
X-Evolution: A System for XML Schema
Evolution and Document Adaptation

Marco Mesiti1, Roberto Celle2, Matteo Sorrenti1, Giovanna Guerrini2

(1) Università di Milano, Italy - mesiti@dico.unimi.it
(2) Università di Genova, Italy - guerrini@disi.unige.it

1 Introduction

The structure of XML documents, expressed as XML schemas [6], can evolve as
well as their content. Systems must be frequently adapted to real-world changes
or updated to fix design errors and thus data structures must change accordingly
in order to address the new requirements. A consequence of schema evolution
is that documents instance of the original schema might not be valid anymore.
Currently, users have to explicitly revalidate the documents and identify the
parts to be updated. Moreover, once the parts that are not valid anymore have
been identified, they have to be explicitly updated. All these activities are time
consuming and error prone and automatic facilities are required.

A set of primitives that can be applied on an XML schema to evolve its
structure has been proposed in [4]. For each primitive we have determined the
applicability conditions, that is, when its application produces a schema that
is still well-formed. Moreover, we have analyzed when the primitive application
alters the validity of the documents instances of the schema. Table 1 reports the
evolution primitives classified relying on the object (element, simple type, and
complex type) on which they are applied and the kind of operation (insertion,
modification, deletion). Primitives marked with “*” do not alter the validity of
the document instances. Therefore, their application do not require a revalidation
process. Other primitives might only alter the validity of a single element or of
a restricted set of elements depending on the schema specification. Therefore, in
these cases, the entire revalidation of a document is useless. In [4] we developed
an algorithm, based on an element type graph labelling, that minimizes the
revalidation process to only the elements affected by the primitives thus making
the process more efficient.

A related problem is how to evolve the structure of document instances in
order to make them valid for the evolved schema. Suppose to introduce an ele-
ment in a schema, and this is mandatory for all valid documents. This element
should be introduced (maybe with a default or null value) in all the previously
valid documents. Suppose also to remove an element from the schema. It should
be also removed from valid documents. The problem is more complex when the
schema modification refers to an operator or to the repeatability of elements,
and would often require user intervention. The adaptation process thus involves
subtleties related both to the kind of update performed and to the structure of



Insertion Modification Deletion

Simple Type
insert glob simple type∗

insert new member type∗

change restriction
change base type
rename type∗

change member type
global to local∗

local to global∗

remove type∗

remove member type∗

Complex Type

insert glob complex type∗

insert local elem
insert ref elem
insert operator

rename local elem
rename global type∗

change type local elem
change cardinality
change operator
global to local∗

local to global∗

remove element
remove operator
remove substructure
remove type∗

Element insert glob elem

rename glob elem∗

change type glob elem
ref to local∗

local to ref∗
remove glob elem∗

Table 1. Evolution primitives

the updated type. Several updates require the detection of the minimal substruc-
ture for an element whose insertion is required in documents to validate. Our
approach to document adaptation is based on the use of restructuring structures,
that are an extension of the labelled element type graph employed for document
revalidation, in which labels can also be ∆ε

l , ∆l
ε, and ∆lo

ln
, with l, ln, and lo ele-

ment labels. These structures allow to specify the minimal modifications to be
performed on documents invalidated by a schema update and are automatically
inferred from the schema update whenever possible (otherwise, user intervention
is required). The adaptation process will occur during the revalidation process
and the idea is that to validate the special subelement ∆ε

l , element l should be
inserted. Similarly, to validate the special subelements ∆l

ε and ∆lo
ln

, element l
should be deleted and element lo should be renamed to ln, respectively.

In this demonstration paper we present X-Evolution, a .NET system devel-
oped on top of Oracle 10g that allows the specification of schema modifications
in a graphical representation of an XML schema. It supports facilities for per-
forming schema revalidation only when strictly needed and only on the minimal
parts of documents affected from the modifications. Moreover, it supports the
adaptation of original schema instances to the evolved schema. The adaptation
process, as well as the revalidation one, can be started after a certain amount of
schema updates have been performed, and is not necessarily started after each
single modification. The adaptation process is semi-automatic and the required
user intervention is minimized. Support is provided to the user for a convenient
specification of the required updates.

Commercial tools (e.g. [1, 5]) have been developed for graphically design
XML schemas. However, they are not integrated with a DBMS and do not allow
the semi-automatic revalidation and adaptation of documents within contained.
Schema evolution had been previously investigated for DTDs in [3], where evolu-
tion operators are proposed. Problems caused by DTD evolution and the impact
on existing documents are however not addressed. Moreover, since DTDs are con-
siderably simpler than XML Schemas [2] the proposed operators do not cover
all the set of schema changes that can occur on an XML Schema.



Figure 1. X-Evolution schema modification facility

2 X-Evolution Facilities

X-Evolution offers different kind of facilities for handling the evolution of XML
schemas, an efficient revalidation of document instances, and the adaptation of
document instances to the evolved XML schema.

X-evolution connects to one or more databases in which the XML schemas
and documents are stored. The left side bar of the schema modification facility
(Figure 1) presents the identified documents and schemas. Whenever a user
clicks on a schema, the system graphically represents the schema and identifies
the documents that are valid for such a schema. Whenever a user clicks on a
document, the system graphically represents the document and identifies the
schemas for which the document is an instance. We remark that a document can
be instances of several schemas that can present slight differences.

By graphically selecting a node of the tree representation of a schema,1 all
the possible schema evolution primitives that can be applied on such a node are
visualized. When the user invokes an evolution primitive, X-Evolution checks

1 Actually a schema should be represented as a direct graph. However, for the sake of
readability, we duplicate nodes of the graph with more than one incoming edge.



whether the operation can alter the schema consistency. If it is preserved the
operation is executed and the evolved schema visualized. Whenever the oper-
ation alters (or can alter) the validity of document instances of the schema,
X-Evolution points out the documents that are not anymore valid. This oper-
ation is performed through an optimized revalidation algorithm detailed in [4].
The user interface helps the user in the adaptation process of non valid docu-
ments. For each non valid document the system points out the elements that
should be removed or added and allows the specification of default values or
structures to be inserted.

As mentioned before, document adaptation as well as document revalidation
can be postponed after a sequence of evolution primitives have been applied,
rather than being applied for each single schema modification. X-Evolution al-
lows the application of such a sequence of evolution operations and, at the end,
the execution of the adaptation and revalidation process.

3 Demonstration

The demonstration of the X-Evolution system consists in four parts.

1. We will show how to connect the graphical interface to a database in which
the documents and schemas are stored and how we can easily work with the
graphical representation of documents and schemas.

2. We will show how to apply the developed evolution operations on a schema.
Specifically, we will show how to construct a schema from scratch and how we
can remove all the components from a schema making it an empty schema.
Consistency of the resulting schema is checked for each operation, and, if
violated, no update is performed.

3. We will show performances of our efficient approach in the revalidation of
XML documents against the evolved schema with respect to the naive solu-
tion of entirely revalidate the documents instances of the schema.

4. Finally we will show the effectiveness of our adaptation approach by specify-
ing schema modifications and showing the result of the adaptation process.

Acknowledge The authors wish to thank Daniele Ghelli and Giuseppe Marchi
for developing the graphical representation of XML documents and schemas.

References

1. Altova Inc. XMLSpy, 2005. http://www.altova.com/
2. G.J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: A

Practical Study. WebDB, 79–84, 2004.
3. D. K. Kramer and E. A. Rundensteiner. Xem: XML Evolution Management.

RIDE-DM, 103–110, 2001.
4. G. Guerrini, M. Mesiti, D. Rossi. Impact of XML Schema Evolution on Valid

Documents. In Proc. of WIDM, Germany 2005.
5. Stylus Studio Inc. Stylus XML Editor, 2005. http://www.stylusstudio.com
6. W3C. XML Schema Part 0: Primer, 2001.


