p+1−ε−1q−n+p−1

q−q−1 vp−1, Fvp−1 = [p]vp.

We want to construct an algebra morphism

ψ:Mq(2) → Uq*

and deduce a bilinear form on Uq×Mq(2) defined by <u,x> = ψ(x)u realizing a duality.
To give the morphism ψ is equivalent to give four elements A,B,C,D of U∗q satisfying the
six relations defining Mq(2), in other words it is equivalent to give an U∗q -point of Mq(2).
We consider the simple Uq-module V1,1 of highest weight q and basis {v0,v1}. Setting
ρ1,1 = ρ we have

Kv0 = qv0, Kv1 = q−1v1

and in matrix form

ρ(K) =

(
q 0
0 q−1

)

Ev0 = 0, Ev1 = v0

and in matrix form

ρ(E) =

(
0 1
0 0

)

Fv0 = [1]v1, Fv1 = [1]v2 = 0
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and in matrix form

ρ(F ) =

(
0 0
1 0

)

We extend ρ on Uq by linearity, in this way we obtain

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)

where A,B,C,D are four linear forms on Uq, hence four elements A,B,C,D of U∗q .

Lemma 4.7. The quadruple (A,B,C,D) is an U∗q -point of Mq(2).

We deduce that there exists a unique morphism of algebras ψ:Mq(2)→Uq* such that

ψ(a) = A, ψ(b) = B, ψ(c) = C, ψ(d) = D.

Then for any x ∈ Mq(2) we have that ψ(x) ∈ Uq* is a linear form on Uq and we can
consider ψ(x)(u) for any u ∈ Uq. In this way we get a bilinear map

Uq×Mq(2)→k, (u,x) 7→ <u,x> = ψ(x)(u).

Proposition 4.8. The bilinear map

Uq×Mq(2)→k, (u,x) 7→ <u,x> = ψ(x)(u)

realizes a duality between the bialgebras Uq and Mq(2).

Proof : We have ρ(1) = 1 then(
< 1, a > < 1, b >
< 1, c > < 1, d >

)
=

(
A(1) B(1)
C(1) D(1)

)
=

(
1 0
0 1

)
=

(
ε(a) ε(b)
ε(c) ε(d)

)

Since <1,xy> = <1,x><1,y> the map <1,x> and ε are both algebra morphisms and
they coincide on the generators a,b,c,d. Then they have to be equal and <1,x> = ε(x).
We denote by P(x) the following conditions on an element x ∈Mq(2). For any pair (u,v)
of elements in Uq we have

<uv,x> =
∑

<u,x′><v,x′′>.

We note that <uv,1> = ε(uv) = ε(u)ε(v) = <u,1><v,1>. Then P(1) is satisfied. By
definition we have

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)
=

(
< u, a > < u, b >

< u, c > < u, d >

)

Then by ρ(uv) = ρ(u)ρ(v) we have(
< uv, a > < uv, b >

< uv, c > < uv, d >

)
=

(
< u, a > < u, b >

< u, c > < u, d >

)(
< v, a > < v, b >

< v, c > < v, d >

)
.
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We get <uv,a> = <u,a><v,a>+<u,b><v,c> and we recall that ∆(a) = a⊗a+b⊗c.
Then P(a),P(b),P(c),P(d) are satisfied.
If P(x) and P(y) are satisfied then so is P(λx+y) for any scalar λ. We have
<uv,λx+y> = <uv,λx> + <uv,y> =

∑
<u,(λx)′><v,(λx)′′> +

∑
<u,y′><v,y′′> =∑

<u,(λx+y)′><v,(λx+y)′′>.
Finally we prove that if P(x) and P(y) are verified then so is P(xy). We have
<uv,xy> =

∑
<(uv)′,x><(uv)′′,y> =

∑
<u′v′,x><u′′v′′,y> =∑

<u′,x′><v′,x′′><u′′,y′><v′′,y′′>.
On the other hand we have∑

<u,(xy)′><v,(xy)′′> =
∑

<u,x′y′><v,x′′y′′> =
∑

<u′,x′><u′′,y′><v′,x′′><v′′,y′′>
= <uv,xy>.
We conclude that <uv,xy> =

∑
<u,(xy)′><v,(xy)′′>. 2

Lemma 4.9. For the quantum determinant detq = da - qbc of Mq(2) we have

ψ(detq) = 1.

Equivalently <u,detq> = ε(u) for any u ∈ Uq.

Proof : We know that ∆(detq) = detq⊗detq, so the map u7→<u,detq> is a morphism of
algebras from Uq in k. We show that this morphism coincide with the counit ε. We have
<E,detq> = <E,da> - q<E,bc> = ε(d)<E,a> + <E,d><K,a> - qε(b)<E,c> -
q<E,b><K,c> = 0 = ε(E).
<F,detq> = <F,da> - q<F,bc> = K

′
(d)F(a) + F(d)ε(a) - qK

′
(b)F(c) - qF(b)ε(c) = 0

=ε(F)
<K,detq> = <K,da> - q<K,bc> = <K,d><K,a> - q<K,b><K,c> = q−1q = 1 =
ε(K).
<K

′
,detq> = <K

′
,da> - q<K

′
,bc> = <K

′
,d><K

′
,a> - q<K

′
,b><K

′
,c> = qq−1 = 1 =

ε(K
′
). 2

By lemma 4.9 we have that the morphism ψ form Mq(2) to Uq factors through SLq(2).
We will denote by ϕ the induced morphism of algebras between SLq(2) and Uq* and by
<,> the corresponding bilinear form.

Lemma 4.10. Let u,v ∈ Uq. If

<SU (u),x> = <u,SH(x)> and <SV (v),x> = <v,SH(x)>

for all x ∈ SLq(2), then <SU (uv),x> = <uv,SH(x)>.
Similarly let x,y be elements of SLq(2). If

<SU (u),x> = <u,SH(x)> and <SU (u),y> = <u,SH(y)>

for all U ∈ Uq then <SU (u),xy> = <u,SH(xy)>.

Theorem 4.11. The bilinear map <u,x> = ψ(x)(u) realizes a duality between the Hopf
algebras Uq and SLq(2).
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Proof : We compute

< SUq (E),

(
a b

c d

)
>= ρ(SUq (E)) = −ρ(E)ρ(K

′
) = −det−1

q

(
0 q

0 0

)

We note that

<E,det−1
q

(
d −qb

−q−1c a

)
>= det−1

q(
1⊗ E(d) + E(d)⊗K(d) 1⊗ E(−qb) + E(−qb)⊗K(−qb)

1⊗ E(−q−1c) + E(−q−1c)⊗K(−q−1c) 1⊗ E(a) + E(a)⊗K(a)

)
=

det−1
q

(
0 −q
0 0

)

Then we have

< SUq
(E),

(
a b

c d

)
>=< E, det−1

q

(
d −qb

−q−1c a

)
>=< E,

(
SSLq(2)(a) SSLq(2)(b)
SSLq(2)(c) SSLq(2)(d)

)
> .

For F we have

< SUq
(F ),

(
a b

c d

)
>=< F, det−1

q

(
d −qb

−q−1c a

)
>=< F,

(
SSLq(2)(a) SSLq(2)(b)
SSLq(2)(c) SSLq(2)(d)

)
> .

For K we have

< SUq
(K),

(
a b

c d

)
>=< K, det−1

q

(
d −qb

−q−1c a

)
>=< K,

(
SSLq(2)(a) SSLq(2)(b)
SSLq(2)(c) SSLq(2)(d)

)
> .

One proceeds with K
′
similarly. By lemma 4.10 the proof is complete. 2

4.1 Duality between Uq-Modules and SLq(2)-Comodules

The vector space kq[x,y]n of homogeneous degree n elements of the quantum plane has a
structure of SLq(2)-comodule. By duality the dual vector space kq[x,y]∗n has a structure of
SLq(2)∗-module and we have a morphism of rings ξ:SLq(2)∗→Endkkq[x,y]∗n. Dualizing the
morphism

ϕ:SLq(2) → U∗q we have a morphism ψ:Uq → SLq(2)*.

The composition

ξ ◦ ψ: Uq→Endkkq[x,y]∗n

endows kq[x,y]∗n of a structure of Uq-module.

Theorem 4.12. The Uq-module kq[x,y]∗n is isomorphic to the simple module V1,n of highest
weight qn.
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Proof : We consider the linear form on kq[x,y]n defined by

f(xiyn−i) = δn,i.

If we show that f is a highest weight vector of weight qn of the Uq-module kq[x,y]n* then
kq[x,y]n* contains a submodule isomorphic to the simple module V1,n. Since

dim(V1,n) = n+1 = dim(kq[x,y]n*),

we have kq[x,y]n* ∼= V1,n.
We denote Cr,s = q(i−r)s

(
i
r

)
q2

(
n−i

s

)
q2 and compute

(uf)(xiyn−i) = (u⊗f)(∆(xiyn−i)) = (u⊗f)(
∑i

r=0

∑n−i
s=0Cr,sarbi−rcsdn−i−s⊗xr+syn−r−s) =∑i

r=0

∑n−i
s=0Cr,s<u,arbi−rcsdn−i−s>f(xr+syn−r−s) =

∑i
r=0

∑n−i
s=0Cr,s<u,arbi−rcsdn−i−s>δn,r+s

=
∑i

r=0

∑n−i
s=0Cr,s<u,arbi−rcsdn−i−s>δi,rδn−i,s = <u,aicn−i>.

We compute

<K,aicj> = K(ai)K(cj) = δj,0qi.

Then we have

(Kf)(xiyn−i) = <K,aicn−i> = δn−i,0qi = δn,iqn = qnf(xiyn−i)

which implies Kf = qnf. It remains to prove that Ef = 0.
We have

<E,ai> = <E,aai−1> = ε(a)<E,ai−1> + <E,a><K,ai−1> = <E,ai−1> =..= <E,a> = 0
<E,cj> = <E,ccj−1> = ε(c)<E,cj−1> + <E,c><K,cj−1> = 0.

Then <E,aicj> = ε(ai)<E,cj> + <E,ai><K,cj> = 0.

We conclude that (Ef)(xiyn−i) = <E,aicn−i> = 0 and Ef = 0. 2
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