|
Now I could list the steps that I think Muncey had used.
1 2 3 .. 12 24 23 22 13 25 ..
1 143 142 141 140 139 7 8 ... .. 144 2 3 4 5 6 138 137 ...
Note: even if Muncey works on prime square, I use to shows his probably
shifts in the corresponding non prime square (because I use refer to integer
sub sequential number, so there's less probably that I report invalid shift
numbers by typing them).
Now we build the snake square and then we build the corresponding prime snake square:
1 2 3 4 5 6 7 8 9 10 11 12 792 24 23 22 21 20 19 18 17 16 15 14 13 648 25 26 27 28 29 30 31 32 33 34 35 36 504 48 47 46 45 44 43 42 41 40 39 38 37 360 49 50 51 52 53 54 55 56 57 58 59 60 216 72 71 70 69 68 67 66 65 64 63 62 61 72 73 74 75 76 77 78 79 80 81 82 83 84 -72 96 95 94 93 92 91 90 89 88 87 86 85 -216 97 98 99 100 101 102 103 104 105 106 107 108 -360 120 119 118 117 116 115 114 113 112 111 110 109 -504 121 122 123 124 125 126 127 128 129 130 131 132 -648 144 143 142 141 140 139 138 137 136 135 134 133 -792 -6 0 0 0 0 0 0 0 0 0 0 0 0 6 1 3 5 7 11 13 17 19 23 29 31 37 4318 89 83 79 73 71 67 61 59 53 47 43 41 3748 97 101 103 107 109 113 127 131 137 139 149 151 3050 223 211 199 197 193 191 181 179 173 167 163 157 2280 227 229 233 239 241 251 257 263 269 271 277 281 1476 359 353 349 347 337 331 317 313 311 307 293 283 614 367 373 379 383 389 397 401 409 419 421 431 433 -288 503 499 491 487 479 467 463 461 457 449 443 439 -1124 509 521 523 541 547 557 563 569 571 577 587 593 -2144 659 653 647 643 641 631 619 617 613 607 601 599 -3016 661 673 677 683 691 701 709 719 727 733 739 743 -3942 827 823 821 811 809 797 787 773 769 761 757 751 -4972 -22 -8 -8 8 -4 -4 -2 12 2 -8 6 0 6 28
Since the columns are almost near to the magic, we suppose that Muncey has decided to systematize them from immediately. Now I list the shift that behavior needs for systematize it departing from the first and going on.
rows: columns 5 49 <-> 50 1 6 72 <-> 70 1 4 46 <-> 47 2 6 71 <-> 72 2 7 75 <-> 74 2 8 94 <-> 95 2 9 99 <-> 98 2 1 3 <-> 4 3 2 22 <-> 21 3 10 117 <-> 118 3 6 69 <-> 68 4 12 141 <-> 140 4 1°: 5 <-> 6 5 8°: 92 <-> 89 5Note that now one diagonal and columns 6 are become magic.
1 7 <-> 8 7 7 79 <-> 82 7 8 90 <-> 86 7 11 127 <-> 128 7 2 17 <-> 10 * 8 4 15 <-> 41 * 8 6 65 <-> 64 7 80 <-> 90 * 8 10 113 <-> 129 * 8 12 136 <-> 137 1 9 <-> 17 9 2 41 <-> 16 9 7 81 <-> 79 9 8 88 <-> 80 9 9 106 <-> 105 9 10 111 <-> 112 9 1 9 <-> 11 10 8 87 <-> 85 10 11 130 <-> 132 10 11 130 <-> 131 11To make the other diagonal ok, we must do this:
90 <-> 92 *Note that the * means that the shift was not done in the same row. The strange thing is that the number 90 was changed two time with *. This probably means that Muncey first makes the diagonals to the right state, and then changes the columns state:
1 2 3 4 5 6 7 8 9 10 11 12 792 24 23 22 21 20 19 18 17 16 15 14 13 648 25 26 27 28 29 30 31 32 33 34 35 36 504 48 47 46 45 44 43 42 41 40 39 38 37 360 49 50 51 52 53 54 55 56 57 58 59 60 216 72 71 70 69 68 67 66 65 64 63 62 61 72 73 74 75 76 77 78 79 80 81 82 83 84 -72 96 95 94 93 92 91 90 89 88 87 86 85 -216 97 98 99 100 101 102 103 104 105 106 107 108 -360 120 119 118 117 116 115 114 113 112 111 110 109 -504 121 122 123 124 125 126 127 128 129 130 131 132 -648 144 143 142 141 140 139 138 137 136 135 134 133 -792 -6 0 0 0 0 0 0 0 0 0 0 0 0 6 1 3 5 7 11 13 17 19 23 29 31 37 4318 89 83 79 73 71 67 61 59 53 47 43 41 3748 97 101 103 107 109 113 127 131 137 139 149 151 3050 223 211 199 197 193 191 181 179 173 167 163 157 2280 227 229 233 239 241 251 257 263 269 271 277 281 1476 359 353 349 347 337 331 317 313 311 307 293 283 614 367 373 379 383 389 397 401 409 419 421 431 433 -288 503 499 491 487 479 467 463 461 457 449 443 439 -1124 509 521 523 541 547 557 563 569 571 577 587 593 -2144 659 653 647 643 641 631 619 617 613 607 601 599 -3016 661 673 677 683 691 701 709 719 727 733 739 743 -3942 827 823 821 811 809 797 787 773 769 761 757 751 -4972 -22 -8 -8 8 -4 -4 -2 12 2 -8 6 0 6 28In the previous squares, the right values for the diagonal are in bold, instead, the same color are used for the values that are to be swapped.
1 2 3 4 5 6 7 8 9 10 11 12 792 24 23 22 21 20 19 18 17 16 15 14 13 648 25 26 27 28 29 30 31 32 33 34 35 36 504 48 47 46 45 44 43 42 41 40 39 38 37 360 49 50 51 52 53 54 55 56 57 58 59 60 216 72 71 70 69 68 67 66 65 64 63 62 61 72 73 74 75 76 77 78 79 80 81 82 83 84 -72 96 95 94 93 89 91 90 92 88 87 86 85 -216 97 98 99 100 101 102 103 104 105 106 107 108 -360 120 119 117 118 116 115 114 113 112 111 110 109 -504 121 122 123 124 125 126 127 128 129 130 131 132 -648 144 143 142 141 140 139 138 137 136 135 134 133 -792 -2 0 0 1 -1 3 0 0 -3 0 0 0 0 3 1 3 5 7 11 13 17 19 23 29 31 37 4318 89 83 79 73 71 67 61 59 53 47 43 41 3748 97 101 103 107 109 113 127 131 137 139 149 151 3050 223 211 199 197 193 191 181 179 173 167 163 157 2280 227 229 233 239 241 251 257 263 269 271 277 281 1476 359 353 349 347 337 331 317 313 311 307 293 283 614 367 373 379 383 389 397 401 409 419 421 431 433 -288 503 499 491 487 461 467 463 479 457 449 443 439 -1124 509 521 523 541 547 557 563 569 571 577 587 593 -2144 659 653 643 647 641 631 619 617 613 607 601 599 -3016 661 673 677 683 691 701 709 719 727 733 739 743 -3942 827 823 821 811 809 797 787 773 769 761 757 751 -4972 0 -8 -8 12 -8 14 -2 12 -16 -8 6 0 6 10So, we obtain:
1 3 5 7 11 13 17 19 23 29 31 37 4318 89 83 79 73 71 67 61 59 53 47 43 41 3748 97 101 103 107 109 113 127 131 137 139 149 151 3050 223 211 199 197 193 191 181 179 173 167 163 157 2280 227 229 233 239 241 251 257 263 269 271 277 281 1476 359 353 349 347 337 331 317 313 311 307 293 283 614 367 373 379 383 389 397 421 409 419 401 431 433 -288 503 499 491 487 461 467 479 463 457 449 443 439 -1124 509 521 523 541 547 557 563 569 577 571 587 593 -2144 659 653 643 647 641 631 619 617 613 607 601 599 -3016 661 673 677 683 691 701 709 719 727 733 739 743 -3942 827 823 821 811 809 797 787 773 769 761 757 751 -4972 0 -8 -8 12 -8 14 -2 -24 0 -14 32 0 6 0The above changes are for making the first row to the magic state. In fact, I must suppose that now Muncey makes first the row, and finally the columns.
1 3 5 7 11 13 17 19 23 29 31 37 4318 89 83 79 73 71 67 61 59 53 47 43 41 3748 97 101 103 107 109 113 127 131 137 139 149 151 3050 223 211 199 197 193 191 181 179 173 167 163 157 2280 229 227 233 239 241 251 257 263 269 271 277 281 1476 349 353 359 347 337 331 317 313 311 307 293 283 614 367 373 379 383 389 397 421 409 419 401 431 433 -288 503 499 491 487 461 467 479 463 457 449 443 439 -1124 509 521 523 541 547 557 563 569 577 571 587 593 -2144 659 653 643 647 641 631 619 617 613 607 601 599 -3016 661 673 677 683 691 701 709 719 727 733 739 743 -3942 827 823 821 811 809 797 787 773 769 761 757 751 -4972 0 0 -6 2 -8 14 -2 -24 0 -14 32 0 6 0The above are the changes for making the row 2 to the magic state. The strange thing is that if you only make red and blue changes, you obtain the magic state. So, why use another 3 changes?.
This learn us that is very difficult this reverse engineering about the Muncey works. On the other hand, this has shows us that even if we don't use computer (like in 1913) the order 12 is easy to make magic if we use an initial construction similar to the snake (at this point you must suppose that Muncey may have use different initial construction, but I think that the snake construction is the more probably), and make first the diagonals to the magic state. Final note: may programs of order 12 never find solution if we first make the diagonals magic, so this means that we must change values from point that are not in the same columns and rows for making them magic.
Magic Square | Tognon Stefano Research |