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At the local spatial scale, land-use variables are often employed as predictors for
ecological niche models (ENMs). Remote sensing can provide additional synoptic
information describing vegetation structure in detail. However, there is limited knowl-
edge on which environmental variables and how many of them should be used to
calibrate ENMs. We used an information-theoretic approach to compare the perfor-
mance of ENMs using different sets of predictors: (1) a full set of land-cover variables
(seven, obtained from the LGN6 Dutch National Land Use Database); (2) a reduced set
of land-cover variables (three); (3) remotely sensed laser data optimized to measure
vegetation structure and canopy height (LiDAR, light detection and ranging); and (4)
combinations of land cover and LIDAR. ENMs were built for a set of bird species in
the Veluwe Natura 2000 site (the Netherlands); for each species, 26-214 records were
available from standardized monitoring. Models were built using MaxEnt, and the best
performing models were identified using the Akaike’s information criterion corrected
for small sample size (AICc). For 78% of the bird species analysed, LIDAR data were
included in the best AICc model. The model including LiDAR only was the best
performing one in most cases, followed by the model including a reduced set of land-
use variables. Models including many land-use variables tended to have limited
support. The number of variables included in the best model increased for species
with more presence records. For all species with 33 records or less, the best model
included LiDAR only. Models with many land-use variables were only selected for
species with >150 records. Test area under the curve (AUC) scores ranged between
0.72 and 0.92. Remote sensing data can thus provide regional information useful for
modelling at the local and landscape scale, particularly when presence records are
limited. ENMs can be optimized through the selection of the number and identity of
environmental predictors. Few variables can be sufficient if presence records are
limited in number. Synoptic remote sensing data provide a good measure of vegetation
structure and may allow a better representation of the available habitat, being extre-
mely useful in this case. Conversely, a larger number of predictors, including land-use
variables, can be useful if a large number of presence records are available.

Keywords: birds; ecological niche models; land use; habitat suitability modelling;
model performance; model selection; selection of variables

1. Introduction

Correlative ecological niche models (ENMs; often referred to as species distribution
models) analyse relationships between species distribution data and environmental
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features. ENMs allow the assessment of suitability of a given area for one or multiple
species and provide important information on ecological factors determining species
distributions (Sillero 2011). The output of ENMs is increasingly used for multiple
purposes, including the identification of conservation priorities, the prediction of species
invasions and analyses of the impact of environmental changes on biodiversity (Elith and
Leathwick 2009).

ENMs can be performed at many spatial scales, ranging from local (e.g. one single
reserve) to regional, continental and global. ENMs require both species distribution data
(e.g. presence/absence, abundance or presence-only data) and relevant environmental
data. Among environmental data, abiotic variables (e.g. climate) tend to be more impor-
tant in models analysing distribution at broad scales, such as in continental or global
models, while variables representing habitat, landscape, vegetation or biotic interactions
can be more important at finer spatial scales (Soberon and Nakamura 2009, Boulangeat
et al. 2012). Processes acting at multiple scales can also interact among them: for
example, a large region can have a suitable climate for a given species but, within this
region, the target species can attain positive fitness only in the areas with certain land-
scape features, or with appropriate resources (Anadon ef al. 2006, Soberon and Nakamura
2009, Ficetola et al. 2010, Boulangeat et al. 2012, Brambilla and Ficetola 2012, Gallien
et al. 2012). Models implemented at the landscape scale are particularly relevant to guide
management planning in protected areas. For instance, land-use features that are positively
associated with species of conservation concern could be favoured in such cases, while
those increasing the risk of invasion by alien species could be limited (Brambilla et al
2010, Ficetola et al. 2010).

Nevertheless, the identification of relevant environmental variables for modelling
species distributions is a complex task that is frequently underestimated (Seoane et al.
2004b, Synes and Osborne 2011, Williams et al. 2012). The number of predictors to be
included in an ENM depends in part on the number of observation data points that are
used to calibrate the model (Rushton et al. 2004), but many studies include a very large
number of predictors, independently of the number of training data. For example,
several studies analysing climatic suitability used the 19 ‘bioclimate’ variables of the
WorldClim data set as predictors (Hijmans et al. 2005). However, over-fitting the model
is a risk of including too many predictors and may limit the ability of models to perform
predictions under different conditions (i.e. model transferability) (Peterson and
Nakazawa 2008, Rodder et al. 2009, Synes and Osborne 2011). The situation may be
even more complex for models that consider habitat variables. Frequently, landscape
variables are derived from land-use and land-cover (LULC) digital databases.
Researchers identify the land-use classes present within the study area. The percentage
cover of a given land-use class, or the dominant class in a given cell, is then used as
environmental predictor in the models (e.g. Seoane ef al. 2004b, Brambilla et al. 2010,
Ficetola et al. 2010, Moran-Ordoéfiez et al. 2012). LULC databases can distinguish a
large number of classes, and it is not always easy to identify a priori how many (and
which) land-use categories are actually relevant and should be included in the analyses.
Furthermore, remote sensing techniques are a potential tool to map the vegetation
structure more accurately and at a high resolution, providing information on environ-
mental features that are relevant for species distribution and fitness. This information
can be added to ENMs in addition to standard land-use categories, and might even
substitute the traditional data (Seoane et al. 2004a, Moran-Ordoéiiez et al. 2012, Tattoni
et al. 2012, Bunce et al. 2013).
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Figure 1. Study area. (a) Location of the Veluwe site within the Netherlands; the grey shading
represents the Natura 2000 network. (b) LIDAR-derived canopy height values within the Veluwe site.

Nevertheless, there are limited guidelines on the best approach to ENMs at the
landscape scale. Is it better to use a large number of LULC classes, even if some of
them might be poorly represented in the landscape? Or is it better to consider only a
limited number of coarse or dominant land-use categories? Is it better to use other
synoptic information obtained from remote sensing (such as normalized difference vege-
tation index, surface reflectance or LiIDAR (light detection and ranging); Lefsky ef al.
2002, Seoane et al. 2004a, Goetz et al. 2007, Moran-Ordofiez et al. 2012, Tattoni et al.
2012), or is it better to use land-cover maps classifying the land use into discrete
categories that may represent habitats?

In this study, we used an information-theoretic approach to identify the landscape
variables that are more appropriate to build ENMs for birds in a protected site of the
Netherlands. The study area is small and there are no climatic or topographic gradients
(Figure 1); for this reason, the factors limiting the birds’ distributions are likely landscape-
related. We compared five approaches to the selection of environmental variables as
predictors into ENMs at landscape scale: (1) models using a relatively large number of
traditional land-use variables; (2) models using a small number of land-use variables; (3)
models excluding land-use variables, and considering only canopy height data obtained
through remote sensing (LiDAR; Lefsky et al. 2002, Vierling et al. 2008). Furthermore,
we built models combining traditional land-use variables and LiDAR data: (4) models
using both LiDAR and a large number of land-use variables and (5) models using both
LiDAR and a small number of land-use variables.

2. Material and methods

2.1. Study area, environmental and species distribution data

This case study has been conducted within the framework of Biodiversity Multi-SOurce
Monitoring System: From Space To Species (BIO _SOS) project (www.biosos.cu), a

3-year EU-PF7 research project aiming at developing a pre-operational system for an
effective monitoring of changes in the land cover and habitats within and along the
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borders of protected areas, to judge their effectiveness in protecting and conserving the
regions from human impacts.

The study area, Ederheide and Ginkelse heide, is located within the Dutch Natura
2000 site “Veluwe’ (NL9801023 + NL3009017) in the Province of Gelderland (Figure 1).
The Veluwe covers approximately 91,200 ha; it is constituted by sand dune areas
alternated with heathlands and dry forests and moulded by a long history of intensive
land use. The Ederheide and Ginkelse heide spread over an area of approximately
1000 ha; heathland is the dominant land cover (Miicher et al. 2013).

Land-use/land-cover data were obtained from the sixth version of Landelijk
Grondgebruiksbestand Nederland (LGN6) — Dutch National Land Use database with a
25 m spatial resolution, which is based on the integration of satellite images (e.g. Landsat)
collected in 2007/2008 with Dutch topographical maps and databases of geographical data
and natural areas (Hazeu et al. 2011). The full set of land-use variables used in ENMs
included seven categories: broadleaved forest, coniferous forest, heathland, grassland,
sparse vegetation, built-up and shifting sand. We also considered a reduced set of land-
use variables, including only the three most representative classes within the study area:
broadleaved forest, coniferous forest and heathland. To calculate the cover of the land-use
classes, the study area was partitioned in 20 m x 20 m cells. For each cell, we measured
land-use variables as the average cover of the habitat categories considered, calculated in a
100 m radius from the cell centre (Brambilla and Ficetola 2012). For LiDAR, we
calculated the average value in a 100 m radius from the cell centre. Therefore, land
cover was represented by seven continuous variables, each representing the percentage
cover within 100 m around each cell.

We used data obtained from LiDAR as it can measure the three-dimensional
distribution of plant canopies, and thus be used to estimate the structural features of
vegetation (Lefsky et al. 2002, Vierling et al. 2008). LiDAR data have been used in the
Netherlands since early 2000 for the construction of detailed elevation models. The
recently acquired AHN-2 (Actueel Hoogtebestand Nederland) has a height precision of
5 em and 10 measured points per square metre. The original data from AHN-2 used in
this study were acquired in spring 2010 by Fugro Aerial Mapping BV. Fugro used the
FLI-MAP 400 system and is carried on board of a helicopter, integrated with high-
resolution photograph and video camera and a GPS system; the average number of
points per square metre was approximately 15. The absolute accuracy for a single point
is 3 cm or better. The canopy height model (CHM) was derived from the LiDAR LAS
files using the multiscale curvature classification (MCC)-LiDAR software (Evans and
Hudak 2007) and LAStools (rapidlasso GmbH, Gilching, Germany; http://www.lastools.
org/) for the classification of ground points.

Bird data were collected by the fauna specialists of the Netherlands Ministry of
Defence in scheduled surveys of standardized monitoring. The goal of this monitoring
was to obtain results that represent the spatial distribution of the sampled species in the
study area as a tool for habitat management. Monitoring was performed using the standard
territory mapping method which is among the best and most commonly used methods to
obtain these data (Bibby et al. 2000, Gregory et al. 2004). The study area was sampled in
a homogenous way and with a complete coverage, in order to have a constant survey
effort over the whole area and obtain non-biased distribution data for the species. The
fieldwork was executed four times in the morning during the period 15 March—15 June
2009 (breeding season of birds within the study area). The location of all detected birds
was recorded, resulting in spatial data on the distribution of bird territories of each species.
Although not all the individuals can be detected, the homogeneity of the survey will result
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in a relative spatial distribution over the area that represents the actual distribution for
each species (Bibby et al. 2000, Gregory et al. 2004).

2.2. Statistical analyses

Before running analyses, we calculated correlation between environmental variables.
Correlation coefficients between independent variables |#| > 0.7 can make it difficult
the interpretation of species/habitat relationships. Furthermore, we used variance infla-
tion factor (VIF) to evaluate whether multicollinearity occurs in our models. VIF values
>10 indicate that multicollinearity may make the interpretation of the effect of variables
within models problematic (Zuur et al. 2010). Nevertheless, significance of individual
variables was not the focus of this study; correlation between variables is not a major
problem when the focus understands the processes within a given area, and Akaike’s
information criterion corrected for small sample size (AICc)-based model selection has
been shown to have good performance even in presence of collinearity (Murtaugh
2009).

We used maximum entropy modelling (MaxEnt) (Phillips et al. 2006, Elith et al.
2011) to build models relating bird occurrence data to the land-use and LiDAR data.
MaxEnt is a presence-background machine-learning approach that assesses the suitabil-
ity in a given cell on the basis of environmental features in that cell; comparative
analyses showed that MaxEnt is among the most efficient approaches to ENMs (Elith
et al 2006, 2011). The program establishes flexible relationships between the dependent
(species presence) and independent variables, and is well suited to evaluate complex or
non-linear relationships. MaxEnt analyses the realized niche of species (Sillero 2011),
and this approximation is often similar to that of correlative models using presence and
absence records (Elith et al. 2011); MaxEnt output represents the suitability of habitats
(Sillero 2011). MaxEnt shows good performance even with limited sample size (Wisz
et al. 2008); therefore, we built models for the bird species for which we obtained 26 or
more records within the study area (Table 1). Models were run with linear, quadratic and
hinge features using default regularization settings, as they optimize the ability of the
model to predict independent test data (Phillips and Dudik 2008, Warren and Seifert
2011). The output of MaxEnt models is a monotone scale (i.e. order preserving), but it

Table 1. Species with at least 26 presence points, and results of comparison between models;
models are listed according to increasing AICc values.

Models Autocorrelation

Species N Variables included AICc AAICc w 1 P
Alauda arvensis 214 All variables + LIDAR 3941.00 0.00 0.999 0.024 0.486

All land-use variables 3954.47 13.47 0.001

Reduced land 3957.78 16.78 0.000

use + LIDAR

Reduced land use 3964.42 23.42 0.000

LiDAR only 4019.19 78.19 0.000
Anthus pratensis 154 All variables + LIDAR 2866.74 0.00 0.643 -0.039 0.384

Reduced land use 2867.94 1.20 0.353

All land use variables 2877.18 10.43 0.003

(Continued)
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Table 1. (Continued).
Models Autocorrelation
Species N Variables included AICc AAICc w I P
Reduced land 2879.84 13.09 0.001
use + LIDAR
LiDAR only 2934.75 68.00 0.000
Anthus trivialis 156 LiDAR only 2927.81 0.00 0.784 0.02 0.581
Reduced land 2930.38 2.58 0.216
use + LIDAR
All variables + LIDAR 2950.00 22.19 0.000
Reduced land use 2956.09 28.28 0.000
All land-use variables  2963.01 35.20 0.000
Saxicola rubicola 75 LiDAR only 1393.56  0.00 0.997 —0.144 0.019
Reduced land 1405.01 11.45 0.003
use + LIDAR
Reduced land use 1420.11 26.56 0.000
All variables + LIDAR 1420.57 27.01 0.000
All land-use variables 1437.10 43.55 0.000
Turdus philomelos 26 LiDAR only 1393.56  0.00 0.997 0.181 0.048
Reduced land use 1405.01 11.45 0.003
All land-use variables  1420.11 26.56 0.000
Reduced land 1420.57 27.01 0.000
use + LiIDAR
All variables + LIDAR 1437.10 43.55 0.000
Lophophanes 39 Reduced land use 717.32  0.00 0.789 —0.038 0.771
cristatus
LiDAR only 719.96 2.64 0.211
Reduced land- 731.92 14.59 0.001
use + LIDAR
All land use variables 742.77 25.45 0.000
All variables + LIDAR  761.92 44.60 0.000
Certhia 33 LiDAR only 556.73  0.00 0.999 0.005 0.823
brachydactyla
Reduced land use 571.24 14.52 0.001
Reduced land 583.87 27.14 0.000
use + LIDAR
All land-use variables 602.37 45.65 0.000
All variables + LIDAR  619.07 62.35 0.000
Carduelis 33 LiDAR only 641.61 0.00 0.906 —-0.042 0.767
cannabina
Reduced land 646.64 5.03 0.073
use + LIDAR
Reduced land use 649.21 7.60 0.020
All variables + LIDAR  657.26 15.65 0.000
All land-use variables 686.98 4537 0.000
Emberiza 58 Reduced land use 1107.41  0.00 0.997 -0.037 0.681
citrinella
All land use variables 1119.26 11.85 0.003
LiDAR only 1129.01 21.60 0.000
Reduced land 1132.15 24.74 0.000
use + LIDAR
All variables + LIDAR 1140.66 33.26 0.000

Note: N, number of occurrences; AICc, Akaike’s Information Criterion corrected for small sample size; AAICc,
difference in AICc units from the best model; w, model AICc weight; /, Moran’s / and associated significance.
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does not represent the probability of presence of species (Elith er al. 2011). Some
researchers have proposed approaches to estimate prevalence and derive presence
probability on the basis of presence/background data (Li et al. 2011, Royle et al.
2012), but this remains an open and controversial field of research (Phillips and Elith
2013).

For each species, we considered five MaxEnt models, using different sets of inde-
pendent variables: (1) using all the seven land-use variables; (2) using only the three
dominant land-use variables (i.e. heathland, coniferous and broadleaved forest cover);
(3) using LiDAR vegetation height data only; (4) using the seven land-use variables and
LiDAR; (5) using the three more represented land-use variables and LiDAR. We then
used an information-theoretic approach, based on AICc to identify the best model for
each species. AICc trades off explanatory power versus model complexity; parsimonious
models explaining more variation have the lowest AICc value and are considered to be
the ‘best-AICc model’. Simulations suggested that AICc allows to identify the models
with highest generality and transferability better than using other approaches such as
cross-validation (Warren and Seifert 2011). Models were then ranked on the basis of their
AAICc, which represents the difference in AICc units between the best model and the
model of interest. Models with a low rank according to AICc are therefore the ones with
the best performance. For each model, we also calculated the AICc weight w, which
represents the average support of the model; models with high weight have the highest
support (Burnham and Anderson 2002). We calculated AICc values of MaxEnt models
using ENMTools 1.3 (Warren ef al. 2010, Warren and Seifert 2011). Analyses showed
that other approaches, such as the area under the curve (AUC) of the receiver operator
plot, do not allow a reliable model selection for presence/background models (Smith
2013).

AICc values are calculated using .lambdas files of individual models (Warren e? al.
2010), and were here calculated for models run using all available data for training.
However, MaxEnt models sample points from the background, assuming that presence
records are random samples of localities where a given species is present (Elith et al.
2011). For each species, we therefore run five replicated models, each time using 80%
of presence data to calibrate models, and setting apart 20% of data (test data) (Nogués-
Bravo 2009). Compared to cross-validation approaches using more replicates (e.g. 10
replicates), running five replicate models has the advantage that a larger number of data
are used for testing at each replicate. As a measure of discrimination capacity, for each
model we calculated AUC, averaged over the five replicated runs, as well as its standard
deviation. Models with AUC = 0.5 discriminate no better than random, and discrimina-
tion improves as AUC approaches a value of 1; low values of standard deviation
indicate that models using different training and background points have similar results
(Manel et al. 2001). Running replicated models also allowed us to use cross-validation
to assess predictive performance. In replicated models, the test data were used to assess
predictive performance, each time using a different set of test data (Nogués-Bravo
2009). The AUC for the test data was calculated and averaged over the five runs.
Furthermore, for each of the replicates we used a Z-test comparing observed frequencies
of correct and incorrect predictions to evaluate if our models predict distribution
significantly better than expected by chance. We converted the MaxEnt suitability
scores to binary values, assuming that a cell is suitable for a given species if it has
suitability larger than the equal training sensitivity plus specificity threshold (Bartel and
Sexton 2009).
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Spatial autocorrelation, arising for instance from clustering of presence points, might
influence the results of ENMs (Veloz 2009). We therefore assessed whether our data are
affected by spatial autocorrelation. First, for each species we randomly generated a
number of pseudo-absence points equal to the number of presence points. We then
extracted the suitability value, as predicted by the best-AICc model, for the presence
and pseudo-absence points of each species. We calculated residuals as the difference
between observed presence/pseudo absence (1/0) and the predicted suitability extracted at
these points. We then used Moran’s [ to assess spatial autocorrelation of residuals. A
Gabriel’s graph was used to define the set of neighbours for each point (Legendre and
Legendre 1998); Moran’s / was then calculated in SAM 4.0 (Rangel et al. 2010). As nine
tests were performed, significance values were adjusted using sequential Bonferroni’s
correction, and we set o = 0.006 (Legendre and Legendre 1998).

3. Results

We obtained data for nine bird species with between 26 and 214 records per species
(Table 1): sky lark Alauda arvensis; meadow pipit Anthus pratensis; tree pipit Anthus
trivialis; European stonechat Saxicola rubicola; song thrush Turdus philomelos; crested tit
Lophophanes cristatus; short-toed treecreeper Certhia brachydactyla; linnet Carduelis
cannabina and yellowhammer Emberiza citrinella. Out of these species, the sky lark is
listed in the annex II of the EU Bird Directive (2009/147/EC) and is a SPEC3 species
(species of European conservation concern not concentrated in Europe but with an
unfavourable conservation status); the crested tit and the linnet are SPEC2 species
(concentrated in Europe and with an unfavourable conservation status, see BirdLife
International 2004). Pairwise correlations between environmental variables generally
showed |r| < 0.7, indicating lack of multicollinearity problems. However, LIDAR-derived
canopy height was strongly and positively related to coniferous forests, and strongly and
negatively related to heathland. Furthermore, there was a strong, negative correlation
between coniferous forest and heathland (Table 2).

For seven of the nine species (i.e. 78% of species), LIDAR was included in the best
AICc model. For 56% of species, the best AICc model included LiDAR only and did
not include any land-use variable. The reduced set of land-use variables was included
into the best model for 22% of species, while for 22% of species the best model

Table 2. Pairwise Pearson’s correlation between environmental variables.

Shifting Sparse Built- Coniferous  Deciduous
sand vegetation up forest forest Grassland Heathland
LiDAR -0.02 —0.04 0.09 0.90 0.65 0.15 -0.91
Shifting sand —-0.02 —-0.02 0.00 —0.04 —-0.01 —-0.01
Sparse 0.03 —-0.06 —0.02 0.10 -0.17
vegetation
Built-up 0.05 0.09 0.21 —-0.25
Coniferous 0.39 0.06 —0.88
forest
Deciduous 0.28 -0.67
forest
Grassland -0.31

Note: In bold, correlations > 0.7.
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Figure 2. Relationship between number of records per species and number of predictors included
in the best AICc model. Filled diamonds: LiDAR included in the best model; empty diamonds: only
land-use variables included into the best model.

included both the full set of land-use variables and LiDAR data. Species with more
presence points tended to include a larger number of variables in the best model
(Pearson’s correlation = 0.73, P = 0.026; Figure 2). For all the species with less
than 38 records, the best model included LiDAR as the unique predictor; up to three
variables were included in best models of species with 38-75 records, while in two
species with >150 records the best model included eight predictors (Figure 2). VIF was
>10 for some variables in the best models of three species: 4. arvensis (variables:
heathland and sparse vegetation), L. cristatus (variables: coniferous forest and heath-
land) and E. citrinella (variables: coniferous forest and heathland). LIDAR did not show
VIF > 10 in any of the best models. For all species, Moran’s / of residuals was small
(—0.144 <1< 0.18), and spatial autocorrelation was not significant after Bonferroni’s
correction (Table 1). Species occurrences and suitability maps for the study species are
shown in Figure 3.

Overall, the models including LiDAR as the sole predictor tended to be the ones with
best performance, as they generally showed low rank (low rank is better) (Figure 4a) and
had the highest average weight (Figure 4b). Conversely, the models including all the nine
land-use variables were consistently those with poorest performance, as they showed high
rank and low AICc weight (Figure 4).

The five replicated runs of each species yielded very similar results for all species.
For training data, standard deviation of AUC across the five runs was always <0.025, sug-
gesting minor differences among replicated runs (Table 3). Cross-validation indicated that
the models for all species showed AUC > 0.72; models predicted test data significantly
better than expected by chance (Table 2). Predictive performance was not correlated to the
number of data available for each species (r = —0.30, P = 0.44) nor to the number of
predictors included into the best AICc model (r = —0.19, P = 0.62).
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Figure 3. Suitability map for the nine species. The presence points used for model calibration are
also shown.

4. Discussion

Land-use and vegetation variables are often used as predictors in ENMs, but limited
guidelines are available on which environmental predictors and how many of them would
allow building the models at the landscape scale (Seoane et al. 2004a, 2004b). Both
remotely sensed land cover and LiDAR-derived vegetation structure data can be useful,
but the use of a small number of predictors describing the habitat requirements of species
results in ENMs with the best performance (see Rddder et al. 2009 for similar results with
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Figure 4. Relative importance of the five candidate models, averaged across species. In (a) the
importance is assessed as the median rank of the model according to AICc (lower is better); in (b)
the importance is assessed as the average AICc weight of the model (higher is better). For weight,
error bars are standard errors of the mean.

climatic variables). Traditional land-use maps can certainly provide important informa-
tion, but the LiDAR-derived CHM improves the performance of ENMs for birds.
Actually, for 56% of the nine species, the LIDAR CHM data alone performed better
than any of the traditional land-cover classes (Table 1, Figure 4). Furthermore, for species
in which both LiDAR and land-use variables were included in the best model, LiDAR
was always among the most important variables (Table 3). The small number of species
and the size of the study area limit the generality of conclusions about the species.
Nevertheless, our conclusions on the utility of LIDAR are expected to hold over larger
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Table 3. For each species, we report the environmental variables included in the best-AICc model
explaining more variation (percentage contribution >10%; contribution of variables reported in
parentheses), the model performance with training data and the predictive performance calculated
using cross-validation.

Training Test Prediction of test
Species Important variables AUC SD AUC SD data (P)
Alauda arvensis LiDAR (57%), coniferous 0.815 0.007 0.800 0.025 <0.001
forest (38%)
Anthus pratensis Coniferous forest (62%), 0.802  0.006 0.777 0.029 <0.001
LiDAR (39%)
Anthus trivialis LiDAR* 0.761  0.003 0.752 0.012 <0.001
Saxicola LiDAR* 0.784  0.008 0.777 0.037 <0.001
rubicola
Turdus LiDAR* 0.906  0.005 0.906 0.019 <0.001
philomelos

Lophophanes Coniferous forest (99%) 0.859  0.008 0.785 0.027 <0.001
cristatus

Certhia LiDAR* 0.922  0.007 0.920 0.027 <0.001
brachydactyla

Carduelis LiDAR* 0.767 0.025 0.746 0.088 <0.001
cannabina

Emberiza Heatland (92%) 0.759 0.024 0.716 0.085 <0.001
citrinella

Note: *LiDAR was the only variable included into the model, so percentage importance of variables was not
estimated.

areas, because LiDAR is a more direct measure of the habitat used by the birds than are
the choropleth-based land-use maps.

Vegetation structure affects bird distribution in multiple ways, by providing shelter,
potential sites for nest and foraging habitats. Therefore, variables that accurately describe
vegetation structure are excellent predictors of bird distribution (Seoane et al. 2004b, Goetz
et al. 2007). Conversely, LULC maps are usually produced by governmental agencies for
general purposes, and they are often not detailed enough to accurately describe the habitat
required by species. ENMs obtained from land-cover maps often have good performance,
but this is at least in part related to the large number of parameters included in the models
(Seoane et al. 2004a, 2004b). Variables representing vegetation structure and obtained from
remote sensing, such as CHMs, may provide a more accurate representation of the habitat
actually available for species and therefore help build better models, and plant height is a
variable that can influence birds more directly than land-cover class (Seoane et al. 2004a,
Bradbury et al. 2005, Moran-Ordéfiez et al. 2012, Tattoni et al. 2012). For instance, for
species living in open habitats (e.g. pipits, genus Anthus), fine scale variation of vegetation
structure determines environmental differences, with important consequences for habitat
selection. The tree pipit, 4. trivialis, requires high places within the breeding territories,
which are used as song and lookout posts, and avoids areas without shrubs, small woods or
isolated trees. Conversely, A. pratensis prefers open grasslands with dense, low vegetation,
and avoids both areas with very short grass and areas with shrubs and trees (Kumstatova
et al. 2004). The very fine vertical resolution of LiDAR (5 cm) can better capture the
variation of habitats determining the distribution of these species. Land-use classes may
provide better results for birds that are specialist of habitats easily categorized, such as the
crested tit Lophophanes cristatus which is a specialist of coniferous forests (Table 3)
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(Atiénzar et al. 2009). In this case, the land-use classes provide an adequate representation
of habitats, while LiDAR does not improve land-use information, as coniferous and
deciduous forests with the same canopy height may be confounded. Additional advantages
of remote sensing data, such as LiDAR, is that they synthesize complex information on
vegetation structure in one or very few variables, and this results in parsimonious ENMs
using a few parameters.

Vegetation attributes and structure information help to understand ecological functions
and habitat availability, because they provide a synoptic measure of vegetation structure
(Tattoni et al. 2012). These measures of canopy metrics and forest structure have been
proved to be strong predictors of species richness or presence/absence for birds in several
studies (Goetz et al. 2007, Vierling et al. 2008, Tattoni et al. 2012), and make available
information even in difficult terrain (Hyde ez al. 2005). The correlation between LiDAR-
derived estimates of vegetation structure and bird distribution has been demonstrated in
multiple habitats (Bradbury et al. 2005, Goetz et al. 2007), and may even provide indication
about territories and breeding success (Bergen et al. 2009). LiDAR has a great potential for
effective habitat monitoring and management of endangered species (Graf ef al. 2009), and
LiDAR-based habitat classification may surpass results obtained with optical data (Korpela
et al. 2009). The result of habitat analysis obtained with LIDAR may also be enhanced when
used in combination with spectral data (Hyde et al. 2006, Clawges et al. 2008). Overall,
LiDAR remote sensing shows considerable efficacy for habitat mapping/characterization
and wildlife management, allowing fine detail even across broad areas.

The number of parameters in the best models tended to increase with sample size
(Figure 2). Only one parameter (i.e. LIDAR) was included in the best model for the three
species with less than 38 records, while the full set of land-use variables was selected for
species with many records only (Table 1, Figure 2). In our study system, three of the nine
species had a relatively low number of records (26—33, Table 1). The production of good
ENMs with low sample size is dependent on the modelling method, and MaxEnt is among
the techniques with best performance with low sample sizes (Alvarez and Brito 2006,
Pearson et al. 2007, Wisz et al. 2008, Ficetola er al. 2009). This is particularly frequent
for rare or endangered species, or in invasive species at the early stages of invasions.
Actually, species that are invasive or of conservation concern are those species for which
the output of ENMs is particularly helpful for management planning (Pearson et al. 2007,
Ficetola et al. 2009); therefore, the conclusions obtained for species with few records may
have relevant implications.

The number of variables that should be included in ENMs can dramatically decrease
with sample size, and very few predictors (1-3) may be included in models if the number
of records is small. This probably occurs because sample size greatly influences the
statistical power of analyses, and models with many parameters and limited presence
points receive high penalties during the calculation of AICc (Burnham and Anderson
2002). Furthermore, rare species are often those for which few presence points are
available. Rare species frequently are habitat specialists and might therefore be predictable
from a few habitat variables, while widespread and more abundant species occupy a
broader range of habitats, and thus more combinations of variables might be required to
predict their occurrence. Synoptic predictors such as LIDAR CHM may be particularly
relevant when presence points are limited, as one single environmental variable provides a
comprehensive and accurate measure of vegetation structure, and can allow to build more
parsimonious models. Nevertheless, it should be noted that our study focused on nine
species. Analyses considering more species are needed to assess the generality of our
results. Furthermore, it is also possible that it is not the number of predictors which is
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important here, but their quality. LIDAR is a good proxy for vegetation structure that may
be more important than specific land uses for many bird species.

Remote sensing data can provide extremely useful information for ENMs (Bergen
et al. 2009, Cord and Rodder 2011, Moran-Ordénez et al. 2012, Sillero et al. 2012,
Tattoni et al. 2012) that can be important at both the local and broad spatial scales. At the
local scale, habitat features are often the major determinants of species distribution, and
accurate measures of habitat structure can be extremely important. At broad scales,
comprehensive habitat maps are rarely available and often have coarse resolution: remote
sensing allows to obtain useful and consistent measures of habitat availability (Cord and
Roédder 2011). The a priori identification of the appropriate number and identity of
predictors can greatly improve ENMs (Peterson and Nakazawa 2008, Rodder and
Latters 2009). Our study suggests that few variables can be enough to build ENMs if
presence records are limited. Remote sensing data provide a good measure of vegetation
structure and may allow a better representation of the available habitat, therefore improv-
ing our ability to model and understand species distribution.
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