CONNECTING FUNDAMENTAL CONSTANTS....

The gravitational to the electric force ratio in an electron is numerically close, by 0.23%, to Planck time, disregarding a $\pi \sqrt{2}$ factor.

$$
\frac{F_{g}}{F_{e}} \approx t_{p}
$$

Numbers are according to the MKSA system but its definition of electrical quantities do not allow an easy integration with quantum gravitation resulting in an apparent dimensional mismatch.

Actually there is no dimensional mismatch once the quantization of time and mass is introduced. This gives us the link connecting electric and gravitational quantities based on an underlying structure of a black hole electron.

Connecting Fundamental Constants

$t_{\mathrm{p}}=$ Planck time,$M=$ Planck mass, $M_{o}=M t_{p}^{1 / 2}$ quantized Planck mass, $\varepsilon_{p}=$ Planck permittivity

Time loses its meaning in a black hole. Past the event horizon the time dilation might "freeze", what we see. Outside the black hole, the quantized gravitational force $G M_{0}^{2}$ has an additional time dimension, the Planck time.

Origin of Electron

The energy of the Planck black hole is given by $G M^{2} / 2 l_{p}$, but the constrain of time t_{p} outside the black hole would give us something slightly different, the Planck constant and the quantized mass M_{0}

Rotation of Electron

A rotating charge will set up a magnetic field opposing its own rotation until a stability point is reached. The rotational speed u_{0} is related to the initial fine structure constant $\alpha_{0}=2\left(1-u_{0}^{2} / c^{2}\right)$. α_{0} would depend on some electrical properties of the particle and how charge Q compares with a ring of unitary charge Q_{u} and unitary time t_{u} so that $\alpha_{0}=\left(w_{u} / w_{p}\right)^{1 / 2}$ where $w_{u}=16 \pi^{4} Q_{u}^{2} / t_{u}$ and $w_{p}=Q^{2} / t_{p}$. The introduction of an exact quantity for the electron charge e requires a compensating factor e_{t} / e, with $e_{t}=\left(w_{u} t_{p} / a(2-a)\right)^{1 / 2}$, to be applied to some equations.

Rotation Slowdown

$$
\begin{gathered}
\text { Vacuum equation } \\
\alpha^{3}-2 \alpha^{2}+w_{u} t_{p} / 2 \varepsilon_{l}\left(e_{t} / e\right)^{2} h c=0
\end{gathered}
$$

$$
\begin{gathered}
\text { Electron equation } \\
\alpha^{2}-2 \alpha+w_{u} t_{p} / e_{t}^{2}=0
\end{gathered}
$$

Fine structure of magnetic moment

$$
\alpha_{m}=\alpha / 1.000089187709953
$$

Rotational speed

$$
u_{m}=c\left(1-\alpha_{m} / 2\right)^{1 / 2}
$$

Magnetic moment anomaly

$$
a_{e}=\left(\alpha / \alpha_{m}\right)^{13}\left((2-\alpha) /\left(2-\alpha_{m}\right)\right)^{5 / 4}-1
$$

A complete agreement with known values is achieved by lowering the rotational speed from u_{0} to u_{e}. The precession of spin angular momentum S has the effect of lowering speed u_{0} with a corresponding decrease of the charge from e_{0} to e_{t} and an increase of the fine structure from α_{0} to α.The presence of an external magnetic field B increases speed u_{e} to u_{m} and is responsible for the magnetic moment anomaly.

Magnetic Anomaly with Known Constants

$$
\begin{gathered}
\text { Magnetic field ratio } \\
B_{e} / B=\mu_{0} f_{e} e / 2 \lambda_{c}=\alpha / 2 \pi
\end{gathered}
$$

Interaction between main and induced field

$$
(\alpha / 2 \pi)(1-\alpha / 2 \pi)+\delta_{p}=\left(\alpha / \alpha_{m}\right)^{13}-1
$$

Supposed frequency sensitivity to other factors

$$
\delta_{p}=1.893 \times 10^{-11}
$$

α variation due to magnetic interaction

$$
\delta_{\alpha}=\alpha / \alpha_{m}=\left(1+\alpha / 2 \pi-(\alpha / 2 \pi)^{2}+\delta_{p}\right)^{1 / 13}
$$

Magnetic moment anomaly

$$
a_{e}=\delta_{\alpha}^{13}\left((2-\alpha) /\left(2-\alpha / \delta_{\alpha}\right)\right)^{5 / 4}-1
$$

The magnetic field ratio generated by an electron rotating with the Larmor frequency $f_{e}=e / 2 \pi m_{e}$ on a radius $\lambda_{c}=$ Compton wavelength, is always $\alpha / 2 \pi$. Interaction between applied and induced field is then related to the variation of the fine structure constant thus taking care of magnetic electron parameters. A residual discrepancy δ_{p} is due to other minor factors and can be safely ignored except for the calculation of anomaly \boldsymbol{a}_{e}.

Planck Permittivity and Electron Force

Rotating

$$
G m_{e}^{2}=\pi \varepsilon_{0}^{3} e^{2} C
$$

$C=\left(e_{t} / e\right)^{8}\left(\alpha / \alpha_{0}\right)^{32}(1-\alpha / 2)^{4}\left((1-\alpha / 2)(2-\alpha) /\left(2-\alpha_{0}\right)\right)^{3 / 4} \approx 0.989$

Mass M would not stand still but would move with speed v calculated by applying the uncertainty principle to mass M_{0}. This would show as the kinetic energy of mass M. Their gravitational ratio would contain a constant which is our Planck permittivity. Time t_{p} and permittivity ε_{p} are directly related thus originating a relationship linking the electric and gravitational force in an electron.

Electric and Gravitational Force

$$
\begin{gathered}
F_{g} / F_{e}=t_{p}\left(\alpha / \alpha_{0}\right)^{24}\left((1-\alpha / 2)(2-\alpha) /\left(2-\alpha_{\theta}\right)\right)^{3 / 4} \\
e_{t}=Q /\left(\alpha / \alpha_{\theta}\right)(2 / \alpha-1)^{1 / 2}=\left(w_{u} t_{p} / \alpha(2-\alpha)\right)^{1 / 2} \\
G=8 \hbar c^{3}\left(\alpha^{2}(2-\alpha) / \mu_{0} w_{u}\right)^{2} \\
\varepsilon_{0}=\varepsilon_{p} /\left(\alpha / \alpha_{\theta}\right)^{2}(1-\alpha / 2)\left(e_{t} / e\right)^{2}
\end{gathered}
$$

The small change of the rotational speed will lower the charge value. This change is written in terms of the fine structure constant variation thus giving the known permittivity and electron charge. The measurable ratio F_{g} / F_{e} is now calculated with precision once rotation and its variation is taken into account. Now it is possible to calculate \boldsymbol{G} directly from other constants.

Electric Field from a Gravitational Variation

> Electric force
> $F_{e}=G M^{2} \alpha / 2$

Gravitational field variation

$$
\Delta g=G m_{e} / t_{e}
$$

Electron electric field
$E_{e}=M\left(\alpha G / 8 \pi \varepsilon_{0}\right)^{1 / 2}$

The electron force is equal to the gravitational force of the Planck mass provided we take into account its rotation represented by α. The mass variation in an electron, from zero to m_{e}, will generate the relevant electric field E_{e} without any knowledge of its charge. E_{e} includes a number of terms regarding its rotation and subsequent slowdown and it is also equal to $M\left(\alpha G / 8 \pi \varepsilon_{0}\right)^{1 / 2}$

Deviation from Newton's Law

Electric field from a mass fly-by

Stronger at intermediate range

Galaxy cluster CL0024+1652

An extra tug would be generated whenever one mass moves with respect to another. The attractive force would slightly modify the classic law of gravitation with the peculiarity that it would be prominent only at a certain distance. Could the above galaxy cluster be an example of this additional pull rather then the work of dark matter? Measurements of the constant of gravitation G could be dependent also on the relative speed and not just their relative distance.

Negative and Magnetic Fine Structure

Fine structure	negative	standard	strong
Electron	$n o$	α	$2-\alpha$
Vacuum	$-\alpha+\delta$	α	$2-\delta$
Magnetic	no	α_{m}	$2-\alpha_{m}$
Spin speed	$u>c$	$u<c$	$u \ll c$
$\delta=1+\alpha / 2-\left(1+\alpha-(3 / 4) \alpha^{2}\right)^{1 / 2}$			
$\alpha_{m}=$	$\alpha / 1.000089187709953$		
$\alpha_{n}=-\alpha+\delta$			

The vacuum equation will intersect the abscissa in three places: $\alpha, 2-\delta$ and at a negative point given by $\alpha_{n}=-\alpha+\delta$. The negative value hints at the possibility of a speed faster than light by $\mathbf{0 . 1 8 \%}$ and imaginary particles. The fine structure is decreased by a small amount, 89 ppm , enough to generate the magnetic anomaly and magnetic moment. All data from $\boldsymbol{c}, \boldsymbol{h}$ and G only. All numerical results within one standard deviation, except for G, with $h=$ $6.62607015 \times 10^{-34}$ and $G=6.6729196876 \times 10^{-11}$

Superluminal Speed and Imaginary Particles

Speed levels

$$
\begin{aligned}
& c+5.44 \times 10^{5}=u_{s} \\
& u_{c}=\text { mean speed } \approx c \\
& c-5.47 \times 10^{5}=u_{e}
\end{aligned}
$$

$$
\begin{aligned}
u_{s} & =c\left(1-\alpha_{n} / 2\right)^{1 / 2} \\
u_{e} & =c(1-\alpha / 2)^{1 / 2}
\end{aligned}
$$

Quartic mean $u_{c}=\left(u_{s}^{4} / 2+u_{e}^{4} / 2\right)^{1 / 4}$

$$
u_{c} \approx c
$$

Imaginary particle generated by $\boldsymbol{\alpha}_{\boldsymbol{n}}$
Rotation at speed u_{s} is so fast that the magnetic force prevails over the electric force and the particle is now showing a net magnetic charge q_{m} $=c \tilde{e}$ where \tilde{e} is the selectron charge with an absolute value equal to the electron charge.

Gravitational forces are repulsive and masses will not coalesce to form stars, planets,
 galaxies, etc.
The gravitational force is repulsive

A four dimension spacetime would be required for a speed $>c$. The mean speed u_{c} between the superluminal speed u_{s} and u_{e} is then given by a quartic mean. It was expected $u_{c}=c$ but the result shows an unaccounted difference of 22ppt (parts per trillion). The superluminal speed would apply to imaginary particles that will not interact with real matter except for a direct collision.

Proton

Mass - MeV
$p=u / 2 \alpha+u / 2 \alpha+d / \alpha=(u+d) / \alpha$

$$
\begin{aligned}
u & =2.168538 \mathrm{MeV} \\
d & =4.678364 \mathrm{MeV}
\end{aligned}
$$

Known quark mass

$$
u=2.16_{-0.26}^{+0.49} \mathrm{MeV} \quad d=4.67_{-0.17}^{+0.48} \mathrm{MeV}
$$

confined fine structure

$$
\alpha_{c}=0.0555413
$$

confined proton mass

$$
p_{c}=(u+d) / \alpha_{c}
$$

> confined proton charge

$$
e_{c}=\left(w_{u} t_{p} / \alpha_{c}\left(2-\alpha_{c}\right)\right)^{1 / 2}
$$

proton magnetic moment

$$
\mu_{p}=e_{c} \hbar c^{2} / 2 e p_{c}
$$

Alternative representations

Quarks interacting with gluons and antiquarks originate an effect similar to an "energy amplification" mediated by the fine structure constant α. Lattice in quantum chromodynamics is able to explain, to a large extent, the proton mass whereas the above empirical equations should be seen as shortcuts. The alternative representations should make it easier to calculate spin, excess antimatter from the d quark, magnetic properties and proton polarization.

