XML Schema Evolution:
Incremental Validation and Efficient Document Adaptation

Giovanna Guerridi Marco Mesitf, Matteo A. Sorrenti
I DISI — Universit degli Studi di Genova, Italy guerrini@disi.unige.it
2 DICO — Universia degli Studi di Milano, Italy -mesiti@dico.unimi.it

Abstract A naive approach to revalidation consists in applying a stan-
dard validation algorithm (like MSXML, Xerces, and XSV)
An XML Schema describes the structure of valid docu- to each document and the evolved schema’, obtained
ments and can be exploited both for querying and for effi- by changing the original schema: through an evolution
ciently accessing valid documents. XML Schemas, howevelprimitive. This approach, however, does not take advantage
may need to be updated to adhere to new requirements anaf the fact that some evolution primitives are known not to
to face the changes in the application domain. Starting from impact document validity [8]. Moreover, also for primi-
a set of schema modification primitives, in this paper we de- tives whose application can impact validity, the evolution
vise a new validation approach that allows to efficiently val- most likely impacts a limited portion of the schema. Con-
idate documents, known to be valid for the original schema, sequently, validity needs to be rechecked on restricted por-
for an updated schema. Then, we enhance the approach tdions of a document. The ha& approach, moreover, does
adapt the documents to the new schema. Experiments provaot take into account that documehis known to be valid
that our approach considerably increases the performance for the original schemax and that the possible effects on
of standard validation algorithms in this setting. Moreover, validity of a primitive can be foreseen. Thus, we propose in
the cost of the adaptation process is contained. this paper aincrementalalidation approach for the valida-
tion of documents, known to be valid for an original schema
sx, against an evolved schema obtain frem through a
1 Introduction specific evolution primitive.
If the evolution impacts validity, a related problem is
XML Schemas [17] are a W3C recommendation to de- how to adapt documents so to make them valid for the
scribe the structure and to constrain the content of XML evolved schema. Documents should be adapted through a
documents. XML Schemas, as any form of schema, fre- minimal set of updates, so to limit potential damages due
quently need to be updated to reflect changing requirementgo changes in the informative patrimony in the documents.
of the application domain. Systems need indeed to beA manual execution of such updates on documents is dif-
adapted to real-world changes, new functionalities need toficult and likely results in introducing errors and inconsis-
be introduced, new data types need to be processed. Comencies. Thus, approaches for adapting documents to the
mercial alliances change and expand. XML data represen-new schema are needed to maintain the documents valid for
tation formats and domain-specific schemas, before beingthe associated schema. We remark that the availability of
adopted as a standard, undergo several revisions resulting schema is relevantly exploited in querying and efficiently
in many different versions and the need arises to adapt theaccessing documents.
corresponding documents. The main contributions of this paper are an algorithm for
XML Schemas can be updated in their basic compo- the incremental validation of XML documents upon XML
nents: elements declarations, simple and complex type decSchema evolution and an efficient algorithm for adapting
larations. In [8] a set of primitives for evolving XML the documents, known to be valid for the original schema,
Schemas has been defined, together with an analysis of théo the evolved schema. Both the algorithms have been im-
impact of such primitives on documents known to be valid plemented in X-Evolution [11], a .NET system, and exper-
for the original schema. Documents valid for the original imentally evaluated. Our incremental validation algorithm
schema, indeed, are no longer guaranteed to meet the comsutperforms the .NET validation algorithm for primitives
straints described by the evolved schema. In principle, thesethat do not alter document validity and improves of an av-
documents should beevalidatedagainst the new schema. erage 20% for other primitives. The execution time of doc-

ument adaptation linearly depends on the document size. 3 XML Schemas and Evolution Primitives

The remainder of this paper is organized as follows. Sec-
tion 2 briefly surveys related work. Section 3 introduces XML Schemas. We adopt the XML Schema representa-
XML Schemas and evolution primitives. Section 4 intro- tion of [8, 9], that extends the one proposed in [18]\V
duces some basic functions on the structure of a complexdenotes the set of element tags\ the set of (both simple
type, auxiliary to both the evolution and the adaptation and complex) type name%.\ is the union of7'7 and AT,
processes. Section 5 presents the incremental validation andihere7 7 is the set of explicitly assigned type names and
adaptation algorithms, that are experimentally evaluated in A7 is the set of system-assigned type names (to identify

Section 6. Section 7 concludes the work. anonymous types).
Simple typesnamedS7, can be XML Schema native
2 Related Work types in the sel\"7T or can be derived througiestrict

list , andunion . Each simple type is characterized by a
set offacetsallowing to state constraints on its legal values.
We assume the presence of a predigatieat represents the
constraints imposed by a set of facets. The set of simple

The need for XML schema evolution mechanisms has
been advocated by Tan and Goh [12] for XML based spec-

|f|cat|c_)ns. A clazsf)lcanon of d!;ferer?t rle.qu|red modifica- dtypes is inductively defined as follows: native types (e.g.,
tions is proposed but no specific primitives are proposed y. .. string ,float , date) are simple types: if
nor the impact on existing documents is discussed. SchemallS a sim Iét elis:c(T) is a’ simple tvpe: if- - ;are
evolution had been previously investigated for schemas ex-_. ple Ype 1P ype; i, - - e
pressed by DTDs in [10], where a set of evolution opera- simple typesunion(rs, ...,) is & simple type; ifr is a
tors is proposed and discussed in detail. Problems cause imple type andf is a predicate on the facets applicable on

. . - i i impl . n h
by DTD evolution and the impact on existing documents c;fl[s;;r J;E ((;1, ers ?_;i?/enpﬁe tT);pe[[T[[lT]}H Cd e[[:;isc;r?tf:t
a.rg- hO\é\ieve.r n?t at(?]drei(sl\tjldl_. SM cr)]reover,jlr:ﬁe DTDs arg CONYetermined both by exploiting the built-in native types hier-
siderably simpler than chemas [4] the proposed op- archy [17] and standard constraint subsumption approaches
erators do not cover all the set of schema changes that carf14] When facets occur
occur on an XML Schema. DTD evolution has also been in- Complex typesnamédCT are associated with a struc-
vestigateq in [3] from gdifferent perspective. The focus was ture specifying the possiblé children of a given element.
on dynamically adaptmg the schema to the structu.re OmeStA type structure is represented through a labelled tree. A
_d_ocu_ments stored in an XML data source. Reqt_ur_ed mOd'tree on a set of node¥ is inductively defined by stating
ifications are deduced by means of structure mining tech-

niques and documents are not required to exactl Corncormthat: ()v € Nis atree; and (ii) if/y, ..., T, are trees and
lques uments qui xacty v € N, (v,[Th,...,Ty)) is a tree. childs(v) denotes the
to the corresponding DTD.

In [6, 15] approaches for making an XML document list of subtrees of.. labelled tree is a paifT,), whereT

lid t ; DTD. b i inimal modificati is a tree andp is a total function from the set &f nodes
valid 1o a given » Oy applying minimal Modilications -, 5 set of Jabels. Labels of the tree representing a type
detected relying on tree edit distances, have been propose

tructure are pair§,~), wherel € EN U OP andy € T.
No knowledge of_conformance of the document to a DTD OP — {SEQUENCE, ALL, CHOICE} denotes the set of op-
is however exploited. The problem of document revalida-

o X : . erators for building complex types. TISEQUENCE opera-
tion is investigated in [13]. Documents to be revalidated g P yb Q P

th lable in ad h K b I.dtor represents a sequence of elementsCHIE CE operator
fmay notbe av?]l a ;ln advancet,b ey arel_dn;)v(\;n 0 be \ia' represents an alternative of elements, andAttie opera-
or a given scheéma,; and must be revalidated against a ., represents a set of elements without order. By contrast,
different schemab,, but the transformations leading from

T I' = {(min,maz) | min,max € N,min < max} de-
51 10 53 are not known. - Incremental validation of XML notes the set of occurrence constraints, whete is the at-

documents, represented as trees, has. been investigatgd f?tributeMinOccurs andmax is the attributeMaxOccurs .
XML updates [1, 2, 5]. Given an atomic update operation The default valud1, 1) is not shown in our graphics. Let

on an XML document, the update is simulated, and only af- root(T)) be the root of tred’, I(T) denote the label of the

ter verifying that the_updated docurT_]e_nt is still valid for its root of T, andl;, (v), i = 1,2 denote the-th component of
schema the update is executed. Efficiency of those propos; :

. : the label ofv.
als is bound to theonflict-freeschema property. A schema Y

) g)) L A type structures a treeT” defined on the set of labels
is said to beconflict-freewhen in type definitions subele- .

: : (EN UOP) x T for which:
ment names appear only once. In this paper, we will address

the revalidation and adaptation problem only for conflict- 1. [(T) € OP x T}

free schemas, both for what concerns the original schema .
and the evolved one. Most schemas employed on the Web 2. foreach subtre@, [Tt .., T]) Of T, l(v) € OP x T
do exhibit this property [7]. 3. foreach leab of T', i(v) € EN X T;

4. for each SubtrEé’U, [Tl, . >Tn]) of T, if l(v) = EN ¢ = {mails, attachment},
<ALL7 (m7n, maaj)>, Vo= ’I"OOt(T) and VZ,? S T = {mailT, envelopeT, personT} U {t1,t2}
{17 e ,n} Z(E), Z(TJ) S EN x " and s #] = typec (mails) = t1, typec (attachment) = to
I,(T3) # 1,,(Ty), 0 < min; < max; < 1 where
Ty) = (l;, (min;, max;)).

sequence(0,e<)

p(t1) mail — mailT

The last condition imposes thall labelled nodes can mail
only appear as children of the root element and that their sequence
children must be all distinct elements. T picture — Byte
XML Schemasunlike DTDs, allow an element to have || ,(2) chotoe (0.1) - text ffocﬁfei%f;
different types depending on its context, but an unique type picm{[\mm text — string
is assigned to each element of the schema depending on audio
its context (global or local to a type). A consistent XML sequence

Schemas a 4-tuple(EN ¢, T, p, typeg):

envelope — envelopeT

. p(mailT) envelope choice (0,<) body o strin
e ENg C EN s the set of labels of global elements, Y g
. bod ttachi t
o T=(TT UAT)C TN is the set of type names, oy seemen TromT personT
. o i i sequence cc — personT
e p associates eachc 7 with its declaration, that is: (envelopeT)from hoader (1) L0 — personT
P P K oot " date — date
i . cc (0,0 subject . .
—if 7 € 8T, p(r) € NT U {restrict(m, f), "o e subject > siring
. A . eaaer — string
list(7y),union(ry ... 78)|71,..., 70 € ST }; sequence name — string
—if 7 €CT, p(t) = (EN,, S, type;), where: ppersonT) A mail — string
name (0,1 mail

ENCEN is the set of local element names for
T; S, is the structure for; type, : EN, =T
assigns each local element®f its type.

o typec :EN ¢ — T assigns a global element its type. Eyoly_tion Primitives. In [8, 9] t_hree gategorie.s.of a_ttomic
o)] } primitives have been devised: insertion, modification, and
When no ambiguity arises we use functigipe to associate yajetion of the XML Schema components (simple types,

a (global or local) element with its type. complex types, and elements). Modifications can be further

Examp|e 1 Table 1 shows the representation of our refer- classified in structural and relabe”ing modifications. Struc-
ence mail schema example. The first row reports the set oftural modifications allow to modify the structure of a type
global element names, the set of type names, and functiofsubelements, operators that establish the structure and car-
typec that associates each global element with the corre- dinality constraints) while relabelling modifications allow
sponding type. Then, for each complex typés definition to change the name of an element/type. Table 2 reports the
p(7) is provided. Specifically, the type structuse and evolution primitivesP relying on the proposed classifica-

the functiontype. that associates each local element name tion. For simple types the operators are further specialized
EN, with the corresponding type. o to handle the derived typesstrict , list , andunion .

Primitives markedk in Table 2 (denoted bf*) do not alter
Functionvalid is considered in the remainder of the ¢ validity of documents, whereas primitives markeih

paper for representing a standard approach for eval-raple 2 (denoted b':) operates on a type structure and
uating the validity of a document against a schema paye the same treatment in our algorithms. Primitives in
or an element against a type. FunctigniPaths is pt. require to identify the node in position (in the pre-
defined on different input parameters (either a type, &g ger traversal of the type structure) to be updated/deleted
type structure or an element tag) and returns the XPathand, in case of insertion, the positiof) Where a node
expressions of elements presenting such a type, strucsnoyld be inserted. Primitives are associated ajiplica-
ture, or element tag in the schema. Referring to the ity conditionsthat must hold before their application to
mail schema in Fig. 1getPaths(personT, mail) = { guarantee that the updated schema is still consistent. For
/mails/mail /envelope/ from,/mails /mail /envelope/to, example, global types/elements can be removed only if ele-
/mails/mail /envelope/cc}. FunctiongetPaths returns ments in the schema of such a type or that refer to it do not
the right set of paths depending on the context in which it gyist. Moreover, when renaming an element in a complex
is invoked. For example, different paths are returned for type, an element with the same tag should not occur.in

elementmail in t, andpersonT’. By contrast, function these conditions should be verified when the corresponding
getElems evaluates a set of XPath expressions on a primitive is handled in our algorithms.

document and returns the corresponding elements.

Table 1. Mail schema representation

insert_glob_simple_type(t, dt, sx)*
insert_new_member_type(T, Tar, st)*

change_restrict(r, f, sx)

change_base_type(T, 7B, sT)

Simple | rename_glob_type(to, TN, sx)*
Type change_item _type(t, 11, ST)

glob_to_local(,l, sx)*

local to_glob(1p,, 7q, sx)*

remove_type(T, sz)*
remove_member _type(t, p, sx)*

insert_glob_complex _type(t, (EN +,ts, types), sx)*
insert_local_elem(l, (min, mazx), (p, j), ts, sx)°
insert_ref_elem(l, (min, max), (p, j), ts, sz)°
insert_operator(op, (min, maz), (p, j), ts, sx)°

rename_local_elem(In,lo, ts, sT)

rename_glob_type(to, TN, sx)*

change_type_local_elem(tn, 1, ts, sz)°

Complex | change_cardinality((miny, mazyn),p,ts, sx)°
Type change_operator(opy, p, ts, st)°

glob_to_local(T,l, sx)*

local to_glob(Tp, 7c, sx)*

remove_elem(l, ts, sz)°
remove_operator(p, ts, st)°
remove_substructure(p, ts, sx)°
remove_type(t, sz)*

insert_glob_elem(l, T, sx)*

rename_glob_elem(lo, N, sz)
change_type_glob_elem(l, T, sx)
local_to_ref(l,ts, sx)*
ref_tolocal(l,ts, sx)*

Element

remove_glob_elem(l, sx)

Table 2. The evolution primitives

Example 2 Let t. be the structure ofenvelopT of
schemasz in Fig. 1.
primitive p; = change_cardinality((2, o), 3,t., sx),
the type structuret! in Fig.
contrast, by applying the evolution primitive, =
change operator(choice, 1, 1., sx), the type structure?
in Fig. 1(b) is obtained. O

4 Type Structuresfor Validity and Adaptation

The type structure, of atyper € C7 determines which
subelements occur and in which order in a document ele-

ment declared of type. The tree representation tfin our

context has two purposes: for easily identifying the com-

By applying the evolution

1(a) is obtained. By

sequence choice

from header (1,o<) from header (1,o<)
cC (2,) subject cc (0,<) subject
to date to date
(a) (b)
envelope
envelope
from |
i CC o 10 gate subject head‘er from
mail | | | | h‘/l Return-Path... | i
mail mail i ello mai
bob@aolit | | m‘au 1/7/2006 ‘
A} alice@aolit bob@aol.it
() (d)

Fig. 1. Type Structures with valid elements

ts and returns a boolean value. The set of expected ele-
ment tags is initially determined by an auxiliary function
init, and in the recursive calls by functiom:tEls that
treatt, as a grammar. init : t, — 2°NU{M returns
the set of tagsS initially expected byt,. S can contain
the symbol\ denoting that, also allows empty content.
More than one tag can occur ifi because of the pres-
ence ofchoice and optional elements if,. Once the
first tag of the list of sibling elements matches a tag in
S, the next expected tags for are determined by func-
tion nztEls : EN Uty — 26NUIAY | This function takes
as input the identified tag € S andt,, and return the
next set of expected tags. Consider the type structure
in Fig. 1.init(t2) = {picture ,audio , movie ,text },
natEls(text,ta) = {\} whereasnatFEls(audio, ty) =
{text }. FunctionvalidS is defined as follows:

Ual’idS([Tl, ..,Tn], Sv tS) =

validS([Ta,.., TnlnatEls(ly,t.),ts) I 11=1(T1)€SAvalid(Ty type(l1))
true fn=0Xe8
false otherwise

If the list of sibling tree<C is not empty, the tag of the
first elementl’ (I;) of C belongs toS, and the content of
T, is valid for its type, functiorvalidS is invoked on the
remaining elements, on the set of expected tags relying on
t, knowing thatl; occurred on the list, and an itself. By
contrast, ifC is empty and\ € S thenC is accepted by;.
Otherwise (€ is not empty andh € S ori; ¢ S), C is not
valid for ¢, and functionvalidS returns false.

ponents that need to be modified and for easily drawing a
tree representation of a schema in a graphical interface (se&xample 3 Consider the elemergnvelope whose tree
X-Evolution [11]). Another way to see the type structure is representation is reported in Fig. 2 and the structureof
as a grammar whose instances are the correct sequences tfpeenvelopeT of Table 1.validS is initially invoked on
subelements for an element declared of type the five subelements efivelope [T1,...,Ts], {from},
In this section we introduce some functions working on a andt.. Sincel(7;) = from and7; is valid for personT ,
type structure both for checking validity and for adaptation thenwvalidS is invoked onTs, ..., Ts], {cc,to}, andt..
that exploit a type structure as a grammar. Sincel(Tz) € {cc,to} andT; is valid forpersonT , then
Function validS. This function takes as input: a list walidS is invoked on[Ts,...,T5], {date}, andt.. The
of sibling elementy71,...,7,] in a document, a struc- behavior is analogous for the rest of the elements and we
ture t;, and a setS of expected element tags relying on can conclude thagnvelope is valid forenvelopeT . o

envelope present how insertion or deletion are performedaptS

from hader exploits the auxiliary functioryenT'ree that, given an el-

m\a" t<‘> date subj‘ect i ement tag of typer, generates a valid instance for such a
| mail 1,,,‘2006 hello type assigning default values for data content elements and
e choosing the minimal structure among those that can be ob-
alice@aol.it
tained fromr. Theenvelope elementin Fig. 2 where the
data contents are substituted by the empty string is an exam-
Fig. 2. The envelope element ple of tree generated byenTree(envelope, envelopeT)
FunctionadaptS takes as input a list of sibling elements
Csr relationship. This relationship holds between a [17,... T,] in a document, a type structutg, the set of
type structuret; and a type structure,, obtained fromt, expected labelsS according tot,, and an option saying

by applying a primitivep. € P*+, when the legal values of whether the function is invoked for the removal of elements
t, are contained in the legal valuegfand this checkis per- or the insertion of elements accordingtto If n > 1 and
formed directly on their tree representationspdfchanges the label of the root of; ({1) belongs toS, the algorithm

the cardinality of an element/operator frgmino, mazo) checks if the content &f; meets the constraints imposed by
to (miny,mazy) andminy < mino Amazy > mazo the type of/;. If it does not, the content @; should be gen-
(that is, the interval of allowed occurrences is extended) theerated, otherwise left unchanged. In both cases, the function
elements valid according tq are still valid forts. If p. returns?’, concatenated to the list of trees generated by the

changes aequence operator into arall operator or the recursive call ofudaptS to the rest of tree list and the next
group bound by the operator is composed by a single ele-expected elements fog. If n > 1 and the label of; does

ment, then the elements valid for are still valid fort,. If not belong toS, in case of insertion (i.egpt = INS) a
Pe introduces a new optional element/operator in the struc-tag s is chosen fromS and an element valid for the type
ture, then the elements valid for are still valid fort,. If of s is inserted before the head Gf(according to a policy

none of the elements afr have been defined according to discussed below) and the labelBf is checked in the next
a complex type whose structuretis then no modification expected elements. In case of deletion (bgt,= DEL), by

to ¢; alter the validity of documents. This relationship is contrastT} is removed and the label of the next element is
thus exploited in the revalidation process to avoid accessingchecked in the same st Whenevem = 0 and)\ ¢ S,

documents when it is not strictly required. new elements are appended to the result undl S.
When|S| > 1 and one of the tags i needs to be cho-
Algorithm 1: adaptS sen, functionchoose is invoked that applies the following
Data: [T, ..., T,): Trees,S : 26N ¢V . ST, opt : {INS,DEL} heuristics. Tag € S with minimal cardinality greater than
Result [T7,...,T7,] valid for t& 0 are chosen. If none is selectetls considered for the
; ;e;léj /l\(z’l)eagczggnbe its type next step. Then, among the identified tags, those having the
3 ifnot uallz‘d(qurype(ll))then Ty = genTree(iy typellr)) lowest maximal cardmah?y are chosen. If more t_han one
4 return Ty - adaptS([T, - . ., Tn], nat Bls(tN 1), tN , opt) tag occurs, one of them is randomly chosen. This heuris-
5 end tics ensures to introduce only mandatory elements with the
6 ifn>1A1l ¢ Sthen minimum number of occurrences.
7 s = choose(S) whose type iss
8 if opt = INS then returmn genT'ree(s, Ts)- Example 4 Consider elemergnvelope in Fig. 2, struc-
0 adaptS([Ty, ..., Tn], n@t Bls(ty, 5), £, opt) turest!, t2, and primitivesp,, p, of Example 2.adaptS
10 elseretumadaptS([Ty, ..., Txl, 5, t5', opt) is invoked with optioiNS for p; on [T}, .., Ts], {from},
11 end 1 . . .
12 while A & S do t.. Sincel(Ty) = from and T} is valid for personT ,
13 s = choose(S) whose type is-s adaptS is invoked oNnTy, .., Ts], {cc}, tl. Sincel(Ty) =
14 C «— C-genTree(s, Ts) to ¢ {cc}, atree is generated forc and adaptS is in-
15 S natBls(tl, s) voked onTy, .., Ts], {cc}, tL. Again,i(Ty) = to ¢ {cc},
16 end another tree is generated fac andadaptS is invoked on
17 return C [Ty, .., Ts], {to}, t.. The remaining recursive calls return
[Ty, ..,T5]). Fig. 1(c) shows the new elemesivelope
Function adaptS. This function is an extension ef:lidS By contrastadaptsS is invoked with optio®DEL for p, and
that alters the list of subelemenfs, ..., T,,] of an element =~ same parameters. Sin¢€l’}) = from and7; is valid for
in the document when itis not valid for a structuge Alter- personT , adaptS is invoked ofTy, .., T5], {\}, t2. Since
ing [T, ...,T,] means inserting and/or deleting elements [(T;) = to ¢ {\}, T, is removed as well as the other el-
to/from the list. This depends on the evolution primitive ements of the list by the recursive invocations. Fig. 1(d)
employed and will be discussed in next section. Here we shows the new elemeertvelope . 0O

5 Incremental Validation and Efficient Docu-
ment Adaptation

Algorithm 2 : Revalidate

Data: p. : P,d: DOC,sx : SX

Result true <= d is valid for the updated schema
1 The applicability conditions o, to sz are met

Incremental Validation Algorithm. Our incremental

validation algorithm takes as input a schema a docu-
mentd valid for sz, and an evolution operation. € P.
Output of the algorithm is true only i is still valid after 3
the application ofp. to sz. The algorithm, relying on the
positive verification of the applicability conditions of the
evolution primitives, starts checking the validity of the doc-
ument from the invoked evolution primitive and the char-
acteristics of the schema and moves to check the documents
only when this is strictly needed. A more efficient algorithm ¢
than traditional validation approaches is thus obtained. 10
If p. € P*, its application does not alter the validity of 11
d. Therefore, no checks need to be performedionf p.
renames an (either global or local) element taggéuk va- 12
lidity of d depends on the occurrence of elements tagged 13
in d. Therefore, elements taggédn d are identified and 14
whenever a single occurrence is detectéds no longer 15
valid. If p. changes typeo of a global element in the 16
complex typery, the children of elements of type) in d 17
should be extracted to check though functiatiidS that 18
they meet the constraints specified by the structureyof 19
If p. changes a simple type (either changing the restriction, 20
the base/member type, or the type of a global element) thez1
algorithm first checks whether the values of the old type 22

~N o o b~

are contained in the new typey. If so, d is valid, oth- 23
erwise, all the elements of type, in d are identified and 24
their content is checked to belong to the extensiomaflf 25
pe. removes a global elemehtthe root label ofd is com- 26

pared withl. If they are equald is not valid. Otherwise, itis 27
still valid. This check is very simple since the applicability ,g
conditions of the primitive allows the removal of a global ,g
element only if no elements in the schema refers to ip If 4
updates the structure of a complex type through the primi- 5,
tives inPt=, the old structure, is compared with the new
structuretY to determine whethet, Cgr tV. If S0, d is

valid. Otherwise, the children of elements with structure

32

2 switch p. do

casep, € P* return true
casep. € {renameglob/localelem}
Let Io bethe element tag to remove/rename
if get Elems(getPaths(lo, sx),d) = ()
then return true else returnfalse
end
CaSep.=change_type_glob/local _elem(l, 7N ,s2)ANTN ECT
Let tI¥ bethe structure ofx
if Je € getElems(getPaths(l, sz),d) :
validS(childs(e), init(t)),tV) = false
then return falseelse returntrue
end
CaSe€p.e{change_restrict,change_base/member_type,

change_type_glob/local_elem}
Let 7o bethe old simple type andy the updated one

if 7o C 7w then return true
& «— getElems(getPaths(1o, sz), d)
if 3e € £ : content(e) € [Tn]
then return falseelse returntrue
end
casep. = remove_glob_elem(l, sx)
if [(root(d)) = [then return false
else returntrue
end
casep, € Pt
Let ¢, ts~ bethe old and new structure
if ts Cor tY then return true
if 3e € getElems(getPaths(ts, sx),d) :
validS(childs(e), init(t),tN) = false
then return falseelse returntrue
end

33 end

in d are extracted to check through functieilidS whether
they meet the constraints specified by the structuré’of

Proposition 1 Letsx be an XML Schema antlbe an XML
document valid forsz. Let sz be an XML Schema ob-
tained fromsz by applyingp. € P. Then,

valid(d, sz™V) iff revalidate(pe,d, sx).

Document Adaptation Algorithm. The document adap-
tation algorithm is an extension of thevalidate algorithm
(Algorithm 2) in which, when an element is not valid for
the new schema, the minimal modifications are performed

|

Function

Fig. 3. An SQL-based language for the speci-
fication of document updates

on d to make it valid. The modifications are minimal be-

cause they only involve the document portions affected by
the primitivep, and because they require to insert/eliminate
the minimal number of elements to guarantee validity. Doc-
ument modifications can be of different types: element re-

naming, removal of an element with all its content, insertion

Algorithm 3: Adapt

of an element. In the last case, a default value should be as-
sociated with the inserted elementeither a value of the
type ofe or a default tree generated by functigenT'ree).
Document modifications are specified by means of a sim- 2
ple SQL-based language whose syntax graph is shown in3
Fig. 3. Squared nodes represent keywords and oval nodes?
represent parameters. The new nodes and contents can bé
specified by means of functionglaptS, andde faultV al 6
that returns a default value for a simple type.

The adaptation algorithm (Algorithm 3) works on a doc-
umentd valid for a schemax on which an evolution primi-
tive p. is applied. Depending on the primitive, the algorithm
determines i/ is still valid for the updated schema’v or
performs modifications td to make it valid forsz™¥. The
applicability conditions of the primitive should be met, oth-
erwise the document is not modified.

If p. € P* dis not modified at all becauge does not
alter validity. If p. renames théy (either local or global)
element, the occurrences & in d are identified and re-
named tdy. If p. removes a global element and the root
of d has the same label, then the documéig removed.
Otherwise, the document is left unchangedpdfchanges
the type of a global element in a complex type, all the el-
ements of the original type are detected in the document.
For element, the children ok are checked to adhere to the
new type. If not, the children of are removed and a new
content is specified far by means of functiomdaptS that
adds subelements o Since an empty list of trees is passed
to functionadaptS, this function generates from scratch the
content ofe. If p. updates a simple type (includingion ,
list , restrict derived types) or changes the type of a 27
global element in a simple type, first the algorithm checks 28
whether the values of the new simple type extends the val-2°
ues of the original type. If so, the document is valid as it
is. Otherwise, for each elementof d of the original type 30
its content is changed by assigning a default value of the3!
new type. Ifp. updates a type structutg among those in
PST, the new structur€? can require to introduce new ele- 32
ments or to remove existing ones, depending on the specifie3
primitive employed and, in case of insert or change of an 34
operator, from the new operator.

26

Data: p. : P,d : DOC,sx : SX
Result d’ obtained fromd that is valid forsz™v
1 switch p. do

The applicability conditions gf. to sz are met
casep, € P* break
casep, € {rename_glob/local_elem}
Let [p bethe element tag renameég
for e € getElems(getPaths(lo, sz), d) do
update d rename e as Iy
end
casep. = remove_glob_elem(l, sx)
if p(root(d)) =1thend = NULL
end
Case p.=change_type_glob/local _elem(l, 7N ,sx)\rNECT
Let ¢V bethe structure of typey
for e € getElems(get Paths(l, sx),d) do
if not validS(childs(e),init(tY),tY) then
update d set childs(e) =
adaptS([],init(tY), t¥, INS)
end
CaSE€p. € {change_restrict, change_base/item_type,
change_type_glob/local elem}
Let 7 bethe new simple type updating,
if 7o Z 7w then
for e € getElems(get Paths(ro, sx),d) :
content(e) ¢ [7n] do
update d set content(e) =de faultVal(Tn)
end
casep, € Pts
Let t¥ bethe new type structure updating
if t9 Zg7 tY then
for e € getElems(get Paths(t?, sx),d) do
if del Elems(p.) then
update d set childs(e) =
adaptS(childs(e), init(tY), ¥, DEL)
if addElems(pe) then
update d set childs(e) =
adaptS(childs(e), init(tY), tN, INS)
end
end

35 end

Table 3 reports when elements should be inserted or re-=36 return d

moved. For primitivechange_type_local_elem neither in-
sertions nor removals are required, because this primitive
does not alter a type structure but the content of subele-
ments. Primitivesnsert_operator andchange_operator
require to insert or remove elements depending on the new

sequence sequence primitive addElems| delElems
- insert_local_elem true false
b (0.5<) ¢(0,1) b (2,4) ¢(0,1) insert_ref_elem true false
insert_operator (opy=choice) false true
@ insert_operator (others) true false
change_type_local elem false false
a a a a a a change_cardinality see table below
‘ ‘ /’\4’ /N PN /’\ change_operator (opn=choice) false true
b ¢ bbb b b b bbbocbb bb change_operator (others) true false
remove_operator false true
(b) remove_substructure false true
remove_element false true

Fig. 4. Change of cardinality and its effects

miny | maxy | addElems| delElems
> < true true
operator. If the new operatoréhoice it means that oper- < > false fa:se
atorsequence orall occurred before. Therefore, from > = true false
< < false true

sequences of elements in the document grouped by the oper-
ator we need to choose one of them. Thus, elements _need 0 Table 3. output of addElems and delElems
be removed. By contrast, if the old operator whsice |, it

means that the new operatorsisquence orall . There- gygjution primitives according to the kind of node (element
fore, from an element in the document bound by the oper- tag, simple or complex type). Thewvalidate algorithm is

ator, we need to insert other elements as specified by theypplied to check whether documents valid for the original
sequence orall operator. Thus, elements need to be in- schema are still valid for the updated one. In case of in-
serted. For primitive:hange_cardinality both insertions ygjidity, the user can then decide to adapt those documents
and removals must be performed when both the minimal {5 the new schema (using tlelaptalgorithm) or to leave
and maximal cardinalities are updated. This is because ahem without schema. In the back end a DBMS handles

single invocation of functiomdapt.S can add elements or gocuments, schemas and information of which document is
alternatively remove elements. Thus, we need first to re-y4jid for which schema.

move elements to adhere to the new maximal cardinality
and then add elements to adhere to the new minimal cardi-

nality Experimental Results. Different experiments have been

conducted to prove the effectiveness and efficiency of our

Example 5 Starting from the type structure in Fig. 4(a) @approach. We gathered from the Web different schemas and
the cardinality ofb is changed fron{0, o) to (2,4). This corresponding valid documents. Among them the XML
requires two applications of functiondaptS. One for re- ~ DBLP document fttp://dblp.uni-trier.de/xml/),
moving elements exceeding the maximal cardinality and the statistics on American baseball ~ compe-
one for adding elements missing the minimal cardinality. ~ tiions and plays of = Shakespeare collections

The original and updated elements are in Fig. 4(b). o (http://www.ibiblio.org/xml/examples/). The
considered collections have been classified according to

Once the effects of the evolution primitives have been their size and the level of nestingSmall documents are
propagated to the document making it valid for the new those with size less than 1 KByeragedocuments are those
schema, the document itself can be returned. with size between 1 KB and 1 MB, anoig documents

are those with size greater than 1 MBhallowdocuments
Proposition 2 Letsz be an XML Schema antbe an XML are those with at most 5 levels of nestirayerage depth
document valid forsz. Let sz be an XML Schema ob- documents are those with 5 levels of nesting to 10,deep
tained fromsx by applyingp. € P. Then, documents are those with more than 10 levels of nesting.
The average characteristics of the documents in each class

P ; ANy
valid(adapt(pe, d, sz), sz = true. are reported in the following table.

6 Experimental Evaluation small | average| big
shallow 256 B | 1.3KB 5MB

. . . average depth 736 B | 232KB | 137 MB
X-Evolution. X-Evolution [11] is a .NET system for han- deep 640B | 924KB | 30MB

dling collections of XML documents and schemas. Docu-
ments and schemas are graphically represented as trees and On documents of each class we have applied different
users can specify on the tree representation of a schema thkinds of evolution primitives that operate on the root of the

O ¥evolution valids
B .NET valids
Oxevolution adapts

(@

(b) Shallow documents with different size

o 58 8 g M@ ERE- 2
3 ©
§

|

= oy g PO g
©
©

=7368 =232KB =137M8 =738 =232KB =137 M8 =7368 =232kB ~137M8

(c) Average deep documents with different size

Primitves on oo Priitives oninteral nodes prmites on feaves
. : s s
us
45 7
s a
4 6
as s
.
3 4\5 3
2 g) H
£ s £ 3
= £ & £,
£, s
2
s) 1s
:
: n s |
o os
o o o o
608 5208 ~s0ms
608 921k 508

=6408 =924K8 =30MB

=6408 =024K8 =308

(d) Very deep documents with different size

Fig. 5. Comparing the revalidate MSXML 4.0 validation and adaptalgorithms

document, on internal nodes, and on leaves. We conductedithm is mostly the same for documents with the same size
many repetitions of the same evolution primitives and con- and does not depend on the level of nesting of documents.
sidered the average execution times. Moreover, we alsoOur validation algorithm improves the performances of an
considered the execution time for primitives ®#f. The average of 20% for the other primitives for documents of
revalidation algorithm has been compared with MSXML big size because it operates on small portions of the docu-
4.0 validation algorithm available in the .NET framework. ment. In therevalidatealgorithm the .NET facilities for ac-
Fig. 5 reports the experimental results on these collec-cessing documents and evaluating XPath expressions have
tions of documents. Rows of the figure reports the experi- been used. That means that exploiting indexing techniques
ments conducted on shallow, average depth, and deep docavailable in the back end DBMS the performance of our al-
uments. The first three graphics in each row represent thegorithm would further improve.
execution time for evolution primitives applied on the root The execution time of thedapt and revalidate algo-
of the document, on internal nodes, and on leaves. The lastithms have been compared. The insertion and deletion
graphic reports the execution times when only primitives of internal nodes from the schema have a deeper impact
in P* are used. Each single graphic reports the executionin adapting the structure of an element through function

times ofrevalidate MSXML 4.0 validation, anchdaptal- adaptS. The performance of thedaptalgorithm decreases
gorithms applied on documents of small, average, and bigwhen documents of big dimensions are handled, and in par-
dimensions. ticular when document leaves need to be updated, because

Last column of Fig. 5 points out how our revalidation al- the entire document should be loaded in main memory and
gorithm outperforms the MSXML 4.0 validation algorithm the probability of “page swapping” increases. This behavior
for primitives in P*. Indeed, documents are not accessed can be however mitigated exploiting indexing techniques
and validity is checked only through the schema (in constantand standard DBMS facilities as previously described for
time). The performance of MSXML 4.0 validation algo- the revalidation algorithm. Moreover, the graphics point

[@* Primitives Winsertion 0Update CiDeletion]

time (5)

i I
0 i /M —

0<D<1KB

1KB<D<1MB

@

3" Primitives W Insertion 0 Update ODeletion]

1MB<D<10MB

time (s)

i

0<D<1KB

1KB<D<1MB

(b)

1MB<D<10MB

Fig. 6. Execution times of evolution primitive
for revalidation and adaptation

execution time linearly depends on the document size.
The work presented in this paper is being extended

in several directions.

For what concerns the evolution

primitives, primitives allowing tomovea portion of the
schema and their impact on the revalidation and adaptation
processes need to be investigated. In [8] high-level primi-
tives allowing to conveniently express common sequences
of atomic primitives have been proposed. The revalida-
tion and adaptation algorithms are currently being extended
to these high-level primitives, and, more generally, to se-
guences of atomic primitives. Finally, the adaptation mech-
anism is being enhanced with the possibility of specify-
ing through a query the new contents to be inserted in the
adapted documents.

References

(1]

(2]

(3]

out that updates of nodes deeply nested in the structure of
a document require more time that those closer to the doc-

ument root. To further analyse tlaelaptandrevalidation

algorithms we consider the two graphics in Fig. 5. They

(4

report the execution times in case of revalidation and adap- [5]
tation for the evolution primitives that alter the validity of

documents (i.e., those for inserting, deleting, and updating
elements/types in the schema) and for primitives that do not

alter the validity (i.e., those if?*). For space constraints,
we only report the evaluations on documents of average 71

nestings and primitives applied randomly in the schema.

Despite the best performances for primitivesii (as ex-

pected), we can note that the execution time for revalidation

6]

8l

&l

and adaptation linearly increase as the size of documents
increase. The update primitives are more expensive than|yg
the deletion primitives. These last ones have performances

comparable to those of primitives 7A*.

7 Conclusions and Future Work

In this paper we have proposed an approach for the in-

(11]

(12]

cremental validation of XML documents upon schema evo- [13]

lution. The approach takes advantage of knowing the doc-

uments valid for the original schema and the applied evolu- [14]

tion primitive to establish what needs to be checked in the
documents, if some check is needed. An efficient adapta-

tion algorithm to make the invalidated document portions [15]

conform to the evolved schema is also proposed. Both the

algorithms have been experimentally evaluated. The val- [16]

idation algorithm has been demonstrated to improve con-

siderably over the rige solution. The adaptation process

10

(17]

A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental Valida-
tion of XML Documents. ACM TODS29(4): 710-751, 2004.

D. Barbosa, et al. Efficient Incremental Validation of XML Docu-
ments.ICDE, 671-682, 2004.

E. Bertino, G. Guerrini, M. Mesiti, and L. Tosetto. Evolving a Set
of DTDs according to a Dynamic Set of XML Documen&DBT
WorkshopsLNCS 2490, 45-66, 2002.

G.J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML
Schema: A Practical StudyvebDB 79-84, 2004.

B. Bouchou and M.H. Ferrari Alves. Updates and Incremental Val-
idation of XML DocumentsDBPL, 216-232, 2003.

U. Boobna and M. de Rougemont. Correctors for XML Da¢8ym
97-111, 2004.

B. Choi. What are Real DTDs LikeWebDB 43-48, 2002.

G. Guerrini, M. Mesiti, and D. Rossi. XML Schema Evolution, TR
Universit‘a di Genova, 2005.

G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML Schema
Evolution on Valid Documents. ACM-WIDM Workshop, 2005.

D. K. Kramer and E. A. Rundensteiner. Xem: XML Evolution Man-
agementRIDE-DM, 103-110, 2001.

M. Mesiti, R. Celle, M.A. Sorrenti, G. Guerrini. X-
Evolution: A System for XML Schema Evolution and Document
AdaptationEDBT,1143-1146,2006.

M. B. L. Tan and A. Goh. Keeping Pace with Evolving XML-Based
SpecificationsEDBT Workshopd.NCS 3268, 280-288, 2004.

M. Raghavachari and O. Shmueli. Efficient Schema-Based Revali-
dation of XML. EDBT, 639-657, 2004.

D. Srivastava. Subsumption and Indexing in Constraint Query Lan-
guages with Linear Arithmetic Constrainsnnals of Mathematics
and Artificial IntelligenceB(3-4): 315-343, 1993.

S. Staworko and J. Chomicki. Validity-Sensitive Querying of XML
DatabasesdataX2006.

W3C. Extensible Markup Language 1.0, 2004.
W3C. XML Schema Part 1: Structures, 2004.

