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INTRODUCTION

The  recent  developments  of  the  research  on  amorphous  semiconductors  as  silicon  and 

germanium have induced quite a lot of research groups to increase their efforts in the realization and 

the analysis of devices obtainable with such materials. Moreover the low cost of production as well 

as  the  simplicity of  realization the  amorphous silicon has  in  comparison to  the  crystalline  one 

increases the industry interest.

Such a stimulus to the research has already given its fruits with the realization of p-n, p-i-n, metal-

semiconductor and MIS junctions as well as silicon and germanium amorphous or silicon-carbide 

amorphous alloys etherojunctions with the purpose of increasing the efficiency of the devices in the 

photovoltaic conversion of the solar energy.

The present work concerns the realization and the study of hydrogenated amorphous-silicon 

(a-Si:H) metal-semiconductor (M-S) photodiodes.

A first  phase  of  the  experimental  work has  been devoted  to  the  preparation  and to  the 

analysis  of  conventional  metal-semiconductor  structures  with  the  purpose  of  comparing  the 

properties of our material with the results gotten in other laboratories.

Then new devices that use a thin layer of a-SiC:H (100 ÷ 200 Å) between the metal and the 

a-Si:H have been realized. These devices show very low inverse current and elevated collection 

efficiencies. Besides, such diodes introduce a very much dependence of their spectral response by 

the applied inverse voltage, in a way that it increases their response from the yellow to the green 

spectral region. These preliminary results suggest the potential employment of the devices in the 

color detection.

The present Thesis is articulated as it follows.

In Chapter I the amorphous silicon properties are mentioned, and particularly the structure, 

the electronic levels, the electrical conduction.

The technique for the production of the material is described in Chapter II.

In Chapter III  the properties and the production of the silicon-carbide are discussed,  by 

comparing two methods of preparation.

The theory of the metal-semiconductor Schottky barriers is introduced in Chapter IV by 

comparing the potential profile of the crystalline, with that of the amorphous material.
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The mechanisms of transport under these type of potentials are analyzed in Chapter V.

The analysis is then completed by the elementary theory of the phototransport of the metal-

semiconductor devices in the in the a-Si:H (Chapter VI).

Elements of the theory of the etherojunctions are introduced in Chapter VII.

Chapter VIII is devoted to the experimental results.

The discussion and the conclusions are written in Chapter IX.
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CHAPTER I

AMORPHOUS SILICON PROPERTIES
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1.1  GENERALITIES ON THE AMORPHOUS SILICON MATERIAL

The essential characteristic that distinguishes an amorphous material from a crystalline one 

is the lack of a long range order. This substantially means that the reticular structure of such a type 

of solid cannot be simply schematized by a periodic repetition of a single elementary cell.

For  example,  for  the  amorphous silicon a  deviation  from the  structure  of  the  diamond, 

proper of the crystalline silicon, is observed due to a distortion of the bond angles. This is seen in 

Figure 1.1), where the radial density of the amorphous silicon is showed in a comparison with that 

of the crystalline silicon.

Fig.  l.l   Radial  distribution  function  of  the 
amorphous silicon (evaporated) and crystalline 
determined  by the  analysis  of  the  electronic 
diffraction data.
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The number of first neighbors can be obtained from the area under the first peak, which 

results to be four in this case, as well from the area under the second, twelve second neighbors can 

be recognized, as it should be in a tetrahedral structure; this points out that the order is maintained 

up to this level, but the influence of a variation of the bond angles is already noticed.

But the most evident effect of the disorder manifests itself in the drastic decrease of the peak 

relates to the third neighbors.

As a consequence, in such a structure the electronic wave-function cannot be anymore a 

simple Bloch function.

We can look for the correct eigenfunction by starting from the Schrödinger equation of the 

crystal  and by considering  the  effect  of  the  short-range periodicity of  the  potential  through an 

additive perturbative term1.

The result will be the existence of “localized states” of intrinsic nature (not due to defects) in 

the ideal amorphous material. Moreover, the overlap of the atomic neighbors wave-functions allows 

the  formation  of  channels  along  which  the  electron  can  travel,  giving  origin  to  the  so-called 

“extended states.”

The  energy  separation  between  the  localized  and  the  extended  states,  the  so-called  “mobility 

threshold” (where Ec stands the electrons and Ev for the holes) is clear, because the two types of 

states cannot coexist at the same energy in the same configuration, as explained by Cohen2. We will 

then define “mobility gap” the energy interval between Ec and Ev. 
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1.2 GAP STATES AND BANDS MODELS

We have just defined an “ideal amorphous” the one that has only intrinsic states in the gap, 

that is the one in which all the bonds are saturated; experimentally it has been seen that such states 

are placed immediately below the conduction band and above the valence band to form the so-

called “gap tails.”

However,  besides  them an  amorphous  semiconductor  possesses  a  continuous  density  of 

states in the gap due the contribution of the extrinsic states associated to defects or impurities, that 

have the tendency to localize themselves in the center of the gap of the forbidden energy.

Actually various pictures of the amorphous semiconductors bands exist,  two of the most 

interesting of them are the Cohen-Fritzsce-Ovshinsky (C.F.O.)3 and the Mott-Davis4 ones.

In the C.F.O. model it is assumed that the disorder creates intrinsic localized states with a 

continuous  decreasing  density  when  approaching  the  center  of  the  forbidden  energy  gap.  In 

substance  the  model  hypothesizes  that  the  tails  of  the  valence  and  conduction  bands  come to 

overlap,  as  it  can  be  seen  in  Fig.  1.2),  precluding  a  clean  distinction  of  the  valence  and  the 

conduction thresholds.

This kind of scheme is appropriate for the calcogens, where a high degree of disorder exists.

For someone the Mott-Davis model is more appropriated for silicon and germanium, as it 

considers band tails less broad within the gap, but situated few tenth of electron-volt under the 

respective bands. Moreover it hypothesizes the existence of a certain density of extrinsic states near 

the center of the gap, ought to defects like vacancies or unsaturated bonds.

From Fig.  1.3) this  can be better  understood,  as  well  as that  the zone between the two 

mobility thresholds Ec and Ev is well separated.

Fig. l.2)  Density of states Fig. l.3)  Density of states
for the C.F.O. model. for the Davis-Mott model.
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There are various methods to realize the amorphous material such as the “evaporation”, the 

“sputtering” and the “glow-discharge” (G.D.). The last is based on the decomposition of molecular 

gases by a radio-frequency discharge. Sometimes the discharge gas (SiH4 is used for the amorphous 

silicon) is mixed with other gases as Ar, He or H2 to increase the homogeneity of the material. 

Comparisons  among samples  of  the amorphous silicon obtained by the G.D.  with  and without 

hydrogen induced Brodsky, Spear and other researchers to assign an essential role to this element in 

the reduction of the density of the extrinsic states in the gap; this is due to the fact that the hydrogen 

saturates the vacancy bonds, always present in the amorphous material, creating silicon hydrides.

Fig.  1.4)   Localized  state  that  gives  a 
single level in the gap (“deep”).

The addition of another electron, coming from the atomic hydrogen, creates states of bond 

or antibond that are placed in the valence and conduction bands  respectively.

In Fig. 1.4) such a hydrogen saturation is schematized for a much localized state, the so-

called “deep.”
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Fig. l.5)  Amorphous silicon density of states 
determined  by  field-effect  experiments.  The 
arrows in each curve point the position of the 
Fermi  level.  Curve  1  refers  to  the  silicon 
obtained by the G.D.. Curve 2 refers to what 
obtained by evaporation.

E = extended states;
T = band tails;
G = gap states;
εfo = Fermi level in the intrinsic case5.

In order to dope the material p or n extrinsic states can be created in the gap by using the 

elements of the III or the V group of the periodic table as contaminants, such as for instance boron 

or  phosphorus,  respectively.  But  the  level  of  doping of  an  amorphous  semiconductor  does  not 

depend only on the concentration of impurities in the solid, as it happens in the crystalline phase,  

but also on the value of the density of states in the forbidden band.

This can be understood remembering that the doping element is it because of the more or 

less electron it has in comparison to the element it replaces in the crystalline lattice, but in the 

amorphous such an electron could go to form a covalent bond for the many not saturated bonds that 

characterize the material.

The influence of the doping on the room temperature conductivity and therefore its effect 

can be seen in the following Fig. 1.6). Such a figure is based on Spear's data5 gotten by samples 

realized through the G.D. in SiH4 atmosphere, with a percentage of B2H6 for the p doping or PH3 

for the n doping. It is noted that the minimum of the conductivity is in the material slightly doped p. 
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This means that the not intentionally doped material has indeed the characteristics of a lightly doped 

n.

Fig. 1.6)  n and p amorphous silicon conductivity at 
room  temperature  as  a  function  of  the  gas 
composition  in  the  G.D..  The  central  part 
corresponds to the undoped silicon.
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1.3 ELECTRICAL CONDUCTIVITY

The electrical conductivity in the amorphous semiconductors is essentially driven by three 

fundamental mechanisms [σ = eΣi ni µi    with i = 1, 2, 3]:

a) extended states conduction;

b) hopping by localized states in the band tails;

c) hopping by localized states at the Fermi energy.

For what the extended states conductivity concerns, that is above Ec, the same road of the 

crystalline  semiconductors  can  be  followed  by  introducing  the  general  expression  of  the 

conductivity for an isotropic solid:

1.1) ( ) ( )dEEG
E

f
vEe DF

∂
∂

><−= ∫ ..22

3
1 τσ  ,

τ (E) is the time between two collisions and generally it depends on the electron energy.

By using the Maxwell-Boltzmann statistic, the general expression of the mobility, that is 

valid for any charged particle, can be obtained:

1.2)
KT
ve

3

2 τµ ><=  ,  that can be easily included in Eq. 1.1).

Finally the conductivity of our semiconductor can be expressed by the integral over the 

energy:

1.3) ( ) ( ) dE
E

f
KTEEGe DF

∂
∂

−= ∫ ..µσ  .

If the Mott-Davis' model on the density of states behavior is adopted, it follows that the 

Fermi energy is located around the center of the forbidden gap and quite far from the mobility 

threshold  (Ec-Ef »  KT). Therefore this permits to shift from the Fermi-Dirac's to the Boltzmann's 

statistic:

1.4)
( ) 




 −
−⇒

+




 −
=

KT
EE

f

KT
EE

Ef f
B

f
DF exp

1exp

1
...  .

The first derivative of fB. is:

1.5)
( )






 −
−−=

∂
∂

KT
EE

KTE
Ef fB exp1.  ,  therefore the integral 1.3) becomes:



14

1.6) ( ) ( ) dE
KT

EE
EEGe f

Ec






 −
−= ∫

+ ∞

expµσ  .

By considering  constant  either  the  density  of  states  and  the  mobility,  the  result  valid  off  the 

degenerative case, that it is not reachable by the amorphous anyway, can be attained:

1.7) ( ) 




 −
−=

KT
EE

KTEeG fc
cc expµσ  ,  being “µc” now a mobility mean value over the 

Ec threshold.

Let us put:

1.8) ( ) KTEeG cc µσ =0  ;  now such a term would result independent on the temperature 

if the µc depends on T in the way described in 1.2). From Mott's calculations the mean free path of 

the electron right at the energy Ec results of the order of the interatomic distances, therefore under 

these conditions Cohen6 has proposed right the diffusive or Brownian conduction model, in which 

the mobility got through the theory of Einstein is just like the 1.2). We expect then an expression of  

the conductivity of the type:

1.9) 




 −
−=

KT
EE fcexp0σσ  .

Since optical absorption measurements have shown a behavior of the forbidden gap energy 

opposite to the temperature, it can be assumed that the same thing happens to the interval Ec-Ef. 

Therefore, if Ec-Ef = E0 - CT  is assumed, the 1.9) becomes:

1.10) σ=σ 0 exp−E0

KT expC
K =cost .⋅exp−E 0

KT  .

The conduction in the localized states of the band tails can only happen through a thermally 

activated hopping, that is through jumps of an electron from a localized state to another with the 

exchange of the energy with a phonon.

Here, as in the previous model, we can start from the mobility by asserting that in this case  

we expect this is strongly activated by the temperature with a dependence of the type:

1.11)
( )






 −=

KT
EW

hop exp0µµ  ,

where  W(E) is the activation energy of the process  ( )KT≅ ,  that in general will  depend on the 

electron energy.

For the conductivity we can start again from the general expression 1.1), for which G(E) has 

to be known.

A general behavior of the density of states as a function of the energy can be thought of the type:
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1.12) ( ) ( ) ( ) s
As

c EE
E
EG

EG −
∆

= ,  that is dependent on a power of the energy. ∆E is the band 

tail energy extension and EA is the beginning of it.

Therefore by solving the integral we get the hopping conductivity:

1.13) 




 +−
−







∆
=

KT
WEE

E
KTC fA

s

shophop exp0σσ  ,  where

1.14) ( )chop EGe 00 µσ =  and C s=s ! − ΔE
KT 

s

exp− ΔE
KT ⋅a power series of KT

ΔE  ;

a quite complicated expression, that comes easier when a linear dependence of the density of states 

on the energy is assumed (s=1):

1.15) 




 +−
−







∆
=

KT
WEE

E
KTC fA

s

hophop exp10σσ   with

1.16) 




 +∆⋅





 ∆−−= 1exp11 KT

E
KT

EC  .

Anyway, for Ea - Ef + W > KT  the exponential term that decreases with T is predominant.

For what the conduction in the localized states at the Fermi energy concerns we refer to the 

Mott's work7.

Substantially he takes into account a conduction mechanism similar to the one of the heavy 

doped and compensated semiconductors (see Fig. 1.7)).

Fig. 1.7)  Hopping conduction mechanism. 
Two hops are shown, from A (an occupied 
state) to B and from B to C.

If the Fermi energy lies in a band of  localized states, as it happens for instance in the Davis 

and Mott's model, the carriers can move between such states through a process of phonon-assisted 

tunnel. Consequently, the probability with which an electron can effect a jump will depend on the 

overlap of the eigenfunctions of the departure and arrival state through a factor of the type: exp(-

2αR), where R is the distance between the departure and the arrival states and α is a measure of the 
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extinction of the localized state wave-function.  The probability to find a phonon with a proper 

energy will also influence it, and it will be given by the expression of Boltzmann  




 −

KT
Wexp  , and 

so will do the frequency at which this process can happen, that will not be able to get over the 

maximum phononic one (~ l013s-1).

In conclusion the probability for unit of time of the process can be expressed as:

1.17) 




 −−=

KT
WRp ph αν 2exp  .

Contemporary it must be taken into account the “variable range hopping” that comes from 

the fact that, as the temperature decreases, the electrons find phonons of smaller and smaller energy, 

for  which are forced to  lengthen the  jump toward  states  more  and more distant  from the  first 

neighbors, but energetically closer to theirs; in fact the 1.17) exponential term does not have its 

maximum value in correspondence of the next neighbors.

To calculate the optimal distance of jump, Mott thought about the fact that the electron will 

abandon its state only if there will be at least another available; besides, the number of states at 

energy W or within a distance R from the particular atom is:

1.18) ( )WWGR3

3
4 π  .

Substituting now Eq. 1.19) in the 1.17) and minimizing the exponential  of the obtained 

expression,  the most probable jumping distance is obtained:

1.20) ( )
4

1

8
9












=

KTEG
R

fπ α
.

The 1.17) with the 1.19) and the 1.20) gives:

1.21) 




 −= 4/1exp

T
Ap phν  ,  where in A are all the constants of calculus.

The 1.21) can be bound to the conductivity by the mobility expression: 
KT
eD=µ  , where the 

diffusion constant in the case of  a casual motion, i.e. Brownian, is expressed by: 2

6
1 pRD =  .8

By making use of the conductivity expression 1.6), it is obtained:

1.22) ( ) ( ) 




 −=





 −= 4/104/1

22 expexp
6
1

T
AT

T
AEGRe fph σνσ

where now σ0 depends on T, remembering the previous sentence about the jump distance R.
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There are experimental evidences of the 1nσ  dependence by T-1/4, but the values gotten on 

the  A constant do not coincide with those of Mott, perhaps for the approximation [ref. 1.19)] by 

considering the density of states at the Fermi level as independent from the energy9.
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CHAPTER II

RADIOFREQUENCY “GLOW DISCHARGE” TECHNIQUE
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The amorphous silicon used in the present work has been deposited by using the “Glow-

Discharge” (G.D.) technique in a silane atmosphere (SiH4)

The equipment is composed by two flat electrodes (ELETTRODI) connected to a Plasma-

Therm 13.56 MHz radio frequency generator [see Fig.2.1)]. The electrodes are contained in closed 

quartz bell (CAMPANA DI QUARZO) where a pre-vacuum around 10-3 torr  is made through an 

Alcatel rotary pump (POMPA ROTATIVA). The substrate is put on one of the electrodes, the lower.

Different ionic species are produced in the discharge such as (SiH3)
+, (SiH2)

++, (SiH)+++, that 

through processes not yet well understood, create the hydrogenated amorphous material.

The parameters that influence the growth of the material are the pressure, the gas flow and 

the temperature of the substrate,  but the more critic,  especially for the speed of growth, is  the 

discharge power.
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 Fig. 2.1)
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For every type of G.D. equipment there is a characteristic optimization of the fundamental 

parameters as those specified before, in general however it is possible to make a schematic, as for 

instance the one in Fig. 2.2), for what the flow and the pressure pertains.

Fig.  2.2)   Schematic  drawing  showing  the 
pressure and flow optimal conditions for the 
formation of the film in the G.D.1 reactor.

The hydrogen content of the material can be in some way monitored by acting on the flow, 

on the pressure and on the temperature.

 A “doping” gas as phosphine (PH3) or diborane (B2H4) can be mixed with the silane gas in 

order to get samples doped n or p, respectively.

A pressure of the gases between 0.5 and 1 torr has been used  in the reactor for the growth of 

our samples and a light influence of this has been noticed on the speed of growth (by increasing the 

pressure the “rate” increased).

The gases flow has been maintained in the interval that goes from 4 to 10 cm3 per minute; it 

also has shown influence on the speed of growth, even if not marked, but at its lower values a 

greater homogeneity of the samples corresponded.

The temperature of the substrates has been kept in the range 220-300 ºC while the discharge 

power  was of the order of 0.3 W/cm2.

The choice  of  the  aforesaid  values  is  the result  of  a  series  of  tests  and controls  of  the 

properties of the obtained films and devices by the aid of optical and transport techniques effected 

in connection with the rest of the activity of the research group.

The results are in accordance with what the literature reports. For instance in the Knights' 
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paper2 it  is  reported  that  the  hydrogen  content  of  the  films  decreases  very  much  at  growth 

temperature above 400 ºC.

We noticed that for a discharge power higher than the reported one, the samples were not 

uniform.

For a good adherence of the material deposited on the substrates an accurate cleaning was 

necessary, therefore every time we degreased them first by trichloroethylene, then by hot methylic 

alcohol and by ultrapure acetone, and finally the removal of possible solid particles was favored by 

using an ultrasound bath.

The  cleaning  of  the  quartz  bell  resulted  quite  important  for  the  realization  of  a  good 

material. In a first trial this has been obtained by using NaOH dissolved in warm water. However by 

this way the G.D. deposited material resulted contaminated by sodium. The drawback has been 

eliminated by modifying the cleaning procedure: to remove the traces of the amorphous silicon 

remained by the precedent depositions the mixture of HF and HNO3 has been used in proportions of 

1 to 2 respectively, followed by a rinsing with acetone and then with distilled water and finishing by 

drying it at 120 ºC in an electric oven. However before growing the material, in order to avoid a still 

possible contamination from the reactor walls, a deposit of a first layer of silicon has been effected 

on them to bury the extraneous species, followed by a degassing procedure by heating up to ≅ 200 

ºC for a hour and by contemporary pumping down by the rotary pump. This has been crucial for the 

attainment of a good vacuum in the system before the introduction of the discharge gases.
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CHAPTER III

“IDROGENATED AMORPHOUS SILICON-CARBIDE”
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3.1  AMORPHOUS SILICON-CARBIDE PROPERTIES AND REALIZATION

The first realization of the hydrogenated amorphous silicon-carbide (a-SiC:H) as well as the 

first characterization of such a material dates from 1977 to the work of D.A. Anderson and W.E.  

Spear1.

In that occasion to realize the material the glow-discharge with the mixture of the SiH4 and 

C2H4 gases it has been used, with the substrate temperature kept at around 300 ºC, the gas pressure 

in the reactor between 0.4 and 0.8 torr and a flow of a few s.c.c.m. (cm3 per minute, standard). 

Under  such conditions  Anderson has  experimented  a  growth of  the  material  around 50 Å/min, 

slightly lower than the amorphous silicon got under the same conditions.

In  Fig.  3.1)  the  result  of  the  first  analyses  of  different  samples  effected  by  the  two 

researchers is presented; it shows the percentage of carbon in the material obtained by varying the 

silane and ethylene mixtures.

Contemporary to the increase of carbon contained in the material a diminution of the density 

has been noticed by R.S. Sussmann and R. Ogden2, therefore they advance the hypothesis that this 

is caused by an increase of the concentration of hydrogen. They have also done an analysis of the 

infrared absorption of the a-SiC:H samples grown at different temperatures and the result is shown 

in Fig. 3.2), where as the temperature of deposition increases the absorption bands related to the 

groups  Si-C,  Si-H  and  C-H  reduce,  showing  that  the  incorporation  of  carbon  and  hydrogen 

decreases as the substrate temperature increases.

Fig. 3.l)  Behavior of the composition parameter 
x in  the  silicon-carbide  films  (SixC1-x)  as  a 
function of the silane volume percentage used 
in the samples preparation.
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Fig. 3.2)  Infrared absorption of the films 
with  similar  thickness  deposited  at  (a) 
30ºC and (b) 300ºC.

For  what  the  optic  properties  of  the  amorphous  silicon-carbide  concerns,  a  lot  of 

measurements of light absorption of the samples containing different percentages of carbon have 

been done.  The most interesting results  are from the analysis  of the “optical  gap” (Egopt).  This 

parameter  does  not  coincide  with  the  mobility  gap,  but  it  is  tightly  connected  to  it,  being  in 

substance the energetic difference between the beginning of the conduction and valence band tails.

By assuming parabolic energy bands in K and the matrix elements of the optical transition 

independent from the energy, this  formula8 for the absorption coefficient of the amorphous silicon 

can be adopted:

3.1) ( ) 2
goptEh

h
B −= ν
ν

α ,

where B is a constant which takes into account the  characteristics of the material (usually B ~ 105 - 

l06 eV-1cm-1).

Now it is clear that if we construct a (αhν)1/2  vs. hν  graphic and linearly extrapolate it to 

(αhν)1/2 = 0, right the  Egopt is obtained. This is what has been done by Sussmann and Ogden and 

from the analysis of their experimental results, a big increase of the gap when increasing the x 

parameter of the a-SixC1-x:H is noticed, as Fig. 3.3) shows.
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Fig.  3.3)   Linear  behavior  of  the 
absorption coefficient  in  the  (αhν)1/2 

vs  hν frame,  in order to get  Egopt in 
accordance  with  Eq.  3.1).  The 
composition parameter x is shown for 
each curve.

Evidently the possibility to suite the width of the forbidden gap by simply acting on the 

concentration of carbon exists with this particular material. Indeed there is a maximum value of it,  

as it results from Fig. 3.4).

Fig. 3.4)  Egopt behavior by the composition parameter x.

As it can be noticed, there is also a strong dependence from the temperature of deposition. It 

is possible to see better this phenomenon from the of Anderson and Spear's analysis illustrated in 

Fig. 3.5).
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Fig. 3.5)  Egopt behavior by the composition parameter 
x for the samples deposited at 500 K and 800 K. The 
white dots refers to the a-C and a-Si samples grown at 
500 K.

This  big influence of the temperature could be bound to a diminution of the content  of 

hydrogen, confirming what written in advance.

Still, following the material analysis done by Anderson and Spear, some information on the 

d.c. conductivity of the amorphous silicon-carbide can also be got.

Fig.  3.6)   Temperature  vs.  d.c. 
conductivity  of  silicon-carbide  deposited 
by  the  G..D.  at  800  K  with  the  shown 
stoichiometric compositions.
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They made measurements under high temperature conditions in an interval that went from 

300 to 700 K, this because  they did not get appreciable values at lower temperatures.

In figure 3.6) the behavior of the conductibility when varying the temperature is shown. 

Under these conditions it is possible to write:

3.2) 




 −=

KT
σε

σσ exp0

where εσ is the activation energy obtained from the graph.

From  the  experimental  data  got  by  the  two  researchers  the  influence  of  the  carbon 

percentage present in the material on all the conduction characteristics is evident. Particularly from 

Fig. 3.7) can be noticed that a value of the stoichiometric parameter x exists around 0.3 for which 

there is the highest activation energy εσ ,  a saturation of the pre-exponential factor σ0 dependent 

from the conduction mechanism, and the lowest conductivity.

Fig.  3.7)   Conductivity  parameters 
behaviors  got  form the  high  temperature 
zones  in  the  curves  of  Fig.  3.6)  as  a 
function  of  the  film  composition  x.  (a) 
activation  energy  εσ;  (b)  pre-exponential 
factor  σ0;  (c) conductivity value  σ  at 500 
and 600 K.

In Fig. 3.7a) it is interesting to compare the variation of the activation energy as a function 

of x (SixC1-x) with the behavior of Egopt gotten through the data of Fig. 3.5). As it can be noticed for 



31

x > 0.2 εσ has a similar behavior, while contemporary σ0 saturates to 10-2 (Ωcm)-1 as it is visible in 

Fig. 3.7b). This seems to be a symptom of an extended states conduction mechanism and this is  

reasonable being under high temperature conditions. Instead for x < 0.2 a deviation of εσ by the 

behavior 
2
goptE

 is  noticed,  which seem to be due to the presence of a  different  mechanism of 

conduction, as for instance a hopping between localized states in the gap of mobility.

3.2  COMPARISON BETWEEN THE a−SIC:H MATERIAL OBTAINED BY SIH4 AND 
C2H4 MIXING AND THE ONE OBTAINED BY SIH4 AND CH4 MIXING.

So far we have studied the characteristics of the hydrogenated silicon-carbide in a qualitative way, 

focalizing particularly onto the material obtained by ethylene and analyzed by Anderson and Spear.

More recent works3 have shown the feasibility of the hydrogenated silicon-carbide by using 

the methane in place of ethylene.

The comparison between the a-SiC:H got with the mixture silane-ethylene and the one got 

with silane-methane underlines the different carbon concentration in the material  with the same 

dilution  of  the  two  gases,  as  it  can  be  seen  in  Fig.  3.8),  that  brings  the  results  obtained  by 

Hamakawa3

Fig.  3.8)   Comparison  between  the  a-
SiC:H carbon content and the G.D. gas 
mixing  composition  for  the  samples 
based  on  ethylene  and  methane.  (Now 
the stoichiometric parameter x refers to 
carbon).
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It is evident that the amorphous silicon-carbide obtained by the ethylene contains a greater 

percentage of carbon and this seems related to the way it is incorporated in the matrix of silicon.

Contemporary, from the comparison of the optical gaps obtained for the materials realized 

with the two types of mixtures, it is noticed that by using SiH4 + C2H4 greater  Egopt results, as 

shown in Fig. 3.9).

Fig. 3.9)

To deeply analyze the problem of the carbon incorporation we can refer to an interesting 

study  of  the  structure  of  the  amorphous  silicon-carbide  carried  on  by  the  researchers  of  the 

Hamakawa's  group  at  the  University  of  Osaka.  They  suggest  a  comparison  in  the  infrared 

absorption between the material grown by using ethylene and the one grown by using methane. In 

Fig. 3.10) it can be noticed that in the silicon-carbide based on ethylene the Si-CH3 bonds do not 

almost exist, whose absorption bands are instead well visible in the spectrum of the one based on 

methane.
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Fig.  3.10)  Infrared spectrum of the a-SiC:H 
based on ethylene (A) and on methane (B).

The peaks of the Si-CH3 (bending) and of the Si-CH3 (rocking e wagging)  are located at 

1250 and 780 cm-1 , respectively, as from the work of Wieder and coworkers5.

The absorption peaks located at 1450, to 2870 and 2910 cm-1 correspond to the vibrational modes 

related to the groups CH2 (b) and CH2 (stretching)respectively; these last are present only in the a-

SiC:H realized with ethylene. From this Hamakawa deduces that the carbon incorporation in the 

amorphous  silicon  obtained  by  this  way  happens  through  ethylic  groups (C2H5),  and  through 

methylic groups (CH3) in the a-SiC:H in the a-SiC:H obtained by  methane. In Fig. 3.11) a model of 

the structure of the chemical bonds for the two cases is shown.

Fig. 3.11)  Model of the chemical bond 
structure in the hydrogenate amorphous 
silicon-carbide  matrix.  (left)  a-SiC:H 
based on ethylene; (right) a-SiC:H based 
on methane.
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On this last type of material it is interesting to notice that if the content of methane in the 

discharge mixing increases, the absorption band placed at 2000 cm-1 has the tendency to reduce, 

while  contemporary the  band at  2090 cm-1 rise  up,  as  it  is  shown in Fig.  3.12).  The Si-H (s) 

vibrational mode is situated at 2000 cm-1 6, but it is also well known that this tends to move toward 

bigger wave-numbers5 if  some carbon binds to the silicon; such a move is  due to the different 

electronegativity of the carbon in comparison to the silicon. In fact taking as a reference the work of 

Lucovsky7 on the molecular vibration frequencies, and by replacing 1 or 2 first neighbors of carbon 

with the silicon:    , a value around 2090 cm-1 can be obtained for the 

wave-number.

Fig. 3.12)  Stretching absorption energy 
mode  of  the  a-SiC:H  film  grown  at 
250ºC.

From this it follows that the increase of the 2090 cm-1 band corresponds really to an increase of the 

bound carbon.

In conclusion, on the basis of what has been seen, to get the best silicon-carbide alloy in 

which the tetraedrical structure is preserved the methane must be used.
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CHAPTER IV

“SCHOTTKY BARRIER PROFILE”
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4.1 INTRODUCTION

The experience acquired so far in the field of the rectifier devices realized through metallic 

contacts on semiconductors take us to adopt the theory of Schottky (1939) according to which the 

potential barrier is determined by a uniform space-charge due to the ionized impurities. For this 

reason these devices are called “Schottky diodes.”

Let us define “work function” the energy necessary to remove an electron from the Fermi 

level and to bring it to the vacuum level, the limit of the free space.

Let us consider a Schottky diode whose semiconductor is n doped, that is  with shallow 

impurities of the donor type; the potential barrier, that will be indicated by Vdo, and the relative band 

bending, caused by the difference between the work functions of the semiconductor and the metal,  

creates a region in which there are no conduction electrons, as it happens in a p-n junction, that is 

just  called “exhaustion layer” or  “space-charge layer”  or  simply “barrier  layer”,  and it  will  be 

indicated by W.

Instead the barrier viewed from the semiconductor to the metal, that we will be indicated by 

φb for the electrons and φh for the holes, comes from the difference between the metal work function 

φM and the semiconductor electronic affinity χs :

φb = φM - χs ; φh = χs + Eg - φM

where for  “electronic affinity”  we intend the necessary energy to  remove an electron from the 

bottom of the conduction band and to take it to the vacuum level.

In practice however it is often noticed that φb is almost independent from the work function 

of the metal and this is explained by Bardeen (1947) in terms of existence of the semiconductor 

surface states caused by the interruption of the bonds, as also by contaminations.

This can be understood by considering a Schottky barrier device with the bands schematized 

in Fig. 4.1), with the realistic presence of a thin (10 - 20 Å) layer of oxide and supposing to have 

surface states. The quantity qφo indicates the “neutrality level” at the surface, that is the energetic 

limit up to which the surface states are filled when it is electrically neutral.
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Fig. 4.1)  Energy level diagram of a metal/n-doped 
semiconductor junction. The symbols are explained 
in the text.

Let us assume a step like Fermi distribution function and a surface density of states  Ds 

constant between φo and the Fermi level, then the surface charge density will be:

Qss = -q Ds (Eg - qφb - qφo) ,

The space-charge that develops in the semiconductor exhaustion layer will be:

Qsc = q NB W, if in this case NB is the density of the donor impurity.

Now, by indicating the exhaustion layer thickness by the expression that will be explained later:

2
1

2














−=

q
KTV

qN
W do

B

ε ,  where ε  is the semiconductor permittivity,

2
1

2 













−=

q
KTVqNQ doBsc ε  ;

and then, as the height of the internal barrier is equal to:

Vdo = φo – Vn (Vn = Ec – Ef) :

4.1)
2

1

2 













−−=

q
KTVqNQ nbBsc φε .

By summing Qss and Qsc we get the total semiconductor charge, which should be equal and 

opposite to the one created in the metal:

4.2)    QM = -( Qss +  Qsc) ,  for which the potential drop ∆V on the thin oxide layer at the 

interface can be obtained from the Gauss theorem:
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4.3)     
i

MQV
εδ

−=∆
 ,  with ε i equal to the interface oxide permittivity and δ  its thickness.

However from the figure 4.1) it is seen that:

4.4)     q ∆V = qφM – q (φb + χ) .

By combining now the Eq.s 4.1), 4.2), 4.3) e 4.4) the following expression is obtained:
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For ε ≈ 10ε0 ; εi = ε0 (as the thinness of the oxide layer permits); NB <1018 cm-3, we get c1 ≅ 

10 mV,  for which the term between braces results lower than the first  term and it  can be then 

neglected to write:

4.6) ( ) ( )022 1 φ
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δε
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b −





+
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If now the density of the surface states  Ds → ∞ , then:

4.7) qφb ⇒ (Eg – q φ0) , that is the barrier tends to a value in which φM does not appear, but 

it has a direct dependence on the semiconductor gap; while if Ds → 0:

4.8) qφb ⇒ q(φM - χ) , that is the ideal case expression.
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4.2 BEHAVIOR OF THE POTENTIAL IN THE SCHOTTKY BARRIES

To face a theory of the transport in the metal-semiconductor junction devices  it is necessary 

to study the behavior of the electric field and the potential in such diodes.

For a simple unilateral step junction with a charge density ρ = qNB  for x < W and ρ ≅ 0 for x 

> W (NB is the concentration of the ionized impurities, that we will suppose donor like), the Poisson 

equation, onlyy for one-dimension for simplicity, becomes:

4.9) ( ) ( ) ( ) ( ) ( ) ( )
εε

ρ xNxnxpqx
x
xE

x
xV B

++−
==

∂
∂=

∂
∂−

2

2

where p(x) and n(x) are the electron and hole concentration respectively, in the generic position x.

For a junction metal/n-doped semiconductor, with the origin of the coordinates in the point 

of  contact  of  the  two  materials  [see  Fig.  4.2)],  and  by making  use  of  the  “exhaustion  layer” 

approximation (p - n ≅ 0 for 0 <x <W), it will be written:

4.10)
( ) ( )xNq
x
xE

B
+=

∂
∂

ε
 .

Fig. 4.2)  Schottky barrier between metal and n-
type semiconductor without polarization.

To get  the behavior of the electric field as a function of the depth  x, it is  necessary to 

integrate  the  4.10)  between  W  and  x,  that  is  in  the  space-charge  zone.  For  simplicity we will 

suppose that   N B
=N B=cost ; then for 0 <x <W it will result that:

4.11) ( ) ( )WxNqxE B −=
ε

 , which, integrated again, gives the potential behavior referred 
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to the Fermi level of the metal:

4.12) ( ) b
B xWxNqxV φ

ε
−





−=

2

2

 , having here neglected the effect of the force-image.

From the 4.12) the internal potential barrier  Vdo can be obtained, being Vdo = φb + V(W):

4.13)
ε2

2WNqV B
do = ; carrying on, the height of the exhaustion layer can be drawn:

4.14)
2
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−−=

q
KTVV

qN
W do

B

ε .

In 4.14) also the term of the potential V of the possible polarization (> 0 for the direct one 

and < 0 for the inverse one) appears as well as the contribution due to the electric field coming from 

to the mobile carriers (KT/q).

However everything is valid for crystalline semiconductors.

If we consider the amorphous silicon, the structure of the reasoning is rather different.

Several studies and theoretical models exist on the matter, one of the most interesting of 

which is the Shur-Cubatyi-Madan's 1.

Following this, we can approximate the density of states in the amorphous silicon forbidden 

gap by this way:

4.15) ( ) 





=

chE
EgEg coshmin  , in which the energy E is measured starting from the center 

of the gap, where g = gmin , Ech is a characteristic energy that takes into account the goodness of the 

material together with gmin . Typical values are: Ech = 10-1eV,  gmin = 1016eV-1cm-3.

This type of approximation results to be very close to real, as it can be observed by the 

comparison of Fig. 4.3).

Fig.4.3)  Comparison  between  the 
analytical expression of g(E) and the 
real density of state measured by W. 
Spear and P.G. Le Comber2.
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By expressing the 4.15) in exponential terms:
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EgEg expexp

2
min  ;

the acceptor like localized states will be described by the first term, that we will call gp , while the 

donor like by the second term gn , that is:

4.16) ( ) ( ) ( )( )EgEggEg np +=
2
min  .

By knowing the values that Ech assumes  (100 meV if four time greater than  KT at room 

temperature), we make a negligible error by approximating the Fermi function by a step. Under 

these conditions the charge density of the donor and acceptor states will be given respectively by:
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where 
ch

g
g E

E
X =  and  Eg is the forbidden energy gap, while  Xf is the deviation of the Fermi level 

from its position in the intrinsic case: 
ch

ff
f E

EE
X 0−

=  ; here Ef0 corresponds to zero energy.

Supposing the contribution of the free charges negligible,  the density of net charge will 

come from 4.17) and 4.18):

4.19) fch XEgnp sinhmin−=− −+ .

For the charge neutrality, in case the material is doped with a donor concentration ND,  and 

also by assuming that at room temperature ND ≅ ND
+:

4.20) p+ - n- + ND = 0 , therefore the relative Fermi level displacement will be:

4.21) ( )η1

min

1 sinhsinh −− =





=

gE
NX

ch

D
f  ,

where we indicated by

4.22)
mingE

N

ch

D=η the nondimensional doping density.
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Fig.4.4) Nondimensional Fermi level  Xf as a function of 
the  doping density. The data comes from Spear et al. 2.

In figure 4.4) right the 4.21) behavior is shown in comparison to the experimental data of 

Spear. As it is seen in 4.21) and 4.22), to have an effective doping, the density of states in the gap 

must be minimized, which means that it is easier to dope a good material then a bad one. This  

confirms what said in Chapter I about the doping in the amorphous material.

To calculate the behavior of the potential barrier, we must start, as usual, from the Poisson 

equation:

4.23) ( ) εερ 02

2

/1
c

c E
z
E

q
=

∂
∂

 , where  Ec is the conduction band minimum,  z is the spatial 

coordinate with origin where E0 - Ecb = (3/2)KT , Ecb is the energy position of the conduction band 

far from the barrier,  ε  is the relative permittivity of our material and  ρ(Ec) is the density of the 

space-charge. In our case, by using the 4.19):

4.24) ρ(Ec) = qND + q(p+ – n-) = qND – qgmin Ech sinh(Xf –Xc)

with ( ) ( )
ch

cbc
c E

EzE
zX

−
=  .

Again, by substituting 
z

E
q

f c

∂
∂

= 1
 and by taking advantage of the side condition  f = 0, that 

is the electric field is null when Ec(z) = Ecb = 0 , the 4.23) can be integrated  in energy to get:
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;  by writing  this in terms of the coordinate  z  and then 

integrating in energy:
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To have taken as the lower extreme ET = Ecb + 3/2 KT simply means to have lifted the lower 

limit of integration, this because with ET = 0 the barrier in an intrinsic material would extend to the 

infinity, as it will be seen later in the 4.30).

From the 4.24) it comes out:

4.27) ( ) ( ) ( )( )∫ −−+=
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fcfchcD XXXEqgEqNdEE
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2
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'' coshcoshρ  .

By using the coordinate 
0z
zY =  , where:
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εε   is  a  normalization  length  analogous  to  the  Debye  length,  by 

replacing the 4.27) in the 4.26), we get:

4.29) ( ) ( ) ( )( )∫ −−+
=

c

T

X

X fcf

c

XXXX

dX
Y 21''

'
21

coshcosh
2/1

η

where again 
ch

T
T E

EX =   is nondimensional.

For an intrinsic material η = 0, therefore the 4.29) becomes:
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which gives the behavior of the minimum of the conduction band when varying the distance from 

the barrier.
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Fig. 4.5)  Profile of the Schottky barrier. η is the doping density. The insert 
shows  the  qualitative  profile  of  the  Schottky  barrier.  The  length  of  the 
barrier is expressed by W as usual.

In figure 4.5) such a behavior is shown, together with a band schematic of the Schottky 

barrier device.

The width of the barrier W =  z0 Yb  can be drawn by Eq. 4.30) by substituting  Xc , with 

( )
ch

fcbb

ch

do
b E

EE
E
V

qX
−−

==
φ

 .

Eq. 4.30) can be also written in terms of  Xc  at the first member:

4.31) ( )YXX Tc exp
4

tanh
4

tanh 




=  ,  which can be approximated by a behavior like:

4.32) Xc = cost · exp(Y)  only in the case in which Xc « 4 , i.e. Ec – Ecb « 4Ech ≅ 400 meV in 

the a-Si:H case, as calculated by Shur.

This initial exponential behavior can be noticed in Fig. 4.5) for Xc « 4.
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CHAPTER V

“TRANSPORT IN THE SCHOTTKY BARRIER DEVICES”
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5.1  THERMIONIC E DIFFUSION THEORIES

Fig. 5.l)  Band schematic of a Schottky barrier.
φh : potential barrier for holes;
φbn : potential barrier for electrons from M to S;
φbo : asymptotic value of φbn at null electric field;
Vdo : potential barrier for electrons from S to M;
∆φ : barrier lowering caused by the force image;
W : exhaustion layer.

In the Schottky barrier devices, unlike what happens in the p-n junction ones, the transport 

mechanism of the current is dominated by the majority carriers.

There are various ways to describe such a mechanism, two of which will be examined here:

• the thermionic emission theory due to H.A. Bethe1 , and

• the Schottky theory of the isothermal diffusion2.

The theory of Bethe, making reference to the one-dimensional model of figure 5.1), assumes 

that qφbn » KT , while it neglects the electronic collisions in the exhaustion layer W.

The current that goes from the semiconductor to the metal is immediately obtained from the 

thermionic emission theory:
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where  m* is  the  effective  mass  of  the  electrons  and vox is  the  minimum velocity  necessary to 
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overcome the barrier; this is easily calculable from the energetic balance:

5.2) ( )vvqvm doox −=2*

2
1

v > 0  for the direct polarization;

v < 0  for the inverse polarization.

The majority carriers concentration n under equilibrium is obtained through the statistic of 

Boltzmann:
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Let us take into account now: 

5.4) qVdo = qφbn + q∆f – qVn , where:

5.5) qVn = Ec – Ef .

By substituting the two Eq.s 5.2) and 5.3) in the 5.1), we get:
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but neglecting the charge-image effect and putting:  3

2*
* 4

h
KqmA π=  , which  coincides with the 

constant  of  Richardson  for  the  thermionic  emission  in  the  vacuum  when  free  electrons  are 

considered (m* = me), we have:

5.6) 










 −=→ KT

qV
KT
q

TAJ bn
MS expexp2* φ

 .

To get the current density in the opposite direction it is enough to notice that the height of 

the barrier for the electrons from the metal to the semiconductor in the ideal case is independent 

from  the  applied  voltage,  from  which,  having  it  to  be  equal  to  the  one  flowing  from  the 

semiconductor to the metal under conditions of thermal equilibrium, i.e. V = 0, it happens that:

5.7) 




 −−=→ KT

q
TAJ bn

SM
φ

exp2*  .

In order to get the total current density, it is enough to sum the two Eq.s 5.6) e 5.7):

5.8) 



 −





=



 −











 −= 1exp1expexp2*

KT
eVJ

KT
eV

KT
q

TAJ TS
bnφ

by having set:

 J ST=A✶ T 2 exp−qφbn

KT  : “thermionic inverse saturation current density”.

As it easily appears, the behavior as a function of the voltage is the same of the p-n junction.
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The theory of Schottky for the diffusion bases itself on the assumptions that the height of the 

barrier φbn is much greater than KT, that the density of the carriers at x = 0 and x = W is the same of 

the equilibrium and therefore it is not altered by the current, and finally that the semiconductor is 

not so much doped to be degenerate.

Starting then from the “current density equation” still one-dimensional for simplicity and 

still making reference to the majority carriers, in our case the electrons:

5.9) ( ) ( ) ( ) ( )
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x
n

x
xxn

KT
qqD

x
xnDExnqJJ nnnnx

ψµ  , where

nn q
KTD µ=  is the “diffusion constant” or “Einstein constant” and µn is the electron mobility.

However we know that under the working conditions the current density in the exhaustion 

layer does not depend on the position x, for which, by using 
( )






 −

KT
xqϕexp  as the integrating factor, 

the 5.9) can be integrated in the following way:
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and from it:
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Now, by making use of the side conditions:
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qψ(0) = -q φbn

qψ(W) = -qVn – qV

for the 5.10) we get:

5.11)
( )














 −



 −





= ∫

W

ccn dx
KT

xqN
KT
qVNqDJ

0

expexp ψ
 .



51

We already know the behavior of the potential ψ(x) in the Schottky barriers, so we can look 

for a solution of the 5.11) in the crystalline simpler case:
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  .

If we remember now the expression of the exhaustion length W in terms of V and Vdo , we 

can replace it at the denominator, and then an approximate solution is:

5.12)
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  .

One of the hypotheses adopted in the handling of the Schottky theory is that qVdo is much 

greater than KT, for which the exponential at the denominator of 5.12) can be neglected respect to 1, 

to arrive to:

5.13) J D=J SDexp qV
KT −1

where ( )





 −





 −

=
KT
qNVV

q
KT

NDq
J bnDdocn

SD
φ

ε
exp

2 2
12

 is the “inverse saturation diffusion 

current density”.

We note that also the 5.13) is the ordinary  J-V  equation of the rectifying device and it is 

similar to the 5.8), with the difference however that JSD varies with the voltage and JST  is also more 

sensitive to the temperature than this one.
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5.2 THERMIONIC EMISSION AND DIFFUSION THEORIES COMBINED4

Fig.  5.2)   Electronic  potential  energy of  the 
metal-semiconducor junction.

If the behavior of the potential is analyzed between x = 0 and x = W, as it is schematized in 

Fig.  5.2),  a  theory  of  the  transport  can  be  built  that  combines  the  two  phenomenons  of  the 

thermionic emission and the diffusion previously discussed, by basing onto the possible energetic 

states where the carrier can be found in, the electron in our case.

The figure put in evidence the effect due to the charge image on the potential of the electron 

as it approaches to the metal.

By introducing the “quasi Fermi level” (-qφn) the expression of the density of the electrons 

in the generic point x will be:

5.14) ( ) ( ) ( )( )( )KTxxqNxn n ψφ −−= exp  .

Consequently  we  will  speak  of  quasi-Fermi  level  also  for  the  current  density  of  the 

electrons. If µn is the electron mobility:

5.15)
dx

dnqJ n
n

φµ−=  .

However this argumentation is possible only where the potential energy does not vary too 

quickly within the mean free path of the electrons, that is only for x > xm in our scheme, otherwise 

the quasi-Fermi level cannot be used.

Anyway in order to continue our study, we can schematize the path between x = 0 and x = xm  
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as the recombination layer for the electrons and we can describe the charge flow at x =  xm by an 

effective velocity of recombination “vR”, so that:

( )( ) Rm vnxnqJ 0−=  , where n0 is the electronic concentration of quasi-equilibrium, what it 

would be if the equilibrium conditions could be reached without altering the height or the position 

of the maximum of the potential energy. Then, by referring to the Eq. 5.14):
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Still the expression ( )( )KTxq mnφ−exp   can be obtained by 5.14) and 5.15):
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Integrating now between the extremes discussed above (xm and W),  and by remembering that  J is 

independent of the position:
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However, from how we chose the reference, φn(W) = - V , and therefore:
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Eq. 5.16) can be expressed as:
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xqq
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φψ
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exp   the effective diffusion velocity of the electrons between W 

and xm, by remembering that  
KT
qDn

n =µ  .

Coming back for a moment to the velocity of recombination, it is easy to notice that in case 

that  no  electrons  return  from  the  metal,  except  those  associates  to  the  current  density  qn0vR 

previously seen, the semiconductor is a thermionic emitter and in case of a Maxwellian electronic 

distribution it results that:  
c

R qN
TAv

2*

=  , where A* is the famous effective constant of Richardson.

From the 5.18) it is seen that if vD » vR , the process of thermionic emission prevails, if on the 

contrary vR » vD , the process of diffusion prevails.

The  difference  between  the  thermionic  emission  and  the  diffusion  theories  can  be 

understood in a qualitative view by observing the different behavior of the quasi-Fermi level at the 

interface between the semiconductor and the metal:

Fig.  5.3)  Quasi-Fermi level  at  the metal-semiconductor 
interface.
…..… diffusion theory.
------- thermionic emission theory.
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In the case of the diffusion theory, by assuming again that the electron concentration near the 

metal-semiconductor interface is not influenced by the possible polarization, the quasi-Fermi level, 

after  a gradual  decay in  the space-charge zone,  lines up with the Fermi level  of the metal,  as  

illustrated in Fig. 5.3).

Instead in the case of the thermionic emission theory, the “hot” electrons penetrate in the 

metal from the semiconductor and lose their energy down to the thermal equilibrium by colliding 

with the conducting electrons and with the lattice, therefore in such a case the quasi-Fermi level 

decays to the Fermi level of the metal only after it is penetrated into it.

A way to put the basis for the diffusive theory of the transport also comes by assuming the 

width  W  of  the  barrier  greater  than  the  mean  free  path  of  the  charged  carriers,  so  that  they 

experience numerous collisions in the barrier zone; generally in the amorphous materials the mean 

free path of the electrons is rather small, therefore this condition is always verified. This brings to 

conclude that in the Schottky barrier devices realized with amorphous semiconductors the diffusive 

rather than the thermionic theory of the transport must be applied 5,6.
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5.3)  DEVIATION FROM THE IDEALITY

We have seen so far that the equation that connects the current to the voltage in a Schottky 

barrier diode has the same form of a p-n diode one.

In the ideal case it can be written then:

5.19) I = Is (exp(eV/KT) – 1) .

Indeed there are many phenomenons that make the real I-V characteristic to deviate from the 

5.19) that forces to adopt an equivalent circuit for our device as the one of Fig. 5.4).

Fig. 5.4)  Generic diode equivalent 
circuit,  which  shows  the  “real” 
characteristics.  Rs =  series  resis-
tance; Rsh = shunt resistance.

Then on this basis the real I-V characteristic will be written:

5.20) ( ) ( )( ) ( ) shsss RIRVnKTIRVeII −+−−= 1exp

where n is the “ideality factor” of the diode.

In the meanwhile we take into consideration right n, by saying that it has value 1 for an ideal 

diode; a deviation from the unity can be the consequence of a dependence of the height of the 

barrier φb by the polarization voltage, for instance because of the force image, that indeed in the 

amorphous silicon is negligible, or for the presence of an oxide at the metal-semiconductor interface 

as shown in figure 5.5).
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Fig. 5.5)  Schottky barrier with an interface layer.
______  no polarization;
---------  direct pol.n .

Both these phenomenons in fact increase φb in the situation of direct polarization, in a way 

that as the voltage increases, the current increases more slowly than it would in the ideal case and 

this corresponds right to n > 1.

To visualize this process we depart from the current-voltage characteristic as it comes from 

the thermionic theory of the transport:

5.22) φb(V) = φbo + βV ,  having called φbo the barrier in absence of polarization.

Then the 5.21) will be modified in:
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  .

If we put now:

5.24) 1 – β = 1/n , that is  β = 1 - 1/n

5.25) ( )( ) ( )( )KTqVnKTqVJJ −−= exp1exp0  .

This is the true equation that binds current and voltage in a Schottky barrier device when it depends 

on the applied voltage. When however we are under the condition in which q
KTV 3>  , the 5.25) 

can be simplified in:

5.26) ( )( )nKTqVJJ exp0≈  , that is the same expression of the real characteristic of a p-n 
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junction under the same conditions,  where however in that case  n  keeps into account only the 

recombinant processes. In effects the recombination phenomenons in the exhaustion layer for the 

Schottky barriers [see fig. 5.6)] are not appreciable,  especially when the barrier φb is not much 

greater than half of the gap7, therefore the relative barrier for the injection of the holes results very 

big.

Fig. 5.6)  Recombination mechanism in a Schottky barrier.
1: space-charge zone recombination;
2: neutral zone recombination (“holes injection”).

An effect on n similar to that caused by a layer of oxide can also come from a “tunneling” 

process through the barrier Vdo. The layer of oxide that in direct polarization increased the effective 

φb has right the contrary effect in inverse. From this results that no saturation can be reached, as it is 

shown in Fig. 5.7).
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Fig. 5.7)  Inverse characteristic of a Schottky 
diode  with  the  oxide  interface  layers  having 
different thickness.

An analogous behavior of the inverse current can happen because of the generation of electron-hole 

couples in the barrier zone “W”, especially in semiconductors with great forbidden gaps and short 

life-times such as the amorphous silicon. It is clearly proportional to the width of W, therefore by 

knowing as it varies with the voltage, it is possible to recognize it in the graphic of the inverse I(V).

The  “serial  resistance”  that  appears  in  the  5.20)  derives  from a  bad  realization  of  the 

contacts on the device itself, or from a contribution of “sheet resistance” if the evaporated metals 

are very thin, or again, as in our case, from the high-resistance material as the amorphous silicon is. 

Its presence in the device is evidenced by the graph “ln I(V)” through the bending noticed at high 

direct polarizations [see Fig.5.8)].

Fig.  5.8)   Current/voltage 
characteristic  of  a  diode 
showing the serial-resistance 
effect;  ∆V is  the  potential 
drop on it.
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The  eventual  “shunt”  considered  in  5.20)  influences  the  interval  of  the  linear  I(V) 

characteristic around the origin; in fact the current there, instead of remaining null before the knee, 

could grow with a linear dependence on the voltage [see fig.5.9)] right because of the shunt, the 

angular coefficient giving shR1  .

In the case of the amorphous a ∞≠shR  originates from the presence of holes in the less 

homogeneous film, as well as from a tunnel current in the superficial zones of the devices where the 

field is more intense and the barrier thinner. This phenomenon hinders the inverse saturation too.

Fig. 5.9)  Theoretical I(V) characteristic with the “shunt” resistance effect.
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CHAPTER VI

“PHOTOTRANSPORT  IN  THE  AMORPHOUS  SILICON  SCHOTTKY  BARRIER 

DEVICES”
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To reach the equation that governs the phototransport in a junction we have to depart from 

the “current density equation”, that will be written in the following for the electrons and for the 

holes in only one dimension:

6.1a) 




 +=

dx
dnDnEeJ nnn µ

6.1b) 




 −=

dx
dpDpEeJ ppp µ

here we indicate with µn and µp the mobilities, with n and p the concentrations of the electrons and 

the holes, with D the constant of diffusion and with E the electric field.

The first terms at second member of 6.1) represent the drift contribution to the current, while 

the second terms the one due to the diffusion of the carriers.

On the other hand the “continuity equation” tells us that:

6.2a) GR
dx

dJ
edt

nd n +−=∆ 1

6.2b) GR
dx

dJ
edt

pd p +−−=∆ 1

where with ∆n and  ∆p the concentrations of the excess carriers are indicated, with  R the term of 

recombination and with G the generation.

Therefore, for the electrons:
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in stationary condition:  0=∆
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nd
  , and by remembering that  µ
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Similarly for the holes:

0=+−




 − GRpE

KT
e

dx
dp

dx
dDp  .

From the “Shockley-Read-Hall” equation1 (valid for recombination through a single center) 

we know that the recombinant term is:

6.5)
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nnp

dt
dp

dt
dnR

ττ +
−

−===
2

 ,
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where ni is the concentration of the carriers (n = p ≡ ni) in the intrinsic case and with τn and τp the 

life times of the electrons and the holes.

It is evident now that if we insert the 6.5) in the 6.3) and in the 6.4), we will not get an  

analytical solution, but only a numerical one. However approximate methods exist in which simpler 

expressions for R are used.

Particularly one of these2 is applied to the amorphous silicon and it implies that in such a 

material:

I)   the  recombination  of  the  carriers  happens  through  the  recombination  centers  in  the 

forbidden gap;

II)  the density of the photo-generated carriers is greater than the one thermically generated: 

00
2 pnnnp i => ;

III)  the electron density is greater than the holes one; assumption reasonable unless near to 

the surface.

By these assumptions the 6.5) becomes:

6.6)
np pn

npR
ττ +

−≅  ,  which, if τp ~ τn is taken, will be written:

6.7)
p

pR
τ

−=  .

By this way the process of the electron-hole recombination is governed by the density of the 

holes for a large part of the volume of the sample. The number of the recombination centers can be 

supposed constant along the whole sample so that to consider in this way also the recombination 

kinematics of the holes and to take in conclusion τp as a constant.

However to reach the solution of the transport  equations 6.3) and 6.4),  the road is  very 

crooked and difficult and at last not suitable for an immediate comparison with the experience.

A good  description  of  the  spectral  response  can  be  gotten  by  neglecting  this  term  of 

recombination;  in  effects  this  is  permitted  when  the  electric  fields  are  high.  By  this  way  an 

analytical solution of the system of differential equations 6.3), 6.4) can be reached in a relatively 

simple way.

We see how it happens by following the work of Gutkowicz and coworkers3.

Let us call:

6.8)
( )

dx
xdfV

dx
dVE 0=−=  ,  where  V0 is  the  maximum internal  potential  and  f(x)  the 

potential profile.
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6.9) ( ) ( )
LG
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zP

LG
nD

zN
L
xz pn

00

;; ===   will be the new variables where the thickness 

of the film of the amorphous silicon  L, the constant of diffusion  D  and the flow of the photons 

incident on the surface (x = 0) G0 have been put. Then we will have for the 6.3) the new expression:

6.10) ( ) 000 =+




 + zG
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KT
eV

dz
dN

dz
d

L
G

 ;

by expliciting then G(z) = α(λ) G0 g(z,λ)  the 6.10) becomes:

6.11) ( ) ( ) 0, =+




 + λλαε zLg

dz
dfN

dz
dN

dz
d

 , where we put ε = eV0/KT and we called with 

α(λ)  the absorption coefficient and with  g(z,λ)  the absorption profile of the incident light.

Now the “absorptive” side conditions can be introduced, which are valid for ohmic or  ideal 

metal-semiconductor contacts:

6.12) N(z=0) = N(z=1) = P(z=0) = P(z=1) = 0 . 

The 6.11) can be integrated for a first time between 0 and z, to get:

6.13) ( ) 0''
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z

dzzgLA
dz
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dN α ,  with  indicated  by  

0=

+ =
zdz

dNA  a  term that  is 

proportional to the electron current density at the surface.

If this is multiplied by the factor exp(ε f):

( ) 0'')exp()exp()exp()exp(
0
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dz
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εαεεε

we see that the first terms can be reduced to only one derivative:

( )( )fN
dz
d εexp  , for which if we integrate once again it remains:

6.14) ( ) ( )( ) ( )( ) ( ) ( )( ) 0''exp""'exp'exp
00

'

0

=−+ ∫∫ ∫ + dzzfAdzzgzfdzLzfzN
zz z

εεαε  ;

from which:
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The discourse is similar as it concerns the holes. With the usual choices we have:

6.16) ( ) ( ) 0, =+




 − λλαε zLg

dz
dfP

dz
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d

 ; such an expression can be integrated with the 

same side conditions:
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6.17) ( ) 0''
0
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dP αε  ; having indicated by
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− 




=

zdz
dPA   a term proportional to the density of the current of the holes at the surface.

Then by multiplying all for the integral factor  exp(-ε f) , the 6.17) can be written:
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and in conclusion from a further integration we get:
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The integrating constants A+ ed A- can be easily obtained from the side conditions N(1) = 0 

and  P(1) = 0  respectively:
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6.20) ( )( ) ( ) ( )( )∫∫∫ −−=−
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00
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exp''exp dzzfdzzgzfdzLA
z

εεα .

By the adoption of  the non-dimensional variables the equations 6.1) now will be written:

6.21a) 




 +=

dz
dNN

dz
dfeGJ n ε0

6.21b) 




 +=

dz
dPP

dz
dfeGJ p ε0  .

Let us insert now the expressions of the found concentrations of electrons and holes:

( ) ( )( ) ( )( ) ( )( ) ( ) 





−





 −+−= ∫+ ''expexpexp

0
0 dzzgzfLzfAzfN

dz
dfN

dz
dfeGzJ

z

n εαεεεε  ;

6.22) ( ) ( ) 





−= ∫+

z

n dzzgLAeGzJ
0

0 ''α  .

( ) ( )( ) ( )( ) ( )( ) ( ) 





−−−





 +−= ∫− ''expexpexp

0
0 dzzgzfLzfAzfP

dz
dfP

dz
dfeGzJ

z

p εαεεεε  ;
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6.23) ( ) ( ) 





−= −∫ AdzzgLeGzJ

z

p
0

0 ''α  .

The total density of current can be now obtained from the sum of the 6.22) and 6.23), with  

the sign that competes by the chosen reference:

6.24) -(Jn + Jp) = eG0(A- - A+) = Jtot .

As noticed, this is constant as the position z in the sample is changed as it must be, since the 

current has to be solenoidal.

Now it remains to give the correct values to the adopted constants. Wronski and coworkers 

set V0 = 0.45 V following their previous experimental measurements; they assume an exponential 

profile of the potential  in the exhaustion layer:   f(z) = exp(-δLz) ,  with  δ = 5·10-4 cm-1 as they 

calculated it by capacitive measurements.

In the model adopted by Shur for the density of states in the gap of the amorphous silicon, 

we saw in Chapter IV that the potential behavior is acceptable for values smaller than 0.4 V, but 

Wronski in its article noticed that using also other reasonable potential profiles he got essentially the 

same results.

By neglecting the internal reflection of the back contact, that can have influence only in the 

long wavelengths zone, he placed  g(z,λ) = exp(-α(λ)Lz).

The Wronski's results are illustrated in the two Fig.s 6.1) and 6.2). Particularly from the 6.1) 

it is noticed that the maxima of the concentrations of the photogenerated electrons and holes are set 

in opposite positions, this because the electrons and the holes travel in opposite directions under the 

action of the electric field.

Fig.  6.1)  Nondimensional  electron  and  holes 
density as a function of the z position for two αL 
values.
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In  figure  6.2)  the  collection  efficiency 
0

tot

eG
J

=η  calculated  by  the  described  model  is 

compared with the one of a Pd(≅100Å)/a-Si:H(≅2500Å) Schottky barrier device as obtained from 

the spectrum of the short-circuit current and corrected in order to take into account of the reflection 

from the Pd contact.

The  η  decrement at  long wavelengths is mainly due to the diminution of the absorption 

coefficient in such a region.

Instead the decrement at short wavelengths is mainly due to the thermal diffusion of the 

electrons toward the front surface, that is in direction opposite to the field of the junction. This is 

due to the assumption of a totally absorptive [n(z=0) = 0] side condition.

It can be noted that the behavior of the η(λ) well suits the experimental data.

Fig.  6.2)   Carriers  collection  efficiency  η  as  a 
function of the wavelength; the hatches show the 
charge-image effect onto the theoretical behavior 
(continuous line). The points are the experimental 
data.
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CHAPTER VII

“a−SiC:H - a−Si:H  ETEROJUNCTIONS”
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The  etherojunctions  are  junctions  between  two  semiconductors  with  different  forbidden 

bands.

In the case of crystalline solids the origin of the band scheme of an ideal step etherojunction 

is described in the followings in the hypothesis that the material 1 with wider gap is of p type and 

the material 2 of n type.

Fig. 7.1)  Etherostructure construction.

In Fig. 7.la) the energy band schematics for two isolated semiconductors are shown; they are 

compared making the vacuum level as the reference.

When they are put on contact, the Fermi levels, that are indeed the chemical potentials of the 

two materials, have to line up for establishing the equilibrium. This extracts the electrons from the 

semiconductor 2 and accumulates them into the semiconductor 1, inducing the band bending:

7.1) Vd1 + Vd2 = Ef2 – Ef1
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The  discontinuity  expression ∆Ec in  the  conduction  band  is  easily  obtainable  from the 

graphic:

7.2) ∆Ec = χ2 - χ1 .

For the discontinuity ∆Ev in the valence band the game is again simple, there is only the 

forbidden gap involved

7.3) ∆Ev = χ1 + Eg1 - (χ2 + Eg2) = Eg1 - Eg2 - (χ2 - χ1) .

The result coming from 7.2) e 7.3) is obvious:

7.4) ∆Ec + ∆Ev =Egl - Eg2 .

The  etherojunctions  between  amorphous  materials  became  important  recently  with  the 

realization  of  a-SixC1-x:H  films  that  can  be  doped  p  or  n  and  that  have  the  height  of  the  gap 

depending on the carbon content. It can reach up to 2.5 eV.

However it is rather difficult to construct an exact band model for these etherojunctions in 

order to understand the entity of the discontinuities in the valence and in the conduction bands.

An indirect way to understand the disposition of the bands has been adopted by Tawada, 

Hamakawa  and  coworkers1 by  analyzing  the  collection  efficiency  of  the  carriers  (number  of 

electron-holes  couples  accumulated  at  the  contacts  /  number  of  incident  photons)  of  their a-

SiC:H(p) – a-Si:H(i) etherojunction p-i-n solar cells. They saw the collection efficiency at 400 nm 

wavelength practically doubled in comparison to an homojunction of the same type, while it was 

increased only of 20% at 550 nm and it was practically unchanged at higher wavelengths. Besides 

to the simple window-effect ought to the joint of two materials of different gaps, they claimed there 

was  another  important  cause  that  justified  such  an  increase:  the  presence  of  a  barrier  in  the 

conduction band that stopped the back-diffusion of the electrons that were created with the holes in 

the intrinsic layer under the junction field.

The physical structure of the Tawada and Hamakawa device and the bands scheme adopted 

in their theory is shown in Fig. 7.2) together with the path of the carriers photogenerated in the 

exhaustion layer of the cell.
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Fig.  7.2)   Energy  band  profile  of  a 
heterojuction solar cell made by Tawada 
e Hamakawa by a-SiC:H (p) – a-Si:H (i).

The influence of the barrier that stops the electrons especially at lower wavelengths of the 

incident light is big, because the absorption at such a value of the photonic energy is high in this  

material and therefore it depletes the photons in a thickness next to the illuminated surface.

Again, from a spectral analysis Tawada and collaborators noticed that for the same type of 

silicon-carbide  etherojunction  devices  obtained  by  ethylene  instead  of  methane,  the  collection 

efficiency resulted rather lower; moreover, normalizing the maximum of the efficiency with that got 

with the other device, the spectrum coincided perfectly. Therefore they argued that the discontinuity 

in such a case was in the valence band, blocking the holes.

In Fig. 7.3) the comparison between the collection efficiencies of the homojunction and 

etherojunction silicon-carbide based amorphous p-i-n cells obtained by using methane or ethylene is 

shown.
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Fig. 7.3)  Spectra of the collection efficiency 
for the etherojunction and homojunction solar 
cells, the p-i-n type.

A new use of the heterojunction properties is developed in the present Thesis work, with the 

aim to decrease the Schottky diodes saturation current and to get a spectral response manageable by 

the inverse polarization (see the following chapters).
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“EXPERIMENTAL RESULTS”
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8.1 REALIZATION OF Pd/a−Si:H(i)/a−Si:H(n+)/Cr SCHOTTKY BARRIER 

DEVICES

The schematic of Fig. 8.1) illustrates the succession of layers of material necessary for the 

realization of the Schottky barrier diode with the hydrogenated amorphous silicon.

Fig. 8.l)  Schematic not in scale of the 
succession of material layers composing 
our device.

On a glass substrate under a vacuum of di l0-6 torr a layer of Cr (≅0.5  µm) is evaporated, 

which will act as the back contact. Later, everything is put into the G.D. deposition instrument, 

which it has been written of previously, and a first layer of heavily doped a-Si:H is deposited to 

make the chrome ohmic contact. For this purpose inside the reactor a mixture of SiH4 + PH3 flows 

in the 100 ÷ 1 ratio respectively together with H2 where it represents the 90% of the total gas.

Under the following conditions: temperature of the substrate  Ts = 250°C, pressure in the 

quartz bell p = 1 torr,  gas flow φ = 10 sccm and power density w = (0.3 - 0.5) W/cm2,  it takes 5 

minutes of discharge to get  a thickness of material  around 300 Å; this  means 60 Å/min speed 

growth.

The next layer of intrinsic amorphous silicon is realized with a mixture of SiH4 and H2 (1 ÷ 

9)  under the same conditions as before, but for a longer time in order to get a layer of thickness  

between 3000 Å and l µm; in this case the velocity of deposition is slightly higher (75 Å/min).

Finally the grown sample is removed from the G.D. and put again in the evaporator under 

the vacuum for the deposition of the metal, that in our case is a semitransparent palladium (≅ 100 Å: 
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Transmission ≅ 60%) . The area of the device is 7 mm2.

In Fig. 8.2) an I-V characteristic is shown with the effect of the sample contamination by the 

walls of the G.D. reactor, as explained in Chapter II. Near to a first “normal” behavior, even if  

affected by a strong Rs,  there is a second exponential behavior that modulates the first one. This 

effect has been eliminated improving the cleaning of the system (see Chapt. II).

 

I (µA) 

10 

Fig. 8.2)  Current-voltage characteristic of a Schottky barrier device realized by us on amorphous 
silicon. It illustrates the effect of the contamination of the material grown in the G.D. by the walls 
of the reaction chamber. This effect has also been noticed by others1.

In these devices the optimal thickness of the intrinsic amorphous silicon layer was 3000 Å, 

because thicker champions showed a very strong series resistance that worsened the rectification 

ratio. This was due to the layer of material,  in series to our device, not covered by the field of the 

junction. The very elevated resistivity(108-109 Ω·cm at room temperature) explained the size of the 

effect.

In Fig. 8.3) the effect of the series resistance on the I-V characteristic is shown. The value of 
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it (Rs)  can be calculated by the angular coefficient of the straight line extrapolated at high direct 

polarizations: tgα =1/Rs.  In this case: Rs = (570 ± 20)Ω.

From the characteristic around the origin the presence of a small “shunt” is noticed: Rshunt = 

(4.2 ± 0.1)·104 Ω.

Fig. 8.3)   I-V Characteristic showing the Rs effect and the method adopted for the calculation of 
it.
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In Fig. 3.4) the behavior of ln  I(V) of the same sample is shown. As we know, the linear 

slope, that extends for two orders of magnitude of the current, comes from the fact that for V> 0.1 

Volts the equation of the diode is essentially given by:

I = I0 exp[(eV/(nKT)] .
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From this  semilogarithmic  graphic  the  ideality  factor  “n”  ( ) 





=

0ln II
V

KT
en   and  the 

saturation inverse current “I0” (I(V) = I0 when V = 0 ) can be extracted; in this case: n = 1.7 e I0 = 

3·10-10A ⇒ 2

10

0 107
103

−

−

⋅
⋅=J A/cm2 = 4.3⋅10-9 A/cm2. A first path of the inverse characteristic is shown 

there marked by the “x” symbols.

An analysis of the current has been effected on these samples while varying the temperature. 

In Fig. 8.5) such behavior is visualized. The variation of the series resistance appears immediate, 

which passes from about 800Ω at 280K to about 2KΩ at 220K; contemporary the Rsh increases too.



82



83

In figure 8.6) the analysis in temperature is shown again, but this time in semilogarithmic 

scale to see the effect of it on the linear path. The variation of the slope is evident and this has 

consequences on the ideality factor of the diode.

The behavior of n(T) can be seen in Fig. 8.7), that reports the values got by the graph 8.6).

Fig. 8.7)  Ideality factor as a function of the 
temperature for a sample of ours.

n increases notably as the temperature decreases; this behavior is already known both for the 

crystalline 2, and for the amorphous material devices3.
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8.2 SILICON-CARBIDE FILM GROWTH

On the basis of the conclusions of Chapter III we produced amorphous silicon-carbide by 

using a mixture of silane and methane in the G.D..

The adopted mixing ratios have been 7 parts of CH4 and 3 of SiH4,  everything has been 

diluted in 9 parts of H2. Under the same conditions of Hamakawa (see Chapt. III) for the pressure of 

the gases, for the temperature of the substrate, for the flow, and for the power, an incorporation of 

the l0% of carbon in the silicon structure should correspond to such a ratio.

In order to analyze the absorption vs. the wavelength on the sample produced by this way a 

spectrum in the visible and near infrared has been obtained through a spectrophotometer Cary.

By this way it was possible to build the graphic of (αhν)1/2 as a function of hν  with the aim 

again to get the optical gap. The result is shown in Fig. 8.8) with an Egopt = 1.97 eV to be compared 

with what obtained with a a-Si:H sample grown under the same conditions, where Egopt = 1.81 eV, 

that can be seen in Fig. 8.9).
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Indeed from the absorption band located at 2090 cm-1 in the infrared spectrum of the sample, 

a  small  presence  of  bound  carbon  is  deduced.  The  presence  of  recognizable  bound  oxygen  is 

noticed  also  from  the  two  big  bands  around  800  and  1000 cm-1,  perhaps  right  this  element 

influenced the incorporation of the carbon. In Fig. 8.10) such a spectrum is shown with indicated 

the positions of the vibrations associated to the various bonds between silicon and carbon, silicon 

and hydrogen, silicon and oxygen, following what said by Wieder and cowokers4.

Probably it  is  a  bad  vacuum in  the  G.D.  chamber  the  caused of  the  unwanted  oxygen 

incorporation. Unfortunately this does not allow us to distinguish the possible Si-CH3 band at 780 

cm-1 that should be present in the material got by methane, according to Hamakawa.

More recently the G.D. has been improved from the vacuum view point and in the new 

conditions the silicon-carbide has been realized with an infrared spectrum as the one shown in Fig. 

8.11). There the typical bands of the Si-CH3 groups appear clean. Anyway, if there is still an oxygen 

incorporation, it is small as small is the band at 1000 cm-1. Unfortunately, for the time scheduling, 

all of our silicon-carbide devices have been gotten under the first conditions.
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8.3 REALIZATION OF Pd/a−SiC:H(i)/a−Si:H(i)/a−Si:H(n+)/Cr ETHEROSTRUCTURE 

DEVICES

Fig. 8.12)  Schematic of the layers of the 
materials  that  compose the etherostruc-
ture device.

In figure 8.12) the schematic of the layers of the etherojuction device is shown. In practice it 

differs from the previous one by an additional layer of intrinsic amorphous silicon-carbide of about 

200 Å.

A  typical  I-V  characteristic  of  the  produced  samples  is  shown  in  Fig.  8.13)  in 

semilogarithmic scale; here the behavior of the inverse current is proposed too. Note the low inverse 

saturation current (I0 = 1.5·10-11 A),  with a corresponding current density  J0 = 2.1·10-10 A/cm2, the 

good ideality as well as the good rectification factors at 0.5 Volts.
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By maintaining the a-Si:H thickness constant, we tried to vary the thickness of the a-SiC:H 

and the result is shown in Table I.

Table I

Thickness (Å) n J0 (A/cm2) Rs (Ω)
150 1.2 (1) 1.4·10-10 (1) 230 ± 20 (2)

200 1.2 (3) 2.1·10-10 (3) 470 ± 50
400 1.3 (4) 5.0·10-10 (4) 830 ± 80 (5)

(1) ref. Fig. 8.14)
(2) ref. Fig. 8.15)
(3) ref. Fig. 8.13)
(4) ref. Fig. 8.16)
(5) ref. Fig. 8.17)

The values expressed in the first two lines of Table I are those typical of many samples, 

while those of the third line refer to a single test.
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Fig. 8.l4)  Linear path of the semilogarithmic characteristic of the sample with 150 Å a-
SiC:H.
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Fig. 8.15)  I–V characteristic utilized for the series resistance calculation for the sample with 
150 Å a-SiC:H.
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Fig. 8.16)  I(V) of the sample with 400 Å a-SiC:H.
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Fig. 8.17)  I–V characteristic of the sample with 400 Å di a-SiC:H.

The complete behavior down to the “break-down” of one of our etherojunction Schottky 

barrier diodes is shown in Fig. 8.18).
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Fig. 8.l8)  Complete  I−V characteristic of a heterojunction Schottky barrier diode of 
ours. Note the “break-down” at 4.2 V.

The last analysis proposes a comparison between the current-voltage characteristics 

under solar illumination of the two types of produced devices, that is without and with the  

heterojunction, shown in Fig. 8.19) and in Fig. 8.20) respectively.
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Fig. 8.19)  I-V characteristic without and with a AM1 solar illumination (100 mW/cm2) represented 
by curve 1 and 2 respectively. Note the different slope at high direct polarizations, that is due to the 
variation of the Rs.
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Fig.  8.20)   I-V  characteristic  of  the  etherojunction  Schottky  barrier  diode  under  AM1  solar 
illumination.  The  area  of  the  “maximum power  rectangle”  (shadowed)  results  to  be  about 9 
µW/cm2 on l mW/cm2  of the incident solar light, to be compared to the 4 µW/cm2 got from the 
rectangle of Fig. 8.19).
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8.4  Pd/a−Si:H DEVICES SPECTRAL RESPONSE

The measurement apparatus is shown in Fig. 8.21).

The source (SORGENTE), a tungsten filament lamp, is focused through a spherical mirror 

on the entry slit of a Jarrel-Ash monochromator (MONOCROMATORE). The monochromatic light 

coming from the exit slit at first crosses a system of mirrors whose purpose is to move the beam 

away from the entry optics to allow the setup of the beam-splitter, the sample (CAMPIONE) and 

the reference detector (RIVELATORE DI RIFERIMENTO).
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The beam-splitter is obtained by two plain mirrors tilted of 15º with respect to the direction 

of the incident light. The two beams are then focused on the sample and on the reference detector.

A Hamamatsu RS 45 photocell with a know spectral response has been used as a reference detector,  

it is sensitive in the range 2500 − 8000 Å. The photocurrent of the two channels was revealed by 

two Kethley 480 4.5 digits Picoammeters. However to improve the signal to noise ratio the light 

was modulated with a mechanical “chopper” and the signals revealed through two PAR 124 lock-

ins amplifiers. In this case the photocell signal is collected from 1 MΩ  load resistance. The value of 

the load resistance on the sample is selected small in comparison to the shunt resistance of the 

diode, so that the read voltage is proportional to the short-circuit current of the diode.

An analogic to digital converter (ADC) is put at the analogical exit of the picoammeters or 

of the lock-in amplifiers of the two above mentioned measurement channels, in order to input the 

measurement data into a HP 35 desk computer, which elaborates and records them on a tape.

Fig. 8.22)  Photoresponse of one of ours Pd/a-Si:H(i) Schottky barrier diode.
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In Fig. 8.22) the typical photoresponse of the simple Schottky barrier devices (without a-

SiC:H layer) is shown. Note a maximum at 4800 Å.

The small oscillations observed at long wavelengths are the interference fringes generated 

by the incident light and the light reflected by the chrome back contact.

8.5  Pd/a−SiC:H/a−Si:H DEVICES SPECTRAL RESPONSE

A typical photoresponse of the etherojunction Schottky barrier devices realized during this 

Thesis work is shown in figure 8.23). Two maxima are noticed: one at 3900 Å and one at 4600 Å.  

Here the interference fringes ought to the mechanism previously described are present too.



102

Fig. 8.23)  Typical photoresponse of our produced etherojunction Schottky barrier devices.

The inverse polarization (Vinv) effect on the spectral response of these diodes is shown in Fig. 

8.24) for λ = 4000, 5000 e 6000 Å.
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Fig. 8.24)  Photocurrent / short-circuit current ratio at different inverse voltages and at 
three different wavelengths.

The photocurrent has the tendency to saturate when Vinv increases, and as quickly as smaller 

the wavelength is.

The spectral responses for Vinv = 0 V, 0.4 V e 1.5 V are shown in Fig. 8.25). The big increase 

of the sensitivity at longer wavelengths as Vinv grows up is of particular interest in sight of possible 

practical applications.

The collection efficiency “ηcoll” has been measured with a He-Ne laser by correcting it for 

the transmission of the palladium (60%): for Vinv = 1.5 V, at the principal peak we find ηcoll (5100Å) 

= 0.8.
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Fig.  8.25)   Pd/a-SiC:H/a-Si:H  etherojunction  diode  photoresponse  when  varying  the  inverse 
polarization.

A photoresponse spectrum has been obtained also for a silicon-carbide (400 Å) sample and 

the  result  gave  a  strong  decrease  of  the  response  at  long  wavelengths  (>  4500  Å)  with  the 

disappearance of the second maximum.
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The best results found in the literature for Pd/a-Si:H diodes give inverse saturation density 

current J0 = 10-9 A/cm2 and ideality factors n ≅ 1.1, 1.21.

In similar structures we find notable deviations from the exponential behavior at low direct 

polarizations (V < 0.2 V) (see fig.8.4)), the J−V characteristic in this case can be described by:

( )VJ
nKT
qVJJ ecc+





= exp0  .

The excess current (Jecc), that seems not to depend on the temperature [see Fig.8.6)], can be 

due to a mechanism of tunnel through the barrier, made possible by the presence of an elevated 

density of states in the gap. Such effect is absent in our Pd/a-SiC:H/a-Si:H diodes, and, excluding 

the effects related to the series resistance, they follow the law  



 −





= 1exp0 nKT

qVJJ  .

The obtained J0 values are an order of magnitude lower than the ones of the Pd/a-Si:H diodes found 

in the literature and moreover we got a notable reproducibility of the results.

Since the low saturation currents J0 is a very attractive characteristic in a diode for several 

applications, i.e. the noise of a photodiode grows with J0, this result appears interesting and here we 

will try to explain it in terms of the diffusive theory of the transport in the Schottky barriers (see 

Chapt. V).

Let us rewrite here the Eq. 5.11) by setting Ec = -qψ :

9.2) ( )( ) ( )( )∫−=
W

ccn dxKTxEKTqVNqDJ
0

exp1exp  .

We must calculate the term:

9.3) ( )( )∫=
W

c dxKTxEH
0

exp   for  the amorphous material  (a-Si:H or  a-SiC:H);  in  the 

meanwhile we can write:

9.4) ( )∫=
W

c
c

c dE
E
dxKTEH

0

exp  .

The term  
cdE

dx
 can be drawn from the equations 4.24) and 4.27) of Chapter  IV for the 

examined case. By keeping in mind that:

Xf = 0 , ND = 0 (undoped material)

z = -x

and that:

1/2 (cosh(Xc) – 1) = sinh2(Xc/2)  then:
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Since  2Ech ≅ 0.2 eV » KT , we can write:
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Being  Ec(0) = qφb , Ec(0) – Ecb = (Vdo – V)q , Eq.s 9.9), 9.3) e 9.2), and by remembering that 

Dn = µnKT/q,  altogether give:

9.10) ( ) ( )( )1expexpmax −−= KTqVKTqNqJ bcn φξµ

where   
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min
max ε εξ  is  the  field  value  at  the  metal-semiconductor 

interface.
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9.12) ( ) 




 −

=




 −







=

KT
q

J
KT
q

E
qV

EgNqJ b
s

b

ch

do
chcn

φφ
ε εµ expexp

2
cosh2 21

0min0  .

In direct polarization, for qV » KT , Eq. 9.11) can be approximated as:

9.13) 




=

nKT
qVJJ exp0  , with







−=

chE
KTn

2
11  .

On the basis of the model of Shur and coworkers for the field of junction (see Chapt. IV) 

and  of  the  diffusion  theory of  the  transport  (see  Chapt.  V),  from this  equation  it  is  seen  that 

deviations of the ideality factor  n  from the unity can happen in the amorphous silicon, even in 

absence of those mechanisms discussed in Chapter V.

For Ech = 0.1 eV we got the  n = 1.14 value similar to what observed experimentally. The 

equation 9.12) can be used to explain the lowering of J0 observed in our Pd/a-SiC:H/a-Si:H devices.

In fact, by assuming negligible the discontinuity between the valence bands of the a-SiC:H 

and of the a-Si:H, as proposed by Hamakawa2, we get the band scheme shown in Fig. 9.1) for the 

etherojunction structure of the two materials, and it results that: φb2 = φbl +∆Eg , where  φb2  is the 

barrier from the metal to the semiconductor for the a-SiC:H, φbl  the one for the a-Si:H, and ∆Eg is 

the difference between the two gaps. From the data got in the literature we have φbl = 0.94 eV and 

therefore φb2 = 1.1 eV  for ∆Eg = 0.16 eV (see Chapt. VIII).

Fig. 9.1)  Energy band scheme adopted by us (not in scale).
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The ratio between the J0 in the two cases (with or without the silicon-carbide layer ) will be 

given by:

9.14)
( )

( ) ( )( )KT
J
J

HSiaJ
HSiCaJ

bb
s

s
12

1

2

01

02 exp
:
:

φφ −−=
−

−
 .

From our results:

J02 ~ 10-10A/cm2  and  J01 ~ 10-9A/cm2 , therefore we get:

60
1

2 ≅
s

s

J
J

 ; such a difference in Js in the two materials is probably due to a higher value of 

gmin  for the a-SiC:H. On the other hand the higher density of the states in the gap assumed by the 

present model for this material is consistent with the strong reduction of the photoconductivity3 

observed in the silicon-carbide in comparison to the amorphous silicon.

In substance however it is noticed that the advantage achieved through the higher value of 

φb in our Pd/a-SiC:H structure is partly canceled by the increase of the surface field (ξmax).

To get then a further reduction of J0 is necessary to decrease the density of states in the gap 

of the amorphous silicon-carbide and so far only a little effort has been devoted to this problem in 

this and other laboratories.

Again a direct consequence of the presence of the silicon-carbide layer with the aforesaid 

characteristics is the remarkable sensitivity of the spectral  response to the polarization of these 

devices. In fact in a comparison to the case of the Pd/a-Si:H barrier, the region (W),  in which the 

field is sufficiently elevated to annul the effects of recombination, results very small in absence of 

polarization.

The application of the inverse voltage extends W and increases the collection efficiency at 

long wavelengths [see Fig.8.25)]

Up to date of the present investigation however the maximum located to 3900 Å in the 

photoresponse spectrum is not clear.

Research  works  currently in  progress  in  Japan (Sanyo)  for  the realization  of  solid  state 

image sensors based on the amorphous silicon employ three diodes p-i-n for each element, one with 

a  selective  filter  for  blue,  one  with  a  filter  for  green  and  one  with  a  filter  for  red.  If  the  

discrimination among the three colors could be obtained with a single diode by varying only the 

applied voltage, the advantage would be remarkable either from the complexity and the resolution 

view points.
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ADDENDUM

After further measurements on the devices realized with the a-SiC:H/a-Si:H etherojunctions, 

we concluded that the maximum of the photoresponse spectrum located a 3900 Å was an artifact, 

due to a normalization and calibration defect on the reference photodiode.

In  fact  the  following  figure  of  the  photoresponse  (Fotorisposta)  got  in  Dr.  Marcello 

Garozzo's  laboratory  at  “AssorEni”,  Monterotondo  (Rome),  does  not  show  any  peak  at  low 

wavelengths (Lunghezza d'onda).
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