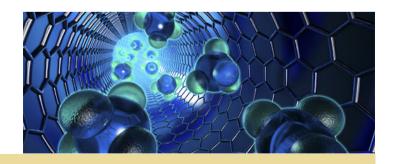


Life Cycle Assessment of nanoTiO₂ and its applications

Martina Pini

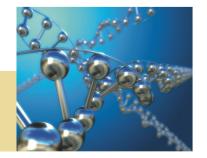
LCA Working Group – DISMI Università di Modena e Reggio Emilia



This presentation concerns the research activities of Martina Pini's PhD

Doctorate School in Industrial Innovation Engineering

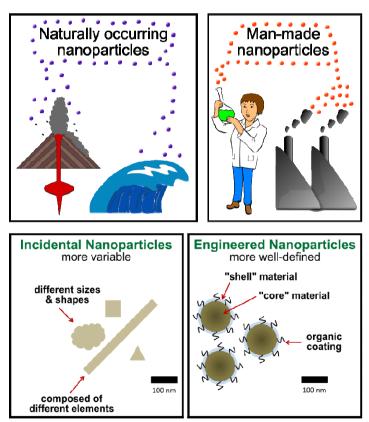
- 1. Overview of research activities
- 2. Determination of potential damage of nanoTiO₂
- 3. Determination of indoor and outdoor benefits of nanoTiO₂
- 4. LCA case studies
- 5. Conclusions

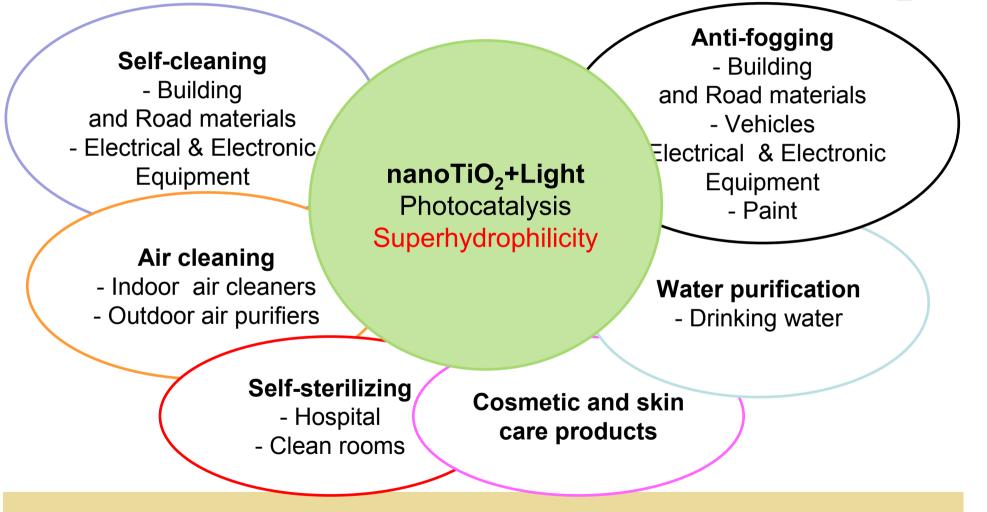

Overview of research activities

ARACNE Italian project

www.aracne.emr.it

MARACNE


- > 3 companies of Emilia-Romagna region
- University of Modena and Reggio Emilia
- University of Bologna
- Aim: study new and eco-friendly building materials with higher technological properties obtained by the addition of specific nanomaterials.


Nanoparticles and ENPs

- "nanoparticles": materials with all three dimension between 1 and 200 nm in size.
- Commonly nanomaterials are based on engineered nanoparticles (ENPs).
- ENPs is referred to manufactured materials:
 - 1. Metal oxides (*TiO*₂, ZnO ect.)
 - 2. Carbon based products (carbon nanotubes)
 - 3. Metals (gold and silver NPs)
 - 4. Quantum dots (semiconductor nanocrystal)
 - 5. Dendrimes (multifunctional polymers)

Properties & Applications of nanoTiO₂

Determination of potential damage of nanoTiO₂

Nanotoxicity assessment

• Uncertainties and knowledge gaps on behavior and toxicity of nanoparticles.

We cannot remain silent!!

 The LCA methodology can help to determine the potential impacts of nanoproducts and nanomaterials on human health and enviroment.

Nanotoxicity assessment

• Damage caused by nanoTiO₂ emissions:

	1. <u>released in air</u> (outdoor)
Human Health (HH)	2. <u>inhaled by workers</u> (indoor)
(1111)	3. <u>released in freshwater ecosystem</u>
Aquatic Organism (AO)	4. <u>released in freshwater ecosystem</u>

Damage to HH caused by nanoTiO₂ emissions

1. released in air (outdoor)

2. inhaled by workers (indoor)

References				
NIOSH National Institute for	Occupational exposure limits for ultrafine TiO ₂ (primary particles diameter < 100 nm)	0.3 mg/m³		
Occupational Safety and Health	Reducing the risk of developing lung cancer with concentration level of 0.3 mg/m ³	< 1/1000		
IARC International Agency for Research on Cancer	TiO ₂ review→ sufficient evidence of carcinogenicity in experimental animals and inadequate evidence of carcinogenicity in humans	Group 2B " possibly carcinogenic to humans"		

Assumptions for the production step

Emissions released into the production room during the production step:

1%

99% of emissions are captured by the vacuum system

released in air

1% of emissions released directly are into the production room

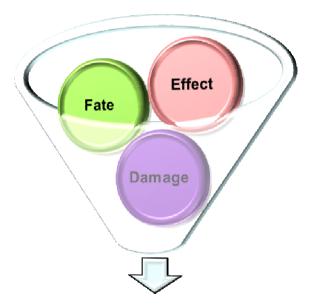
by HEPA filter.

99.97% is captured **0.03%** is directly A fraction of emissions is inhaled by the worker, the rest is released outdoor by opening windows.

1. Damage to HH caused by nanoTiO₂ emissions released in

air Calculation of the damage caused by carcinogenic substance by Eco-indicator 99 method:

1- Fate analysis


ASSUMPTION: nanoTiO₂ fate factor= PM 2.5 µm Fate Factor (F)= 1.70E-5 m²yr/m³

2- Effect analysis

Unit risk factor (UR): 9.44E-5 persons/m² Effect factor (E): UR*PD= 4.49E-13 cases/µg/m³/yr*persons/m² Incidence factor (I): E*F= 7.633 E-9 cases/kg_{nanoTiO₂}

3- Damage analysis

YLL (*years of life lost*)= 40 years Damage assessment factor of *Carcinogens* category of IMPACT 2002+ method: 2.8E-6 DALY/kg_{C2H3Cl}

Characterization factor: 3.052E-7DALY/kg/2.8E-6DALY/kg=0.109kg_{C2H3Cl}/kg_{nanoTiO2}

1. Damage to HH caused by nanoTiO₂ emissions released in air

Modification of IMPACT 2002+ method

In *Carcinogens* impact category: New substance: *Particulates,* <100 nm, in air Characterization factor: 0.109 kg_{C2H3Cl}/kg_{nanoTiO2}

Data input

Quantity of nanoTiO₂ emissions release in air.

2. Damage to HH caused by nanoTiO₂ emissions inhaled by workers

Concentration limit of indoor emissions in the production room: $275.725g/h/1200m^3 = 0.227mg/m^3/h$

Probability to contract the lung cancer: 1/1000*0.227mg/m³/0.3mg/m³= 7.56E-4

Damage assessment factor:

Rib cage expands as contract contract Lung Diaphragm CINHALATION Diaphragm contracts (moves down)

5workers*40YLL/workers*7.56E-4/0.0275725kg/h= 5.56 DALY/kg/h

2. Damage to HH caused by nanoTiO₂ emissions inhaled by workers

Modification of IMPACT 2002+ method

New substance: *Particulates,* <100 nm indoor New impact category: *Carcinogens indoor* [kg] Characterization factor: 1kg/kg New damage category: *Carcinogens indoor* [DALY] Damage assessment factor: 5.56 DALY/kg

Data input

Quantity of nanoTiO₂ emissions inhaled by workers

3. Damage to HH caused by nanoTiO₂ emissions released in freshwater ecosystem

ASSUMPTIONS

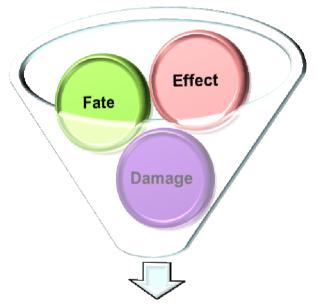
- Emissions released during the purification of nanocontaminated water: 1kg/yr
- Water bodies volume of Reggio Emilia province: 9E6m³
- Nanoparticles Concentration (C): 1.111E-7 kg/m³
- Emissions per m² (E): 1E-4 kg/(m2*yr)
- The limit concentration it has been assumed of $8.33\mu g/L$

Kumar A., et al., "Exposures to TiO₂ and Ag Nanoparticles: What are Human Health Risks?", Science and Society, 9(2), 2011.

3. Damage to HH caused by nanoTiO₂ emissions released in freshwater ecosystem

Calculation of the damage caused by carcinogenic substance by Eco-indicator 99 method:

1- Fate analysis:


Fate Factor (F): C/E= 1.111E-3 m^{2*}yr/m³

2- Effect analysis:

Unit risk factor (UR): 2.34E-4 persons/m² Effect factor (E): UR*PD= 4.02E-13 cases/µg/m³/(m²*yr)*pers Incidence factor (I): E*F= 4.464E-7cases/kg_{nanoTiO₂}

3- Damage analysis:

YLL (*years of life lost*)= 30 years, YLD (*years lived disability*)= 2 years. Probability to cure cancer: 50% Damage Factor=16 DALY/case

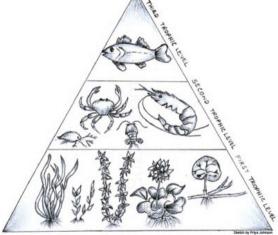
Damage assessment factor: I*D=4.46E-7cases/kg*16DALY/case= 7.14E-6DALY/kg

3. Damage to HH caused by nanoTiO₂ emissions released in freshwater ecosystem

Modification of IMPACT 2002+ method

New substance: *NanoTiO*₂ *Human toxicity*, in water New impact category: *NanoTiO*₂ *carcinogens in water* [kg] Characterization factor: 1kg/kg New damage category: *NanoTiO*₂ *carcinogens in water* [DALY] Damage assessment factor: 7.14E-6 DALY/kg

Data input


Quantity of nanoTiO₂ emissions which are not captured by filter.

4. Damage to AO caused by nanoTiO₂ emissions released in freshwater ecosystem

Reference

Salieri B., Olsen S.I., Righi S., How to calculate the characterisation factor for nanoparticle? A case study on $n-TiO_2$, Rete Italiana LCA, Milano 2013.

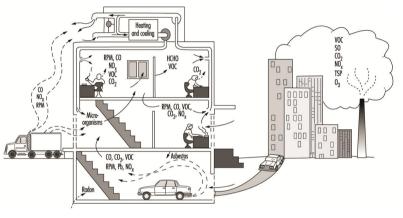
4. Damage to AO caused by nanoTiO₂ emissions released in freshwater ecosystem

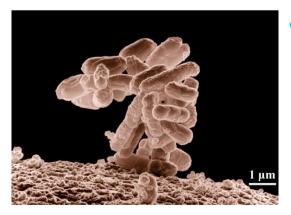
Modification of IMPACT 2002+ method

New substance: *Particulates*,<100nm, in water New impact category: *Nano ecotoxicity in freshwater* [kg] Characterization factor: 1kg_{C2H3Cl}/kg New damage category: *Nano ecotoxicity in freshwater* [PAF*day*m³/kg] **Damage assessment factor: 0.28 PAF*day*m³/kg**

Data input

Quantity of nanoTiO₂ emissions release in water (not captured by filter).


Determination of indoor and outdoor benefits of nanoTiO₂



Benefits indoor of nanoTiO₂

• Reduction of NO_2 emissions in air

Reference: *Italian environmental protection agency* study (ARPA Lombardia, 2004). Results: reduction of 37% NO₂ indoor emissions.

 Evaluating of the survival ratio of *Escherichia Coli* exposed to a nanoTiO₂
It has been assessed in agreement with the results of Caballero et al., 2009. The survival ratio of E. Coli is 16.83%.

Benefits outdoor of nanoTiO₂

 Reduction of NO emissions in air: 4.01 mg h⁻¹ m⁻² of NO removal

Poon CS et al., Construction and Building Materials 2006;21(8):1746–53

 Reduction of VOC (*Toluene*) emissions in air: 100 mg h⁻¹ m⁻² of Toluene removal

Demeestere et al., Building and Environment 2008;43(4):406–14

LCA case studies

1. nanoTiO₂ suspension obtained by a liquid-phase process *Collaboration: Colorobbia Italia S.p.A.*

Life Cycle Assessment of nanoTiO₂ coatings

- 1. nanoTiO₂-polyurea resin applied on an aluminium panel *Collaborations: Industrial Mechanical Plant research group and SRS S.p.A. company.*
- 2. nanoTiO₂ coated self-cleaning float glass. Collaboration: Department of Engineering "Enzo Ferrari", Modena.
- 3. nanoTiO₂-glaze applied on an steel panel.

Collaborations: Industrial and Mechanical Plant research group (DISMI) and Smaltiflex S.p.A. company.

1. LCA of nanoTiO₂ suspension

1. LCA of nanoTiO₂ suspension

Composition of nanoTiO ₂ suspension		
Titanium isopropoxide (TIP)	23.22%	
Water (H ₂ O)	73.40%	
Nitric Acid (HNO ₃) 63%	2.38%	
Polyethylene glycol (PEG)	1%	
Total	100%	
Recycled Isopropanol Coproduct	12%	
Yield	88%	
Products		
$nanoTiO_2 + H_2O + HNO_3 + PEG$	85.71%	
H ₂ O deionized Coproduct	14.29%	

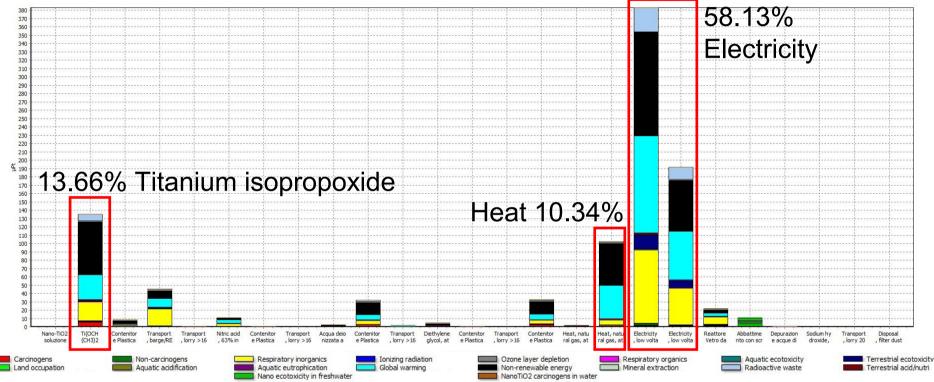
Physical and Chemical properties	+/-	
TiO ₂ concentration (%w/w)	0.5	6
Density (g/ml)	0.05	1.15
Viscosity 20°C (mPas/sec)	0.1	2
Nanoparticle size (nm)	-	30
Polydispersity index (pdl)	0.05	0.25
рН	0.5	5.5

Supplier: Colorobbia Italia spa

US 2008/0317959 A1, Dec. 25, 2008.

Method for preparation of aqueous dispersion of TiO_2 in the form nanoparticles, and dispersions obtainable with this method. Inventors: Baldi G. et al.

1. LCA of nanoTiO₂ suspension


- Goal definition: assess the environmental impacts of the nanoTiO₂ suspension obtained by a liquid-phase process.
- Functional unit: multi output process

Products	UF	Unit	Mass allocation	
Nano TiO ₂ suspension	0.75425=1kg*88%*85.71%	kg	75.425%	
Coproduct				
Isopropanol	0.12=1kg*12%	kg	12%	
H ₂ O deionized	0.12575=1kg*88%*14.29%	kg	12.575%	

- Function of the system: functionalize building materials.
- System boundaries: "from cradle to gate".
- Data quality: primary data and secondary data (literature and DB data).
- Calculation software: SimaPro 7.3.3
- Impact method: modified IMPACT 2002+

1. LCIA of 1kg of nanoTiO₂ suspension

Impact category	Amount
Non-renewable energy	36.6%
Global warming	29.2%
Respiratory inorganics	21.3%
Nano ecotoxicity in fresh water	3.4E-6%
NanoTiO2 carcinogens in water	6.75E-7%

Total damage: 0.989 mPt

Life Cycle Assessment of nanoTiO₂ coatings

«from cradle to grave»

SimaPro 7.3.3

Modified IMPACT 2002+

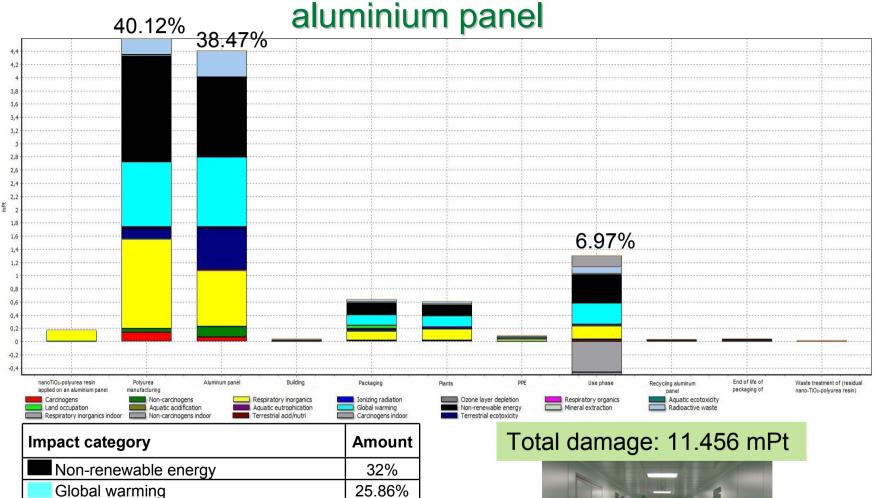
Life Cycle Assessment of nanoTiO₂ coatings

Studied System	System Function	Funtional unit	Life time	Damage	Benefits
nanoTiO ₂ - polyurea resin applied on an aluminium panel	INDOOR coating surface with self- cleaning and self- sterilized functions	3 m²	20 years	OUTDOOR and INDOOR Emissions ✓ Application step ✓ Use phase ✓ End of life	INDOOR NO₂ reduction E. Coli reduction ✓Use phase
nanoTiO ₂ coating applied on a float glass	OUTDOOR coating surface with self- cleaning and solar factor reduction functions	h * l m²	20 years	OUTDOOR and INDOOR Emissions ✓Application step ✓Use phase ✓End of life	OUTDOOR NO reduction VOC reduction ✓Use phase
nanoTiO ₂ -glaze applied on an steel panel	OUTDOOR coating surface with self- cleaning and anti- smog functions	h * l m²	20 years	OUTDOOR and INDOOR Emissions ✓Application step ✓Use phase ✓End of life	OUTDOOR NO reduction VOC reduction ✓Use phase

Vanoparticle <100 nm

Ecodesign approach

- Installation of HEPA (*High Efficiency Particulate Air filter* → 99.97%) air filter where there is the risk to have a release of nanoparticle emissions.
- Closed manufacturing system
- Use of specific packaging to limit the release of nanoparticle emissions during the transports.
- PPE (*Personal Protective Equipment*): face mask with 95% of efficiency.



• Waste treatment:

nanoTiO ₂ -polyurea applied on an Al panel	Heat treatment, T=660°C: Recycling of aluminum panel (melting point: 660°C) Evaporating of the residual nanoTiO ₂ -polyurea resin (melting point: 350°C)
nanoTiO ₂ -coating applied on a float glass	Making inert the float glass with nanoTiO ₂ coating
nanoTiO ₂ -glaze applied on an steel panel	Making inert the steel panel with nanoTiO ₂ coating

2. LCIA of 1 m² of nanoTiO₂-polyurea resin applied on an aluminium panel

23.98%

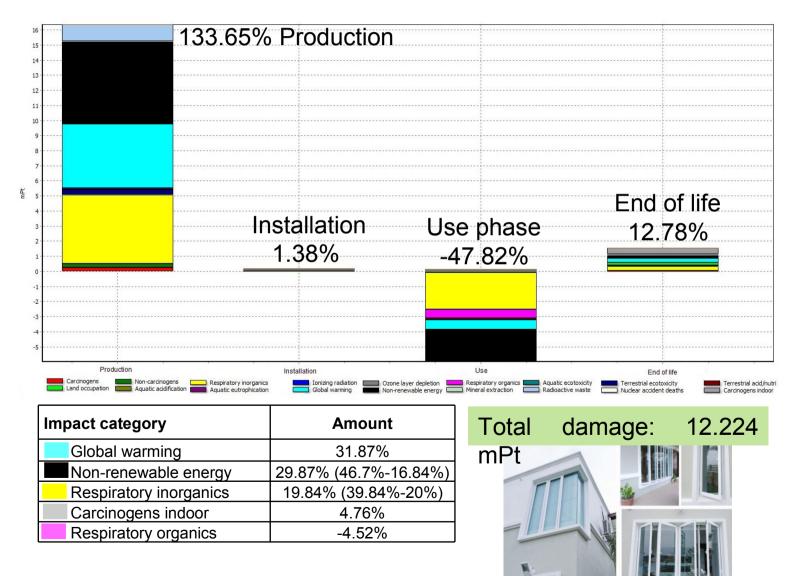
1.60%

-0.36%

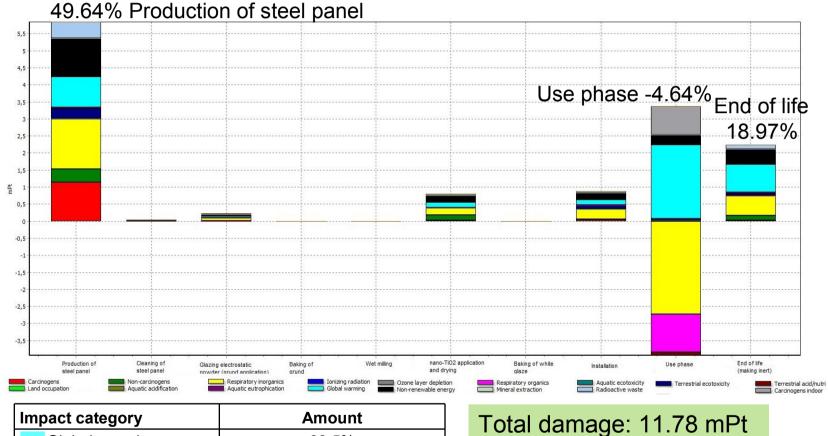
-4.06%

Respiratory inorganics

Non-carcinogens indoor


Respiratory inorganics indoor

Carcinogens indoor



3. LCIA of 1 m² nanoTiO₂ coating applied on a float glass

4. LCIA of 1 m² of nanoTiO₂-glaze applied on an steel panel

Impact category	Amount
Global warming	39.5%
Non-renewable energy	22.3%
Carcinogens	10.87%
Carcinogens indoor	7.04%
Respiratory inorganics	6.88% (30%-23.12%)
Respiratory organics	-9.47%

Conclusions and remarks

- Damage of nanoTiO₂: the Use Phase and End of life are the more affected life cycle steps.
- Parametric analysis \rightarrow varying % of nanoparticle emissions, TiO₂ concentration and filter efficiency.
- Nanotoxicological indicators: this is a preliminary research to evaluate the risks and the safe use of nanoparticles.
- The LCA case studies follow the Ecodesign approach giving a guidance on how it should be the production, the handling, the transport, the end of life of nanoparticles/nanomaterials.
- Assessment of the actual environmental performance of functionalized building materials once embedded in entire building.

Case study: Municipio di Fiorano Modenese.

Thank you for your attention

martina.pini@unimore.it