Is firm’s productivity related to its financial structure? Evidence from microeconomic data*

Francesco Nucci
Università di Roma “La Sapienza”

Alberto F. Pozzolo
Università del Molise and Ente Luigi Einaudi

Fabiano Schivardi
Banca d’Italia, Research Department

April 27, 2005

Abstract

Firms undertaking innovative activities typically hold a larger share of immaterial assets and have a different capital structure. Differences in the propensity to innovate are likely to translate in different TFP levels. We use data on a panel of firms to study the relationship between firms’ capital structure and TFP. We identify variations in financial structure induced by factors that do not directly affect the share of intangibles and test whether these exogenous variations affect productivity. We document a negative relationship between leverage and productivity, consistently with theories of financial structure based on bankruptcy costs, control rights and equityholders-debtholders’ conflicts. [JEL classifications: D24; G32]

*Opinions expressed are those of the authors and do not necessarily reflect those of the institutions to which they are affiliated. E-mails: francesco.nucci@uniroma1.it; pozzolo@unimol.it; fabiano.schivardi@bancaditalia.it.
Abstract

Le imprese che intraprendono attività innovative tipicamente hanno una maggiore quota dell’attivo impiegato in attività immateriali e differiscono nella struttura finanziaria. Le differenze nella propensione ad innovare si traducono in differenze nella produttività. In questo lavoro, utilizziamo dati su un panel di imprese e analizziamo la relazione tra la struttura finanziaria delle imprese e la TFP. Identifichiamo variazioni esogene nella struttura finanziaria dell’impresa e verifichiamo se queste influenzano la produttività. I risultati mostrano una relazione negativa tra leverage e produttività, coerentemente con le teorie della struttura finanziaria basate sui costi di bancarotta, sui diritti di controllo e sui conflitti azionisti-debitori.

1 Introduction

The theoretical literature on corporate finance points to an equilibrium relationship between the firm’s share of intangible assets and its financial structure. Firms undertaking innovative activities typically hold specialized equipment and a large share of immaterial assets, such as patents, research knowledge, project specific human capital. Hence, more innovative firms tend to have a different capital structure from less innovative ones. Ultimately, differences in the propensity to innovate are likely to translate into different total factor productivity (TFP) levels (Griliches and Lichtenberg, 1984). Financial systems more capable of providing the type of funding required by more innovative firms should therefore also guarantee higher aggregate productivity.

The relationship between a firm’s leverage and its share of immaterial assets is not obvious, because many different mechanisms link the financial structure to the propensity to innovate. On the one side, theories emphasizing bankruptcy costs, conflicts of interest between equityholders and debtholders and control rights suggest that firms holding larger portions of immaterial assets are less likely to be reliant on debt finance (Jensen and Meckling, 1976; Hart, 1995). On the other side, theories based on agency costs and information asymmetries suggest that equity financing is subject to severe underpricing in firms holding more intangibles (Myers and Majluf, 1984), favoring the use of debt over that of equity financing (i.e., a higher leverage).
The alternative theoretical predictions lend themselves to the empirical scrutiny. In this paper, we rely upon a detailed dataset for a large panel of Italian firms in order to study the relationship between firms’ financial structure and their productivity. In particular, we concentrate on exogenously driven variations of the firm’s financial structure in order to avoid the endogeneity problems that would otherwise affect a regression of TFP on leverage.

A further strenght of our analysis is that of using microeconomic panel data at the firm level which are drawn from two high-quality sources. This allows us to overcome the potential aggregation bias that is likely to plague the existing studies, based mostly on data at the country and industry levels.

Our results show that firms with lower leverage have a higher level of total factor productivity. Moreover, we lend some empirical support to the view that the better performance of less leveraged firms descends from their stronger ability to invest in more productive, but also more opaque, activities, in particular research and development. Our results have important policy implications, as they imply that interventions favoring market finance may have substantial effects on aggregate productivity.

The remaining of the paper is organized as follows. In the next section we present the theoretical and empirical background of our framework, reviewing the major results of the literature related to our research. Section 3 presents the empirical model adopted in the econometric analysis. Section 4 describes the data used in the empirical analysis and the methodology for estimating firms’ productivity. The results of the basic specification and of the robustness checks are presented in section 5. Section 6 concludes.

2 Background

Our research is closely related to that on the determinants of firms’ financial structure. Indeed, if the Modigliani-Miller indifference theorem applied, there would be no reasons to expect a relationship between a firm’s financial structure and its productivity. However, the literature on firm’s capital structure has uncovered various channels through which differences in firms’ funding sources affect their investment and output decisions.\(^1\) With respect

\(^1\)The dimension of this literature is witnessed by the already large number of surveys available on this issue. See, among the others, Harris and Raviv (1991), Shleifer and Vishny (1997), Zingales (2000) and Myers (2001).
to the analysis presented in this paper, this extensive literature can be classified into three major classes, depending on whether the analysis focuses, respectively, on bankruptcy costs, agency problems, or asset control.2

Bankruptcy cost theories are based on the idea that the loss incurred by debtholders in case of default is lower if the firm has a larger share of tangible assets, that can be more readily sold in the market (Jensen and Meckling, 1976). Hence, more innovative firms, having a larger share of intangibles, are less likely to be financed with debt.

Theories based on agency problems have considered different types of conflicts of interest. Harris and Raviv (1990) and Stulz (1990) study the effects of the conflicts between equityholders and managers: because the latter hold less than the full residual claim, they have an incentive to look for personal benefits, like consuming ‘perquisites’ such as large offices or corporate jets. To mitigate this problem, equityholders can increase the firm’s share of debt, therefore limiting the amount of free cash available to managers. Clearly, it will be easier for managers to divert resources for their personal uses when they are dealing with more opaque projects, as it is typically the case for innovative firms. If this is the case, equityholders should require, for such firms, a higher leverage.

A further type of conflict is that between insiders (managers or entrepreneurs) and outsiders. Because the former are better informed about the financial prospects of the firm, the latter may interpret the choice of issuing new equities – which dilute the insiders’ control – as a negative signal on the firm’s future prospects, and therefore underprice them. Under these assumptions, Myers and Majluf (1984) show that the firm’s optimal strategy implies the use of equities as the last source of finance, after internal funds and debt. Because for innovative firms it is more likely that information asymmetries are substantial, they should also have a higher share of debt financing.

Finally, since the seminal works of Jensen and Meckling (1976) and Myers (1977), the conflict of interest between debtholders and equityholders has also been analyzed. The basic idea in this literature is that equityholders, as residual claimants, have an incentive to take on riskier projects than what would be optimal (to ‘go for broke’). Because debtholders anticipate this behavior, the value of debt is underpriced, reducing the incentive for equity-

2An additional class of models is based on the role of the different tax costs of debt and equity financing. Although these models have no major implications for the relationship between firms’ financial structure and productivity, they provide the theoretical background for some set of instruments used in the empirical analysis (see section 3).
holders to use it as a source of finance. Clearly, if innovative firms are more likely to face riskier investment opportunities, their debt issues should suffer even more from underpricing, forcing firms to make a larger use of equity financing.

The last class of theories emphasize the role of control rights, building on the seminal works of Aghion and Bolton (1992) and Hart (1995). The basic idea is that firms’ optimal capital structure is the result of the trade-off between the marginal cost of diluting the control rights by issuing new equities and the marginal cost of debt in case of default. Because the latter increases with the share of intangibles, these theories predict that innovative firms are less likely to use debt financing.

In summary, a first class of theories — based on bankruptcy costs, on conflicts of interest between equityholders and debtholders and on control rights — predict that more innovative firms have lower leverage; a second class, based on conflicts of interest between managers and shareholders and between insiders and outsiders, predict the opposite.

The empirical literature on the determinants of capital structure has searched for the effect of a number of firms’ characteristics on their capital structure. Titman and Wessels (1988) find that firms with higher growth opportunities — as measured by capital expenditure over total assets, R&D expenditures over total sales and the growth rate of total asset — have lower debt financing, consistent with the first class of theories discussed above. They also find that firms with more unique products — proxied by the sales expenses over total sales (a measure of marketing and advertising costs), the number of voluntarily quitting employees (a measure of the specificity of the human capital employed in the firm) and R&D expenses — are less likely to use debt financing, providing empirical evidence in favor of this hypothesis (see also Bradley, Jarrel and Kim, 1984). Among the other variables that have been found to positively affect the equilibrium share of debt financing are also size (Warner, 1977; Smith and Warner, 1979), earnings’ volatility (Marsh, 1982; Bradley et al., 1984), and the probability of bankruptcy (Castanias, 1983). Finally, in partial contrast with Bradley et al. (1984), Aghion et al. (2004) find that firms with no R&D expenses and with high R&D expenses have a larger share of new equity financing, while firms with positive but low R&D expenses have a larger share of debt financing. They see these results as consistent with theories based on control rights.3

3A parallel strand of literature, starting with the seminal contribution of Fazzari et al.
Two papers empirically investigate the relationship between labor productivity and financial structure. Nickell and Nicolitsas (1995), studying a sample of UK firms, find some evidence of a small positive effect of debt pressure on labor productivity. They interpret this result as consistent with the hypothesis of Jensen (1986) that if managers lose more than shareholders in the event of bankruptcy, a higher debt position may cause a reduction in investment and an increase in the effort to raise efficiency which, in turn, determines a positive link between debt and productivity. Schiantarelli and Sembenelli (1997), studying a different sample of UK firms and a sample of Italian firms, find a positive relationship between labor productivity and leverage and a negative relationship between labor productivity and debt maturity.

3 The empirical specification

As shown in the previous sections, different theories of corporate governance have different implications for the equilibrium relationship between capital structure and the extent to which firms innovate. These views lend themselves to the empirical scrutiny, which may shed light on the merits of competing models of corporate finance, and possibly suggest policies capable of fostering productivity and growth.

Our empirical analysis is based on the following estimation framework. First, we identify exogenous variations in firms’ financial structure induced by factors that do not directly affect their productivity. Second, we investigate whether the exogenous variations in leverage induce firms to change their propensity to innovate and, as a consequence, their productivity.

The reason for considering exogenously driven variations of the firm’s

(1988), studies how firms fund new investment. The existence of a positive relationship between corporate investment and cash flow has been interpreted by many as evidence consistent with the hypothesis that financial constraints affect firms’ investment policies. Recently, Kaplan and Zingales (1997 and 2000) have argued instead that "investment-cash flow sensitivities are not valid measures of financing constraints", providing empirical evidence that investment-cash flow sensitivities do not increase monotonically with the degree of financing constraints, as measured by a variety of firm specific indicators, mainly drawn from balance-sheet. The debate on this issues is still open. However, as Hubbard (1998) argues, "while there is relatively widespread agreement on the role of financial frictions in the investment decisions of some firms, there is less agreement on the magnitude of that role".
financial structure is that a straight regression of TFP on leverage would be subject to serious endogeneity problems. Indeed, the equilibrium relationship that we described above implies that a firm with a certain leverage is bound to a given level of intangibles (and hence of TFP). At the same time, however, a firm wishing to innovate by increasing its share of immaterial assets is bound to change its leverage. Causality may therefore run in both directions.4

In light of these problems, in order to pin down the implications for productivity of a firm’s financial structure, we adopt the following instrumental variable specification:

\[\ln{TFP}_{it} = \alpha + \beta LEV_{it} + Z_{it} \gamma + \eta_i + \varepsilon_{it} \] (1)

where \(\ln{TFP}_{it} \) is the natural logarithm of the total factor productivity of firm \(i \) at time \(t \) and \(LEV_{it} \) is the leverage of firm \(i \) at time \(t \); the regression includes a set of control variables (\(Z_{it} \)) represented, among others, by time (calendar year), size and geographical (provinces) dummies. \(\eta \) reflects the fixed latent heterogeneity and \(\varepsilon_{it} \) is a random error that is assumed to be independently and identically distributed (i.i.d.) with mean zero and variance \(\sigma^2 \). We estimate the above equation using the between-group estimator, that ignores the over time variation of firms’ characteristics, and the fixed-effect instrumental-variable estimator, which only accounts for within-firm variation in TFP.

In order to instrument leverage, we selected the following variables: a) a tax variable summarizing the taxation components of each firm’s user cost of capital; b) an indicator of regional financial development. In terms of the first instrument, note that a variety of tax policy instruments are included in the user cost formula. Because the source of investment financing is not neutral with respect to tax policy, the firm’s capital structure is likely to depend on the tax variables summarized in the user cost formula. We had access to a detailed dataset constructed at the Bank of Italy where information on all the fiscal-related components of the user cost is set to the appropriate firm-specific value (see De Mitri et al., 1998). The large heterogeneity across firms in their tax positions makes this information a potentially relevant instrument. The tax variables included in the definition of the cost of capital are likely to affect the firm’s financial structure to a significant extent, without being influenced by the latter and, thus, potentially, by productivity.

\footnote{4A more specific potential bias, determining a negative relationship between leverage and productivity, owes to the fact that firms with a higher TFP are likely to generate higher profits and cash-flows, and therefore make lesser use of debt.}
The second instrument we used is an indicator of local financial development at the regional level. This measure is drawn from a recent study by Guiso et al. (2004), who construct such indicator consistently with the notion that more developed financial markets grant individuals and firms an easier access to external funds. In particular, using data on individuals’ access to credit, they estimate the probability that a household is denied credit or discouraged from applying for it, conditionally on a number of individual characteristics and other controls. In their linear probability model, they insert a set of 19 regional dummies; the parameter estimates of these dummies provide a measure of the extent to which a region is financially developed. The degree of local financial development is a relevant exogenous determinant of a firm’s capital structure. In fact, a developed financial system will influence the firms’ financial structure by providing the appropriate mix of financial sources for given business. Moreover, considering that firm’s TFP has a large idiosyncratic component and that we include in our empirical specification other region specific control variables, it is unlikely that there are omitted factors in the estimating equation that drive region-wide financial development and also foster firm-level productivity, thus affecting the exogeneity of this instrument.

4 The data

Estimation is conducted on a representative sample of high quality data on over 40,000 firms for the period 1982 - 1998. Data are drawn from balance-sheet information compiled by the Company Account Data Service (CADS, Centrale dei Bilanci). Firm-level TFP measures are constructed by applying the Olley and Pakes (1996) methodology. The latter allows to control for the simultaneity between productivity shocks and input demand, as well as for the self-selection in the data induced by the higher probability that firms endowed with more capital survive after a bad productivity realization.6

Data on the firm-specific taxation component of the user cost of capital, constructed within a project developed by Banca d’Italia (see De Mitri et al., 1998), were kindly made available by the authors. This information at the

5Guiso et al. (2004) show that local financial development indeed matters for local performance, contrary to the view of an integrated country-wide financial market.

6See Cingano and Schivardi (2004) for a detailed description of the procedure followed in estimating the firm-level TFP used also in this paper.
microeconomic level is drawn from CADS data as well as from the Bank of Italy’s Survey of Investment in Manufacturing (SIM) and the Credit Register (CR), a statistical source maintained by a special unit of the Bank of Italy (Centrale dei Rischi), that provides detailed data on bank-firm contracts. This is a unique and highly confidential source of information on firms’ cost of capital. In computing the user cost of capital, De Mitri et al. (1998) followed the Hall-Jorgenson approach, as adapted by Auerbach (1983) to firms that use both equity and debt finance.

The CADS supplies balance-sheet indicators at nominal value. We deflate both value added and investments using the appropriate two-digit deflators, derived from the National Institute for Statistics’ (NIS) National Accounts. The capital stock at firm level was obtained from the book value of investment using the permanent inventory method, accounting for sector specific depreciation rates from NIS’s National Accounts data. The initial capital stock was estimated using the deflated book value, adjusted for the average age of capital estimated from the depreciation fund. We take care of outliers by excluding firms with values of value added per worker or value added per unit of capital below the first or above the last percentile of the distribution. This procedure does not introduce systematic biases in the results, while improving their stability.

Descriptive statistics of all variables used in the empirical analysis are reported in Table 1.

5 The empirical results

5.1 Baseline specification

The results of our baseline regression are reported in Table 2. They show that firms with lower leverage are on average more productive. In particular, when we use the two-stage least squares between estimator, which focuses on average firm values, the estimated coefficient associated to leverage is -1.332 with a standard error of .037 (panel A); with the two-stage least squares within (fixed effect) estimator, which exploits the time-series instead of the cross-section variability of the data the coefficient is still negative and equal to -.154 (with a standard error of .013; panel C). The fact that the coefficient of the fixed-effects estimates is of a smaller size (in absolute value) indicates that the cross-sectional differences across firms in the financial structure play
a more important role in explaining productivity than the time series variability. Still, the negative estimated coefficient of the fixed effects specification suggests that, for the same firm, an increase in leverage is associated with a lower TFP.

The control variables also enter significantly, although in some cases their sign changes from the between-effects to the fixed-effects estimates. Again, this is due to the different interpretation to be given to between and within effect estimators. Indeed, it is not surprising that larger firms (as measured by the size of their labor force) are on average more productive, but that an increase in the number of employees determines a reduction in productivity. The value of cash-flow and, remarkably, the share of immaterials over total assets have a positive and significant effect on productivity, above the one already captured by the effects through leverage. This provides evidence of an effect of leverage on TFP which is higher than that stemming from a larger availability of funds for financing acquisition of immaterial assets.

The soundness of our empirical specification is confirmed by a number of diagnostic tests. The Hausman test to discriminate between a fixed-effect and a random-effect model rejects the null hypothesis, indicating that the random-effect estimator would be inconsistent (the value of the test is 1301.6 with a p-value of .00). The Wald-type test confirms the joint significance of instruments in the first stage panel regression: in both cases of between and within estimates, the p-value of this test is .00. Finally, in order to test the exogeneity of the instruments, we run a Hausman test of over-identifying restrictions, which leads in both cases to the rejection of the null hypothesis of instruments’ endogeneity at the 5 per cent level or more.

Overall, these findings lend support to the view that firms which are less reliant on debt finance tend to hold a larger portion of immaterial assets

7 This is confirmed by the value of the Wald tests (not reported) for the joint significance of the calendar year dummies (in the within estimation) and of the industry dummies (in the between estimation).

8 Clearly, this might also depend on the fact that our proxy for immaterial assets does not capture the whole effect of intangibles on the optimal firm financial structure.

9 We did not include in the instruments set the whole variety of taxes and fiscal-related components reflected in the user cost formula. In particular, we concentrate on taxes on firms’ assets and, for fixed effect regressions, on tax exemptions. When a more comprehensive fiscal instrument is used, which includes all tax policy instruments, the estimation results remain qualitatively very similar to those documented in the paper. In that case, however, the appropriate statistical tests would point to a failure of the hypothesis of instruments exogeneity.
and, thus, to undertake more innovative activities. Ultimately, this translates into a higher total factor productivity. Thus, according to our finding, a firm which is less leveraged – for reasons independent from its growth opportunities – is more likely to conduct innovative projects which increase growth opportunities and lead to a larger TFP.

5.2 Other tests

In order to grant more generality to our analysis and to establish a closer link between the theoretical motivation and the empirical framework, we extend our analysis along two parallel issues. First, we test whether the firm’s financial structure is indeed an explanatory factor for the intensity of firm’s innovative activities (and whether the way these respond to leverage is qualitatively similar to the way firm’s productivity responds). Second, we directly verify whether the relationship between TFP and the extent of innovative activities is indeed positive and statistically significant.

In order to tackle the first issue, we run a panel regression identical to (1), also instrumented, where the dependent variable, however, is no longer TFP but the degree of firms’ innovative activities. The latter variable is approximated by the share of intangible over total non-financial assets. Because our new dependent variable, IMM_t, is a share, whose values, of course, range between 0 and 1, we consider its logistic transformation, $\ln(\frac{1+IMM_t}{1-IMM_t})$. In Table 3, we report the estimation results of this regression, for which we continue to use both the between-effect and the fixed-effect instrumental variable estimator. Consistently with our a priori, the estimated effect of leverage on the share of intangible assets is of the same sign of the effect of leverage on productivity. Moreover, not only is the estimated effect negative but it is also statistically significant. With the between-group estimator, the coefficient estimate of leverage is -3.000 with a standard error of .194 while, when fixed-effects are allowed for, the estimate is -.174 with a standard error of .048.

So long as we consider the share of intangibles a good proxy for the firm’s propensity towards innovative activities, these finding indicate that less

10 We include as instruments the full set of tax policy determinants of the user cost of capital, since in this case the test of over-identifying restrictions permits to reject the hypothesis of endogeneity at the usual confidence levels.

11 In order to preserve the boundary observations in the logistic transformation, we have added (subtracted) 0.05 to $IMM_t = 0$ ($IMM_t = 1$), as suggested by Amemiya (1985).
leveraged firms tend to be more innovative. How these differences in leverage have also implications for the firm’s performance was already examined in the previous section. However, we add here another piece of evidence by testing that the relationship between our measure of performance (TFP) and the extent to which a firm innovates is indeed positive and statistically significant. To do so, we simply run a panel regression of firm’s TFP on the share of immaterial over total non-financial assets. The estimation results, presented in table 4, point to a positive and strongly significant relationship. The estimated parameter ranges from .922 (with a standard error of .199) in the between-effect specification to .111 (with a standard error of .007) in the fixed-effect specification.

5.3 Sample splits

Our finding that less leveraged firms have on average a higher productivity might be analyzed in greater detail by testing for the presence of non-linearities in the relationship between financial structure and total factor productivity. The argument in favor of these non-linearities is that there are a number of characteristics that may uncover a degree of difference across firms in the sensitivity of TFP to leverage. A natural way to address this issue is by splitting the entire sample of firms according to each of these characteristics and investigating whether the estimated effect of leverage on TFP varies across the two groups of firms and is magnified by the presence of this characteristic.

The first hypothesis we test is whether the negative TFP-leverage relationship is weaker for firms with a higher share of short-term bank debt. The rationale for this hypothesis is that conflicts of interest between equityholders and debtholders are less important in the case of short-term bank debt, which allows banks to exert a stronger control on firms’ activities.

Table 5 presents the results from estimating equation (1) on two different sub-samples: the first one refers to firms having a share of short-term bank debt above the sample median of the firms’ average ratios. The second sub-sample refers to firms with a share of short-term bank debt which is less than (or equal to) the median across firms of their average shares. We find that the effect of leverage on productivity is always negative, but it is much higher for firms with a low share of short-term bank debt. If one considers the between-group specification, the estimated coefficient associated to leverage is -1.612 (with a standard error of .057) in the sub-sample of firms with
less short-term bank debt. On the contrary, the estimated effect is -1.213 (with a standard error of .050) in the other sub-sample. Similar results are obtained when the fixed-effect estimator is used. In this case, the estimates of the parameters for leverage are, respectively, -.202 and -.124, with standard errors of, respectively, .022 and .017.

Another investigation deals with the role of liquid assets in shaping the relationship between leverage and productivity. Arguably, if a firm has to decide whether to undertake projects with high-growth potentials and has a large share of liquid assets, it can catch the opportunities by relying to a significant extent on the internal funds available. Hence, for these firms the capital structure may be less crucial than it would be for other firms and no matter whether the firm’s leverage is high or low, the performance enhancing activities can be undertaken thanks to the resources associated with positive and large cash flow. Our empirical results seem to lend support to this view. In Table 6, we report the results from estimating equation (1) for two groups of firms: one is comprised of those with a share of liquid over total assets which is greater than the median across firms of the each firm’s average share. The other group of firms is comprised of those with a share of liquid over total assets which is less than (or equal to) the sample median. When we use the between-group estimator, the coefficient of leverage is -1.269 with a standard error of .054 for firms with a large share of liquid assets; by contrast, the estimated effect is -1.307 with a standard error of .058 for less liquid firms. Similarly, the results with the fixed-effect estimator point to a negative effect of leverage in both sub-samples, which is, however, much larger for firms with a lower share of liquid assets: the estimated coefficients are -.163 (with a standard error of .018) in this group of firms and it is -.096 (with a standard error of .021) in the group of more liquid firms.

6 Conclusions

Our empirical findings document that exogenous factors affecting a firm’s financial structure have substantial effects on its allocation of capital between material and immaterial assets and, ultimately, on its productivity. These results are found considering both a between-group estimator, which simply reflects the cross-sectional differences between firms with low and high leverage, and a fixed-effect estimator, which exploits only within-firm variations. Moreover, we provide two additional sets of results, supporting our
interpretation of the causation effect running from a firm’s financial structure to its share of intangibles, its propensity to innovate and, ultimately, its productivity. First, we show that there is a negative and significant causal relationship from a firm’s leverage to its share of intangibles. Second, we show that there is a positive and significant relationship between the share of intangibles and a firm’s productivity. Finally, we find that the negative relationship between leverage and productivity is non-linear, depending on some firm-specific characteristics. In particular, we document that the negative relationship is stronger for firms with a lower share of short-run bank debt and with lower liquid over total assets.

These results lend support to the theories of firms’ financial structure based on bankruptcy costs, conflicts of interest between equityholders and debtholders and control rights, which predict that less leveraged firms have a higher share of immaterial assets and, as argued above, a higher TFP. Some caution is, however, necessary in deriving macroeconomic implications from our empirical findings. This owes to the large heterogeneity in firms’ productivity and the massive and continuous reallocation of outputs and inputs across firms and within sectors (Davis and Haltiwanger, 1999; Baily et al. 1992; Bartelsman and Doms, 2000). Indeed, the overall performance of an economy depends not only on the average productivity of its firms, but also on the relative shares of production of efficient and inefficient firms, a feature that is in turn related to firms’ entry and exit. However, Bartelsman and Doms (2000) show that the contribution of productivity growth at the plant level to average total factor productivity is in any case substantial, in the order of fifty per cent (and suggest that, at the firm level, it is likely to be even larger).

As argued by a number of recent contributions, including Prescott (1998), Hall and Jones (1999) and Easterly and Levine (2001), the bulk of cross-country differences in the level or growth rate of GDP per capita is not explained by factor accumulation but by TFP. Our results, by suggesting that interventions favoring market finance may indeed be beneficial for aggregate productivity, are therefore likely to have important policy implications.

\[^{12}\text{On this issue, see also Young (1995)}\]
References

Table 1
Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N observations</th>
<th>Mean</th>
<th>Median</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(TFP)</td>
<td>240,836</td>
<td>2.400</td>
<td>2.403</td>
<td>0.573</td>
</tr>
<tr>
<td>Leverage</td>
<td>240,836</td>
<td>0.504</td>
<td>0.535</td>
<td>0.266</td>
</tr>
<tr>
<td>Tax on assets</td>
<td>193,706</td>
<td>0.003</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>Tax exemptions</td>
<td>193,706</td>
<td>0.002</td>
<td>0.000</td>
<td>0.009</td>
</tr>
<tr>
<td>Liquid assets</td>
<td>240,836</td>
<td>0.066</td>
<td>0.026</td>
<td>0.094</td>
</tr>
<tr>
<td>Immaterial assets</td>
<td>240,753</td>
<td>0.095</td>
<td>0.029</td>
<td>0.156</td>
</tr>
<tr>
<td>Cash-flow</td>
<td>240,836</td>
<td>0.144</td>
<td>0.146</td>
<td>0.213</td>
</tr>
<tr>
<td>Long-run bank debt</td>
<td>229,387</td>
<td>0.203</td>
<td>0.080</td>
<td>0.267</td>
</tr>
<tr>
<td>Short-run bank debt</td>
<td>223,698</td>
<td>0.754</td>
<td>0.885</td>
<td>0.304</td>
</tr>
<tr>
<td>Financial development</td>
<td>220,985</td>
<td>0.317</td>
<td>0.297</td>
<td>0.095</td>
</tr>
</tbody>
</table>

Legend: TFP is total factor productivity computed through the Olley and Pakes’ method; leverage is defined as debt over total assets; tax on assets is a firm-specific tax rate on firm’s assets; tax exemptions is a firm-specific rate of tax exemption; liquid assets are a share over total assets; immaterial assets are a share over total non-financial assets; cash-flow is as a share of value added; long-run bank debt is a share over total financial liabilities; short-run bank debt is a share over total bank debt; financial development is an index of the region’s financial development (see Guiso et. al, 2004).
The effect of leverage on firm’s productivity
Panel data estimation

<table>
<thead>
<tr>
<th>Dependent variable: $\log(TFP_{it})$</th>
<th>Between effects IV</th>
<th>Between effects IV</th>
<th>Fixed effects IV</th>
<th>Fixed effects IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel A</td>
<td>Panel B</td>
<td>Panel C</td>
<td>Panel D</td>
</tr>
<tr>
<td>Leverage$_{it}$</td>
<td>-1.332*** (0.037)</td>
<td>-0.871*** (0.033)</td>
<td>-0.154*** (0.013)</td>
<td>-0.115*** (0.012)</td>
</tr>
<tr>
<td>Immaterials$_{it}$</td>
<td>1.099*** (0.019)</td>
<td></td>
<td>0.155*** (0.007)</td>
<td></td>
</tr>
<tr>
<td>Cash-flow$_{it}$</td>
<td>0.571*** (0.022)</td>
<td></td>
<td>0.396*** (0.004)</td>
<td></td>
</tr>
<tr>
<td>Liquid assets$_{it}$</td>
<td>-0.096** (0.049)</td>
<td></td>
<td>0.314*** (0.011)</td>
<td></td>
</tr>
<tr>
<td>Firm size 2</td>
<td>0.246*** (0.010)</td>
<td></td>
<td>-0.008*** (0.003)</td>
<td></td>
</tr>
<tr>
<td>Firm size 3</td>
<td>0.231*** (0.010)</td>
<td></td>
<td>-0.012*** (0.003)</td>
<td></td>
</tr>
<tr>
<td>Firm size 4</td>
<td>0.181*** (0.010)</td>
<td></td>
<td>-0.005*** (0.003)</td>
<td></td>
</tr>
<tr>
<td>Firm size 5</td>
<td>0.135*** (0.010)</td>
<td></td>
<td>-0.013*** (0.003)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.357*** (0.105)</td>
<td>2.778*** (0.087)</td>
<td>2.579*** (0.008)</td>
<td>2.480*** (0.008)</td>
</tr>
<tr>
<td>Over-identifying restrictions</td>
<td>0.44 (p-value = 0.51)</td>
<td>0.24 (p-value = 0.63)</td>
<td>6.13 (p-value = 0.05)</td>
<td>4.55 (p-value = 0.47)</td>
</tr>
<tr>
<td>N. observations</td>
<td>27,029</td>
<td>27,024</td>
<td>177,679</td>
<td>177,629</td>
</tr>
</tbody>
</table>

Legend: The sample period is 1982-1998. Parameter estimates are reported with standard errors in brackets. The instrument set includes tax components of the user cost of capital (tax on firms’ assets and, for fixed effect regressions, also tax exemptions) plus the indicators of financial development at the regional level (see discussion in the text). Leverage is defined as debt over total assets; immaterials is the share of immaterial over non-financial total assets; cash-flow is as a share of value added; liquid assets are a share over total assets; firm size 2-5 are dummy variables obtained from quintiles in the distribution of the number of employees. In choosing the fixed-effects vs random-effects estimators, we used the value of the Hausman test. Over-identifying restrictions is a Hausman test on the exogeneity of instruments, distributed as a χ^2 with degrees of freedom equal to the number of over-identifying restrictions. The between-effect specification includes geographical (province) and industry dummies while the fixed-effect specification includes calendar year dummies.

** significant at the 5-percent level.

*** significant at the 1-percent level.
Table 3
The effect of leverage on firm’s intensity of innovative activities

Panel data estimation

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Between effects IV</th>
<th>Fixed effects IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln\left(\frac{IMM_{it}}{1 - IMM_{it}} \right))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage_{it}</td>
<td>-3.000*** (0.194)</td>
<td>-0.174*** (0.048)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.766*** (0.130)</td>
<td>-2.001*** (0.027)</td>
</tr>
<tr>
<td>Over-identifying restrictions</td>
<td>0.20 (p-value = 0.90)</td>
<td>4.98 (p-value = 0.08)</td>
</tr>
<tr>
<td>N. observations</td>
<td>28,480</td>
<td>177,228</td>
</tr>
</tbody>
</table>

Legend: The sample period is 1982-1998. Parameter estimates are reported with standard errors in brackets. The dependent variable is the logistic transformation of the share of immaterial over total non-financial assets, \(IMM_{it} \). The instrument set includes tax components of the user cost of capital and the indicators of financial development at the regional level (see discussion in the text). Leverage is defined as debt over total assets. In choosing the fixed-effects vs random-effects estimators, we used the value of the Hausman test. The fixed-effect specification includes calendar year dummies while the between-group specification includes industry dummies.

**significant at the 5-percent level.

***significant at the 1-percent level.
Table 4
Productivity and the firm’s intensity of innovative activities
Panel data estimation

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Between effects</th>
<th>Fixed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(TFP_{it}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immaterials (_{it})</td>
<td>0.922*** (0.199)</td>
<td>0.111*** (0.007)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.301*** (0.034)</td>
<td>2.543*** (0.003)</td>
</tr>
<tr>
<td>N. observations</td>
<td>28,525</td>
<td>177,473</td>
</tr>
</tbody>
</table>

Legend: The sample period is 1982-1998. Parameter estimates are reported with standard errors in brackets. Immaterials is the share of immaterial over total non-financial assets. In choosing the fixed-effects vs random-effects estimators, we used the value of the Hausman test. The fixed-effect specification includes calendar year dummies while the between-group specification includes industry dummies.

** significant at the 5-percent level
*** significant at the 1-percent level.
Table 5
Non-linearity in the effect of leverage on productivity:
The role of short-term bank debt
Panel data estimation

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Sub-samples: Firms with more short term bank debt</th>
<th>Firms with less short term bank debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(TFP$_{it}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Between effects IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage$_{it}$</td>
<td>-1.213*** (0.050)</td>
<td>-1.612*** (0.057)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.331*** (0.156)</td>
<td>3.462*** (0.137)</td>
</tr>
<tr>
<td>N. observations</td>
<td>15,134</td>
<td>11,895</td>
</tr>
<tr>
<td>(b) Fixed effects IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage$_{it}$</td>
<td>-0.124*** (0.017)</td>
<td>-0.202*** (0.022)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.612*** (0.011)</td>
<td>2.533*** (0.013)</td>
</tr>
<tr>
<td>N. observations</td>
<td>104,460</td>
<td>73,219</td>
</tr>
</tbody>
</table>

Legend: The sample period is 1982-1998. The sample splitting criterion is the following: a firm is identified as having more short-term bank debt if its share over total bank debt is larger than the median across firms of the firms’ time averages. Conversely, a firm is identified as having less short-term bank debt if this share is less than (or equal to) the median across firms of these time averages. The instrument set includes tax components of the user cost of capital (tax on firms’ assets and, for fixed effect regressions, also tax exemptions) plus the indicators of financial development at the regional level (see discussion in the text). Leverage is defined as debt over total assets. In choosing the fixed-effects vs random-effects estimators, we used the value of the Hausman test. The between-effect specification includes geographical (province) and industry dummies while the fixed-effect specification includes calendar year dummies.

**significant at the 5-percent level.
***significant at the 1-percent level.
Table 6
Non-linearity in the effect of leverage on productivity:
The role of liquid assets
Panel data estimation

<table>
<thead>
<tr>
<th>Dependent variable: log(TFP_{it})</th>
<th>Sub-samples: Firms with higher liquid assets</th>
<th>lower liquid assets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) Between effects IV</td>
<td></td>
</tr>
<tr>
<td>Leverage_{it}</td>
<td>-1.269*** (0.054)</td>
<td>-1.307*** (0.058)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.425*** (0.140)</td>
<td>3.262*** (0.154)</td>
</tr>
<tr>
<td>N. observations</td>
<td>12,066</td>
<td>14,963</td>
</tr>
<tr>
<td></td>
<td>(b) Fixed effects IV</td>
<td></td>
</tr>
<tr>
<td>Leverage_{it}</td>
<td>-0.069*** (0.021)</td>
<td>-0.163*** (0.018)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.593*** (0.011)</td>
<td>2.549*** (0.012)</td>
</tr>
<tr>
<td>N. observations</td>
<td>69,625</td>
<td>108,054</td>
</tr>
</tbody>
</table>

Legend: The sample period is 1982-1998. The sample splitting criterion is the following: a firm is identified as having more liquid assets if its share over total assets is larger than the median across firms of the firms’ time averages. Conversely, a firm is identified as having less liquid assets if this share is less than (or equal to) the median across firms of these time averages. The instrument set includes tax components of the user cost of capital (tax on firms' assets and, for fixed effect regressions, also tax exemptions) plus the indicators of financial development at the regional level (see discussion in the text). Leverage is defined as debt over total assets. In choosing the fixed-effects vs random-effects estimators, we used the value of the Hausman test. The between-effect specification includes geographical (province) and industry dummies while the fixed-effect specification includes calendar year dummies.

**significant at the 5-percent level.
***significant at the 1-percent level.