
XML Schema Evolution:
Incremental Validation and Efficient Document Adaptation

Giovanna Guerrini1, Marco Mesiti2, Matteo A. Sorrenti2
1 DISI – Universit̀a degli Studi di Genova, Italy –guerrini@disi.unige.it
2 DICO – Universit̀a degli Studi di Milano, Italy –mesiti@dico.unimi.it

Abstract

An XML Schema describes the structure of valid docu-
ments and can be exploited both for querying and for effi-
ciently accessing valid documents. XML Schemas, however,
may need to be updated to adhere to new requirements and
to face the changes in the application domain. Starting from
a set of schema modification primitives, in this paper we de-
vise a new validation approach that allows to efficiently val-
idate documents, known to be valid for the original schema,
for an updated schema. Then, we enhance the approach to
adapt the documents to the new schema. Experiments prove
that our approach considerably increases the performance
of standard validation algorithms in this setting. Moreover,
the cost of the adaptation process is contained.

1 Introduction

XML Schemas [17] are a W3C recommendation to de-
scribe the structure and to constrain the content of XML
documents. XML Schemas, as any form of schema, fre-
quently need to be updated to reflect changing requirements
of the application domain. Systems need indeed to be
adapted to real-world changes, new functionalities need to
be introduced, new data types need to be processed. Com-
mercial alliances change and expand. XML data represen-
tation formats and domain-specific schemas, before being
adopted as a standard, undergo several revisions resulting
in many different versions and the need arises to adapt the
corresponding documents.

XML Schemas can be updated in their basic compo-
nents: elements declarations, simple and complex type dec-
larations. In [8] a set of primitives for evolving XML
Schemas has been defined, together with an analysis of the
impact of such primitives on documents known to be valid
for the original schema. Documents valid for the original
schema, indeed, are no longer guaranteed to meet the con-
straints described by the evolved schema. In principle, these
documents should berevalidatedagainst the new schema.

A näıve approach to revalidation consists in applying a stan-
dard validation algorithm (like MSXML, Xerces, and XSV)
to each documentd and the evolved schemasx′, obtained
by changing the original schemasx through an evolution
primitive. This approach, however, does not take advantage
of the fact that some evolution primitives are known not to
impact document validity [8]. Moreover, also for primi-
tives whose application can impact validity, the evolution
most likely impacts a limited portion of the schema. Con-
sequently, validity needs to be rechecked on restricted por-
tions of a document. The naı̈ve approach, moreover, does
not take into account that documentd is known to be valid
for the original schemasx and that the possible effects on
validity of a primitive can be foreseen. Thus, we propose in
this paper anincrementalvalidation approach for the valida-
tion of documents, known to be valid for an original schema
sx, against an evolved schema obtain fromsx through a
specific evolution primitive.

If the evolution impacts validity, a related problem is
how to adapt documents so to make them valid for the
evolved schema. Documents should be adapted through a
minimal set of updates, so to limit potential damages due
to changes in the informative patrimony in the documents.
A manual execution of such updates on documents is dif-
ficult and likely results in introducing errors and inconsis-
tencies. Thus, approaches for adapting documents to the
new schema are needed to maintain the documents valid for
the associated schema. We remark that the availability of
a schema is relevantly exploited in querying and efficiently
accessing documents.

The main contributions of this paper are an algorithm for
the incremental validation of XML documents upon XML
Schema evolution and an efficient algorithm for adapting
the documents, known to be valid for the original schema,
to the evolved schema. Both the algorithms have been im-
plemented in X-Evolution [11], a .NET system, and exper-
imentally evaluated. Our incremental validation algorithm
outperforms the .NET validation algorithm for primitives
that do not alter document validity and improves of an av-
erage 20% for other primitives. The execution time of doc-

1

ument adaptation linearly depends on the document size.
The remainder of this paper is organized as follows. Sec-

tion 2 briefly surveys related work. Section 3 introduces
XML Schemas and evolution primitives. Section 4 intro-
duces some basic functions on the structure of a complex
type, auxiliary to both the evolution and the adaptation
processes. Section 5 presents the incremental validation and
adaptation algorithms, that are experimentally evaluated in
Section 6. Section 7 concludes the work.

2 Related Work

The need for XML schema evolution mechanisms has
been advocated by Tan and Goh [12] for XML based spec-
ifications. A classification of different required modifica-
tions is proposed but no specific primitives are proposed
nor the impact on existing documents is discussed. Schema
evolution had been previously investigated for schemas ex-
pressed by DTDs in [10], where a set of evolution opera-
tors is proposed and discussed in detail. Problems caused
by DTD evolution and the impact on existing documents
are however not addressed. Moreover, since DTDs are con-
siderably simpler than XML Schemas [4] the proposed op-
erators do not cover all the set of schema changes that can
occur on an XML Schema. DTD evolution has also been in-
vestigated in [3] from a different perspective. The focus was
on dynamically adapting the schema to the structure of most
documents stored in an XML data source. Required mod-
ifications are deduced by means of structure mining tech-
niques and documents are not required to exactly conform
to the corresponding DTD.

In [6, 15] approaches for making an XML document
valid to a given DTD, by applying minimal modifications
detected relying on tree edit distances, have been proposed.
No knowledge of conformance of the document to a DTD
is however exploited. The problem of document revalida-
tion is investigated in [13]. Documents to be revalidated
may not be available in advance, they are known to be valid
for a given schemaS1 and must be revalidated against a
different schemaS2, but the transformations leading from
S1 to S2 are not known. Incremental validation of XML
documents, represented as trees, has been investigated for
XML updates [1, 2, 5]. Given an atomic update operation
on an XML document, the update is simulated, and only af-
ter verifying that the updated document is still valid for its
schema the update is executed. Efficiency of those propos-
als is bound to theconflict-freeschema property. A schema
is said to beconflict-freewhen in type definitions subele-
ment names appear only once. In this paper, we will address
the revalidation and adaptation problem only for conflict-
free schemas, both for what concerns the original schema
and the evolved one. Most schemas employed on the Web
do exhibit this property [7].

3 XML Schemas and Evolution Primitives

XML Schemas. We adopt the XML Schema representa-
tion of [8, 9], that extends the one proposed in [13].EN
denotes the set of element tags,T N the set of (both simple
and complex) type names.T N is the union ofT T andAT ,
whereT T is the set of explicitly assigned type names and
AT is the set of system-assigned type names (to identify
anonymous types).

Simple types, namedST , can be XML Schema native
types in the setNT or can be derived throughrestrict ,
list , andunion . Each simple type is characterized by a
set offacetsallowing to state constraints on its legal values.
We assume the presence of a predicatef that represents the
constraints imposed by a set of facets. The set of simple
types is inductively defined as follows: native types (e.g.,
decimal , string , float , date) are simple types; ifτ
is a simple type,list(τ) is a simple type; ifτ1, . . . , τn are
simple types,union(τ1, . . . , τn) is a simple type; ifτ is a
simple type andf is a predicate on the facets applicable on
t, restrict(τ, f) is a simple type. [[τ]] denotes the set
of legal values forτ . Givenτ1, τ2, [[τ1]] ⊆ [[τ2]] can be
determined both by exploiting the built-in native types hier-
archy [17] and standard constraint subsumption approaches
[14] when facets occur.

Complex types, namedCT , are associated with a struc-
ture specifying the possible children of a given element.
A type structure is represented through a labelled tree. A
tree on a set of nodesN is inductively defined by stating
that: (i) v ∈ N is a tree; and (ii) ifT1, . . . , Tn are trees and
v ∈ N , (v, [T1, . . . , Tn]) is a tree. childs(v) denotes the
list of subtrees ofv. labelled tree is a pair(T, ϕ), whereT
is a tree andϕ is a total function from the set ofT nodes
to a set of labels. Labels of the tree representing a type
structure are pairs(l, γ), wherel ∈ EN ∪ OP andγ ∈ Γ.
OP = {SEQUENCE, ALL, CHOICE} denotes the set of op-
erators for building complex types. TheSEQUENCE opera-
tor represents a sequence of elements, theCHOICE operator
represents an alternative of elements, and theALL opera-
tor represents a set of elements without order. By contrast,
Γ = {(min, max) | min,max ∈ IN,min ≤ max} de-
notes the set of occurrence constraints, wheremin is the at-
tributeMinOccurs andmax is the attributeMaxOccurs .
The default value(1, 1) is not shown in our graphics. Let
root(T) be the root of treeT , l(T) denote the label of the
root ofT , andl|i(v), i = 1, 2 denote thei-th component of
the label ofv.

A type structureis a treeT defined on the set of labels
(EN ∪ OP)× Γ for which:

1. l(T) ∈ OP × Γ;

2. for each subtree(v, [T1, .., Tn]) of T , l(v) ∈ OP × Γ;

3. for each leafv of T , l(v) ∈ EN × Γ;

2

4. for each subtree(v, [T1, . . . , Tn]) of T , if l(v) =
〈ALL, (min,max)〉, v = root(T) and ∀i, j ∈
{1, . . . , n} l(Ti), l(Tj) ∈ EN × Γ and i 6= j ⇒
l|1(Ti) 6= l|1(Tj), 0 ≤ mini ≤ maxi ≤ 1 where
l(Ti) = 〈li, (mini,maxi)〉.

The last condition imposes thatall labelled nodes can
only appear as children of the root element and that their
children must be all distinct elements.

XML Schemas, unlike DTDs, allow an element to have
different types depending on its context, but an unique type
is assigned to each element of the schema depending on
its context (global or local to a typeτ). A consistent XML
Schemais a 4-tuple(ENG, T , ρ, typeG):

• ENG ⊆ EN is the set of labels of global elements,

• T = (T T ∪ AT) ⊆ T N is the set of type names,

• ρ associates eachτ ∈ T with its declaration, that is:

– if τ ∈ ST , ρ(τ) ∈ NT ∪ {restrict(τ1, f),
list(τ1), union(τ1 . . . τN) |τ1, . . . , τn ∈ ST };

– if τ ∈ CT , ρ(τ) = (EN τ , Sτ , typeτ), where:
EN τ⊆EN is the set of local element names for
τ ; Sτ is the structure forτ ; typeτ : EN τ →T
assigns each local element ofSτ its type.

• typeG :ENG→T assigns a global element its type.

When no ambiguity arises we use functiontype to associate
a (global or local) element with its type.

Example 1 Table 1 shows the representation of our refer-
ence mail schema example. The first row reports the set of
global element names, the set of type names, and function
typeG that associates each global element with the corre-
sponding type. Then, for each complex typeτ , its definition
ρ(τ) is provided. Specifically, the type structureSτ and
the functiontypeτ that associates each local element name
EN τ with the corresponding type. ©

Function valid is considered in the remainder of the
paper for representing a standard approach for eval-
uating the validity of a document against a schema
or an element against a type. FunctiongetPaths is
defined on different input parameters (either a type, a
type structure or an element tag) and returns the XPath
expressions of elements presenting such a type, struc-
ture, or element tag in the schema. Referring to the
mail schema in Fig. 1,getPaths(personT,mail) = {
/mails/mail/envelope/from,/mails/mail/envelope/to,
/mails/mail/envelope/cc}. FunctiongetPaths returns
the right set of paths depending on the context in which it
is invoked. For example, different paths are returned for
elementmail in t1 and personT . By contrast, function
getElems evaluates a set of XPath expressions on a
document and returns the corresponding elements.

ENG = {mails, attachment},

T = {mailT, envelopeT, personT} ∪ {t1, t2}
typeG(mails) = t1, typeG(attachment) = t2

ρ(t1)

����������	

��

mail 7→ mailT

ρ(t2)

��������

���	��
���� ����

���	�

���	��	�����

picture 7→ Byte
audio 7→ Byte
movie 7→ Byte
text 7→ string

ρ(mailT)

��������

���	��
�� ���������

��������������

envelope 7→ envelopeT
body 7→ string

ρ(envelopeT)

��������

��	

�	
�����

����
�������

���������

from 7→ personT
cc 7→ personT
to 7→ personT
date 7→ date
subject 7→ string
header 7→ string

ρ(personT)

��������

��	
���������

name 7→ string
mail 7→ string

Table 1. Mail schema representation

Evolution Primitives. In [8, 9] three categories of atomic
primitives have been devised: insertion, modification, and
deletion of the XML Schema components (simple types,
complex types, and elements). Modifications can be further
classified in structural and relabelling modifications. Struc-
tural modifications allow to modify the structure of a type
(subelements, operators that establish the structure and car-
dinality constraints) while relabelling modifications allow
to change the name of an element/type. Table 2 reports the
evolution primitivesP relying on the proposed classifica-
tion. For simple types the operators are further specialized
to handle the derived typesrestrict , list , andunion .
Primitives marked∗ in Table 2 (denoted byP∗) do not alter
the validity of documents, whereas primitives marked◦ in
Table 2 (denoted byPts) operates on a type structure and
have the same treatment in our algorithms. Primitives in
Pts require to identify the node in positionp (in the pre-
order traversal of the type structure) to be updated/deleted
and, in case of insertion, the position (j) where a node
should be inserted. Primitives are associated withapplica-
bility conditionsthat must hold before their application to
guarantee that the updated schema is still consistent. For
example, global types/elements can be removed only if ele-
ments in the schema of such a type or that refer to it do not
exist. Moreover, when renaming an element in a complex
typeτ , an element with the same tag should not occur inτ .
These conditions should be verified when the corresponding
primitive is handled in our algorithms.

3

insert glob simple type(τ, dt, sx)∗
insert new member type(τ, τM , sx)∗
change restrict(τ, f, sx)
change base type(τ, τB , sx)

Simple rename glob type(τO, τN , sx)∗
Type change item type(τ, τI , sx)

glob to local(τ, l, sx)∗
local to glob(τL, τG, sx)∗
remove type(τ, sx)∗
remove member type(τ, p, sx)∗

insert glob complex type(τ, (EN τ , ts, typeτ), sx)∗
insert local elem(l, (min, max), (p, j), ts, sx)◦
insert ref elem(l, (min, max), (p, j), ts, sx)◦
insert operator(op, (min, max), (p, j), ts, sx)◦
rename local elem(lN , lO, ts, sx)
rename glob type(τO, τN , sx)∗
change type local elem(τN , l, ts, sx)◦

Complex change cardinality((minN , maxN), p, ts, sx)◦
Type change operator(opN , p, ts, sx)◦

glob to local(τ, l, sx)∗
local to glob(τL, τG, sx)∗
remove elem(l, ts, sx)◦
remove operator(p, ts, sx)◦
remove substructure(p, ts, sx)◦
remove type(τ, sx)∗

insert glob elem(l, τ, sx)∗
rename glob elem(lO, lN , sx)
change type glob elem(l, τN , sx)

Element local to ref(l, ts, sx)∗
ref to local(l, ts, sx)∗
remove glob elem(l, sx)

Table 2. The evolution primitives

Example 2 Let te be the structure ofenvelopT of
schema sx in Fig. 1. By applying the evolution
primitive p1 = change cardinality((2,∞), 3, te, sx),
the type structuret1e in Fig. 1(a) is obtained. By
contrast, by applying the evolution primitivep2 =
change operator(choice, 1, te, sx), the type structuret2e
in Fig. 1(b) is obtained. ©

4 Type Structures for Validity and Adaptation

The type structurets of a typeτ ∈ CT determines which
subelements occur and in which order in a document ele-
ment declared of typeτ . The tree representation ofts in our
context has two purposes: for easily identifying the com-
ponents that need to be modified and for easily drawing a
tree representation of a schema in a graphical interface (see
X-Evolution [11]). Another way to see the type structure is
as a grammar whose instances are the correct sequences of
subelements for an element declared of typeτ .

In this section we introduce some functions working on a
type structure both for checking validity and for adaptation
that exploit a type structure as a grammar.
Function validS. This function takes as input: a list
of sibling elements[T1, . . . , Tn] in a document, a struc-
ture ts, and a setS of expected element tags relying on

����

�����	
�

��

���

����
�����
�

���������

��

�	������

����

����

����������

��

���
�

����

��

���

����
�����
�

���������

��

����

�	������

������

	
������������

����

��

����

����
�������

�����
�

�
���

����

��������

����

�

����

����������

Fig. 1. Type Structures with valid elements

ts and returns a boolean value. The set of expected ele-
ment tags is initially determined by an auxiliary function
init, and in the recursive calls by functionnxtEls that
treat ts as a grammar. init : ts → 2EN∪{λ} returns
the set of tagsS initially expected byts. S can contain
the symbolλ denoting thatts also allows empty content.
More than one tag can occur inS because of the pres-
ence ofchoice and optional elements ints. Once the
first tag of the list of sibling elements matches a tag in
S, the next expected tags forts are determined by func-
tion nxtEls : EN ∪ ts → 2EN∪{λ}. This function takes
as input the identified tagl ∈ S and ts, and return the
next set of expected tags. Consider the type structuret2
in Fig. 1. init(t2) = {picture , audio , movie , text },
nxtEls(text, t2) = {λ} whereasnxtEls(audio, t2) =
{text }. FunctionvalidS is defined as follows:

validS([T1, .., Tn], S, ts) =

validS([T2,..,Tn],nxtEls(l1,ts),ts) if l1=l(T1)∈S∧valid(T1,type(l1))

true if n = 0, λ ∈ S
false otherwise

If the list of sibling treesC is not empty, the tag of the
first elementT1 (l1) of C belongs toS, and the content of
T1 is valid for its type, functionvalidS is invoked on the
remaining elements, on the set of expected tags relying on
ts knowing thatl1 occurred on the list, and onts itself. By
contrast, ifC is empty andλ ∈ S thenC is accepted byts.
Otherwise (C is not empty andλ 6∈ S or l1 6∈ S), C is not
valid for ts and functionvalidS returns false.

Example 3 Consider the elementenvelope whose tree
representation is reported in Fig. 2 and the structurete of
typeenvelopeT of Table 1.validS is initially invoked on
the five subelements ofenvelope [T1, . . . , T5], {from},
andte. Sincel(T1) = from andT1 is valid for personT ,
thenvalidS is invoked on[T2, . . . , T5], {cc, to}, and te.
Sincel(T2) ∈ {cc, to} andT2 is valid for personT , then
validS is invoked on[T3, . . . , T5], {date}, and te. The
behavior is analogous for the rest of the elements and we
can conclude thatenvelope is valid forenvelopeT . ©

4

��������

���	

� ��
� �����

������

	���

	���

��������	�
����

����������

	����	����

����	����

Fig. 2. The envelope element

vST relationship. This relationship holds between a
type structuret1 and a type structuret2, obtained fromt1
by applying a primitivepe ∈ Pts , when the legal values of
t1 are contained in the legal value oft2 and this check is per-
formed directly on their tree representations. Ifpe changes
the cardinality of an element/operator from(minO,maxO)
to (minN ,maxN) andminN ≤ minO ∧maxN ≥ maxO

(that is, the interval of allowed occurrences is extended) the
elements valid according tot1 are still valid for t2. If pe

changes asequence operator into anall operator or the
group bound by the operator is composed by a single ele-
ment, then the elements valid fort1 are still valid fort2. If
pe introduces a new optional element/operator in the struc-
ture, then the elements valid fort1 are still valid fort2. If
none of the elements ofsx have been defined according to
a complex type whose structure ist1, then no modification
to t1 alter the validity of documents. This relationship is
thus exploited in the revalidation process to avoid accessing
documents when it is not strictly required.

Algorithm 1 : adaptS

Data: [T1, . . . , Tn]: Trees,S : 2EN , tNs : ST , opt : {INS ,DEL}
Result: [T ′1, . . . , T ′m] valid for tNs
Let l1 = l(T1) andτl1 be its type1
if n ≥ 1 ∧ l1 ∈ S then2

if not valid(T1,type(l1)) then T1 =genTree(l1,type(l1))3

return T1 · adaptS([T2, . . . , Tn], nxtEls(tNs , l1), tNs , opt)4

end5
if n ≥ 1 ∧ l1 6∈ S then6

s = choose(S) whose type isτs7
if opt = INS then return genTree(s, τs)·8

adaptS([T1, . . . , Tn], nxtEls(tNs , s), tNs , opt)9

else returnadaptS([T2, . . . , Tn], S, tNs , opt)10

end11
while λ 6∈ S do12

s = choose(S) whose type isτs13
C ← C · genTree(s, τs)14

S ← nxtEls(tNs , s)15

end16

return C17

Function adaptS. This function is an extension ofvalidS
that alters the list of subelements[T1, . . . , Tn] of an element
in the document when it is not valid for a structurets. Alter-
ing [T1, . . . , Tn] means inserting and/or deleting elements
to/from the list. This depends on the evolution primitive
employed and will be discussed in next section. Here we

present how insertion or deletion are performed.adaptS
exploits the auxiliary functiongenTree that, given an el-
ement tag of typeτ , generates a valid instance for such a
type assigning default values for data content elements and
choosing the minimal structure among those that can be ob-
tained fromτ . Theenvelope element in Fig. 2 where the
data contents are substituted by the empty string is an exam-
ple of tree generated bygenTree(envelope, envelopeT)
FunctionadaptS takes as input a list of sibling elements
[T1, . . . , Tn] in a document, a type structurets, the set of
expected labelsS according tots, and an option saying
whether the function is invoked for the removal of elements
or the insertion of elements according tots. If n ≥ 1 and
the label of the root ofT1 (l1) belongs toS, the algorithm
checks if the content ofT1 meets the constraints imposed by
the type ofl1. If it does not, the content ofT1 should be gen-
erated, otherwise left unchanged. In both cases, the function
returnsT1 concatenated to the list of trees generated by the
recursive call ofadaptS to the rest of tree list and the next
expected elements forts. If n ≥ 1 and the label ofT1 does
not belong toS, in case of insertion (i.e.,opt = INS) a
tag s is chosen fromS and an element valid for the type
of s is inserted before the head ofC (according to a policy
discussed below) and the label ofT1 is checked in the next
expected elements. In case of deletion (i.e.,opt = DEL), by
contrast,T1 is removed and the label of the next element is
checked in the same setS. Whenevern = 0 andλ 6∈ S,
new elements are appended to the result untilλ ∈ S.

When|S| > 1 and one of the tags inS needs to be cho-
sen, functionchoose is invoked that applies the following
heuristics. Tags ∈ S with minimal cardinality greater than
0 are chosen. If none is selected,S is considered for the
next step. Then, among the identified tags, those having the
lowest maximal cardinality are chosen. If more than one
tag occurs, one of them is randomly chosen. This heuris-
tics ensures to introduce only mandatory elements with the
minimum number of occurrences.

Example 4 Consider elementenvelope in Fig. 2, struc-
tures t1e, t2e, and primitivesp1, p2 of Example 2.adaptS
is invoked with optionINS for p1 on [T1, .., T5], {from},
t1e. Sincel(T1) = from and T1 is valid for personT ,
adaptS is invoked on[T2, .., T5], {cc}, t1e. Sincel(T2) =
to 6∈ {cc}, a tree is generated forcc and adaptS is in-
voked on[T2, .., T5], {cc}, t1e. Again,l(T2) = to 6∈ {cc},
another tree is generated forcc andadaptS is invoked on
[T2, .., T5], {to}, t1e. The remaining recursive calls return
[T2, .., T5]. Fig. 1(c) shows the new elementenvelope .
By contrast,adaptS is invoked with optionDEL for p2 and
same parameters. Sincel(T1) = from andT1 is valid for
personT , adaptS is invoked on[T2, .., T5], {λ}, t2e. Since
l(T2) = to 6∈ {λ}, T2 is removed as well as the other el-
ements of the list by the recursive invocations. Fig. 1(d)
shows the new elementenvelope . ©

5

5 Incremental Validation and Efficient Docu-
ment Adaptation

Incremental Validation Algorithm. Our incremental
validation algorithm takes as input a schemasx, a docu-
mentd valid for sx, and an evolution operationpe ∈ P.
Output of the algorithm is true only ifd is still valid after
the application ofpe to sx. The algorithm, relying on the
positive verification of the applicability conditions of the
evolution primitives, starts checking the validity of the doc-
ument from the invoked evolution primitive and the char-
acteristics of the schema and moves to check the document
only when this is strictly needed. A more efficient algorithm
than traditional validation approaches is thus obtained.

If pe ∈ P∗, its application does not alter the validity of
d. Therefore, no checks need to be performed ond. If pe

renames an (either global or local) element taggedl, the va-
lidity of d depends on the occurrence of elements taggedl
in d. Therefore, elements taggedl in d are identified and
whenever a single occurrence is detected,d is no longer
valid. If pe changes typeτO of a global elementl in the
complex typeτN , the children of elements of typeτO in d
should be extracted to check though functionvalidS that
they meet the constraints specified by the structure ofτN .
If pe changes a simple type (either changing the restriction,
the base/member type, or the type of a global element) the
algorithm first checks whether the values of the old typeτO

are contained in the new typeτN . If so, d is valid, oth-
erwise, all the elements of typeτO in d are identified and
their content is checked to belong to the extension ofτN . If
pe removes a global elementl, the root label ofd is com-
pared withl. If they are equal,d is not valid. Otherwise, it is
still valid. This check is very simple since the applicability
conditions of the primitive allows the removal of a global
element only if no elements in the schema refers to it. Ifpe

updates the structure of a complex type through the primi-
tives inPts , the old structurets is compared with the new
structuretNs to determine whetherts vST tNs . If so, d is
valid. Otherwise, the children of elements with structurets
in d are extracted to check through functionvalidS whether
they meet the constraints specified by the structure oftNs .

Proposition 1 Letsx be an XML Schema andd be an XML
document valid forsx. Let sxN be an XML Schema ob-
tained fromsx by applyingpe ∈ P. Then,

valid(d, sxN) iff revalidate(pe, d, sx).

Document Adaptation Algorithm. The document adap-
tation algorithm is an extension of therevalidate algorithm
(Algorithm 2) in which, when an element is not valid for
the new schema, the minimal modifications are performed

Algorithm 2 : Revalidate
Data: pe : P, d : DOC, sx : SX
Result: true ⇐⇒ d is valid for the updated schema
The applicability conditions ofpe to sx are met1

switch pe do2

casepe ∈ P∗ return true3

casepe ∈ {renameglob/local elem}4

Let lO be the element tag to remove/rename5

if getElems(getPaths(lO, sx), d) = ∅6

then return true else return false7

end8

casepe=change type glob/local elem(l,τN ,sx)∧τN∈CT9

Let tNs be the structure ofτN10

if ∃e ∈ getElems(getPaths(l, sx), d) :11

validS(childs(e), init(tNs), tNs) = false
then return falseelse return true12

end13

casepe∈{change restrict,change base/member type,14

change type glob/local elem}15

Let τO be the old simple type andτN the updated one16

if τO v τN then return true17

E ← getElems(getPaths(τO, sx), d)18

if ∃e ∈ E : content(e) 6∈ [[τN]]19

then return falseelse return true20

end21

casepe = remove glob elem(l, sx)22

if l(root(d)) = l then return false23

else return true24

end25

casepe ∈ Pts26

Let ts, ts
N be the old and new structure27

if ts vST tNs then return true28

if ∃e ∈ getElems(getPaths(ts, sx), d) :29

validS(childs(e), init(tNs), tNs) = false30

then return falseelse return true31

end32

end33

������ ���

����	� �

�

������ 	
���

������

����

�������

��������
��

Fig. 3. An SQL-based language for the speci-
fication of document updates

6

on d to make it valid. The modifications are minimal be-
cause they only involve the document portions affected by
the primitivepe and because they require to insert/eliminate
the minimal number of elements to guarantee validity. Doc-
ument modifications can be of different types: element re-
naming, removal of an element with all its content, insertion
of an element. In the last case, a default value should be as-
sociated with the inserted elemente (either a value of the
type ofe or a default tree generated by functiongenTree).
Document modifications are specified by means of a sim-
ple SQL-based language whose syntax graph is shown in
Fig. 3. Squared nodes represent keywords and oval nodes
represent parameters. The new nodes and contents can be
specified by means of functionsadaptS, anddefaultV al
that returns a default value for a simple type.

The adaptation algorithm (Algorithm 3) works on a doc-
umentd valid for a schemasx on which an evolution primi-
tivepe is applied. Depending on the primitive, the algorithm
determines ifd is still valid for the updated schemasxN or
performs modifications tod to make it valid forsxN . The
applicability conditions of the primitive should be met, oth-
erwise the document is not modified.

If pe ∈ P∗ d is not modified at all becausepe does not
alter validity. If pe renames thelO (either local or global)
element, the occurrences oflO in d are identified and re-
named tolN . If pe removes a global element and the root
of d has the same label, then the documentd is removed.
Otherwise, the document is left unchanged. Ifpe changes
the type of a global element in a complex type, all the el-
ements of the original type are detected in the document.
For elemente, the children ofe are checked to adhere to the
new type. If not, the children ofe are removed and a new
content is specified fore by means of functionadaptS that
adds subelements toe. Since an empty list of trees is passed
to functionadaptS, this function generates from scratch the
content ofe. If pe updates a simple type (includingunion ,
list , restrict derived types) or changes the type of a
global element in a simple type, first the algorithm checks
whether the values of the new simple type extends the val-
ues of the original type. If so, the document is valid as it
is. Otherwise, for each elemente of d of the original type
its content is changed by assigning a default value of the
new type. Ifpe updates a type structurets among those in
PST , the new structuretNs can require to introduce new ele-
ments or to remove existing ones, depending on the specific
primitive employed and, in case of insert or change of an
operator, from the new operator.

Table 3 reports when elements should be inserted or re-
moved. For primitivechange type local elem neither in-
sertions nor removals are required, because this primitive
does not alter a type structure but the content of subele-
ments. Primitivesinsert operator andchange operator
require to insert or remove elements depending on the new

Algorithm 3 : Adapt
Data: pe : P, d : DOC, sx : SX
Result: d′ obtained fromd that is valid forsxN

switch pe do1

The applicability conditions ofpe to sx are met2

casepe ∈ P∗ break3

casepe ∈ {rename glob/local elem}4

Let lO be the element tag renamedlN5

for e ∈ getElems(getPaths(lO, sx), d) do6

update d rename e as lN
end7

casepe = remove glob elem(l, sx)8

if ϕ(root(d)) = l then d = NULL9

end10

case pe=change type glob/local elem(l,τN ,sx)∧τN∈CT11

Let tNs be the structure of typeτN12

for e ∈ getElems(getPaths(l, sx), d) do13

if not validS(childs(e), init(tNs), tNs) then14

update d set childs(e) =
adaptS([], init(tNs), tNs , INS)15

end16

casepe ∈ {change restrict, change base/item type,17

change type glob/local elem}18

Let τN be the new simple type updatingτO19

if τO 6v τN then20

for e ∈ getElems(getPaths(τO, sx), d) :21

content(e) 6∈ [[τN]] do22

update d set content(e)=defaultV al(τN)23

end24

casepe ∈ Pts25

Let tNs be the new type structure updatingtOs26

if tOs 6vST tNs then27

for e ∈ getElems(getPaths(tOs , sx), d) do28

if delElems(pe) then29

update d set childs(e) =
adaptS(childs(e), init(tNs), tNs , DEL)30

if addElems(pe) then31

update d set childs(e) =
adaptS(childs(e), init(tNs), tNs , INS)32

end33

end34

end35

return d36

7

��������

���	
����	 � ���	��

��������

���	
�

(a)

�

�

�

� � �

�

� �� �

�

� �

�

��

�

��� �

(b)

Fig. 4. Change of cardinality and its effects

operator. If the new operator ischoice it means that oper-
atorsequence or all occurred before. Therefore, from
sequences of elements in the document grouped by the oper-
ator we need to choose one of them. Thus, elements need to
be removed. By contrast, if the old operator waschoice , it
means that the new operator issequence or all . There-
fore, from an element in the document bound by the oper-
ator, we need to insert other elements as specified by the
sequence or all operator. Thus, elements need to be in-
serted. For primitivechange cardinality both insertions
and removals must be performed when both the minimal
and maximal cardinalities are updated. This is because a
single invocation of functionadaptS can add elements or
alternatively remove elements. Thus, we need first to re-
move elements to adhere to the new maximal cardinality
and then add elements to adhere to the new minimal cardi-
nality.

Example 5 Starting from the type structure in Fig. 4(a)
the cardinality ofb is changed from(0,∞) to (2, 4). This
requires two applications of functionadaptS. One for re-
moving elementsb exceeding the maximal cardinality and
one for adding elementsb missing the minimal cardinality.
The original and updated elements are in Fig. 4(b). ©

Once the effects of the evolution primitives have been
propagated to the document making it valid for the new
schema, the document itself can be returned.

Proposition 2 Letsx be an XML Schema andd be an XML
document valid forsx. Let sxN be an XML Schema ob-
tained fromsx by applyingpe ∈ P. Then,

valid(adapt(pe, d, sx), sxN) = true.

6 Experimental Evaluation

X-Evolution. X-Evolution [11] is a .NET system for han-
dling collections of XML documents and schemas. Docu-
ments and schemas are graphically represented as trees and
users can specify on the tree representation of a schema the

primitive addElems delElems
insert local elem true false
insert ref elem true false
insert operator (opN =choice) false true
insert operator (others) true false
change type local elem false false
change cardinality see table below
change operator (opN =choice) false true
change operator (others) true false
remove operator false true
remove substructure false true
remove element false true

minN maxN addElems delElems
> < true true
≤ ≥ false false
> ≥ true false
≤ < false true

Table 3. Output of addElems and delElems

evolution primitives according to the kind of node (element
tag, simple or complex type). Therevalidate algorithm is
applied to check whether documents valid for the original
schema are still valid for the updated one. In case of in-
validity, the user can then decide to adapt those documents
to the new schema (using theadaptalgorithm) or to leave
them without schema. In the back end a DBMS handles
documents, schemas and information of which document is
valid for which schema.

Experimental Results. Different experiments have been
conducted to prove the effectiveness and efficiency of our
approach. We gathered from the Web different schemas and
corresponding valid documents. Among them the XML
DBLP document (http://dblp.uni-trier.de/xml/),
the statistics on American baseball compe-
titions and plays of Shakespeare collections
(http://www.ibiblio.org/xml/examples/). The
considered collections have been classified according to
their size and the level of nesting.Small documents are
those with size less than 1 KB,averagedocuments are those
with size between 1 KB and 1 MB, andbig documents
are those with size greater than 1 MB.Shallowdocuments
are those with at most 5 levels of nesting,average depth
documents are those with 5 levels of nesting to 10, anddeep
documents are those with more than 10 levels of nesting.
The average characteristics of the documents in each class
are reported in the following table.

small average big
shallow 256 B 1.3 KB 5 MB

average depth 736 B 232 KB 137 MB
deep 640 B 924 KB 30 MB

On documents of each class we have applied different
kinds of evolution primitives that operate on the root of the

8

(a)
Primitives on root element

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

� 265 B � 1,3 KB � 5 MB

tim
e

(s
)

Primitives on internal nodes

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

� 265 B � 1,3 KB � 5 MB

tim
e

(s
)

Primitives on leaves

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

� 265 B � 1,3 KB � 5 MB

tim
e

(s
)

* Primitives

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

� 265 B � 1,3 KB � 5 MB

tim
e

(s
)

(b) Shallow documents with different size

Primitives on root element

0

10

20

30

40

50

60

70

80

90

� 736 B � 232 KB �137 MB

tim
e

(s
)

Primitives on internal nodes

0

10

20

30

40

50

60

70

80

90

� 736 B � 232 KB � 137 MB

tim
e

(s
)

Primitives on leaves

0

10

20

30

40

50

60

70

80

90

� 736 B � 232 KB � 137 MB

tim
e

(s
)

* Primitives

0

10

20

30

40

50

60

70

80

90

� 736 B � 232 KB � 137 MB

tim
e

(s
)

(c) Average deep documents with different size

Primitives on root element

0

1

2

3

4

5

6

� 640 B � 924 KB � 30 MB

tim
e

(s
)

Primitives on internal nodes

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

� 640 B � 924 KB � 30 MB

tim
e

(s
)

Primitives on leaves

0

1

2

3

4

5

6

7

8

� 640 B � 924 KB � 30 MB

tim
e

(s
)

* Primitives

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

� 640 B � 924 KB � 30 MB

tim
e

(s
)

(d) Very deep documents with different size

Fig. 5. Comparing the revalidate, MSXML 4.0 validation and adaptalgorithms

document, on internal nodes, and on leaves. We conducted
many repetitions of the same evolution primitives and con-
sidered the average execution times. Moreover, we also
considered the execution time for primitives inP∗. The
revalidation algorithm has been compared with MSXML
4.0 validation algorithm available in the .NET framework.

Fig. 5 reports the experimental results on these collec-
tions of documents. Rows of the figure reports the experi-
ments conducted on shallow, average depth, and deep doc-
uments. The first three graphics in each row represent the
execution time for evolution primitives applied on the root
of the document, on internal nodes, and on leaves. The last
graphic reports the execution times when only primitives
in P∗ are used. Each single graphic reports the execution
times ofrevalidate, MSXML 4.0 validation, andadaptal-
gorithms applied on documents of small, average, and big
dimensions.

Last column of Fig. 5 points out how our revalidation al-
gorithm outperforms the MSXML 4.0 validation algorithm
for primitives inP∗. Indeed, documents are not accessed
and validity is checked only through the schema (in constant
time). The performance of MSXML 4.0 validation algo-

rithm is mostly the same for documents with the same size
and does not depend on the level of nesting of documents.
Our validation algorithm improves the performances of an
average of 20% for the other primitives for documents of
big size because it operates on small portions of the docu-
ment. In therevalidatealgorithm the .NET facilities for ac-
cessing documents and evaluating XPath expressions have
been used. That means that exploiting indexing techniques
available in the back end DBMS the performance of our al-
gorithm would further improve.

The execution time of theadapt and revalidate algo-
rithms have been compared. The insertion and deletion
of internal nodes from the schema have a deeper impact
in adapting the structure of an element through function
adaptS. The performance of theadaptalgorithm decreases
when documents of big dimensions are handled, and in par-
ticular when document leaves need to be updated, because
the entire document should be loaded in main memory and
the probability of “page swapping” increases. This behavior
can be however mitigated exploiting indexing techniques
and standard DBMS facilities as previously described for
the revalidation algorithm. Moreover, the graphics point

9

0

0,5

1

1,5

2

2,5

0 < D � 1 KB 1 KB < D � 1 MB 1 MB < D � 10 MB

tim
e

(s
)

* Primitives Insertion Update Deletion

(a)

0

0,5

1

1,5

2

2,5

0 < D � 1 KB 1 KB < D � 1 MB 1 MB < D � 10 MB

tim
e

(s
)

* Primitives Insertion Update Deletion

(b)

Fig. 6. Execution times of evolution primitive
for revalidation and adaptation

out that updates of nodes deeply nested in the structure of
a document require more time that those closer to the doc-
ument root. To further analyse theadaptand revalidation
algorithms we consider the two graphics in Fig. 5. They
report the execution times in case of revalidation and adap-
tation for the evolution primitives that alter the validity of
documents (i.e., those for inserting, deleting, and updating
elements/types in the schema) and for primitives that do not
alter the validity (i.e., those inP∗). For space constraints,
we only report the evaluations on documents of average
nestings and primitives applied randomly in the schema.
Despite the best performances for primitives inP∗ (as ex-
pected), we can note that the execution time for revalidation
and adaptation linearly increase as the size of documents
increase. The update primitives are more expensive than
the deletion primitives. These last ones have performances
comparable to those of primitives inP∗.

7 Conclusions and Future Work

In this paper we have proposed an approach for the in-
cremental validation of XML documents upon schema evo-
lution. The approach takes advantage of knowing the doc-
uments valid for the original schema and the applied evolu-
tion primitive to establish what needs to be checked in the
documents, if some check is needed. An efficient adapta-
tion algorithm to make the invalidated document portions
conform to the evolved schema is also proposed. Both the
algorithms have been experimentally evaluated. The val-
idation algorithm has been demonstrated to improve con-
siderably over the naı̈ve solution. The adaptation process

execution time linearly depends on the document size.
The work presented in this paper is being extended

in several directions. For what concerns the evolution
primitives, primitives allowing tomovea portion of the
schema and their impact on the revalidation and adaptation
processes need to be investigated. In [8] high-level primi-
tives allowing to conveniently express common sequences
of atomic primitives have been proposed. The revalida-
tion and adaptation algorithms are currently being extended
to these high-level primitives, and, more generally, to se-
quences of atomic primitives. Finally, the adaptation mech-
anism is being enhanced with the possibility of specify-
ing through a query the new contents to be inserted in the
adapted documents.

References

[1] A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental Valida-
tion of XML Documents.ACM TODS29(4): 710–751, 2004.

[2] D. Barbosa, et al. Efficient Incremental Validation of XML Docu-
ments.ICDE, 671–682, 2004.

[3] E. Bertino, G. Guerrini, M. Mesiti, and L. Tosetto. Evolving a Set
of DTDs according to a Dynamic Set of XML Documents.EDBT
Workshops, LNCS 2490, 45–66, 2002.

[4] G.J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML
Schema: A Practical Study.WebDB, 79–84, 2004.

[5] B. Bouchou and M.H. Ferrari Alves. Updates and Incremental Val-
idation of XML Documents.DBPL, 216–232, 2003.

[6] U. Boobna and M. de Rougemont. Correctors for XML Data.XSym,
97-111, 2004.

[7] B. Choi. What are Real DTDs Like?WebDB, 43–48, 2002.

[8] G. Guerrini, M. Mesiti, and D. Rossi. XML Schema Evolution, TR
Universit‘a di Genova, 2005.

[9] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML Schema
Evolution on Valid Documents. ACM-WIDM Workshop, 2005.

[10] D. K. Kramer and E. A. Rundensteiner. Xem: XML Evolution Man-
agement.RIDE-DM, 103–110, 2001.

[11] M. Mesiti, R. Celle, M.A. Sorrenti, G. Guerrini. X-
Evolution: A System for XML Schema Evolution and Document
Adaptation.EDBT,1143–1146,2006.

[12] M. B. L. Tan and A. Goh. Keeping Pace with Evolving XML-Based
Specifications.EDBT Workshops, LNCS 3268, 280–288, 2004.

[13] M. Raghavachari and O. Shmueli. Efficient Schema-Based Revali-
dation of XML. EDBT, 639–657, 2004.

[14] D. Srivastava. Subsumption and Indexing in Constraint Query Lan-
guages with Linear Arithmetic Constraints.Annals of Mathematics
and Artificial Intelligence8(3-4): 315-343, 1993.

[15] S. Staworko and J. Chomicki. Validity-Sensitive Querying of XML
Databases.dataX2006.

[16] W3C. Extensible Markup Language 1.0, 2004.

[17] W3C. XML Schema Part 1: Structures, 2004.

10

