
 

Introduction to DSP 

The BORES Signal Processing DSP course - Introduction to DSP - is free of charge on line. 

• basics - sampling, aliasing, reconstruction and quantisation  
• time domain processing - correlation and convolution  
• frequency analysis - Fourier transforms, resolution, spectral leakage and windowing  
• filtering - including FIR filters  
• IIR filters - design, realisation, and quantisation effects  
• DSP processors - real world requirements, special features  
• programming a DSP processor  

These courses are for individual study over the Internet only. All material is copyright: you are 
not permitted to make copies or print out material, for personal use or for teaching. 

Our DSP training classes offer intensive and highly practical training in DSP and Media 
Processing. Contact us via email - bores@bores.com or telephone +44 (0)1483 740138 for 
details. 

Introduction to DSP - basics 

This is the first module of the BORES Signal Processing DSP course - Introduction to DSP. It 
covers the following subjects: 

• what is DSP?  
• converting analogue signals to digital  
• aliasing and the sampling theroem  
• antialiasing and signal reconstruction  
• frequency resolution  
• quantisation error  

These courses are for individual study over the Internet only. All material is copyright: you are 
not permitted to make copies or print out material, for personal use or for teaching. 

Our DSP training classes offer intensive and highly practical training in DSP and Media 
Processing. Contact us via email - bores@bores.com or telephone +44 (0)1483 740138 for 
details. 



Basics: What is DSP? 

Digital Signal Processing (DSP) is used in a wide variety of applications, and it is hard to find a 
good definition that is general. 

We can start by dictionary definitions of the words: 

Digital  
operating by the use of discrete signals to represent data in the form of numbers  

Signal  
a variable parameter by which information is conveyed through an electronic circuit  

Processing  
to perform operations on data according to programmed instructions  

Which leads us to a simple definition of: 

Digital Signal processing  
changing or analysing information which is measured as discrete sequences of numbers  

Note two unique features of Digital Signal processing as opposed to plain old ordinary digital 
processing: 

• signals come from the real world - this intimate connection with the real world leads to 
many unique needs such as the need to react in real time and a need to measure 
signals and convert them to digital numbers  

• signals are discrete - which means the information in between discrete samples is lost  

The advantages of DSP are common to many digital systems and include: 

Versatility: 

• digital systems can be reprogrammed for other applications (at least where 
programmable DSP chips are used)  

• digital systems can be ported to different hardware (for example a different DSP chip or 
board level product)  

Repeatability: 

• digital systems can be easily duplicated  
• digital systems do not depend on strict component tolerances  
• digital system responses do not drift with temperature  

Simplicity: 

• some things can be done more easily digitally than with analogue systems  

DSP is used in a very wide variety of applications. 



 

but most share some common features: 

• they use a lot of maths (multiplying and adding signals)  
• they deal with signals that come from the real world  
• they require a response in a certain time  

Where general purpose DSP processors are concerned, most applications deal with signal 
frequencies that are in the audio range. 

Basics: Converting analogue signals 

Most DSP applications deal with analogue signals. 

• the analogue signal has to be converted to digital form  

The analogue signal - a continuous variable defined with infinite precision - is converted to a 
discrete sequence of measured values which are represented digitally. 

Information is lost in converting from analogue to digital, due to: 

• inaccuracies in the measurement  
• uncertainty in timing  
• limits on the duration of the measuremen  

These effects are called quantisation errors. 

 

The continuous analogue signal has to be held before it can be sampled. 

Otherwise, the signal would be changing during the measurement. 



 

 

Only after it has been held can the signal be measured, and the measurement converted to a 
digital value. 

 

 

The sampling results in a discrete set of digital numbers that represent measurements of the 
signal - usually taken at equal intervals of time. 

 

Note that the sampling takes place after the hold. This means that we can sometimes use a 
slower Analogue to Digital Converter (ADC) than might seem required at first sight. The hold 
circuit must act fast - fast enough that the signal is not changing during the time the circuit is 
acquiring the signal value - but the ADC has all the time that the signal is held to make its 
conversion. 

We don't know what we don't measure. 

In the process of measuring the signal, some information is lost. 



 

Sometimes we may have some a priori knowledge of the signal, or be able to make some 
assumptions that will let us reconstruct the lost information. 

Basics:Aliasing 
We only sample the signal at intervals.  

We don't know what happened between the samples. 

A crude example is to consider a 'glitch' that happened to fall between adjacent samples. Since 
we don't measure it, we have no way of knowing the glitch was there at all. 

 

In a less obvious case, we might have signal components that are varying rapidly in between 
samples. Again, we could not track these rapid inter-sample variations. 

We must sample fast enough to see the most rapid changes in the signal. 



Sometimes we may have some a priori knowledge of the signal, or be able to make some 
assumptions about how the signal behaves in between samples.  

If we do not sample fast enough, we cannot track completely the most rapid changes in the 
signal. 

Some higher frequencies can be incorrectly interpreted as lower ones. 

 

In the diagram, the high frequency signal is sampled just under twice every cycle. The result 
is, that each sample is taken at a slightly later part of the cycle. If we draw a smooth 
connecting line between the samples, the resulting curve looks like a lower frequency. This is 
called 'aliasing' because one frequency looks like another. 

Note that the problem of aliasing is that we cannot tell which frequency we have - a high 
frequency looks like a low one so we cannot tell the two apart. But sometimes we may have 
some a priori knowledge of the signal, or be able to make some assumptions about how the 
signal behaves in between samples, that will allow us to tell unambiguously what we have. 

Nyquist showed that to distinguish unambiguously between all signal frequency components 
we must sample faster than twice the frequency of the highest frequency component. 



 

In the diagram, the high frequency signal is sampled twice every cycle. If we draw a smooth 
connecting line between the samples, the resulting curve looks like the original signal. But if 
the samples happened to fall at the zero crossings, we would see no signal at all - this is why 
the sampling theorem demands we sample faster than twice the highest signal frequency.  

This avoids aliasing. 

The highest signal frequency allowed for a given sample rate is called the Nyquist frequency. 

Actually, Nyquist says that we have to sample faster than the signal bandwidth, not the 
highest frequency. But this leads us into multirate signal processing which is a more advanced 
subject. 

Basics: Antialiasing 

Nyquist showed that to distinguish unambiguously between all signal frequency components 
we must sample at least twice the frequency of the highest frequency component. To avoid 
aliasing, we simply filter out all the high frequency components before sampling. 

 

Note that antialias filters must be analogue - it is too late once you have done the sampling. 



This simple brute force method avoids the problem of aliasing. But it does remove information 
- if the signal had high frequency components, we cannot now know anything about them. 

Although Nyquist showed that provide we sample at least twice the highest signal frequency 
we have all the information needed to reconstruct the signal, the sampling theorem does not 
say the samples will look like the signal. 

 

The diagram shows a high frequency sine wave that is nevertheless sampled fast enough 
according to Nyquist's sampling theorem - just more than twice per cycle. When straight lines 
are drawn between the samples, the signal's frequency is indeed evident - but it looks as 
though the signal is amplitude modulated. This effect arises because each sample is taken at a 
slightly earlier part of the cycle. Unlike aliasing, the effect does not change the apparent signal 
frequency. The answer lies in the fact that the sampling theorem says there is enough 
information to reconstruct the signal - and the correct reconstruction is not just to draw 
straight lines between samples. 

The signal is properly reconstructed from the samples by low pass filtering: the low pass filter 
should be the same as the original antialias filter. 

 



The reconstruction filter interpolates between the samples to make a smoothly varying 
analogue signal. In the example, the reconstruction filter interpolates between samples in a 
'peaky' way that seems at first sight to be strange. The explanation lies in the shape of the 
reconstruction filter's impulse response. 

 

The impulse response of the reconstruction filter has a classic 'sin(x)/x shape. The stimulus fed 
to this filter is the series of discrete impulses which are the samples. Every time an impulse 
hits the filter, we get 'ringing' - and it is the superposition of all these peaky rings that 
reconstructs the proper signal. If the signal contains frequency components that are close to 
the Nyquist, then the reconstruction filter has to be very sharp indeed. This means it will have 
a very long impulse response - and so the long 'memory' needed to fill in the signal even in 
region of the low amplitude samples. 

Basics: Frequency resolution 

We only sample the signal for a certain time. 

We cannot see slow changes in the signal if we don't wait long enough. 

In fact we must sample for long enough to detect not only low frequencies in the signal, but 
also small differences between frequencies. The length of time for which we are prepared to 
sample the signal determines our ability to resolve adjacent frequencies - the frequency 
resolution. 

We must sample for at least one complete cycle of the lowest frequency we want to resolve. 

 

We can see that we face a forced compromise. We must sample fast to avoid and for a long 
time to achieve a good frequency resolution. But sampling fast for a long time means we will 
have a lot of samples - and lots of samples means lots of computation, for which we generally 



don't have time. So we will have to compromise between resolving frequency components of 
the signal, and being able to see high frequencies. 

Basics: Quantisation 

When the signal is converted to digital form, the precision is limited by the number of bits 
available.  

The diagram shows an analogue signal which is then converted to a digital representation - in 
this case, with 8 bit precision. 

The smoothly varying analogue signal can only be represented as a 'stepped' waveform due to 
the limited precision. 

Sadly, the errors introduced by digitisation are both non linear and signal dependent. 

Non linear means we cannot calculate their effects using normal maths. 

Signal dependent means the errors are coherent and so cannot be reduced by simple means. 

This is a common problem in DSP. The errors due to limited precision (ie word length) are non 
linear (hence incalculable) and signal dependent (hence coherent). Both are bad news, and 
mean that we cannot really calculate how a DSP algorithm will perform in limited precision - 
the only reliable way is to implement it, and test it against signals of the type expected. The 
non linearity can also lead to instability - particularly with IIR filters. 

 

The word length of hardware used for DSP processing determines the available precision and 
dynamic range. 

Uncertainty in the clock timing leads to errors in the sampled signal. 



 

The diagram shows an analogue signal which is held on the rising edge of a clock signal. If the 
clock edge occurs at a different time than expected, the signal will be held at the wrong value. 
Sadly, the errors introduced by timing error are both non linear and signal dependent. 

A real DSP system suffers from three sources of error due to limited word length in the 
measurement and processing of the signal: 

• limited precision due to word length when the analogue signal is converted to digital 
form  

• errors in arithmetic due to limited precision within the processor itself  
• limited precision due to word length when the digital samples are converted back to 

analogue form  

 

These errors are often called 'quantisation error'. The effects of quantisation error are in fact 
both non linear and signal dependent. Non linear means we cannot calculate their effects using 
normal maths. Signal dependent means that even if we could calculate their effect, we would 
have to do so separately for every type of signal we expect. A simple way to get an idea of the 
effects of limited word length is to model each of the sources of quantisation error as if it were 
a source of random noise. 

 



The model of quantisation as injections of random noise is helpful in gaining an idea of the 
effects. But it is not actually accurate, especially for systems with feedback like IIR filters. 

The effect of quantisation error is often similar to an injection of random noise. 

 

The diagram shows the spectrum calculated from a pure tone 

• the top plot shows the spectrum with high precision (double precision floating point)  
• the bottom plot shows the spectrum when the sine wave is quantised to 16 bits  

The effect looks very like low level random noise. The signal to noise ratio is affected by the 
number of bits in the data format, and by whether the data is fixed point or floating point. 

Basics: Summary 

A DSP system has three fundamental sources of limitation: 

• loss of information because we only take samples of the signal at intervals  
• loss of information because we only sample the signal for a certain length of time  
• errors due to limited precision (ie word length) in data storage and arithmetic  

The effects of these limitations are as follows: 

• aliasing is the result of sampling, which means we cannot distinguish between high and 
low frequencies  

• limited frequency resolution is the result of limited duration of sampling, which means 
we cannot distinguish between adjacent frequencies  

• quantisation error is the result of limited precision (word length) when converting 
between analogue and digital forms, when storing data, or when performing arithmetic  

Aliasing and frequency resolution are fundamental limitations - they arise from the 
mathematics and cannot be overcome. They are limitations of any sampled data system, not 
just digital ones. 

Quantisation error is an artifact of the imperfect precision, and can be improved upon by using 
an increased word length. It is a feature peculiar to digital systems. Its effects are non linear 



and signal dependent, but can sometimes be acceptably modelled as injections of random 
noise. 

Time domain processing 

This is the second module of the BORES Signal Processing DSP course - Introduction to DSP. 

It covers the following subjects: 

• correlation  
• autocorrelation to extract a signal from noise  
• cross correlation to locate a know signal  
• cross correlation to identify a signal  
• convolution  

These courses are individual study over the Internet only. All material is copyright: you are not 
permitted to make copies or print out material, for personal use or for teaching. 

 

Our DSP training classes offer intensive and highly practical training in DSP and Media 
Processing. Contact us via email - bores@bores.com or telephone +44 (0)1483 740138 for 
details. 

Time domain processing: Correlation 

Correlation is a weighted moving average: 

 

One signal provides the weighting function. 

 

The diagram shows how a single point of the correlation function is calculated: 

• first, one signal is shifted with respect to the other  
• the amount of the shift is the position of the correlation function point to be calculated  
• each element of one signal is multiplied by the corresponding element of the other  



• the area under the resulting curve is integrated  

Correlation requires a lot of calculations. If one signal is of length M and the other is of length 
N, then we need (N * M) multiplications, to calculate the whole correlation function. 

Note that really, we want to multiply and then accumulate the result - this is typical of DSP 
operations and is called a 'multiply/accumulate' operation. It is the reason that DSP processors 
can do multiplications and additions in parallel. 

Time domain processing: Correlation 

Correlation is a maximum when two signals are similar in shape, and are in phase (or 
'unshifted' with respect to each other). 

Correlation is a measure of the similarity between two signals as a function of time shift 
between them 

 

The diagram shows two similar signals. 

When the two signals are similar in shape and unshifted with respect to each other, their 
product is all positive. This is like constructive interference, where the peaks add and the 
troughs subtract to emphasise each other. The area under this curve gives the value of the 
correlation function at point zero, and this is a large value. 

As one signal is shifted with respect to the other, the signals go out of phase - the peaks no 
longer coincide, so the product can have negative going parts. This is a bit like destructive 
interference, where the troughs cancel the peaks. The area under this curve gives the value of 
the correlation function at the value of the shift. The negative going parts of the curve now 
cancel some of the positive going parts, so the correlation function is smaller. 



The largest value of the correlation function shows when the two signals were similar in shape 
and unshifted with respect to each other (or 'in phase'). The breadth of the correlation function 
- where it has significant value - shows for how long the signals remain similar. 

Time domain processing: Correlation functions 

The correlation function shows how similar two signals are, and for how long they remain 
similar when one is shifted with respect to the other. 

Correlating a signal with itself is called autocorrelation. Different sorts of signal have distinctly 
different autocorrelation functions. We can use these differences to tell signals apart. 

 

The diagram shows three different types of signal: 

• Random noise is defined to be uncorrelated - this means it is only similar to itself with 
no shift at all. Even a shift of one sample either way means there is no correlation at 
all, so the correlation function of random noise with itself is a single sharp spike at shift 
zero.  

• Periodic signals go in and out of phase as one is shifted with respect to the other. So 
they will show strong correlation at any shift where the peaks coincide. The 
autocorrelation function of a periodic signal is itself a periodic signal, with a period the 
same as that of the original signal.  

• Short signals can only be similar to themselves for small values of shift, so their 
autocorrelation functions are short.  

The three types of signal have easily recognisable autocorrelation functions. 

Time domain processing: Autocorrelation 

Autocorrelation (correlating a signal with itself) can be used to extract a signal from noise. 

The diagram shows how the signal can be extracted from the noise: 



• Random noise has a distinctive 'spike' autocorrelation function.  
• A sine wave has a periodic autocorrelation function  
• So the autocorrelation function of a noisy sine wave is a periodic function with a single 

spike which contains all the noise power.  

The separation of signal from noise using autocorrelation works because the autocorrelation 
function of the noise is easily distinguished from that of the signal. 

Cross correlation (correlating a signal with another) can be used to detect and locate known 
reference signal in noise. 

 

The diagram shows how the signal can be located within the noise. 

• A copy of the known reference signal is correlated with the unknown signal.  
• The correlation will be high when the reference is similar to the unknown signal.  
• A large value for correlation shows the degree of confidence that the reference signal is 

detected.  
• The large value of the correlation indicates when the reference signal occurs.  

Time domain processing: Cross correlation to identify a signal 

Cross correlation (correlating a signal with another) can be used to identify a signal by 
comparison with a library of known reference signals. 

 



The diagram shows how the unknown signal can be identified. 

• A copy of a known reference signal is correlated with the unknown signal.  
• The correlation will be high if the reference is similar to the unknown signal.  
• The unknown signal is correlated with a number of known reference functions.  
• A large value for correlation shows the degree of similarity to the reference.  
• The largest value for correlation is the most likely match.  

Cross correlation is one way in which sonar can identify different types of vessel. 

• Each vessel has a unique sonar 'signature'.  
• The sonar system has a library of pre-recorded echoes from different vessels.  
• An unknown sonar echo is correlated with a library of reference echoes.  
• The largest correlation is the most likely match.  

 

Time domain processing: Convolution 

Convolution is a weighted moving average with one signal flipped back to front: 

The equation is the same as for correlation except that the second signal (y[k - n]) is flipped 
back to front. 

 

The diagram shows how the unknown signal can be identified. 

The diagram shows how a single point of the convolution function is calculated: 

• first, one signal is flipped back to front  
• then, one signal is shifted with respect to the other  
• the amount of the shift is the position of the convolution function point to be calculated  
• each element of one signal is multiplied by the corresponding element of the other  
• the area under the resulting curve is integrated  

Convolution requires a lot of calculations. If one signal is of length M and the other is of length 
N, then we need (N * M) multiplications, to calculate the whole convolution function. 



Note that really, we want to multiply and then accumulate the result - this is typical of DSP 
operations and is called a 'multiply/accumulate' operation. It is the reason that DSP processors 
can do multiplications and additions in parallel. 

Convolution is used for digital filtering. 

The reason convolution is preferred to correlation for filtering has to do with how the frequency 
spectra of the two signals interact. Convolving two signals is equivalent to multiplying the 
frequency spectra of the two signals together - which is easily understood, and is what we 
mean by filtering. Correlation is equivalent to multiplying the complex conjugate of the 
frequency spectrum of one signal by the frequency spectrum of the other. Complex 
conjugation is not so easily understood and so convolution is used for digital filtering. 
Convolving by multiplying frequency spectra is called fast convolution. 

Time domain processing: Convolution to smooth a signal 

Convolution is a weighted moving average with one signal flipped back to front. 

Convolving a signal with a smooth weighting function can be used to smooth a signal: 

 

The diagram shows how a noisy sine wave can be smoothed by convolving with a rectangular 
smoothing function - this is just a moving average. 

The smoothing property leads to the use of convolution for digital filtering. 

Time domain processing: Convolution and correlation 

Correlation is a weighted moving average: 

 

Convolution is a weighted moving average with one signal flipped back to front: 

 



Convolution and correlation are the same except for the flip: 

 

Convolution is used for digital filtering. 

The reason convolution is preferred to correlation for filtering has to do with how the frequency 
spectra of the two signals interact. Convolving two signals is equivalent to multiplying the 
frequency spectra of the two signals together - which is easily understood, and is what we 
mean by filtering. Correlation is equivalent to multiplying the complex conjugate of the 
frequency spectrum of one signal by the frequency spectrum of the other. Complex 
conjugation is not so easily understood and so convolution is used for digital filtering. 

Time domain processing: Convolution and correlation 

If one signal is symmetric, convolution and correlation are identical: 

 

If one signal is symmetric, then flipping it back to front does not change it. So convolution and 
correlation are the same. 

We hope you have found this course module to be helpful. Please contact us with your 
comments or suggestions. 

Introduction to DSP - frequency 

This is the third module of the BORES Signal Processing DSP course - Introduction to DSP. 



It covers the following subjects: 

• Fourier transforms  
• convolution in the frequency domain  
• short time Fourier transforms  
• frequency leakage  
• windowing  
• other transforms  

These courses are individual study over the Internet only. All material is copyright: you are not 
permitted to make copies or print out material, for personal use or for teaching. 

Our DSP training classes offer intensive and highly practical training in DSP and Media 
Processing. Contact us via email - bores@bores.com or telephone +44 (0)1483 740138 for 
details. 

Frequency analysis: Fourier transforms 

Jean Baptiste Fourier showed that any signal or waveform could be made up just by adding 
together a series of pure tones (sine waves) with appropriate amplitude and phase. 

This is a rather startling theory, if you think about it. It means, for instance, that by simply 
turning on a number of sine wave generators we could sit back and enjoy a Beethoven 
symphony. 

Of course we would have to use a very large number of sine wave generators, and we would 
have to turn them on at the time of the Big Bang and leave them on until the heat death of the 
universe. 

Fourier's theorem assumes we add sine waves of infinite duration. 

 



The diagram shows how a square wave can be made up by adding together pure sine waves at 
the harmonics of the fundamental frequency. 

Any signal can be made up by adding together the correct sine waves with appropriate 
amplitude and phase. 

The Fourier transform is an equation to calculate the frequency, amplitude and phase of each 
sine wave needed to make up any given signal. 

 

• The Fourier Transform (FT) is a mathematical formula using integrals  
• The Discrete Fourier Transform (DFT) is a discrete numerical equivalent using sums 

instead of integrals  
• The Fast Fourier Transform (FFT) is just a computationally fast way to calculate the DFT  

The Discrete Fourier Transform involves a summation: 

 

Where j is the square root of minus one (defined as a number whose sole property is that its 
square is minus one). 

Note that the DFT and the FFT involve a lot of multiplying and then accumulating the result - 
this is typical of DSP operations and is called a 'multiply/accumulate' operation. It is the reason 
that DSP processors can do multiplications and additions in parallel. 

Frequency analysis: Frequency spectra 

Using the Fourier transform, any signal can be analysed into its frequency components. 



 

The diagram shows a recording of speech, and its analysis into frequency components. 

With some signals it is easy to see that they are composed of different frequencies: for 
instance a chord played on the piano is obviously made up of the different pure tones 
generated by the keys pressed. For other signals the connection to frequency is less obvious: 
for example a hand clap has a frequency spectrum but it is less easy to see how the individual 
frequencies are generated. 

You can use a piano as an acoustic spectrum analyser to show that a hand clap has a 
frequency spectrum: 

• open the lid of the piano and hold down the 'loud' pedal  
• clap your hands loudly over the piano  
• you will hear (and see) the strings vibrate to echo the clap sound  
• the strings that vibrate show the frequencies  
• the amount of vibration shows the amplitude  

Each string of the piano acts as a finely tuned resonator. 

Frequency analysis: Frequency spectra 

Using the Fourier transform, any signal can be analysed into its frequency components. 

Every signal has a frequency spectrum. 

• the signal defines the spectrum  
• the spectrum defines the signal  

We can move back and forth between the time domain and the frequency domain without 
losing information. 

The above statement is true mathematically, but is quite incorrect in any practical sense - 
since we will lose information due to errors in the calculation, or due to deliberately missing 



out some information that we can't measure or can't compute. But the basic idea is a good one 
when visualising time signals and their frequency spectra. 

 

The diagram shows a number of signals and their frequency spectra. 

Understanding the relation between time and frequency domains is useful: 

• some signals are easier to visualise in the frequency domain  
• some signals are easier to visualise in the time domain  
• some signals take less information to define in the time domain  
• some signals take less information to define in the frequency domain  

For example a sine wave takes a lot of information to define accurately in the time domain: 
but in the frequency domain we only need three data - the frequency, amplitude and phase. 

Frequency analysis: Convolution 

Convolution is a weighted moving average with one signal flipped back to front: 

 

Convolution is the same as multiplying frequency spectra. 

 



Convolution by multiplying frequency spectra can take advantage of the Fast Fourier Transform 
- which is a computationally efficient algorithm. So this can be faster than convolution in the 
time domain, and is called Fast Convolution. 

Frequency analysis: Short term Fourier transform 

The Fourier transform assumes the signal is analysed over all time - an infinite duration. 

This means that there can be no concept of time in the frequency domain, and so no concept 
of a frequency changing with time. Mathematically, frequency and time are orthogonal - you 
cannot mix one with the other. But we can easily understand that some signals do have 
frequency components that change with time. A piano tune, for example, consists of different 
notes played at different times: or speech can be heard as having pitch that rises and falls 
over time. 

The Short Time Fourier Transform (STFT) tries to evaluate the way frequency content changes 
with time: 

 

The diagram shows how the Short Time Fourier Transform works: 

• the signal is chopped up into short pieces  
• and the Fourier transform is taken of each piece  

Each frequency spectrum show the frequency content during a short time, and so the 
successive spectra show the evolution of frequency content with time. The spectra can be 
plotted one behind the other in a 'waterfall' diagram as shown. 

It is important to realise that the Short Time Fourier Transform involves accepting a 
contradiction in terms because frequency only has a meaning if we use infinitely long sine 
waves - and so we cannot apply Fourier Transforms to short pieces of a signal. 

Frequency analysis: Short signals 

The Fourier Transform works on signals of infinite duration. 

But if we only measure the signal for a short time, we cannot know what happened to the 
signal before and after we measured it. The Fourier Transform has to make an assumption 
about what happened to the signal before and after we measured it.  



The Fourier Transform assumes that any signal can be made by adding a series of sine waves 
of infinite duration. Sine waves are periodic signals. So the Fourier Transform works as if the 
data, too, were periodic for all time. 

 

Frequency analysis: Short signals 

If we only measure the signal for a short time, the Fourier Transform works as is the data were 
periodic for all time. 

Sometimes this assumption can be correct: 

 

The diagram shows what happens if we only measure a signal for a short time: the Fourier 
Transform works as if the data were periodic for all time. 

In the case chosen it happens that the signal is periodic - and that an integral number of 
cycles fit into the total duration of the measurement. 



This means that when the Fourier Transform assumes the signal repeats, the end of one signal 
segment connects smoothly with the beginning of the next - and the assumed signal happens 
to be exactly the same as the actual signal. 

Frequency analysis: Short signals 

If we only measure the signal for a short time, the Fourier Transform works as is the data were 
periodic for all time. 

Sometimes this assumption can be wrong: 

 

The diagram shows what happens if we only measure a signal for a short time: the Fourier 
Transform works as if the data were periodic for all time. 

In the case chosen it happens that the signal is periodic - but that not quite an integral number 
of cycles fit into the total duration of the measurement. 

This means that when the Fourier Transform assumes the signal repeats, the end of one signal 
segment does not connect smoothly with the beginning of the next - the assumed signal is 
similar to the actual signal, but has little 'glitches' at regular intervals. 

The assumed signal is not the same as the actual signal. 

Frequency analysis: Frequency leakage 

There is a direct relation between a signal's duration in time and the width of its frequency 
spectrum: 

• short signals have broad frequency spectra  
• long signals have narrow frequency spectra  



 

Frequency analysis: Frequency leakage 

If we only measure the signal for a short time, the Fourier Transform works as is the data were 
periodic for all time. 

If the signal is periodic, two case arise: 

• If an integral number of cycles fit into the total duration of the measurement, then 
when the Fourier Transform assumes the signal repeats, the end of one signal segment 
connects smoothly with the beginning of the next - and the assumed signal happens to 
be exactly the same as the actual signal.  

• If not quite an integral number of cycles fit into the total duration of the measurement, 
then when the Fourier Transform assumes the signal repeats, the end of one signal 
segment does not connect smoothly with the beginning of the next - the assumed 
signal is similar to the actual signal, but has little 'glitches' at regular intervals.  

There is a direct relation between a signal's duration in time and the width of its frequency 
spectrum: 

• short signals have broad frequency spectra  
• long signals have narrow frequency spectra  

 

The 'glitches' are short signals. So they have a broad frequency spectrum. And this broadening 
is superimposed on the frequency spectrum of the actual signal: 



 

• if the period exactly fits the measurement time, the frequency spectrum is correct  
• if the period does not match the measurement time, the frequency spectrum is 

incorrect - it is broadened  

This broadening of the frequency spectrum determines the frequency resolution - the ability to 
resolve (that is, to distinguish between) two adjacent frequency components. 

Only the one happy circumstance where the signal is such that an integral number of cycles 
exactly fit into the measurement time gives the expected frequency spectrum. In all other 
cases the frequency spectrum is broadened by the 'glitches' at the ends. Matters are made 
worse because the size of the glitch depends on when the first measurement occurred in the 
cycle - so the broadening will change if the measurement is repeated. 

For example a sine wave 'should' have a frequency spectrum which consists of one single line. 
But in practice, if measured say by a spectrum analyser, the frequency spectrum will be a 
broad line - with the sides flapping up and down like Batman's cloak. When we see a perfect 
single line spectrum - for example in the charts sometimes provided with analogue to digital 
converter chips - this has in fact been obtained by tuning the signal frequency carefully so that 
the period exactly fits the measurement time and the frequency spectrum is the best 
obtainable. 

Frequency analysis: Windowing 

If we only measure the signal for a short time, the Fourier Transform works as if the data were 
periodic for all time. 

If not quite an integral number of cycles fit into the total duration of the measurement, then 
when the Fourier Transform assumes the signal repeats, the end of one signal segment does 
not connect smoothly with the beginning of the next - the assumed signal is similar to the 
actual signal, but has little 'glitches' at regular intervals. 

The glitches can be reduced by shaping the signal so that its ends match more smoothly. 



Since we can't assume anything about the signal, we need a way to make any signal's ends 
connect smoothly to each other when repeated. 

One way to do this is to multiply the signal by a 'window' function: 

 

The easiest way to make sure the ends of a signal match is to force them to be zero at the 
ends: that way, their value is necessarily the same. 

Actually, we also want to make sure that the signal is going in the right direction at the ends to 
match up smoothly. The easiest way to do this is to make sure neither end is going anywhere - 
that is, the slope of the signal at its ends should also be zero. 

Put mathematically, a window function has the property that its value and all its derivatives 
are zero at the ends. 

Multiplying by a window function (called 'windowing') suppresses glitches and so avoids the 
broadening of the frequency spectrum caused by the glitches. 

 

Windowing can narrow the spectrum and make it closer to what was expected. 



Frequency analysis: Windowing 

Multiplying by a window function (called 'windowing') suppresses glitches and so avoids the 
broadening of the frequency spectrum caused by the glitches. 

But it is important to remember that windowing is really a distortion of the original signal:  

 

The diagram shows the result of applying a window function without proper thought. 

The transient response really does have a broad frequency spectrum - but windowing forces it 
to look more as if it had a narrow frequency spectrum instead. 

Worse than this, the window function has attenuated the signal at the point where it was 
largest - so has suppressed a large part of the signal power. This means the overall signal to 
noise ratio has been reduced. 

Applying a window function narrows the frequency spectrum at the expense of distortion and 
signal to noise ratio. Many window function have been designed to trade off frequency 
resolution against signal to noise and distortion. Choice among them depends on knowledge of 
the signal and what you want to do with it. 

Frequency analysis: Wavelets 

Fourier's theorem assumes we add sine waves of infinite duration. 

As a consequence, the Fourier Transform is good at representing signals which are long and 
periodic. 

But the Fourier Transform has problems when used with signals which are short, and not 
periodic. 

Other transforms are possible - fitting the data with different sets of functions than sine waves. 



The trick is, to find a transform whose base set of functions look like the signal with which we 
are dealing. 

 

The diagram shows a signal that is not a long, periodic signal but rather a periodic signal with 
a decay over a short time. This is not very well matched by the Fourier Transform's infinite 
sine waves. But it might be better matched by a different set of functions - say, decaying sine 
waves. Such functions are called 'wavelets' and can be used in the 'wavelet transform'. 

Note that the wavelet transform cannot really be used to measure frequency, because 
frequency only has meaning when applied to infinite sine waves. But, as with the Short Time 
Fourier Transform, we are always willing to stretch a point in order to gain a useful tool. 

The Fourier Transform's real popularity derives not from any particular mathematical merit, 
but from the simple fact that some one (Cooley and Tukey) managed to write an efficient 
program to implement it - called the Fast Fourier Transform (FFT). And now there are lots of 
FFT programs around for all sorts of processors, so it is likely the FFT will remain the most 
popular method for many years because of its excellent support. 

We hope you have found this course module to be helpful. Please contact us with your 
comments or suggestions. 

Filters 

This is the fourth module of the BORES Signal Processing DSP course - Introduction to DSP. 

It covers the following subjects: 

• Filtering as a frequency selective process  
• filter specification  
• filtering in the frequency domain  
• filter equations and frequency response  
• FIR filters  
• window filter design  



• equiripple filter design  

Filtering:Filtering as a frequency selective process 

Filtering is a process of selecting, or suppressing, certain frequency components of a signal. 

A coffee filter allows small particles to pass while trapping the larger grains. A digital filter does 
a similar thing, but with more subtlety. The digital filter allows to pass certain frequency 
components of the signal: in this it is similar to the coffee filter, with frequency standing in for 
particle size. But the digital filter can be more subtle than simply trapping or allowing through: 
it can attenuate, or suppress, each frequency components by a desired amount. This allows a 
digital filter to shape the frequency spectrum of the signal. 

Filtering is often, though not always, done to suppress noise. It depends on the signal's 
frequency spectrum being different from that of the noise: 

 

The diagram shows how how a noisy sine wave viewed as a time domain signal cannot be 
clearly distinguished from the noise. But when viewed as a frequency spectrum, the sine wave 
shows as a single clear peak while the noise power is spread over a broad frequency spectrum. 

By selecting only frequency components that are present in the signal, the noise can be 
selectively suppressed: 

 

The diagram shows how a noisy sine wave may be 'cleaned up' by selecting only a range of 
frequencies that include signal frequency components but exclude much of the noise: 

• the noisy sine wave (shown as a time signal) contains narrow band signal plus broad 
band noise  



• the frequency spectrumis modified by suppressing a range outside the signal's 
frequency components  

• the resulting signal (shown in the time domain again) looks much cleaner  

Filtering: Digital filter specifications 

Digital filters can be more subtly specified than analogue filters, and so are specified in a 
different way: 

 

Whereas analogue filters are specified in terms of their '3dB point' and their 'rolloff', digital 
filters are specified in terms of desired attenuation, and permitted deviations from the desired 
value in their frequency response: 

passband  
the band of frequency components that are allowed to pass  

stopband  
the band of frequency components that are suppressed  

passband ripple  
the maximum amount by which attenuation in the passband may deviate from nominal gain  

stopband attenuation  
the minimum amount by which frequency components in the stopband are attenuated  

The passband need not necessarily extend to the 3 dB point: for example, if passband ripple is 
specified as 0.1 dB, then the passband only extends to a point at which attenuation has 
increased to 0.1 dB. 

Between the passband and the stopband lies a transition band where the filter's shape may be 
unspecified. 



Note that the stopband attenuation is formally specified as the attenuation to the top of the 
first sidelobe of the filter's frequency response. 

Digital filters can also have an 'arbitrary response': meaning, the attenuation is specified at 
certain chosen frequencies, or for certain frequency bands. 

Digital filters are also characterised by their response to an impulse: a signal consisting of a 
single value followed by zeroes: 

 

The impulse response is an indication of how long the filter takes to settle into a steady state: 
it is also an indication of the filter's stability - an impulse response that continues oscillating in 
the long term indicates the filter may be prone to instability. 

The impulse response defines the filter just as well as does the frequency response. 

Filtering: Filtering in the frequency domain 

Filtering can be done directly in the frequency domain, by operating on the signal's frequency 
spectrum: 

 

The diagram shows how how a noisy sine wave can be cleaned up by operating directly upon 
its frequency spectrum to select only a range of frequencies that include signal frequency 
components but exclude much of the noise: 

• the noisy sine wave (shown as a time signal) contains narrow band signal plus broad 
band noise  

• the frequency spectrum is calculated  
• the frequency spectrumis modified by suppressing a range outside the signal's 

frequency components  



• the time domain signal is calculated from the frequency spectrum  
• the resulting signal (shown in the time domain again) looks much cleaner  

Filtering in the frequency domain is efficient, because every calculated sample of the filtered 
signal takes account of all the input samples. 

Filtering in the frequency domain is sometimes called 'acausal' filtering because (at first sight) 
it violates the laws of cause and effect. 

 

Because the frequency spectrum contains information about the whole of the signal - for all 
time values - samples early in the output take account of input values that are late in the 
signal, and so can be thought of as still to happen. The frequency domain filter 'looks ahead' to 
see what the signal is going to do, and so violates the laws of cause and effect. Of course this 
is nonsense - all it means is we delayed a little until the whole signal had been received before 
starting the filter calculation - so filtering directly in the frequency domain is perfectly 
permissible and in fact often the best method. It is often used in image processing. 

There are good reasons why we might not be able to filter in the frequency domain: 

• we might not be able to afford to wait for future samples - often, we need to deliver the 
next output as quickly as possible, usually before the next input is received  

• we might not have enough computational power to calculate the Fourier transform  
• we might have to calculate on a continuous stream of samples without the luxury of 

being able to chop the signal into convenient lumps for the Fourier transform  
• we might not be able to join the edges of the signals smoothly after transforming back 

from the frequency domain  

None of the above reasons should make us ignore the possibility of frequency domain filtering, 
which is very often the best method. It is often used in image processing, or certain types of 
experiment where the data necessarily comes in bursts, such as NMR or infra red 
spectroscopy. 

Filtering: Digital filter equation 

Output from a digital filter is made up from previous inputs and previous outputs, using the 
operation of convolution:  



 

Two convolutions are involved: one with the previous inputs, and one with the previous 
outputs. In each case the convolving function is called the filter coefficients.  

The filter can be drawn as a block diagram: 

Two convolutions are involved: one with the previous inputs, and one with the previous 
outputs. In each case the convolving function is called the filter coefficients.  

The filter can be drawn as a block diagram: 

The filter diagram can show what hardware elements will be required when implementing the 
filter: 

 

The left hand side of the diagram shows the direct path, involving previous inputs: the right 
hand side shows the feedback path, operating upon previous outputs. 

Filtering: Filter frequency response 

Since filtering is a frequency selective process, the important thing about a digital filter is its 
frequency response. 

The filter's frequency response can be calculated from its filter equation: 

 

Where j is the square root of minus one (defined as a number whose sole property is that its 
square is minus one). 



The frequency response H(f) is a continuous function, even though the filter equation is a 
discrete summation. 

Whilst it is nice to be able to calculate the frequency response given the filter coefficients, 
when designing a digital filter we want to do the inverse operation: that is, to calculate the 
filter coefficients having first defined the desired frequency response. So we are faced with an 
inverse problem. 

Sadly, there is no general inverse solution to the frequency response equation. 

To make matters worse, we want to impose an additional constraint on acceptable solutions. 
Usually, we are designing digital filters with the idea that they will be implemented on some 
piece of hardware. This means we usually want to design a filter that meets the requirement 
but which requires the least possible amount of computation: that is, using the smallest 
number of coefficients. So we are faced with an insoluble inverse problem, on which we wish to 
impose additional constraints. 

This is why digital filter design is more an art than a science: the art of finding an acceptable 
compromise between conflicting constraints. 

If we have a powerful computer and time to take a coffee break while the filter calculates, the 
small number of coefficients may not be important - but this is a pretty sloppy way to work 
and would be more of an academic exercise than a piece of engineering. 

Filtering: FIR filters 

It is much easier to approach the problem of calculating filter coefficients if we simplify the 
filter equation so that we only have to deal with previous inputs (that is, we exclude the 
possibility of feedback). The filter equation is then simplified: 

 

If such a filter is subjected to an impulse (a signal consisting of one value followed by zeroes) 
then its output must necessarily become zero after the impulse has run through the 
summation. So the impulse response of such a filter must necessarily be finite in duration. 
Such a filter is called a Finite Impulse Responsefilter or FIR filter. 

 

The filter's frequency response is also simplified, because all the bottom half goes away: 



 

It so happens that this frequency response is just the Fourier transform of the filter 
coefficients. 

The inverse solution to a Fourier transform is well known: it is simply the inverse Fourier 
transform. 

So the coefficients for an FIR filter can be calculated simply by taking the inverse Fourier 
transform of the desired frequency response. 

Here is a recipe for calculating FIR filter coefficients: 

• decide upon the desired frequency response  
• calculate the inverse Fourier transform  
• use the result as the filter coefficients  

BUT... 

Filtering: FIR filter design by the window method 

So the filter coefficients for an FIR filter can be calculated simply by taking the inverse Fourier 
transform of the desired frequency response. 

BUT... 

• The inverse Fourier transformhas to take samples of the continuous desired frequency 
response.  

• to define a sharp filter needs closely spaced frequency samples - so a lot of them  
• so the inverse Fourier transform will give us a lot of filter coefficients  
• but we don't want a lot of filter coefficients  

We can do a better job by noting that: 

• the filter coefficients for an FIR filterare also the impulse response of the filter  
• the impulse response of an FIR filter dies away to zero  
• so many of the filter coefficients for an FIR filter are small  
• and perhaps we can throw away these small values as being less important  

 



Here is a better recipe for calculating FIR filter coefficients based on throwing away the small 
ones: 

• pretend we don't mind lots of filter coefficients  
• specify the desired frequency response using lots of samples  
• calculate the inverse Fourier transform  
• this gives us a lot of filter coefficients  
• so truncate the filter coefficients to give us less  
• then calculate the Fourier transform of the truncated set of coefficients to see if it still 

matches our requirement  

BUT...  

Filtering: FIR filter design by the window method 

FIRfilter coefficients can be calculated by taking the inverse Fourier transform of the desired 
frequency response and throwing away the small values: 

• pretend we don't mind lots of filter coefficients  
• specify the desired frequency response using lots of samples  
• calculate the inverse Fourier transform  
• this gives us a lot of filter coefficients  
• so truncate the filter coefficients to give us less  
• then calculate the Fourier transform of the truncated set of coefficients to see if it still 

matches our requirement  

BUT... 

Truncating the filter coefficients means we have a truncated signal. And a truncated signal has 
a broad frequency spectrum: 

 

So truncating the filter coefficients means the filter's frequency response can only be defined 
coarsely. 

Luckily, we already know a way to sharpen up the frequency spectrum of a truncated signal, 
by applying a window function. So after truncation, we can apply a window function to sharpen 
up the filter's frequency response: 



 

So here is an even better recipe for calculating FIR filter coefficients: 

• pretend we don't mind lots of filter coefficients  
• specify the desired frequency response using lots of samples  
• calculate the inverse Fourier transform  
• this gives us a lot of filter coefficients  
• so truncate the filter coefficients to give us less  
• apply a window function to sharpen up the filter's frequency response  
• then calculate the Fourier transform of the truncated set of coefficients to see if it still 

matches our requirement  

This is called the window method of FIR filter design. 

BUT... 

Filtering: FIR filter design by the window method 

FIR filter coefficientscan be calculated using the window method: 

• pretend we don't mind lots of filter coefficients  
• specify the desired frequency response using lots of samples  
• calculate the inverse Fourier transform  
• this gives us a lot of filter coefficients  
• so truncate the filter coefficients to give us less  
• apply a window function to sharpen up the filter's frequency response  
• then calculate the Fourier transform of the truncated set of coefficients to see if it still 

matches our requirement  

BUT... 

Most window functions have a fixed attenuation to the top of their first sidelobe: 



 

No matter how many filter coefficients you throw at it, you cannot improve on a fixed window's 
attenuation. 

This means that the art of FIR filter design by the window method lies in an appropriate choice 
of window function: 

 

For example, if you need an attenuation of 20 dB or less, then a rectangle window is 
acceptable. If you need 43 dB you are forced to choose the Hanning window, and so on. 

Sadly, the better window functions need more filter coefficients before their shape can be 
adequately defined. So if you need only 25 dB of attenuation you should choose a triangle 
window functions which will give you this attenuation: the Hamming window, for example, 
would give you more attenuation but require more filter coefficients to be adequately defined - 
and so would be wasteful of computer power. 

The art of FIR filter design by the window method lies in choosing the window function which 
meets your requirement with the minimum number of filter coefficients. 

You may notice that if you want an attenuation of 30 dB you are in trouble: the triangle 
window is not good enough but the Hanning window is too good (and so uses more coefficients 
than you need). The Kaiser window function is unique in that its shape is variable. A variable 



parameter defines the shape, so the Kaiser window is unique in being able to match precisely 
the attenuation you require without overperforming. 

Filtering: FIR filter design by the equiripple method 

FIR filter coefficients can be calculated using the window method. 

But the window methoddoes not correspond to any known form of optimisation. In fact it can 
be shown that the window method is not optimal - by which we mean, it does not produce the 
lowest possible number of filter coefficients that just meets the requirement. 

The art of FIR filter design by the window method lies in choosing the window function which 
meets your requirement with the minimum number of filter coefficients. 

If the window method design is not good enough we have two choices: 

• use another window function and try again  
• do something clever  

The Remez Exchange algorithm is something clever. It uses a mathematical optimisation 
method. 

The following explanation is not mathematically correct, but since we are trying to get an idea 
of what is going on, and not trying to duplicate the thinking of geniuses, it is worth going 
through anyway. 

Using the window method to design a filter we might proceed manually as follows: 

• choose a window function that we think will do  
• calculate the filter coefficients  
• check the actual filter's frequency response against the design goal  
• if it overperforms, reduce the number of filter coefficients or relax the window function 

design  
• try again until we find the filter with the lowest number of filter coefficients possible  

In a way, this is what the Remez Exchange algorithm does automatically. It iterates between 
the filter coefficients and the actual frequency response until it finds the filter that just meets 
the specification with the lowest possible number of filter coefficients. Actually, the Remez 
Exchange algorithm never really calculates the frequency response: but it does keep 
comparing the actual with the design goal. 

Remez was a Russian. Two Americans - Parks and McLellan - wrote a FORTRAN program to 
implement the Remez algorithm. So this type of filter design is often called a Parks McLellan 
filter design. 

The Remez/Parks McLellan method produces a filter which just meets the specification without 
overperforming. Many of the window method designs actually perform better as you move 
further away from the passband: this is wasted performance, and means they are using more 



filter coefficients than they need. Similarly, many of the window method designs actually 
perform better than the specification within the passband: this is also wasted performance, 
and means they are using more filter coefficients than they need. The Remez/Parks McLellan 
method performs just as well as the specification but no better: one might say it produces the 
worst possible design that just meets the specification at the lowest possible cost - almost a 
definition of practical engineering. So Remez/Parks McLellan designs have equal ripple - up to 
the specification but no more - in both passband and stopband. This is why they are often 
called equiripple designs. 

 

The equiripple design produces the most efficient filters - that is, filters that just meet the 
specification with the least number of coefficients. But there are reasons why they might not 
be used in all cases: 

• a particular filter shape may be desired, hence a choice of a particular window function  
• equiripple is very time consuming - a design that takes a few seconds to complete using 

the window method can easily take ten or twenty minutes with the equiripple method  
• the window method is very simple and easy to include in a program - for example, 

where one had to calculate a new filter according to some dynamically changing 
parameters  

• there is no guarantee that the Remez Exchange algorithm will converge - it may 
converge to a false result (hence equiripple designs should always be checked): or it 
may not converge ever (resulting in hung computers, divide by zero errors and all sorts 
of other horrors)  

We hope you have found this course module to be helpful. Please contact us with your 
comments or suggestions. 

IIR Filters 

This is the fifth module of the BORES Signal Processing DSP course - Introduction to DSP. It 
covers the following subjects: 

• IIR filter equations and frequency response  
• the z transform  
• the meaning of z  
• poles and zeroes  
• IIR filter design by impulse invariance  
• IIR filter design by the bilinear transform  
• direct form I and II filters  
• quantisation in IIR filters  
• IIR filter implementation structures  



IIR filters: Digital filter equation 

Output from a digital filter is made up from previous inputs and previous outputs, using the 
operation of convolution:  

 

Two convolutionsare involved: one with the previous inputs, and one with the previous 
outputs. In each case the convolving function is called the filter coefficients.  

If such a filter is subjected to an impulse (a signal consisting of one value followed by zeroes) 
then its output need not necessarily become zero after the impulse has run through the 
summation. So the impulse response of such a filter can be infinite in duration. Such a filter is 
called an Infinite Impulse Response filter or IIR filter. 

 

Note that the impulse response need not necessarily be infinite: if it were, the filter would be 
unstable. In fact for most practical filters, the impulse response will die away to a negligibly 
small level. One might argue that mathematically the response can go on for ever, getting 
smaller and smaller: but in a digital world once a level gets below one bit it might as well be 
zero. The Infinite Impulse Response refers to the ability of the filter to have an infinite impulse 
response and does not imply that it necessarily will have one: it serves as a warning that this 
type of filter is prone to feedback and instability. 

The filter can be drawn as a block diagram: 

 

The filter diagram can show what hardware elements will be required when implementing the 
filter: 



 

The left hand side of the diagram shows the direct path, involving previous inputs: the right 
hand side shows the feedback path, operating upon previous outputs. 

IIR filters: Filter frequency response 

Since filtering is a frequency selective process, the important thing about a digital filter is its 
frequency response. 

The filter's frequency response can be calculated from its filter equation: 

 

Where j is the square root of minus one (defined as a number whose sole property is that its 
square is minus one). 

The frequency response H(f) is a continuous function, even though the filter equation is a 
discrete summation. 

Whilst it is nice to be able to calculate the frequency response given the filter coefficients, 
when designing a digital filter we want to do the inverse operation: that is, to calculate the 
filter coefficients having first defined the desired frequency response. So we are faced with an 
inverse problem. 

Sadly, there is no general inverse solution to the frequency response equation. 

To make matters worse, we want to impose an additional constraint on acceptable solutions. 
Usually, we are designing digital filters with the idea that they will be implemented on some 
piece of hardware. This means we usually want to design a filter that meets the requirement 
but which requires the least possible amount of computation: that is, using the smallest 
number of coefficients. So we are faced with an insoluble inverse problem, on which we wish to 
impose additional constraints. 



This is why digital filter design is more an art than a science: the art of finding an acceptable 
compromise between conflicting constraints. 

If we have a powerful computer and time to take a coffee break while the filter calculates, the 
small number of coefficients may not be important - but this is a pretty sloppy way to work 
and would be more of an academic exercise than a piece of engineering. 

IIR filters: The z transform 

The equation for the filter's frequency response can be simplified by substituting a new 
variable, z : 

 

Note that z is a complex number. 

 

Complex numbers can be drawn using an Argand diagram. This is a plot where the horizontal 
axis represents the real part, and the vertical axis the imaginary part, of the number. 

 

The complex variable z is shown as a vector on the Argand diagram. 

The z transform is defined as a sum of signal values x[n] multiplied by powers of z: 

 

Which has the curious property of letting us generate an earlier signal value from a present 
one, because the z transform of x[n-1] is just the z transform of x[n] multiplied by (1/z): 



 

So the z transform of the last signal value can be obtained by multiplying the z transform of 
the current value by (1/z). This is why, in the filter diagram, the delay elements are 
represented formally using the 1/z notation. 

IIR filters: The meaning of z 

z is a complex number: 

 

When drawn on the Argand diagram, z has the curious property that it can only have a 
magnitude of 1: 

 

So z, which is the variable used in our frequency response, traces a circle of radius 1 on the 
Argand diagram. This is called the unit circle. 

The map of values in the z plane is called the transfer function H(z). 

The frequency response is the transfer function H(z) evaluated around the unit circle on the 
Argand diagram of z: 

 

Note that in the sampled data z plane, frequency response maps onto a circle - which helps to 
visualise the effect of aliasing. 

IIR filters: The meaning of z 

z is a complex number: 

 

When drawn on the Argand diagram, z has the curious property that it can only have a 
magnitude of 1: 



 

So z, which is the variable used in our frequency response, traces a unit circle on the Argand 
diagram. 

At first sight, z can have no value off the unit circle. 

But if we use a mathematical fiction for a moment, we can imagine that the frequency f could 
itself be a complex number: 

 

In which case, the j from imaginary frequency component can cancel the j in the z term: 

 

and the imaginary component of frequency introduces a straightforward exponential decay on 
top of the complex oscillation: showing that z can be off the unit circle, and that if it is this 
relates to transient response. The imaginary frequency has to do with transient response, 
while the real frequency (both real as in actual, and real as in the real part of a complex 
number) has to do with steady state oscillation. 

For real frequencies z lies on the unit circle. Values of the transfer function H(z) for z off the 
unit circle relate to transient terms: 

 

The position of z, inside or outside the unit circle, determines the stability of transient terms: 

• if z is inside the unit circle, the transient terms will die away  
• if z is on the unit circle, oscillations will be in a steady state  
• if z is outside the unit circle, the transient terms will increase  

IIR filters: Poles and zeroes 

The IIR filter's transfer function is a ratio of terms. 

• if the numerator becomes zero, the transfer functionwill also become zero - this is 
called a zero of the function  



• if the denominator becomes zero, we have a division by zero - the function can become 
infinitely large - this is called a pole of the function  

 

The positions of poles (very large values) affects the stability of the filter: 

 

The shape of the transfer function H(z) is determined by the positions of its poles and zeroes: 

 

This can be visualised using the rubber sheet analogy:  

• imagine the Argand diagram laid out on the floor  
• place tall vertical poles at the poles of the function  
• stretch a rubber sheet over the poles  
• at zeroes, pin the rubber sheet to the floor  
• the rubber sheet will take up a shape which is determined by the position of the poles 

and zeroes  

Thanks are due to Jim Richardson for the rubber sheet analogy, which came to mind while he 
was an instructor officer at the Royal Naval Engineering College, Devonport. 

Now the frequency response is the transfer function H(z) evaluated around the unit circle on 
the Argand diagram of z: 



 

and since the shape of the transfer function can be determined from the positions of its poles 
and zeroes, so can the frequency response. 

 

The frequency response can be determined by tracing around the unit circle on the Argand 
diagram of the z plane: 

• project poles and zeroes radially to hit the unit circle  
• poles cause bumps  
• zeroes cause dips  
• the closer to the unit circle, the sharper the feature  

IIR filters: IIR filter design by impulse invariance 

Direct digital IIR filter design is rarely used, for one very simple reason:  

• nobody knows how to do it  

While it is easy to calculate the filter's frequency response, given the filter coefficients, the 
inverse problem - calculating the filter coefficientsfrom the desired frequency response - is so 
far an insoluble problem. Not many text books admit this. 

Because we do not know how to design digital IIR filters, we have to fall back on analogue 
filter designs (for which the mathematics is well understood) and then transform these designs 
into the sampled data z plane Argand diagram. 

Note that the filter's impulse response defines it just as well as does its frequency response. 

Here is a recipe for designing an IIR digital filter: 

• decide upon the desired frequency response  
• design an appropriate analogue filter  
• calculate the impulse response of this analogue filter  
• sample the analogue filter's impulse response  
• use the result as the filter coefficients  



 

This process is called the method of impulse invariance. 

The method of impulse invariance seems simple: but it is complicated by all the problems 
inherent in dealing with sampled data systems. In particular the method is subject to problems 
of aliasing and frequency resolution. 

IIR filters: IIR filter design by the bilinear transform 

The method of filter design by impulse invariance suffers from aliasing. 

The aliasing will be a problem if the analogue filter prototype's frequency response has 
significant components at or beyond the Nyquist frequency. 

The problem with which we are faced is to transform the analogue filter design into the 
sampled data z plane Argand diagram. The problem of aliasing arises because the frequency 
axis in the sampled data z plane Argand diagram is a circle: 

• in the analogue domain the frequency axis is an infinitely long straight line  
• in the sampled data z plane Argand diagram the frequency axis is a circle  

 

Note also that: 

• in the analogue domain transient response is shown along the horizontal axis  
• in the sampled data z plane Argand diagram transient response is shown radially 

outwards from the centre  

The problem of aliasing arises because we wrap an infinitely long, straight frequency axis 
around a circle. So the frequency axis wraps around and around, and any components above 
the Nyquist frequency get wrapped back on top of other components. 



 

The bilinear transform is a method of squashing the infinite, straight analogue frequency axis 
so that it becomes finite. This is like squashing a concertina or accordeon. To avoid squashing 
the filter's desired frequency response too much, the bilinear transform squashes the far ends 
of the frequency axis the most - leaving the middle portion relatively unsquashed:  

 

The infinite, straight analogue frequency axis is squashed so that it becomes finite - in fact just 
long enough to wrap around the unit circle once only. This is also sometimes called frequency 
warping 

Sadly, frequency warping does change the shape of the desired filter frequency response. In 
particular, it changes the shape of the transition bands. This is a pity, since we went to a lot of 
trouble designing an analogue filter prototype that gave us the desired frequency response and 
transition band shapes. One way around this is to warp the analogue filter design before 
transforming it to the sampled data z plane Argand diagram: this warping being designed so 
that it will be exactly undone by the frequency warping later on. This is called prewarping. 

IIR filters: Direct form I 

Filters can be drawn as diagrams: 

 

This particular diagram is called the direct form 1 because the diagram can be drawn directly 
from the filter equation.  

The filter diagram can show what hardware elements will be required when implementing the 
filter: 



 

The left hand side of the diagram shows the direct path, involving previous inputs: the right 
hand side shows the feedback path, operating upon previous outputs. 

IIR filters: Direct form II 

The filter diagram for direct form 1 can be drawn direct from the filter equation: 

 

The block diagram is in two halves: and since the results from each half are simply added 
together it does not matter in which order they are calculated. So the order of the halves can 
be swapped: 

 

Now, note that the result after each delay is the same for both branches. So the delays down 
the centre can be combined: 

 



This is called direct form 2. Its advantage is that it needs less delay elements. And since delay 
elements require hardware (for example, processor registers) the direct form 2 requires less 
hardware and so is more efficient than direct form 1. 

direct form 2 is also called canonic, which simply means 'having the minimum number of delay 
elements'. 

IIR filters: Direct form II 

The transposition theorem says that if we take a filter diagram and reverse all the elements - 
swapping the order of execution for every element, and reversing the direction of all the flow 
arrows - then the result is the same: 

• if everything is turned back to front, it all works just the same  

This means that the direct form 1 diagram can be obtained by transposition of the direct form 
2 diagram: 

 

For this reason, direct form 1 is often called transposed direct form 2. 

Don't ask me why these terms seem to be as confusing as they possibly could be - I didn't 
make them up. I imagine mathematicians sit around at coffee break and come up with new 
ways to spread despondency amongst us lesser mortals. Here are the two main sources of 
confusion: 

direct form 1  
so called because it can be drawn direct from the filter equation  

direct form 2  
so called because it can be derived by changing the diagram of direct form 1  

transposed  
so called because it is obtained by transposition of direct form 2 - but really, this is just 
direct form 1  

canonic  
so called because it has the minimum number of delay elements - but really, it is just direct 
form 2  



IIR filters: Quantisation in IIR filters 

Digital filters are examples of sampled data systems. 

Sampled data systems suffer from problems of limited precision which lead to quantisation 
errors. Apart from errors when measuring signals, these arise within the hardware used for 
processing: 

 

Primary sources of quantisation error are: 

• errors in arithmetic within the hardware (for example 16 bit fixed point roundoff)  
• trncation when results are stored (most DSP processors have extended registers 

internally, so truncation usually occurs when results are stored to memory)  
• quantisation of filter coefficients which have to be stored in memory  

The effects of quantisation, saturation and overflow are all non linear, signal dependent errors. 
This is bad news because non linear effects cannot be calculated using normal mathematics: 
and because signal dependent (coherent) errors cannot be treated statistically using the usual 
assumptions about randomness of noise - they will depend on what signals are being 
processed. 

 

One example of a strange effect of non linear systems is limit cycles: 

 



A non linear system can oscillate at a low bit level, even when there is no input. This is not the 
same as the impulse response being infinite - it is a result of a non linear (or chaotic) system. 

Limit cycles can sometimes be heard when listening to modern 'sigma delta' digital to analogue 
converters. These chips use long digital filters which are subject to non linear errors - and you 
can sometimes hear the effect of limit cycles as quiet hisses or pops even when the digital 
output to the DAC is held steady. 

When treating quantisation effects we usually acknowledge that these are non linear, signal 
dependent errors: 

 

but we often model these as if they were injections of random noise: 

 

Sadly, with IIR filters the non linear, signal dependent effects dominate and the model of 
quantisation as random noise is completely inadequate. The effects will also depend on the 
hardware used to implement the filter: for example most DSP processors have extended 
registers internally - whether these are used or not will affect the quantisation error crucially. 

It is not possible to model the effects of quantisation in an IIR filter using simple random noise 
models. 

Some idea of quantisation effects in IIR filters can be gained using complex statistical models: 
but really the only way to evaluate the effects of quantisation in an IIR filter is to: 

• implement the filter on the target hardware  
• test it with signals of the sort expected  

IIR filters: Quantisation in IIR filters 

IIR filters are very sensitive to quantisation errors. 

The higher the order of the filter, the more it suffers from quantisation effects: because the 
filter is more complex, and so the errors accumulate more. 

In fact, IIR filters are so sensitive to quantisation errors that it is generally unrealistic to 
expect anything higher than a second order filter to work. 



This is why IIR filters are usually realised as second order sections. Most analogue filters 
(except for Bessel filters) are also usually realised as second order sections, which is a 
convenient excuse but not the real one. 

Second order sections can be combined to create higher order filters: 

 

IIR filters: Quantisation in IIR filters 

Quantisation errors can be minimised by keeping values large - so that the maximum number 
of bits is used to represent them. 

There is a limit to how large numbers can be, determined by the precision of the hardware 
used for processing. If the maximum number size is exceeded, the hardware may allow 
overflow or saturation: 

 

Saturation and overflow are both non linear quantisation errors. 

Note that overflow, although looking more drastic than saturation, may be preferred. It is a 
property of two's complement integer arithmetic that if a series of numbers are added 
together, even if overflow occurs at intermediate stages, so long as the result is within the 
range that can be represented the result will be correct. 

Overflow or saturation can be avoided by scaling the input to be small enough that overflow 
does not occur during the next stage of processing. There are two choices: 

• scaling the input so that overflow can never occur  
• scaling the input so that the biggest reasonably expected signal never overflows  

Scaling reduces the number of bits left to represent a signal (dividing down means some low 
bits are lost), so it increases quantisation errors. 

Scaling requires an extra multiplier in the filter, which means more hardware: 



 

Note that hardware with higher precision or using floating point arithmetic, may not require 
scaling and so can implement filters with less operations. 

IIR filters: Parallel and cascade IIR structures 

Because IIR filters are very sensitive to quantisationerrors, they are usually implemented as 
second order sections. 

The parallel form is simple: 

 

The outputs from each second order section are simply added together. 

If scaling is required, this is done separately for each section. It is possible to scale each 
section appropriately, and by a different scale factor, to minimise quantisation error. In this 
case another extra multiplier is required for each section, to scale the individual section 
outputs back to the same common scale factor before adding them. 

The order in which parallel sections are calculated does not matter, since the outputs are 
simply added together at the end. 

In the cascade form, the output of one section forms the input to the next:  

 



Mathematically, it does not matter in which order the sections are placed - the result will be 
the same. This assumes that there are no errors. In practice, the propagation of errors is 
crucial to the success of an IIR filter so the order of the sections in the cascade form is vital. 

IIR filters: Cascade IIR structure 

In the cascade form, the output of one section forms the input to the next:  

 

In practice, the propagation of errors is crucial to the success of an IIR filter so the order of 
the sections in the cascade, and the selection of which filter coefficients to group in each 
section, is vital: 

• sections with high gain are undesirable because they increase the need for scaling and 
so increase quantisation errors  

• it is desirable to arrange sections to avoid excessive scaling  

To reduce the gain of each section we note that: 

• poles cause high gain (bumps in the frequency response)  
• zeroes cause low gain (dips in the frequency response)  
• the closer to the unit circle, the greater the effect  

This suggests a way to group poles and zeroes in each section to avoid high gain sections:  

 

Note that the pole closest to the unit circle will provide the highest gain because it is a large 
value close to the unit circle. This can best be countered by pairing it with the zero closest to 
it. Here is a recipe for grouping poles and zeroes to create sections which avoid high gain: 

• pair the pole closest to the unit circle with the zero closest to it (note: not closest to the 
unit circle)  

• do this for all the poles, working up in terms of their distance from the unit circle  
• arrange the sections in order of how close their poles are to the unit circle  



The question remains, whether to place the high gain sections first or last.  

Recall that: 

• poles are large values (high gain)  
• the closer to the unit circle, the higher the gain  
• poles cause bumps in the frequency response  
• the closer to the unit circle, the sharper the bump (high Q)  
• poles in the early stages affect the input to later stages  
• poles at late stages have the last word  

So, the section with the pole closest to the unit circle will have the highest gain but also the 
sharpest shape. As with so much else in digital filter design, we are faced with a compromise 
between conflicting desires: 

• poles close to the unit circle in early stages cause high gain early on, so require more 
signal scaling and worse quantisation errors later on  

• poles close to the unit circle in late stages cause significant noise shaping at a late 
stage  

DSP processors 

This is the sixth module of the BORES Signal Processing DSP course - Introduction to DSP. 

This module introduces the common features of DSP processors and shows how these relate 
to, and arise from, the requirements of typical DSP applications. The aim of this module is to 
convey an understanding of what makes DSP processors special, and of what to look for when 
evaluating one chip against another. It covers the following subjects: 

• characteristic features of DSP processors  
• special features for arithmetic  
• I/O interfaces  
• memory architectures  
• data formats  
• some basic DSP chip designs  
• brief overview of some major DSP processors  

DSP processors: Characteristics of DSP processors 

Although there are many DSP processors, they are mostly designed with the same few basic 
operations in mind: so they share the same set of basic characteristics. These characteristics 
fall into three categories: 

• specialised high speed arithmetic  
• data transfer to and from the real world  
• multiple access memory architectures  

Typical DSP operations require a few specific operations: 



 

The diagram shows an FIR filter. This illustrates the basic DSP operations: 

• additions and multiplications  
• delays  
• array handling  

Each of these operations has its own special set of requirements: 

  additions and multiplications require us to: 

• fetch two operands  
• perform the addition or multiplication (usually both)  
• store the result or hold it for a repetition  

  delays require us to: 

• hold a value for later use  

  array handling requires us to: 

• fetch values from consecutive memory locations  
• copy data from memory to memory  

To suit these fundamental operations DSP processors often have: 

• parallel multiply and add  
• multiple memory accesses (to fetch two operands and store the result)  
• lots of registers to hold data temporarily  
• efficient address generation for array handling  
• special features such as delays or circular addressing  

DSP processors: Mathematics 

To perform the simple arithmetic required, DSP processors need special high speed arithmetic 
units. 



  Most DSP operations require additions and multiplications together. So DSP 
processors usually have hardware adders and multipliers which can be used in parallel within a 
single instruction: 

 

The diagram shows the data path for the Lucent DSP32C processor. The hardware multiply and 
add work in parallel so that in the space of a single instruction, both an add and a multiply can 
be completed.  

  Delays require that intermediate values be held for later use. This may also be a 
requirement, for example, when keeping a running total - the total can be kept within the 
processor to avoid wasting repeated reads from and writes to memory. For this reason DSP 
processors have lots of registers which can be used to hold intermediate values: 

  

Registers may be fixed point or floating point format. 

 Array handling requires that data can be fetched efficiently from consecutive memory 
locations. This involves generating the next required memory address. For this reason DSP 
processors have address registers which are used to hold addresses and can be used to 
generate the next needed address efficiently: 

 

The ability to generate new addresses efficiently is a characteristic feature of DSP processors. 
Usually, the next needed address can be generated during the data fetch or store operation, 
and with no overhead. DSP processors have rich sets of address generation operations: 



*rP register indirect  read the data pointed to by the address in register rP  

*rP++  postincrement  having read the data, postincrement the address pointer to point 
to the next value in the array  

*rP--  postdecrement  having read the data, postdecrement the address pointer to point 
to the previous value in the array  

*rP++rI  register 
postincrement  

having read the data, postincrement the address pointer by the 
amount held in register rI to point to rI values further down the 
array  

*rP++rIr bit reversed  
having read the data, postincrement the address pointer to point 
to the next value in the array, as if the address bits were in bit 
reversed order  

The table shows some addressing modes for the Lucent DSP32C processor. The assembler 
syntax is very similar to C language. Whenever an operand is fetched from memory using 
register indirect addressing, the address register can be incremented to point to the next 
needed value in the array. This address increment is free - there is no overhead involved in the 
address calculation - and in the case of the Lucent DSP32C processor up to three such 
addresses may be generated in each single instruction. Address generation is an important 
factor in the speed of DSP processors at their specialised operations. 

The last addressing mode - bit reversed - shows how specialised DSP processors can be. Bit 
reversed addressing arises when a table of values has to be reordered by reversing the order 
of the address bits: 

• reverse the order of the bits in each address  
• shuffle the data so that the new, bit reversed, addresses are in ascending order  

This operation is required in the Fast Fourier Transform - and just about nowhere else. So one 
can see that DSP processors are designed specifically to calculate the Fast Fourier Transform 
efficiently. 

DSP processors: Input and output interfaces 

In addition to the mathematics, in practice DSP is mostly dealing with the real world. Although 
this aspect is often forgotten, it is of great importance and marks some of the greatest 
distinctions between DSP processors and general purpose microprocessors: 



 

In a typical DSP application, the processor will have to deal with multiple sources of data from 
the real world. In each case, the processor may have to be able to receive and transmit data in 
real time, without interrupting its internal mathematical operations. There are three sources of 
data from the real world: 

• signals coming in and going out  
• communication with an overall system controller of a different type  
• communication with other DSP processors of the same type  

These multiple communications routes mark the most important distinctions between DSP 
processors and general purpose processors. 

When DSP processors first came out, they were rather fast processors: for example the first 
floating point DSP - the AT&T DSP32 - ran at 16 MHz at a time when PC computer clocks were 
5 MHz. This meant that we had very fast floating point processors: a fashionable 
demonstration at the time was to plug a DSP board into a PC and run a fractal (Mandelbrot) 
calculation on the DSP and on a PC side by side. The DSP fractal was of course faster. Today, 
however, the fastest DSP processor is the Texas TMS320C6201 which runs at 200 MHz. This is 
no longer very fast compared with an entry level PC. And the same fractal today will actually 
run faster on the PC than on the DSP. But DSP processors are still used - why? The answer lies 
only partly in that the DSP can run several operations in parallel: a far more basic answer is 
that the DSP can handle signals very much better than a Pentium. Try feeding eight channels 
of high quality audio data in and out of a Pentium simultaneously in real time, without 
impacting on the processor performance, if you want to see a real difference. 

The need to deal with these different sources of data efficiently leads to special communication 
features on DSP processors: 

DSP processors: Memory architectures 

Typical DSP operations require simple many additions and multiplications.  



  additions and multiplications require us to: 

• fetch two operands  
• perform the addition or multiplication (usually both)  
• store the result or hold it for a repetition  

To fetch the two operands in a single instruction cycle, we need to be able to make two 
memory accesses simultaneously. 

Actually, a little thought will show that since we also need to store the result - and to read the 
instruction itself - we really need more than two memory accesses per instruction cycle. 

For this reason DSP processors usually support multiple memory accesses in the same 
instruction cycle. It is not possible to access two different memory addresses simultaneously 
over a single memory bus. There are two common methods to achieve multiple memory 
accesses per instruction cycle: 

• Harvard architecture  
• modified von Neuman architecture  

The Harvard architecture has two separate physical memory buses. This allows two 
simultaneous memory accesses: 

 

The true Harvard architecture dedicates one bus for fetching instructions, with the other 
available to fetch operands. This is inadequate for DSP operations, which usually involve at 
least two operands. So DSP Harvard architectures usually permit the 'program' bus to be used 
also for access of operands. Note that it is often necessary to fetch three things - the 
instruction plus two operands - and the Harvard architecture is inadequate to support this: so 
DSP Harvard architectures often also include a cache memory which can be used to store 
instructions which will be reused, leaving both Harvard buses free for fetching operands. This 
extension - Harvard architecture plus cache - is sometimes called an extended Harvard 
architecture or Super Harvard ARChitecture (SHARC).  

The Harvard architecture requires two memory buses. This makes it expensive to bring off the 
chip - for example a DSP using 32 bit words and with a 32 bit address space requires at least 
64 pins for each memory bus - a total of 128 pins if the Harvard architecture is brought off the 
chip. This results in very large chips, which are difficult to design into a circuit. 

Even the simplest DSP operation - an addition involving two operands and a store of the result 
to memory - requires four memory accesses (three to fetch the two operands and the 
instruction, plus a fourth to write the result) This exceeds the capabilities of a Harvard 
architecture. Some processors get around this by using a modified von Neuman architecture. 



The von Neuman architecture uses only a single memory bus: 

 

This is cheap, requiring less pins that the Harvard architecture, and simple to use because the 
programmer can place instructions or data anywhere throughout the available memory. But it 
does not permit multiple memory accesses. 

The modified von Neuman architecture allows multiple memory accesses per instruction cycle 
by the simple trick of running the memory clock faster than the instruction cycle. For example 
the Lucent DSP32C runs with an 80 MHz clock: this is divided by four to give 20 million 
instructions per second (MIPS), but the memory clock runs at the full 80 MHz - each 
instruction cycle is divided into four 'machine states' and a memory access can be made in 
each machine state, permitting a total of four memory accesses per instruction cycle: 

 

In this case the modified von Neuman architecture permits all the memory accesses needed to 
support addition or multiplication: fetch of the instruction; fetch of the two operands; and 
storage of the result. 

Both Harvard and von Neuman architectures require the programmer to be careful of where in 
memory data is placed: for example with the Harvard architecture, if both needed operands 
are in the same memory bank then they cannot be accessed simultaneously. 

DSP processors: Example processors 

Although there are many DSP processors, they are mostly designed with the same few basic 
operations in mind: so they share the same set of basic characteristics. This enables us to 
draw the processor diagrams in a similar way, to bring out the similarities and allow us to 
concentrate on the differences: 



 

The diagram shows a generalised DSP processor, with the basic features that are common. 

These features can be seen in the diagram for one of the earliest DSP processors - the Lucent 
DSP32C: 

 

The Lucent DSP32C has four memory areas (three internal plus one external), and uses a 
modified von Neuman architecture to achieve four memory accesses per instruction cycle - the 



von Neuman architectureis shown by the presence of only a single memory bus. It has four 
floating point registers: the address generation registers also double as general purpose fixed 
point registers. The Lucent DSP32C has a host port: showing that this chip is designed to be 
integrated into systems with another system controller - in this case, a microcontroller or PC 
(ISA) bus.  

Looking at one of the more recent DSP processors - the Analog Devices ADSP21060 - shows 
how similar are the basic architectures: 

 

The ADSP21060 has a Harvard architecture - shown by the two memory buses. This is 
extended by a cache, making it a Super Harvard ARChitecture (SHARC). Note, however, that 
the Harvard architecture is not fully brought off chip - there is a special bus switch 
arrangement which is not shown on the diagram. The 21060 has two serial ports in place of 
the Lucent DSP32C's one. Its host port implements a PCI bus rather than the older ISA bus. 
Apart from this, the 21060 introduces four features not found on the Lucent DSP32C: 

• There are two sets of address generation registers. DSP processors commonly have to 
react to interrupts quickly - the two sets of address generation registers allow for 
swapping between register sets when an interrupt occurs, instead of having to save and 
restore the complete set of registers.  

• There are six link ports, used to connect with up to six other 21060 processors: 
showing that this processor is intended for use in multiprocessor designs.  

• There is a timer - useful to implement DSP multitasking operating system features 
using time slicing.  

• There is a debug port - allowing direct non-intrusive debugging of the processor 
internals.  



DSP processors: Data formats 

DSP processors store data in fixed or floating point formats. 

It is worth noting that fixed point format is not quite the same as integer:  

 

The integer format is straightforward: representing whole numbers from 0 up to the largest 
whole number that can be represented with the available number of bits. Fixed point format is 
used to represent numbers that lie between 0 and 1: with a 'binary point' assumed to lie just 
after the most significant bit. The most significant bit in both cases carries the sign of the 
number. 

• The size of the fraction represented by the smallest bit is the precision of the fixed point 
format.  

• The size of the largest number that can be represented in the available word length is 
the dynamic range of the fixed point format  

To make the best use of the full available word length in the fixed point format, the 
programmer has to make some decisions: 

• If a fixed point number becomes too large for the available word length, the 
programmer has to scale the number down, by shifting it to the right: in the process 
lower bits may drop off the end and be lost  

• If a fixed point number is small, the number of bits actually used to represent it is 
small. The programmer may decide to scale the number up, in order to use more of the 
available word length  

In both cases the programmer has to keep a track of by how much the binary point has been 
shifted, in order to restore all numbers to the same scale at some later stage. 

Floating point format has the remarkable property of automatically scaling all numbers by 
moving, and keeping track of, the binary point so that all numbers use the full word length 
available but never overflow: 



 

Floating point numbers have two parts: the mantissa, which is similar to the fixed point part of 
the number, and an exponent which is used to keep track of how the binary point is shifted. 
Every number is scaled by the floating point hardware:  

• If a number becomes too large for the available word length, the hardware 
automatically scales it down, by shifting it to the right  

• If a number is small, the hardware automatically scale it up, in order to use the full 
available word length of the mantissa  

In both cases the exponent is used to count how many times the number has been shifted. 

In floating point numbers the binary point comes after the second most significant bit in the 
mantissa. 

The block floating point format provides some of the benefits of floating point, but by scaling 
blocks of numbers rather than each individual number: 

 

Block floating point numbers are actually represented by the full word length of a fixed point 
format. 

• If any one of a block of numbers becomes too large for the available word length, the 
programmer scales down all the numbers in the block, by shifting them to the right  



• If the largest of a block of numbers is small, the programmer scales up all numbers in 
the block, in order to use the full available word length of the mantissa  

In both cases the exponent is used to count how many times the numbers in the block have 
been shifted. 

Some specialised processors, such as those from Zilog, have special features to support the 
use of block floating point format: more usually, it is up to the programmer to test each block 
of numbers and carry out the necessary scaling. 

The floating point format has one further advantage over fixed point: it is faster. Because of 
quantisation error, a basic direct form 1 IIR filter second order section requires an extra 
multiplier, to scale numbers and avoid overflow. But the floating point hardware automatically 
scales every number to avoid overflow, so this extra multiplier is not required: 

 

DSP processors: Precision and dynamic range 

The precision with which numbers can be represented is determined by the word length in the 
fixed point format, and by the number of bits in the mantissa in the floating point format. 

In a 32 bit DSP processor the mantissa is usually 24 bits: so the precision of a floating point 
DSP is the same as that of a 24 bit fixed point processor. But floating point has one further 
advantage over fixed point: because the hardware automatically scales each number to use 
the full word length of the mantissa, the full precision is maintained even for small numbers: 

 



There is a potential disadvantage to the way floating point works. Because the hardware 
automatically scales and normalises every number, the errors due to truncation and rounding 
depend on the size of the number. If we regard these errors as a source of quantisation noise, 
then the noise floor is modulated by the size of the signal. Although the modulation can be 
shown to be always downwards (that is, a 32 bit floating point format always has noise which 
is less than that of a 24 bit fixed point format), the signal dependent modulation of the noise 
may be undesirable: notably, the audio industry prefers to use 24 bit fixed point DSP 
processors over floating point because it is thought by some that the floating point noise floor 
modulation is audible. 

The precision directly affects quantisation error. 

The largest number which can be represented determines the dynamic range of the data 
format. In fixed point format this is straightforward: the dynamic range is the range of 
numbers that can be represented in the available word length. For floating point format, 
though, the binary point is moved automatically to accommodate larger numbers: so the 
dynamic range is determined by the size of the exponent. For an 8 bit exponent, the dynamic 
range is close to 1,500 dB: 

 

So the dynamic range of a floating point format is enormously larger than for a fixed point 
format:  

 

While the dynamic range of a 32 bit floating point format is large, it is not infinite: so it is 
possible to suffer overflow and underflow even with a 32 bit floating point format. A classic 
example of this can be seen by running fractal (Mandelbrot) calculations on a 32 bit DSP 
processor: after quite a long time, the fractal pattern ceases to change because the increment 
size has become too small for a 32 bit floating point format to represent. 

Most DSP processors have extended precision registers within the processor: 



 

The diagram shows the data path of the Lucent DSP32C processor. Although this is a 32 bit 
floating point processor, it uses 40 and 45 bit registers internally: so results can be held to a 
wider dynamic range internally than when written to memory. 

DSP processors: Review of DSP Processors 

Although there are many DSP processors, they are mostly designed with the same few basic 
operations in mind: so they share the same set of basic characteristics. We can learn a lot by 
considering how each processor differs from its competitors, and so gaining an understanding 
of how to evaluate one processor against others for particular applications. 

A simple processor design like the Lucent DSP32C shows the basic features of a DSP 
processor: 

• multiple on-chip memories  
• external memory bus  
• hardware add and multiply in parallel  
• lots of registers  
• serial interface  
• host interface  

The DSP32C is unusual in having a true von Neuman architecture: rather than use multiple 
buses to allow multiple memory accesses, it handles up to four sequential memory accesses 
per cycle. The DMA controller handles serial I/O, independently in and out, using cycle stealing 
which does not disturb the DSP execution thread. 



 

The simple DSP32C design uses the address registers to hold integer data: and there is no 
hardware integer multiplier: astonishingly, integers have to be converted to floating point 
format, then back again, for multiplication. We can excuse this lack of fast integer support by 
recalling that this was one of the first DSP processors, and it was designed specifically for 
floating point, not fixed point, operation: the address registers are for address calculations, 
with integer operations being only a bonus. 

For a fixed point DSP, the address generation needs to be separated from the integer data 
registers: this may also be efficient for a floating point DSP if integer calculations are needed 
very often. Lucent's more modern fixed point DSP16A processor shows the separation of fixed 
point from address registers:  



 

The DSP16A also shows a more conventional use of multiple internal buses (Harvard plus 
cache) to access two memory operands (plus an instruction) . A further arithmetic unit 
(shifter) has been added. 

DSP processors: Review of DSP processors 

DSP often involves a need to switch rapidly between one task and another: for example, on 
the occurrence of an interrupt. This would usually require all registers currently in use to be 
saved, and then restored after servicing the interrupt. The DSP16A and the Analogue Devices 
ADSP2181 use two sets of address generation registers: 



 

The two sets of address generation registerscan be swapped as a fast alternative to saving and 
restoring registers when switching between tasks. The ADSP2181 also has a timer: useful for 
implementing 'time sliced' task switching, such as in a real time operating system - and 
another indication that this processor was designed with task switching in mind. 

It is interesting to see how far a manufacturer carries the same basic processor model into 
their different designs. Texas Instruments, Analog Devices and Motorola all started with fixed 
point devices, and have carried forward those designs into their floating point processors. 
AT&T (now Lucent) started with floating point, then brought out fixed point devices later. The 
Analog Devices ADSP21060 looks like a floating point version of the integer ADSP2181: 



 

The 21060 also has six high speed link ports which allow it to connect with up to six other 
processors of the same type. One way to support multiprocessing is to have many fast inter-
processor communications ports: another is to have shared memory. The ADSP21060 supports 
both methods. Shared memory is supported in a very clever way: each processor can directly 
access a small area of the internal memory of up to four other processors. As with the 
ADSP2181, the 21060 has lots of internal memory: the idea being, that most applications can 
work without added external memory: note, though, that the full Harvard architecture is not 
brought off chip, which means they really need the on-chip memory to be big enough for most 
applications. 

DSP processors: Review of DSP processors 

The problem of fixed point processors is quantisation error, caused by the limited fixed point 
precision. Motorola reduce this problem in the DSP56002 by using a 24 bit integer word 
length: 



 

They also use three internal buses - one for program, two for data (two operands). This is an 
extension of the standard Harvard architecture which goes beyond the usual trick of simply 
adding a cache, to allow access to two operands and the instruction at the same time. 

Of course, the problem of 24 bit fixed point is its expense: which probably explains why 
Motorola later produced the cheap, 16 bit DSP56156 - although this looks like a 16 bit variant 
of the DSP56002: 



 

And of course there has to be a floating point variant - the DSP96002 looks like a floating point 
version of the DSP56002: 

 

The DSP96002 supports multiprocessing with an additional 'global bus' which can connect to 
other DSP96002 processors: it also has a new DMA controller with its own bus 



DSP processors: Review of DSP processors 

The Texas TMS320C25 is quite an early design. It does not have a parallel multiply/add: the 
multiply is done in one cycle, the add in the next and the DSP has to address the data for both 
operations. It has a modified Harvard bus with only one data bus, which sometimes restricts 
data memory accesses to one per cycle, but it does have a special 'repeat' instruction to repeat 
an instruction without writing code loops 

 

The Texas TMS320C50 is the C25 brought up to date: the multiply/add can now achieve single 
cycle execution if it is done in a hardware repeat loop. It also uses shadow registers as a fast 
way to preserve registers when context switching. It has automatic saturation or rounding (but 
it needs it, since the accumulator has no guard bits to prevent overflow), and it has parallel bit 
manipulation which is useful in control applications 



 

The Texas TMS320C30 carries on some of the features of the integer C25, but introduces some 
new ideas. It has a von Neuman architecture with multiple memory accesses in one cycle, but 
there are still separate internal buses which are multiplexed onto the CPU. It also has a 
dedicated DMA controller. 

 



The Texas TMS320C40 is similar to the C30, but with high speed communications ports for 
multiprocessing. It has six high speed parallel comm ports which connect with other C40 
processors: these are 8 bits wide, but carry 32 bit data in four successive cycles. 

 

 

DSP processors: Review of DSP processors 

The Texas TMS320C60 is radically different from other DSP processors, in using a Very Long 
Instruction Word (VLIW) format. It issues a 256 bit instruction, containing up to 8 separate 
'mini instructions' to each of 8 functional units. 

Because of the radically different concept, it an be hard to compare this processor with other, 
more traditional, DSP processors. But despite this, the 'C60 can still be viewed in a similar way 
to other DSP processors, which makes apparent the fact that it basically has two data paths 
each capable of a multiply/accumulate. 



 

Note that this diagram is very different from the way Texas Instruments draw it. This is for 
several reasons: 

• Texas Instruments tend to draw their processors as a set of subsystems, each with a 
separate block diagram  

• my diagram does not show some of the more esoteric features such as the bus 
switching arrangement to address the multiple external memory accesses that are 
required to load the eight 'mini-instructions'  

An important point is raised by the placing of the address generation unit on the diagram. 
Texas Instruments draw the C60 block diagram as having four arithmetic units in each data 
path - whereas my diagram shows only three. The fourth unit is in fact the address generation 
calculation. Following my practice for all other DSP processors, I show address generation as 
separate from the arithmetic units - address calculation being assumed by the presence of 
address registers as is the case in all DSP processors. The C60 can in fact choose to use the 
address generation unit for general purpose calculations if it is not calculating addresses - this 
is similar, for example, to the Lucent DSP32C: so Texas Instruments' approach is also valid - 
but for most classic DSP operations address generation would be required and so the unit 
would not be available for general purpose use. 

There is an interesting side effect of this. Texas Instruments rate the C60 as a 1600 MIPS 
device - on the basis that it runs at 200 MHz, and has two data paths each with four execution 
units: 200 MHz x 2 x 4=1600 MIPS. But from my diagram, treating the address generation 
separately, we see only three execution units per data path: 200 MHz x 2 x 3=1200 MIPS. The 
latter figure is that actually achieved in quoted benchmarks for an FIR filter, and reflects the 
device's ability to perform arithmetic. 



This illustrates a problem in evaluating DSP processors. It is very hard to compare like with 
like - not least, because all manufacturers present their designs in such a way that they show 
their best performance. The lesson to draw is that one cannot rely on MIPS, MOPS or Mflops 
ratings but must carefully try to understand the features of each candidate processor and how 
they differ from each other - then make a choice based on the best match to the particular 
application. It is very important to note that a DSP processor's specialised design means it will 
achieve any quoted MIPS, MOPS or Mflops rating only if programmed to take advantage of all 
the parallel features it offers. 

Programming a DSP processor 

This is the seventh module of the BORES Signal Processing DSP course - Introduction to DSP. 

This module shows how a DSP processor can be programmed efficiently. It uses a simple filter 
implementation in C language to show the basic techniques, followed by a transcription of the 
C code into assembly language. Some of the C language techniques are applicable to any 
processor. The aim of this module is to show how simple rules can lead to efficient DSP code. 
It covers the following subjects: 

• a simple FIR filter program  
• using pointers  
• avoiding memory bottlenecks  
• assembler programming  
• extra requirements for real time filters  
• MIPS, MOPS and Mflops  

Programming a DSP processor: A simple FIR filter 

The simple FIR filter equation: 

 

can be implemented quite directly in C language: 

y[n] = 0.0; 
for (k = 0; k < N; k++) 
y[n] = y[n] + c[k] * x[n-k]; 

But this naive code is inefficient: 



 

The code is inefficient because: 

• it uses array indices [i] rather than pointers *ptr  
• it needs a lot of address arithmetic  
• it repeatedly accesses the output array  

Programming a DSP processor: Using pointers 

A naive C language program to implement an FIR filter is inefficient because it accesses array 
elements by array index: 

y[n] = 0.0; 
for (k = 0; k < N; k++) 
y[n] = y[n] + c[k] * x[n-k]; 

To understand why accessing by array index is inefficient, remember that an array is really 
just a table of numbers in sequential memory locations. The C compiler only know the start 
address of the array. To actually read any array element the compiler first has to find the 
address of that particular element. So whenever an array element is accessed by its array 
index [i] the compiler has to make a calculation: 

 

The diagram shows how the compiler would calculate the address of an array element specified 
by index as x[n - k]. The calculation requires several steps: 



• load the start address of the table in memory  
• load the value of the index n  
• load the value of the index k  
• calculate the offset [n - k]  
• add the offset to the start address of the array  

This entails five operations: three reads from memory, and two arithmetic operations. Only 
after all five operations can the compiler actually read the array element. 

C language provides the 'pointer' type precisely to avoid the inefficiencies of accessing array 
elements by index. 

In C, the syntax *ptr indicates that ptr is a pointer which means: 

• the variable ptr is to be treated as containing an address  
• the '*' means the data is read from that address  

Pointers can be modified after the data has been accessed. The syntax *ptr++ means: 

• the variable ptr is to be treated as containing an address  
• the '*' means the data is read from that address  
• the '++' means that, having read the data, the pointer ptr is incremented to point to 

the next sequential data element  

Accessing the array elements using pointers is more efficient than by index:  

 

Each pointer still has to be initialised: but only once, before the loop; and only to the start 
address of the array, so not requiring any arithmetic to calculate offsets. Within the loop, the 
pointers are simply incremented so that they point automatically to the next array element 
ready for the next pass through the loop. 



Using pointers is more efficient than array indices on any processor: but it is especially 
efficient for DSP processors because DSP processors are excellent at address arithmetic. In 
fact, address increments often come for free. For example, the Lucent DSP32C processor has 
several 'free' modes of pointer address generation: 

*rP - register indirect : read the data pointed to by the address in register rP  

*rP++ - postincrement: having read the data, postincrement the address pointer to point to 
the next value in the array  

*rP++rI - register postincrement: having read the data, postincrement the address pointer by 
the amount held in register rI to point to rI values further down the array  

*rP++rIr - bit reversed:having read the data, postincrement the address pointer to point to 
the next value in the array, as if the address bits were in bit reversed order  

The address increments are performed in the same instruction as the data access to which 
they refer: and they incur no overhead at all. More than this, as we shall see later, most DSP 
processors can perform two or three address increments for free in each instruction. So the 
use of pointers is crucially important for DSP processors. 

Some C compilers optimise code. For example, one of the Texas Instruments C compilers 
would, with full optimisation selected, take the initial naive C code but produce assembler that 
corresponds closely to the code using pointers. This is very nice but there are three cautions to 
be observed: 

• optimisation can often be used only in restrictive circumstances - for example in the 
absence of interrupts  

• optimisation is compiler dependent: so code that relies on compiler optimisation could 
become very inefficient when ported to another compiler  

One reason to use C is so that the programmer can write code that is very close to the 
operation of the processor. This is often desirable in DSP, where we want to have a high 
degree of control over exactly what the processor is doing at all times. Optimisation changes 
the code you wrote into code the compiler thought was better: in the worst case the code may 
not actually work when optimised. 

Programming a DSP processor: Limiting memory accesses 

Memory accesses are bottlenecks. 

 



DSP processors can make multiple memory accesses in a single instruction cycle. But the inner 
loop of the FIR filter program requires four memory accesses: three reads for each of the 
operands, and one write of the result to memory. Even without counting the need to load the 
instruction, this exceeds the capacity of a DSP processor. For instance the Lucent DSP32C can 
make four memory accesses per instruction cycle: two reads of operands, plus one write of the 
result, plus the read of one instruction. Even this is not enough for the simple line of C code 
that forms the inner loop of the FIR filter program. 

Fortunately, DSP processors have lots of registers which can be used to hold values inside the 
processor for later use - thus economising on memory accesses. We can see that the result of 
the inner loop is used again and again during the loop: it as the code is written, it has to be 
read from memory and then written back to memory in each pass. Making this a register 
variable will allow it to be held within the processor, thus saving two memory accesses: 

register float temp; 
temp = 0.0; 
for (k = 0; k < N; k++) 
temp = temp + *c_ptr++ * *x_ptr--; 

The C declaration 'register float temp' means that variable temp is to be held in a processor 
register: in this case, a floating point register. The inner loop now only requires two memory 
accesses, to read the two operands *c_ptr and *x_ptr (three accesses if you count the 
instruction load) - this is now within the capabilities of the DSP processor in a single 
instruction. 

A small point to note is that the initialisation of the register variable temp=0.0 is wasted. It is 
simple to make use of this necessary initialisation to make the first calculation, thus reducing 
the number of iterations of the inner loop: 

register float temp; 
temp = *c_ptr++ * *x_ptr--; 
for (k = 1; k < N; k++) 
temp = temp + *c_ptr++ * *x_ptr--; 

This leads to a more efficient C program for the FIR filter: 

float y[N], c[N], x[N]; 
float *y_ptr, *c_ptr, *x_ptr; 
register float temp; 
int n, k; 
y_ptr = &y[0]; 
for (n = 0; n < N-1; n++) { 
c_ptr = &c[0]; x_ptr = &x[N-1]; 
temp = *c_ptr++ * *x_ptr--; 
for (k = 1; k < N; k++) 
temp = temp + *c_ptr++ * *x_ptr--; 
*y_ptr++ = temp; 
} 
} 

Programming a DSP processor: Assembler 

To illustrate transcribing the C program for the FIR filter into DSP assembly language, we will 
use the assembler syntax of the Lucent DSP32C processor. This processor is excellent for this 



purpose, because its assembler syntax is remarkably similar to C language and so makes it 
easy to see how the C code maps onto the underlying DSP architecture. It is important to note 
that the illustration remains valid in general for most DSP processors, since their basic design 
features are so similar: but the other processors have more impenetrable assembler syntax. 

*r3 is equivalent to the C syntax *c_ptr  

*r3++ is equivalent to the C syntax *c_ptr++  

a1 is equivalent to the C declaration float temp 

Some examples of simple DSP32C instructions show the similarity to C further: 

a1=*r3  
fetch a floating point value from memory pointed to by address register r2 and store it in the 
float register a1  

a1=*r3++  
fetch a floating point value from memory pointed to by address register r3 and store it in the 
float register a1: having done so, increment address register r3 to point to the next floating 
point value in memory  

The general DSP32C instruction syntax shows the typical DSP processor's ability to perform a 
multiplication and addition in a single instruction: 

a = b + c * d 

Each term in the instruction can be any of the four floating point registers, or up to three of 
the terms can access data through address registers used as pointers: 

a0=a1 + a2 * a3 - using only registers  

a0=a1 + *r2 * *r3 - using pointers for two memory reads  

a1=a1 + *r2++ * *r3++ - using pointers for memory reads and incrementing those pointers 

Armed with the above rudimentary knowledge of this DSP processor's assembler syntax, we 
can substitute assembler variables for the C variables: 

temp: - a1 (floating point register) 

y_ptr: - r2 (address register to be used as a pointer) 

c_ptr: - r3 (address register to be used as a pointer) 

x_ptr: - r4 (address register to be used as a pointer) 

The appropriate assembler can now be written underneath the C code, exploiting the great 
similarity of the assembler to C in this case: 

temp = *c_ptr++) * *x_ptr--); 
a1   =   *r3++   *   *r4-- 
for (k = 1; k < N-1; k++) 



do 0,r1 
temp  = temp +    *c_ptr++ * *x_ptr--) 
a1    =  a1  +      *r3++  *   *r4-- 
*y_ptr++ = temp 
 *r2++   =  a1 

Note that for this processor, one line of C compiles down to one assembler instruction. 

The 'do 0,r1' instruction is an efficient and concise way to replace the loop control: it means, 
"do the next (0+1) instructions (r1+1) times. This is an example of a 'zero overhead do loop': 
the processor supports this special instruction with no overhead at all for the actual execution 
of the loop control. 

Programming a DSP processor: Real time 

Both the naive FIR filter program and its more efficient version assume we can access the 
whole array of past input values repeatedly: 

 

But this is not the case in real time. Real time systems face a continuing stream of input data: 
often, they have to operate on one input sample at a time and generate one output sample for 
each input sample: 

 

A similar restriction is likely if the filter program is implemented as a subroutine or function 
call. Only the current input and output are available to the filter so the filter function itself has 
to maintain some history of the data and update this history with each new input sample. 
Management of the history takes up some processing time. 

The filter needs to know the most recent [N] input samples. So the real time filter has to 
maintain a history array, which is updated with each new input sample by shifting all the 
history data one location toward 0: 

 



The necessary updating of the history array involves simply adding two extra lines to the C 
program, to implement the array shifting: 

 

The pointer to previous input samples, *x_ptr, is replaced by a pointer to the history array, 
*hist_ptr.A new pointer, *hist1_ptr, is initialised to point one further down the history array 

and is used in the shifting of data down the array. 

The two extra lines of C code represent extra computation: actually, the filter now takes two 
lines of C code instead of one for the inner loop. 

Programming a DSP processor: MIPS, MOPS and Mflops 

The development of efficient assembly language code shows how efficient a DSP processor can 
be: each assembler instruction is performing several useful operations. But it also shows how 
difficult it can be to program such a specialised processor efficiently. 

temp = *c_ptr++) * *x_ptr--); 
a1   =   *r3++   *   *r4-- 
for (k = 1; k < N-1; k++) 
do 0,r1 
temp  = temp +    *c_ptr++ * *x_ptr--) 
a1    =  a1  +      *r3++  *   *r4-- 
*y_ptr++ = temp 
 *r2++   =  a1 

Bear in mind that we use DSP processors to do specialised jobs fast. If cost is no object, then 
it may be permissible to throw away processor power by inefficient coding: but in that case we 
would perhaps be better advised to choose an easier processor to program in the first place. A 
sensible reason to use a DSP processor is to perform DSP either at lowest cost, or at highest 
speed. In either case, wasting processor power leads to a need for more hardware which 
makes a more expensive system which leads to a more expensive final product which, in a 
sane world, would lead to loss of sales to a competitive product that was better designed. 



One example shows how essential it is to make sure a DSP processor is programmed 
efficiently: 

 

The diagram shows a single assembler instruction from the Lucent DSP32C processor. This 
instruction does a lot of things at once: 

• two arithmetic operations (an add and a multiply)  
• three memory accesses (two reads and a write)  
• one floating point register update  
• three address pointer increments  

All of these operations can be done in one instruction. This is how the processor can be made 
fast. But if we don't use any of these operations, we are throwing away the potential of the 
processor and may be slowing it down drastically. Consider how this instruction can be 
translated into MIPS or Mflops. 

The processor runs with an 80 MHz clock. But, to achieve four memory accesses per 
instruction it uses a modified von Neuman memory architecture which requires it to divide the 
system clock by four, resulting in an instruction rate of 20 MIPS. If we go into manic marketing 
mode, we can have fun working out ever higher MIPS or MOPS ratings as follows: 

80 MHz clock  

20 MIPS = 20 MOPS  

but 2 floating point operators per cycle = 40 MOPS  

and four memory accesses per instruction = 80 MOPS  

plus three pointer increments per instruction = 60 MOPS  

plus one floating point register update = 20 MOPS  

making a grand total MOPS rating of 200 MOPS  

Which exercise serves to illustrate three things: 



• MIPS, MOPS and Mflops are misleading measures of DSP power  
• marketing men can squeeze astonishing figures out of nothing  

Of course, we omitted to include in the MOPS rating (as some manufacturers do) the possibility 
of DMA on serial port and parallel port, and all those associated increments of DMA address 
pointers, and if we had multiple comm ports, each with DMA, we could go really wild... 

Apart from a cheap laugh at the expense of marketing, there is a very serious lesson to be 
drawn from this exercise. Suppose we only did adds with this processor? Then the Mflops 
rating falls from a respectable 40 Mflops to a pitiful 20 Mflops. And if we don't use the memory 
accesses, or the pointer increments, then we can cut the MOPS rating from 200 MOPS to 20 
MOPS. 

It is very easy indeed to write very inefficient DSP code. Luckily it is also quite easy, with a 
little care, to write very efficient DSP code. 

Advanced DSP 

Matched filters - index 

This is a module of the BORES Signal Processing advanced DSP course - Matched filters. 

To follow this course module properly, you should be familiar with the basic ideas of DSP which 
are introduced in the earlier course: 

• Introduction to DSP  

and specifically with the section on filters: 

• Introduction to digital filters  

This course module covers the following subjects: 

• filtering to extract signals from noise  
• filtering and signal to noise  
• matched filters  

The course is intended for self study over the Internet only. All material is copyright, and you 
are not permitted to make copies, either for personal use or for teaching purposes. 

The complete course -Introduction to DSP - can be presented as an 'on site' one day intensive 
course by Dr Chris Bore, who is able to explain the more difficult concepts of DSP in a very 
clear and understandable way with many annecdotes and every day examples which help to 
demystify the subject. 

Advanced DSP - matched filters 



Filtering to extract signals from noise 

A common use for digital filtering is to reduce unwanted noise.  

Filtering is a frequency selective operation: we seek to reduce noise by suppressing noise 
frequency components but passing signal frequency components: 

 

The diagram shows a simple case where the desired signal has a narrow frequency spectrum 
but the noise is spread out: here a narrow band pass filter is used to pass the narrow band 
signal but suppress most of the broad band noise. 

The example works well for a narrow band signal: but if the signal's frequency spectrum were 
more complicated, things would not be quite so simple. In fact it is easy to imagine that if we 
know the frequency spectrum of the desired signal, then we might be able to design a more 
intelligent filter that would pass the maximum signal power while suppressing as much of the 
noise power as possible. 

This leads to the idea of a matched filter - a filter which increases the signal to noise ratio by 
as much as possible. 

Advanced DSP - matched filters 

Filtering and signal to noise ratio 

A common use for digital filtering is to reduce unwanted noise.  

Take the example of a simple square wave. The frequency spectrum of a square wave consists 
of a fundamental at the square wave frequency, plus the odd harmonics decreasing in size: 



 

If we applied a band pass filter centred around the fundamental, the signal to noise ratio would 
be improved because all the noise power outside the band would be suppressed: 

 

But although the noise is suppressed, so too is significant signal power coming from the other 
signal frequency components. This signal power could have contributed to improving the signal 
to noise ratio. In fact, to make the best of all available signal power we want to include all 
frequency components where the signal is strong, and eliminate all frequency components 
where there is only noise: 

 

The diagram shows a filter which has several bands - each centred on one of the signal 
frequency components. This filter will pass the maximum amount of signal power, while 
excluding all noise that does not coincide with a signal frequency component. 



Matched filters 

A filter which passes all the signal frequency components while suppressing any frequency 
components where there is only noise allows to pass the maximum amount of signal power: 

 

Unfortunately, there is still significant noise power in each of the filter bands. So this frequency 
components also allows more noise to pass through. To make matters worse, some signal 
frequency components are rather small - so they contribute relatively little extra signal power, 
while still allowing through all the noise from that filter band. 

To get the maximum signal to noise ratio, we want to allow through all the signal frequency 
components - but to take more notice of signal frequency components that are large and so 
contribute more to improving the overall signal to noise ratio. We can do this by weighting the 
contributions from each filter band proportionally to the signal power: 

 

The diagram shows a filter whose frequency response is designed to exactly match the 
frequency spectrum of the signal. Such a filter gives the best possible improvement in signal to 
noise ratio, and is called a matched filter. 



 

The diagram shows a noisy square wave. Passing this through a single band passfilter 
improves the signal to noise ratio: but passing it through a matched filter gives the maximum 
possible improvement in signal to noise ratio. 

A matched filter is in fact the same as correlating a signal with a copy of itself. 

Advanced DSP - FFT windows 

Index 

This is a module of the BORES Signal Processing advanced DSP course - FFT windows. 

To follow this course module properly, you should be familiar with the basic ideas of DSP which 
are introduced in the earlier course: 

• Introduction to DSP  

and specifically with the section on windowing 

• Introduction to FFT window functions  

This course module covers the following subjects: 

• Window function kernels  
• The FFT as a series of filters  
• Coherent Power Gain  
• Equivalent Noise Bandwidth  
• Processing Loss  
• Spectral leakage  
• Resolution  
• Figures of merit  

The course is intended for self study over the Internet only. All material is copyright, and you 
are not permitted to make copies, either for personal use or for teaching purposes. 



The complete course - Introduction to DSP - is presented regularly as a one day, 'hands on' 
workshop where delegates use DSP hardware and software to complete exercises intended to 
help in understanding the concepts which are introduced.  

Advanced DSP - FFT windows 

Windows kernels 

When a window function is applied to a signal before the Fourier Transform, this changes the 
measured frequency spectrum. Specifically, the window function alters the spectral leakage. 

One way to visualise spectral leakage is as spreading of the frequency components. Each 
frequency component of the signal should contribute only to one single frequency of the 
Fourier Transform (called an FFT 'bin'): but spectral leakage causes the energy to be spread. 
The window function controls the spreading. The contribution from any real frequency 
component to a given FFT bin is weighted by the amplitude of the window function's frequency 
spectrum centred at the FFT bin. 

For example, in the special case of a rectangular window (that is, no window at all except for 
the inevitable truncation) the frequency spectrum of the window function is the 'sinc' function 
shown below. The shape of the Fourier Transform of a window function is called the kernel. 

 

The kernel of a rectangular window function is formally called the 'Dirichlet kernel'. 

Confusingly, the Fourier Transform of a window function is often also called the window 
function (instead of the kernel) - we have to judge from the context whether we are talking 
about the frequency spectrum or the time domain function. 

The FFT as a series of filters 

A productive way to visualise spectral leakage is to view the Fourier Transformas equivalent to 
a series of filters, one centred on each FFT bin. The filter's frequency response is the shape of 
the window function's kernel. Each FFT bin contains contributions from all other frequency 
components within the bandwidth of the filter, weighted by the filter's frequency response (the 
kernel). 



 

The diagram shows the kernel of a rectangular window function. The frequency component we 
think we are measuring is the FFT bin at the middle of the kernel. But an interfering frequency 
component some distance away will also contribute to the measured value of this frequency 
component. 

 

In fact, the measured value of the FFT bin will include contributions from all frequency 
component in the bandwidth of the kernel, weighted by the kernel's value at those 
frequencies. This will include contributions from broad band noise as well as from narrow band 
signals at other frequencies. 

There are two common situations with which we have to deal: 

• detection of a frequency component in the presence of broadband noise  
• distinguishing between close narrow band frequency components  



The choice of window function may be different in the two cases. To help in choosing a suitable 
window function we need some quantitative measures of the quality of a window function. 

Coherent Power Gain 

Applying a window function makes the signal smoothly approach zero at both ends. This 
affects the total signal power: 

 

Because the window function attenuates the signal at both ends, it reduces the overall signal 
power. This reduction in signal power is called the Coherent Power Gain. Its result is that the 
amplitude you measure at the FFT bin is not the same as the 'real' amplitude of the signal's 
frequency component at that frequency. The contribution from the signal's frequency 
component at the FFT bin is reduced by the Coherent Power Gain. This is one reason why 
amplitudes measured from a Fourier Transform never quite seem to be as expected. 

Don't blame me for calling a reduction in signal power a Coherent Power Gain - I don't make 
up these terms, I just have to live with them. 

For an ideal, single discrete line frequency component, the 'noiseless' signal contribution to the 
FFT bin is proportional to the signal amplitude. The proportionality factor is the area under the 
window function's kernel - or in a sampled system, the sum of the amplitudes of the window 
function. The Coherent Power Gain is the square of this, or in other words the Coherent Power 
Gain is the square of the sum of the amplitudes of the window function's kernel. 

You may notice that the Coherent Power Gain is just the DC gain of the window function. 

For a rectangular window, where every amplitude is 1, the DC gain is N - the number of terms 
- and the Coherent Power Gain is N^2: but for any other window function the DC gain will be 
reduced because the window function goes smoothly to zero at its ends and so reduces the 
signal power. 



Coherent Power Gain is important because it represents a definite scaling of the amplitudes of 
the measured frequency spectrum which requires correction for any absolute measurements to 
be correct. 

Coherent Power Gain is usually normalised by dividing by the number of terms N, so that the 
Coherent Power Gain of a rectangular window function would be normalised to 1. 

Equivalent Noise Bandwidth 

A given FFT bin contains contributions from other frequency component including broadband 
noise: 

 

The shape of the window function's kernel can be thought of as a filter's frequency response. 
Noise will contribute to the measured value at the FFT bin proportionally to the filter's 
frequency response. 

To detect a narrow band signal in the presence of broadband noise, we want to narrow the 
bandwidth from which noise contributions are significant. This can be done by narrowing the 
window function's kernel. 

Equivalent Noise Bandwidth measures the noise performance of the window function: 



 

Equivalent Noise Bandwidth is the width of an ideal rectangular filter which would accumulate 
the same noise power from white noise as the window function's kernel with the same peak 
power gain. This is a fruitful concept, and quite easy to visualise. 

Processing loss and scalloping loss 

In detecting a signal from noise, it is the signal to noise ratio that is important. The window 
function affects the signal to noise ratio because the measured value at the FFT bin includes 
noise from the whole bandwidth of the window function's kernel. We need to compare the 
amount by which the window function attenuates the signal, with the amount of noise the 
window function collects: 

• attenuation of the signal by the window function is measured by the Coherent Power 
Gain  

• the amount of noise collected by the window function is measured by the Equivalent 
Noise Bandwidth  

Processing Loss measures the degradation in signal to noise ratio due to the window function. 
It is the ratio of Coherent Power Gain to Equivalent Noise Bandwidth. 

For a signal made up of one ideal discrete single line frequency component the Coherent Power 
Gain is 1 and so the Processing Loss is (not surprisingly) just the reciprocal of the Equivalent 
Noise Bandwidth. 

Processing Loss only relates to signal frequency components that happen to fall exactly on an 
FFT bin. But the model of the the Fourier Transform as a series of filters centred on each FFT 
bin suggests that frequencies that do not happen to fall exactly on an FFT bin will not be 
measured at 100% of their full value as the window function's kernel response falls off away 
from its centre frequency. In fact one can imagine that the measured value will fall off as the 
actual signal frequency component's frequency moves away from the FFT bin frequency: 



 

The effect is to make the measured value dip as the actual frequency moves between FFT 
bins: this effect is sometimes called the 'picket fence effect' or (because it looks a bit like the 
edge of a scallop shell) 'scalloping'. It is a reasonable assumption that the worst case occurs 
when the actual signal frequency falls exactly half way between FFT bins. 

Scalloping Loss is the apparent attenuation of the measured value for a frequency component 
that falls exactly half way between FFT bins. It is defined as the ratio of the power gain for a 
signal frequency component located half way between FFT bins, to the Coherent Power Gain 
for a signal frequency component located exactly on the FFT bin. 

Scalloping Loss can be calculated by taking the ratio of the value of the window function's 
kernel one half a a frequency sample off centre, to its value at the centre. 

Worst Case Processing Loss is the sum of Processing Loss and Scalloping Loss. This is a 
measure of the worst case reduction of signal to noise ratio which results from the combination 
of the window function and the worst case frequency location. It is related to the minim 
amplitude for a signal frequency component to be detected in broadband noise. 

Spectral leakage 

The measured frequency spectrum is not only affected by broadband noise, but also by narrow 
band frequency components either of noise or of the signal: 



 

A frequency componentof noise or signal at one frequency will contribute to the measured 
value at an FFT bin. The amount of the contribution is proportional to the amplitude of the 
window function's kernel, centred at the FFT bin, measured at the interfering frequency. This 
amount is what is meant when we talk about spectral leakage.  

Spectral leakage changes both the amplitude and position of a frequency measurement. The 
effects of spectral leakage are worst when detecting small signals in the presence of nearby 
large signals. 

To minimise the effect of spectral leakage, a window function's kernel should have low 
amplitude sidelobes away from the centre: and the rate of fall off to the low sidelobes should 
be rapid. The peak sidelobe level is a useful indicator of how well a window function 
suppresses spectral leakage: so is the rate of fall off to the sidelobes. 

Frequency resolution 

An interesting measure of a window function's quality is the minimum separation needed 
between two frequency components of equal amplitude, that still allows them to be resolved. 
By 'resolved', we mean that there is a local minimum between the two peaks: 



 

The usual 'rule of thumb' for being able to resolve two adjacent signal peaks is the width of the 
peak at the half power point (the '3 dB bandwidth'). This is because two frequency components 
of equal amplitude will show only a single peak if separated by less than their 3 dB bandwidth, 
and so cannot be resolved. But the calculation on which this 'rule of thumb' is based assumes 
that the signals add incoherently. This is an important problem with the Fourier Transform 
because the addition which is involved in the Fourier Transform is coherent, not incoherent. 

The Fourier Transform is the addition of frequency components, weighted by the window 
function's kernel at each frequency. Because of the coherence, the 6 dB bandwidth determines 
resolution rather than the 3 dB bandwidth. 

Figures of merit 

The measures of the quality of an FFT window function are: 

• Sidelobe level- the attenuation to the top of the highest sidelobe  
• Fall off - the rate of fall off to the side lobe  
• 6 dB bandwidth - the bandwidth in which the window function's kernel falls by 6 dB  
• Coherent Power Gain - the normalised DC gain  
• Equivalent Noise Bandwidth- the bandwidth of an ideal rectangular filter which would 

accumulate the same noise power from white noise as the window function's kernel 
with the same peak power gain  

• Worst Case Processing Loss - the ratio of input signal-to-noise to output signal-to-noise, 
including scalloping loss for the worst case  

Sidelobe level, fall offand 6 dB bandwidth measure a window function's quality in terms of 
resolving close frequency components. 

Coherent Power Gainmeasures the amount by which a frequency component's measured value 
is attenuated by the window function 



Equivalent Noise Bandwidth and Worst Case Processing Loss measure a window function's 
quality in terms of detecting a signal in noise. 

Window 
function  

Sidelobe 
(dB)  

Fall off 
(dB/octave)  

Coherent 
Power Gain 

Equivalent 
Noise 
Bandwidth (FFT 
bins)  

6 dB 
bandwidth 
(FFT bins)  

Worst Case 
Processing 
Loss (dB)  

Rectangular  - 13  - 6  1.00  1.00  1.21  3.92  
Triangular  - 27  - 12  0.50  1.33  1.78  3.07  
Hanning  -32  -18  0.50  1.50  2.00  3.18  
Hamming  - 43  - 6  0.54  1.36  1.81  3.10  
Poisson (3.0) - 24  - 6  0.32  1.65  2.08  3.64  
Poisson (4.0) - 31  - 6  0.25  2.08  2.58  4.21  
Cauchy (4.0) - 35  - 6  0.33  1.76  2.20  3.83  
Cauchy (5.0) - 30  - 6  0.28  2.06  2.53  4.28  
Gaussian 
(3.0)  - 55  - 6  0.43  1.64  2.18  3.40  

Kaiser-
Bessel (3.0)  - 69  - 6  0.40  1.80  2.39  3.56  

Kaiser-
Bessel (3.5)  - 82  - 6  0.37  1.93  2.57  3.74  

You can download a copy of this technical note in Adobe Acrobat format: 

• FFT windows technical note  
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FFT window functionsFFT window functions 
Limits on FFT analysisLimits on FFT analysis

When using FFT anaysis to study the
frequency spectrum of signals, there
are limits on resolution between
different frequencies, and on
detectability of a small signal in the
presence of a large one.

There are two basic problems: the
fact that we can only measure the
signal for a limited time; and the
fact that the FFT only calculates
results for certain discrete frequency
values (the 'FFT bins'). The limit on
measurement time is fundamental
to any frequency analysis technqiue:
the frequency sampling is peculiar
to numerical methods like the FFT.

Limited measurement timeLimited measurement time

The first problem arises because the
signal can only be measured for a
limited time. Nothing can be known
about the signal's behaviour outside
the measured interval. We have to
assume something about the signal
outside the measured interval, and
the Fourier Transform makes an
implicit assumption that the signal is
repetitive: that is, the signal within
the measured time repeats for all
time.

Most real signals will have
discontinuities at the ends of the
measured time, and when the FFT
assumes the signal repeats it will
assume discontinuities that are not
really there.

Since sharp discontinuities have
broad frequency spectra, these will
cause the signal's frequency
spectrum to be spread out.

Spectral leakageSpectral leakage

It is easy to gain an insight by but they can be
thinking about the special case of a arranged: for example frequency
pure sine wave. This has a analyses are often made by tuning a
frequency spectrum which is a single stimulus freuqency precisely so that
spectral line: but the frequency its frequency exactly fits the
spectrum calculated by the FFT will measurement interval.
show a spread out line. Each
spectral line will be spread out in Spectral leakage is not an artifact of
the same way. the FFT, but is due to the fact that

The spreading means that signal finite measurement time.
energy which should be
concentrated only at one frequency Spectral leakage causes at least two
instead leaks into all the other distinct problems.
frequencies. This spreading of
energy is called 'spectral leakage'. First, any given spectral component

Since spectral leakage is related to energy, but also noise from the
discontinuities at the ends of the whole of the rest of the spectrum.
measurement time, it will be worse This will degrade the signal to noise
for signals that happen to fall such ratio.
that there are large discontinuities.

Some signals may, by coincidence large signal component may be
or by design, fall in such a way that severe enough to mask other
there happens to be no discontinuity smaller signals at different
at the ends of the measurement frequencies.
time: for these signals the effect of
spectral leakage may be lessened. WindowingWindowing

For example a pure sine wave In effect, the process of measuring a
sampled for an exact number of signal for a finite time is equivalent
cycyles would match up quite to multiplying the signal by a
correctly when made repetitive: the rectangular function of unit
repetitive signal would be exactly the amplitude: the rectangular function
same as the 'real' signal and so no lasting for the duration of the
spectral leakage would occur. measurement time.

Another example would be a signal The signal is measured during a
which fell smoothly to zero at each finite measurement time or 'window'.
end of the measurement interval: This idea leads to the rectangular
such a signal would have no function being called a 'rectangular
discontinuities when made window'.
repetitive, and so would not suffer
from spectral leakage.

Such special cases are infrequent, signal measurement time.

the signal was measured only for a
finite time. For a sine wave to have
a single line spectrum it must exist
for all time. Any practical method of
calculating the frequency spectrum
of a signal suffers from spectral
leakage due to the finite
measurement time.

Spectral leakage is not related in
any way to the fact of having
sampled the signal, but only to the

will contain not just the signal

Second, the spectral leakage from a

The effects of spectral leakage can
be reduced by reducing the
discontinuities at the ends of the
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This leads to the idea of multiplying resolution.
the signal within the measurement
time by some function that smoothly To help in choosing a suitable
reduces the signal to zero at the end window function some quantitative
points: hence avoiding measures are needed.
discontinuities altogether.

The process of multiplying the signal have to judge from context whether
data by a function that smoothly we are talking about the frequency
approaches zero at both ends, is or the time domain function.)
called 'windowing': and the
multiplying function is called a The FFT as a series of filtersThe FFT as a series of filters
'window' function.

It is easy to analyse the effect of a
window function: the frequency
spectrum of the signal is convolved
with the frequency spectrum of the
window function. The Equivalent Noise Bandwidth

Spectral leakageSpectral leakage noise performance of the window. It

One way to visualise spectral which would accumulate the same
leakage is as spreading of the Another productive way to visualise noise power with the same peak
frequency components. spectral leakage is to regard the FFT power gain. This is a fruitful

Each frequency should contribute centred on each spectral sample.
only to one FFT bin but spectral Coherent power gainCoherent power gain
leakage causes the energy to be The filter's frequency response is the
spread by the window function so it shape of the window function. 'Coherent Power Gain' measures the
contributes to all other FFT bins. reduction in signal power due to the

The contribution is weighted by the leakage model. Each FFT bin coherent signal at the ends of the
window function centred at the includes contributions from all other measurement interval.
frequency component and evaluated frequencies in the bandwidth of the
at the FFT bin. filter, weighted by the window Again, this measurement relates to

In the special case of the contributions from broad band filters matched to each frequency
rectangular window (that is, no noise as well as narrow band sample.
window at all), the window function signals at other frequencies.
is 1 in the interval and 0 outside the
interval. Its Fourier transform is Detection or resolution?Detection or resolution? For an ideal discrete line frequency
known as the 'sinc'  function, or component, the 'noiseless' signal
more formally the 'Dirichlet kernel'. There are two common situations: contribution to the FFT bin is

The shape of the Fourier transform including accumulated broadband
of a window function is sometimes noise. To detect a narrow band
called the 'kernel'. signal in the presence of noise, we

(Confusingly, the Fourier Transform be done by using a narrow
of a window function is also often bandwidth window function.
called the 'window function': we

as equivalent to a series of filters, concept, and easy to visualise.

This is the inverse of the spectral window function suppressing a

function. This will include the model of the FFT as a bank of

detection of a spectral component in proportional to the signal
the presence of broadband noise; or amplitude. The proportionality factor
distinguishing between narrow band is the sum of the window terms,
spectral components.  The choice of which is just the DC gain of the
window function may be different in window. The 'Coherent Gain' is the
the two cases of detection or square of this, or in other words the

Equivalent noise bandwidthEquivalent noise bandwidth

A given FFT bin includes
contributions from other frequencies

want to minimise the noise. This can

(ENB) of the window measures the

is the width of a rectangle filter



Fordwater, Pond Road, Woking, Surrey GU22 0JZ
Telephone: (01483) 740138 Fax: (0148) 740136 email: bores@bores.com Web: http://www.bores.com

coherent power gain is the square of signal frequency lies exactly half a spectral estimate.
the sum of the window terms. way between FFT bins.

For a rectangular window the DC 'Scalloping Loss' is defined as the worst when detecting small signals
gain is N, the number of terms in ratio of coherent gain for a signal in the presence of nearby large
the window: but for any other frequency component located half signals.
window the DC gain will be reduced way between FFT bins, to the
because the window goes smoothly coherent gain for a signal frequency To minimise the effects of spectral
to zero at the ends of the component located exactly at an FFT leakage, a window function's FFT
measurement time. bin. should have low amplitude

The reduction in DC gain is This is just the ratio of the window the fall off to the low sidelobes
important because it represents a function's value one half a frequency should be rapid.
definite scaling of the amplitudes of sample off centre, to the its value at
the frequency spectrum which the centre frequency. The peak sidelobe level is a useful
requires correction for any absolute indicator of how well a window
measurements to be correct. Worst case processing lossWorst case processing loss function suppresses spectral

Coherent gain is usually normalised Worst case processing loss is the sidelobes.
by dividing by N, so that the defined as the sum of Scalloping
normalised coherent gain of a Loss and Processing Loss. Minimum resolution bandwidthMinimum resolution bandwidth
rectangular window is 1.

ProcessingProcessing  LossLoss output signal to noise ratio resulting minimum separation needed

'Processing Loss' is the ratio of input function and the worst case of equal amplitude, so that they can
signal to noise to output signal to frequency location. It is of course be resolved.
noise, which is the Coherent Power related to the minimum tone that
Gain divided by the noise power. could be detected in broadband By resolved, is meant that there

For a signal made up of an ideal the two peaks.
discrete line frequency component Spectral leakageSpectral leakage
polluted by white noise, the The 'rule of thumb' for resolvability is
Processing Loss is, not unexpectedly, The calculated spectrum is not only the width of the window at the half
the reciprocal of the Equivalent affected by broadband noise, but power points (the 3 dB bandwidth):
Noise Bandwidth (ENB). also by the narrow band frequency because two frequency components

Scalloping lossScalloping loss signal. peak if separated by less than their

The analysis of Equivalent Noise separated.
Bandwidth and Processing Loss so
far related only to signal But this assumes incoherent
components whose frequencies addition. There is an important
exactly match the FFT bins. problem with this criterion when

The model of the FFT as a series of addition which is involved with the
filters centred on the FFT bins FFT is coherent, not incoherent
suggests that frequencies that do
not coincide with the FFT bins will The FFT output is the coherent
be attenuated as the filter's response A frequency component at addition of frequency components,
falls off away from the centre frequency T  will contribute to the weighted by the window function at
frequency. calculation at another frequency T each frequency. Because of the

This effect will vary as the signal window's Fourier transform, centred defines resolution rather than the 3
frequency ranges between the at T  and measured at T . This is dB bandwidth.
adjacent FFT bins, and is called 'the usually referred to as 'spectral
picket fence effect' or 'scalloping'. leakage'. If two frequency components are

It is a reasonable assumption that Spectral leakage can change the functions at the crossover point
the worst case occurs when the calculated amplitude and position of (halfway between the peaks) must

This is a measure of the reduction of An interesting measure is the

from the combination of the window between two frequency components

noise. should be a local minimum between

components either of noise or of the of equal strength show a single

0

a

proportionally to the gain of the coherence, the 6 dB bandwidth

0    a

The effects of spectral leakage are

sidelobes away from the centre, and

leakage: so is the rate of fall off to

3 dB bandwidth, and so cannot be

applied to the FFT because the

involved the sum of the window
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be smaller than the individual peaks
if the two peaks are to be resolved.
So the gain from each window
function must be less than 0.5 (or 6
dB).

Some window functionsSome window functions

The table lists, for various window functions, the following parameters:

Sidelobe levelSidelobe level The attenuation to the top of the highest side lobe

Fall offFall off The asymptotic rate of fall off to the side lobe

Coherent gainCoherent gain The normalised DC gain

Equivalent noise bandwidthEquivalent noise bandwidth The bandwidth of a rectangular filter which would let pass the
same amount of broadband noise

6 dB bandwidth6 dB bandwidth The bandwidth in which the window function falls by 6 dB

Worst case processing lossWorst case processing loss The ratio of input signal to noise to output signal to noise,
including scalloping loss for the worst case frequency

Window function Sidelobe Fall off (dB Coherent gain Equivalent noise 6 dB bandwidth Worst case
level (dB) per octave) bandwidth (bins) processing loss (dB)

(bins)

Rectangular -13 -6 1.00 1.00 1.21 3.92

Triangular -27 -12 0.50 1.33 1.78 3.07

Hanning -32 -18 0.50 1.50 2.00 3.18

Hamming -43 -6 0.54 1.36 1.81 3.10

Poisson (3.0) -24 -6 0.32 1.65 2.08 3.64

Poisson (4.0) -31 -6 0.25 2.08 2.58 4.21

Cauchy (4.0) -35 -6 0.33 1.76 2.20 3.83

Cauchy (5.0) -30 -6 0.28 2.06 2.53 4.28

Gaussian (3.0) -55 -6 0.43 1.64 2.18 3.40

Kaiser-Bessel (3.0) -69 -6 0.40 1.80 2.39 3.56

Kaiser-Bessel (3.5) -82 -6 0.37 1.93 2.57 3.74


