

INO-CNR

Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Spettroscopia overtone delle molecole CH_3F e CH₃Cl a 850–860 nm

Lucchesini A., Gozzini S.

Istituto Nazionale di Ottica - CNR, u.o.s. di Pisa

100° Congresso Nazionale della Società Italiana di Fisica, Pisa 22 - 26 Settembre 2014

Società Italiana di Fisica

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

INO-CNR

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Introduzione

2 Tecnica Sperimentale

Sorgenti laser a diodo Modulazione di freguenza Apparato sperimentale

Risultati sperimentali 3

Righe spettrali Tabelle Coefficienti di allargamento

4 Conclusioni

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Introduzione

- Le molecole symmetric top come CH₃F e CH₃Cl sono interessanti oltrechè per le loro caratteristiche fisiche, anche da un punto di vista ambientale ed astrofisico (per es.: il CH₃Cl è responsabile della riduzione dell'ozono nella stratosfera);
- Tali molecole sono state molto investigate con tecniche spettroscopiche tradizionali, ma anche con quelle più sofisticate, come la Fourier Transform Spectroscopy e con l'uso di sorgenti laser;
- Qui si mostra un esperimento di spettroscopia ottica in assorbimento di tali molecole, che si basa sull'uso di sorgenti laser a diodo assieme alla tecnica della modulazione di frequenza e di rivelazione in fase.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850–860 nm

Introduzione

- Le molecole symmetric top come CH₃F e CH₃Cl sono interessanti oltrechè per le loro caratteristiche fisiche, anche da un punto di vista ambientale ed astrofisico (per es.: il CH₃Cl è responsabile della riduzione dell'ozono nella stratosfera);
- Tali molecole sono state molto investigate con tecniche spettroscopiche tradizionali, ma anche con quelle più sofisticate, come la Fourier Transform Spectroscopy e con l'uso di sorgenti laser;
- Qui si mostra un esperimento di spettroscopia ottica in assorbimento di tali molecole, che si basa sull'uso di sorgenti laser a diodo assieme alla tecnica della modulazione di frequenza e di rivelazione in fase.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850–860 nm

Introduzione

- Le molecole symmetric top come CH₃F e CH₃Cl sono interessanti oltrechè per le loro caratteristiche fisiche, anche da un punto di vista ambientale ed astrofisico (per es.: il CH₃Cl è responsabile della riduzione dell'ozono nella stratosfera);
- Tali molecole sono state molto investigate con tecniche spettroscopiche tradizionali, ma anche con quelle più sofisticate, come la Fourier Transform Spectroscopy e con l'uso di sorgenti laser;
- Qui si mostra un esperimento di spettroscopia ottica in assorbimento di tali molecole, che si basa sull'uso di sorgenti laser a diodo assieme alla tecnica della modulazione di frequenza e di rivelazione in fase.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Sorgenti laser a diodo

- I diodi laser (DL) commerciali coprono vari range ottici, nel VIS, vicino IR ed ora anche nell'IR lontano con l'avvento dei Quantum Cascade Lasers (QCL);
- Quelli più economici emettono radiazione nel VIS e Near IR, attorno ai 780 - 850 nm e sono eterogiunzioni realizzate con semiconduttori a gap diretta come GaAs, AlGaAs, GaAsP, ecc.;
- In questo esperimento sono stati utilizzati i DL di tipo FP, index guided, AlGaAs/GaAs, che emettono qualche decina di mW (cw) attorno agli 850 nm, dove si trovano le righe roto-vibrazionali *overtone* di molte molecole.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Sorgenti laser a diodo

- I diodi laser (DL) commerciali coprono vari range ottici, nel VIS, vicino IR ed ora anche nell'IR lontano con l'avvento dei Quantum Cascade Lasers (QCL);
- Quelli più economici emettono radiazione nel VIS e Near IR, attorno ai 780 - 850 nm e sono eterogiunzioni realizzate con semiconduttori a gap diretta come GaAs, AlGaAs, GaAsP, ecc.;
- In questo esperimento sono stati utilizzati i DL di tipo FP, index guided, AlGaAs/GaAs, che emettono qualche decina di mW (cw) attorno agli 850 nm, dove si trovano le righe roto-vibrazionali *overtone* di molte molecole.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Sorgenti laser a diodo

- I diodi laser (DL) commerciali coprono vari range ottici, nel VIS, vicino IR ed ora anche nell'IR lontano con l'avvento dei Quantum Cascade Lasers (QCL);
- Quelli più economici emettono radiazione nel VIS e Near IR, attorno ai 780 - 850 nm e sono eterogiunzioni realizzate con semiconduttori a gap diretta come GaAs, AlGaAs, GaAsP, ecc.;
- In questo esperimento sono stati utilizzati i DL di tipo FP, index guided, AlGaAs/GaAs, che emettono qualche decina di mW (cw) attorno agli 850 nm, dove si trovano le righe roto-vibrazionali *overtone* di molte molecole.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

INO-CNR

Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Modulazione di freguenza

La tecnica di modulazione di frequenza è utilizzabile con le sorgenti laser a semiconduttore agendo sulla loro corrente d'iniezione. Si potrà quindi modularne sinusoidalmente l'intensità alla frequenza $\nu_m = \omega_m/2\pi$ con ampiezza "a"

$$\nu = \bar{\nu} + a\cos\omega_m t \tag{1}$$

e l'intensità trasmessa dal mezzo campione si potrà esprimere con

$$\tau(\bar{\nu} + a \cos \omega_m t) = \sum_{n=0}^{\infty} H_n(\bar{\nu}, a) \cos n\omega_m t$$
(2)

dove $H_n(\bar{\nu})$ è l'*n*-ma componente armonica del segnale.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

- Tramite un amplificatore lock-in agganciato ad un multiplo $n\nu_m \ (n = 1, 2, ...)$ della frequenza di modulazione, si ottiene un segnale proporzionale al'*n*-ma componente $H_n(\bar{\nu})$;
- Se per di più a è scelta molto più piccola della larghezza di riga osservata, allora H_n(v) è proporzionale all'n-ma derivata del segnale originale:

$$H_n(\bar{\nu}, a) = \frac{2^{1-n}}{n!} a^n \left. \frac{d^n \tau(\nu)}{d\nu^n} \right|_{\nu = \bar{\nu}}, \qquad n \ge 1.$$
(3)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

- Tramite un amplificatore lock-in agganciato ad un multiplo $n\nu_m$ (n = 1, 2, ...) della frequenza di modulazione, si ottiene un segnale proporzionale al'*n*-ma componente $H_n(\bar{\nu})$;
- Se per di più a è scelta molto più piccola della larghezza di riga osservata, allora H_n(v
) è proporzionale all'n-ma derivata del segnale originale:

$$H_n(\bar{\nu}, a) = \frac{2^{1-n}}{n!} a^n \left. \frac{d^n \tau(\nu)}{d\nu^n} \right|_{\nu = \bar{\nu}}, \qquad n \ge 1.$$
(3)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

- Tramite un amplificatore lock-in agganciato ad un multiplo $n\nu_m$ (n = 1, 2, ...) della frequenza di modulazione, si ottiene un segnale proporzionale al'*n*-ma componente $H_n(\bar{\nu})$;
- Se per di più a è scelta molto più piccola della larghezza di riga osservata, allora H_n(v
) è proporzionale all'n-ma derivata del segnale originale:

$$\mathcal{H}_n(\bar{\nu}, a) = rac{2^{1-n}}{n!} a^n \left. rac{d^n \tau(\nu)}{d\nu^n} \right|_{\nu = \bar{\nu}}, \qquad n \ge 1.$$
 (3)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Allorquando però si è obbligati ad usare ampiezze di modulazione elevate, il segnale rivelato si discosta sensibilmente dalla funzione derivata *n*-ma e per la componente $H_n(\bar{\nu})$ si pone:

$$H_n(\nu, a) = \frac{2}{\pi} \int_0^{\pi} \tau(\nu + a\cos\theta) \cos n\theta \ d\theta \,. \tag{4}$$

Questa funzione in generale non è risolvibile analiticamente, ma si può tentare una soluzione approssimata nel caso di una funzione Lorentziana, valida nel regime collisionale come quello in oggetto, cioè:

$$au(x,m) \propto rac{1}{1+(x+m\,\cos\omega t)^2}$$

(5)

www.ino.it

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

L'espressione della n-ma armonica può infatti essere ottenuta invertendo l'Eq. (2):

$$H_n(x,m) = \varepsilon_n i^n \int_{-\infty}^{+\infty} \hat{\tau}(\omega) J_n(m\omega) e^{i\omega x} d\omega$$
 (6)

dove

$$\hat{\tau}(\omega) = \frac{1}{2\pi} \int \tau(x) \, e^{-i\omega x} \, dx \tag{7}$$

è la trasformata di Fourier del profilo di trasmissione; $x = \nu/\Gamma$ e $m = a/\Gamma$ sono la frequenza e l'ampiezza di modulazione, normalizzate alla larghezza di riga Γ ; J_n è l'*n*-mo ordine della funzione di Bessel; $\varepsilon_0 = 1$, $\varepsilon_n = 2$ ($n = 1, 2, \cdots$); i è l'unità immaginaria.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Ponendo n = 2 si ricalcola la 2^a componente di Fourier :

$$H_2(x,m) = -\frac{1}{m^2} \left[\frac{\{[(1-ix)^2 + m^2]^{1/2} - (1-ix)\}^2}{[(1-ix)^2 + m^2]^{1/2}} + c.c. \right]$$
(8)

ed eliminando la parte immaginaria:

$$H_{2}(x,m) = \frac{2}{m^{2}} - \frac{2^{1/2}}{m^{2}} \times \frac{1/2[(M^{2}+4x^{2})^{1/2}+1-x^{2}][(M^{2}+4x^{2})^{1/2}+M]^{1/2}+|x|[(M^{2}+4x^{2})^{1/2}-M]^{1/2}}{(M^{2}+4x^{2})^{1/2}}$$
(9)

con $M = 1 - x^2 + m^2$. La funzione (9), che tiene conto dell'effetto strumentale sistematico associato alla modulazione, è stata utilizzata con successo nei fit delle righe osservate.

Vedi: Lucchesini A., Gozzini S., Opt. Commun. 282, 3493 (2009)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Ponendo n = 2 si ricalcola la 2^a componente di Fourier :

$$H_2(x,m) = -\frac{1}{m^2} \left[\frac{\{[(1-ix)^2 + m^2]^{1/2} - (1-ix)\}^2}{[(1-ix)^2 + m^2]^{1/2}} + c.c. \right]$$
(8)

ed eliminando la parte immaginaria:

$$H_{2}(x,m) = \frac{2}{m^{2}} - \frac{2^{1/2}}{m^{2}} \times \frac{1/2[(M^{2}+4x^{2})^{1/2}+1-x^{2}][(M^{2}+4x^{2})^{1/2}+M]^{1/2}+|x|[(M^{2}+4x^{2})^{1/2}-M]^{1/2}}{(M^{2}+4x^{2})^{1/2}}$$
(9)

con $M = 1 - x^2 + m^2$. La funzione (9), che tiene conto dell'effetto strumentale sistematico associato alla modulazione, è stata utilizzata con successo nei fit delle righe osservate.

Vedi: Lucchesini A., Gozzini S., Opt. Commun. 282, 3493 (2009)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Outline Introduzione **Tecnica Sperimentale** Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Apparato sperimentale

- Lo spettroscopio utilizzato per l'esperimento fa uso sorgenti laser a diodo in modalità "free-running", assieme alla tecnica della modulazione di frequenza (WMS) e rivelazione in fase sulla 2ª armonica (2f);
- La lunghezza d'onda dei laser utilizzati è controllata e modulata tramite la loro temperatura ($\approx 0.1 \text{ nm/K}$) e la loro corrente di emissione ($\approx 0.01 \text{ nm/mA}$);
- Componenti essenziali sono le celle di misura multipasso alla Herriott, che permettono percorsi ottici di decine di metri (30 m nella fattispecie), cosicché è possibile osservare righe d'assorbimento aventi intensità $\approx 10^{-26}$ cm/molecola.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Outline Introduzione **Tecnica Sperimentale** Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Apparato sperimentale

- Lo spettroscopio utilizzato per l'esperimento fa uso sorgenti laser a diodo in modalità "free-running", assieme alla tecnica della modulazione di frequenza (WMS) e rivelazione in fase sulla 2ª armonica (2f);
- La lunghezza d'onda dei laser utilizzati è controllata e modulata tramite la loro temperatura ($\approx 0.1 \text{ nm/K}$) e la loro corrente di emissione ($\approx 0.01 \text{ nm/mA}$);
- Componenti essenziali sono le celle di misura multipasso alla Herriott, che permettono percorsi ottici di decine di metri (30 m nella fattispecie), cosicché è possibile osservare righe d'assorbimento aventi intensità $\approx 10^{-26}$ cm/molecola.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

INO-CNR ISTITUTO NAZIONALE E OTTICA Outline Introduzione **Tecnica Sperimentale** Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Apparato sperimentale

- Lo spettroscopio utilizzato per l'esperimento fa uso sorgenti laser a diodo in modalità "free-running", assieme alla tecnica della modulazione di frequenza (WMS) e rivelazione in fase sulla 2ª armonica (2f);
- La lunghezza d'onda dei laser utilizzati è controllata e modulata tramite la loro temperatura ($\approx 0.1 \text{ nm/K}$) e la loro corrente di emissione ($\approx 0.01 \text{ nm/mA}$);
- Componenti essenziali sono le celle di misura multipasso alla Herriott, che permettono percorsi ottici di decine di metri (30 m nella fattispecie), cosicché è possibile osservare righe d'assorbimento aventi intensità $\approx 10^{-26}$ cm/molecola.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Schema dell'apparato sperimentale

LD: diodo laser: PD: fotodiodo: BS: beam splitter; F.-P.: interferometro Fabry-Perot; PC: personal computer; ADC: convertitore analogico/digitale.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH3F e CH3Cl a 850-860 nm

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Sorgenti laser a diodo Modulazione di frequenza Apparato sperimentale

Herriott mirror

Figura: Immagine all'infrarosso del particolare delle riflessioni multiple su uno specchio della cella multipasso alla Herriott.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Figura: Segnale WMS del fluoruro di metile (a) e dell'acqua (b) attorno a 844.6 nm. Banda passante = 10 Hz. $p_{CH_3F} = 32$ Torr, $p_{H_2O} = 19$ Torr, T = 293 K. La trasmissione dell'interferometro Fabry-Perot (c, f.s.r. = 1.5 GHz) è mostrata come marker di frequenza. Le righe sono allargate per modulazione, con indice $m = a/\Gamma = 1.6$.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Righe spettrali Tabelle Coefficienti di allargamento

Bande spettrali del CH₃F

Spettro delle righe del fluoruro di metile $(> 150) \dots$

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Righe spettrali Tabelle Coefficienti di allargamento

Bande spettrali del CH₃CI

...e quello delle righe del cloruro di metile (> 100), 3^a overtone.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH3F e CH3Cl a 850-860 nm

INO-CNR ISTITUTO NAZIONALE DI OTTICA

\Rightarrow Tabelle . . .

Outline Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Righe spettrali **Tabelle** Coefficienti di allargamento

	ν'	λ_{air}	σ_{\max} (@30Torr)		
	(cm^{-1})	(Å @21°C)	$(10^{-26} { m cm}^2/{ m mol.})$		
ween 800 and 850 nm @ RT	11598.12	8619.77	0.3 ± 0.1		
	11609.85	8611.06	1.4 ± 0.4		
	11610.72	8610.41	1.3 ± 0.3		
	11613.59	8608.29	0.8 ± 0.2		
	11616.41	8606.20	0.6 ± 0.3		
5	11616.65	8606.02	1.1 ± 0.2		
	11617.53	8605.37	1.5 ± 0.7		
	11631.48	8595.04	1.6 ± 0.4		

... righe del cloruro di metile

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

INO-CNR

Introduzione Tecnica Sperimentale Risultati sperimentali Conclusioni

Righe spettrali Coefficienti di allargamento

Funzione di Voigt

In regime di bassa modulazione $(a/\Gamma \ll 1)$ ed alle pressioni di lavoro comprese tra 20 e 300 Torr è opportuno considerare una forma di riga alla Voigt, la cui funzione tiene conto dell'allargamento Doppler e Lorentziano:

$$f(\nu) = \int_{-\infty}^{+\infty} \frac{\exp\left[-(t-\nu_{\rm o})^2/\Gamma_{\rm G}^2 \ln 2\right]}{(t-\nu)^2 + \Gamma_{\rm L}^2} dt$$
(10)

dove ν_{\circ} è la frequenza di risonanza, Γ_{G} e Γ_{I} sono le larghezze (HWHM) Gaussiana e Lorentziana.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Righe spettrali Tabelle Coefficienti di allargamento

Tramite un fit delle righe ottenute con bassa modulazione si estraggono i parametri delle righe, e conseguentemente i coefficienti di allargamento per pressione si ricavano dall'espressione generale:

$$w_{c}(p) = 2\Gamma_{L}(p) = \gamma_{i}p_{i} + \gamma_{self}p_{o}, \qquad (11)$$

dove p è la pressione totale, p_o la pressione parziale del gas campione, p_i la pressione del buffer gas i, γ_i è il coefficiente di allargamento FWHM relativo al buffer gas e γ_{self} è il coefficiente di autoallargamento del gas campione.

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

Righe spettrali Tabelle Coefficienti di allargamento

Coefficienti d'allargamento (γ , FWHM) e shift (δ) del CH₃F

$ u' $ (cm $^{-1}$)	$rac{\gamma_{\textit{self}}}{(MHz/Torr)}$	$\gamma_{\it air}$ (MHz/Torr)	$\delta_{\textit{self}}$ (MHz/Torr)	$\delta_{air} \ ({\sf MHz}/{\sf Torr})$
11554.85	34 ± 1			
11564.25	22.7 ± 0.5	12 ± 1	$\textbf{-1.3}\pm0.2$	1.0 ± 0.8
11583.56	11 ± 2			
11588.93	18 ± 1			
11677.00	9 ± 1	6 ± 1		
11779.89	18 ± 3			
11800.37	12.2 ± 0.1			

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm

Conclusioni

- Tramite sorgenti laser a semiconduttore di tipo commerciale e la tecnica di rivelazione in fase sulla 2^a armonica, sono stati rivelati i deboli segnali d'assorbimento roto-vibrazionale overtone delle molecole CH₃F e CH₃Cl a 850–860 nm;
- La loro posizione in energia è stata misurata con un errore massimo (3σ) di 0.01 cm⁻¹;
- Sulle righe più intense del CH₃F ($\simeq 1-3 \times 10^{-26}$ cm/molecola) sono stati misurati per la prima volta a queste lunghezze d'onda i coefficienti di allargamento e shift collisionali a temperatura ambiente.
- Il lavoro sul CH_3F è stato pubblicato sulla rivista J. Quant. Spectrosc. Radiat. Transfer **130**, 352 (2013)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850–860 nm

Conclusioni

- Tramite sorgenti laser a semiconduttore di tipo commerciale e la tecnica di rivelazione in fase sulla 2ª armonica, sono stati rivelati i deboli segnali d'assorbimento roto-vibrazionale overtone delle molecole CH₃F e CH₃Cl a 850–860 nm;
- La loro posizione in energia è stata misurata con un errore massimo (3σ) di 0.01 cm⁻¹;
- Sulle righe più intense del CH₃F ($\simeq 1-3 \times 10^{-26}$ cm/molecola) sono stati misurati per la prima volta a queste lunghezze d'onda i coefficienti di allargamento e shift collisionali a temperatura ambiente.
- Il lavoro sul CH₃F è stato pubblicato sulla rivista J. Quant. Spectrosc. Radiat. Transfer **130**, 352 (2013)

A. Lucchesini - INO - Laboratorio di Spettroscopia a Diodi Laser

CH₃F e CH₃Cl a 850-860 nm