Universal Serial Bus
Specification

Compaq
Intel
Microsoft

NEC

Revision 1.1
September 23, 1998

Universal Serial Bus Specification Revision 1.1

Scope of this Revision
The 1.1 revision of the specification is intended for product design. Every attempt has been made to ensure a
consistent and implementable specification. Implementations should ensure compliance with this revision.

Revision History

Revision Issue Date Comments

0.7 November 11, 1994 Supersedes 0.6e.

0.8 December 30, 1994 Revisions to Chapters 3-8, 10, and 11. Added
appendixes.

0.9 April 13, 1995 Revisions to all the chapters.

0.99 August 25, 1995 Revisions to all the chapters.

1.0 FDR November 13, 1995 Revisions to Chapters 1, 2, 5-11.

1.0 January 15, 1996 Edits_to Chapters 5, 6, 7, 8, 9, 10, and 11 for
consistency.

1.1 September 23, 1998 Updates to all chapters to fix problems identified.

Universal Serial Bus Specification
Copyright © 1998, Compag Computer Corporation,
Intel Corporation, Microsoft Corporation, NEC Corporation.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.
AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

GeoPort and Apple Desktop Bus are trademarks of Apple Computer, Inc.

Windows and Windows NT are trademarks and Microsoft and Win32 are registered trademarks of Microsoft Corporation.
IBM, PS/2, and Micro Channel are registered trademarks of International Business Machines Corporation.

AT&T is a registered trademark of American Telephone and Telegraph Company.

Compagq is a registered trademark of Compaq Computer Corporation.

UNIX is a registered trademark of UNIX System Laboratories.

I’C is a trademark of Phillips Semiconductors.

DEC is a trademark of Digital Equipment Corporation.

All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Please send comments via electronic mail to techsup@usb.org
For industry information, refer to the USB Implementers Forum web page at http://www.usbh.org

Universal Serial Bus Specification Revision 1.1

Contents
CHAPTER 1 INTRODUCTION ...ttt s et st s et eean e aa e enas 1
I Y/ 1o 1)Y= L1 o] o (PO 1
1.2 Objective Of the SPECIfICAtIONccciiiiiiiiiii e e eeeeane s 1
I TS Yoo o T2 o £ V=T D o o1 U] o =1 o | P 2
1.4 DOCUMENE OFANIZATION ...cceiiutiiiiie ittt ettt ettt e e e sttt e e sttt e e s sbbb et e e e s abbe e e e e s snbnreeeesaaseneeas 2
CHAPTER 2 TERMS AND ABBREVIATIONS ... 3
CHAPTER 3 BACKGROUND......iiiiiiiiiii sttt ea e eaae e 11
3.1 Goals for the Universal Serial BUSooiiiiiiiiiiiieeieee ettt s 11
3.2 Taxonomy of APPlICAtION SPACE...........coiiiiiiiiiiiicie e e e e e e e e e eeeeeeeeeeeeeeeee 12
R B T (10| £ I PR 12
CHAPTER 4 ARCHITECTURAL OVERVIEW. ...t 15
4.1 USB SYSEEM DESCIIPLION ...ueteiiiieei ittt ettt e e sttt e e s s tbb et e e e e 4 s s s 15
s O R = 10 £ 1o o To] [T | SRS 16
A = 01T (o= | L1 =Y o = o T 17
o R = Tox ¢ o7 | APPSR 17
4.2.2 MECNANICALuiiiiii it s ——————————— s 17
G R 0 <] PP PP UPPPPPPPPPPTIN 18
G T A o o1V g I T1S (1 o 10 [o R 18
4.3.2 POWET MANAGEIMENT. .. .ttt ettt e ettt e e e e e e e e e eeeeaebbab e s e e e e e+ sm——— 18
A4 BUS PIOTOCOL.....coitiiiieii ittt e e e e e e e e e e e e e e e ae bttt e e e e s emenans s e eeeeeeeeas 18
A5 RODUSINESS. ... oottt ettt et e e e e e ettt e e e e e e eeeeee e e st et et e smmm—— e e e b e b e 19
N A = o (o] g D= (=i 1o] [PR PPR 19
T 1 4o gl =Y g T |1 o PP 19
4.6 SYStEM CONTIGUIALION.....eiiiiiiiiiiii ettt e e et e e e e e sat bt e e e+ s —— 1 19
4.6.1 Attachment Of USB DEVICEScccoiiiiiiiiieiiiiiiieee ettt e e s sttt e e e s st ee e e s s sbbeeee e e s s ssmmmmmmmnes 19
4.6.2 Removal Of USB DEVICES.......cccciiiiiieeceie e e e e s e e e e e s mmmmmnan 20
T T T = TV S =t o101 1= = 11T] o ISR 20
O A O T - W (o YA IV =3 20
A 7.1 CONtrOl TraANSIEIS. .. i et e e e e et e e e e e e e e e s o—— 1 20

Universal Serial Bus Specification Revision 1.1

o O = 1T || G I = 1 1) (<] £
4.7.3 INerruUPt TraNSTEIS...ueeeiiiiieii e
o N 1Yo Tod a1 (o] Lo 1T F R I = 1 1) (] £
4.7.5 Allocating USB Bandwidth
I T U Y = 3 B TV (o7 <Y
4.8.1 Device Characterizations
4.8.2 DEVICE DESCIIPLONSuuieeiiiiiiiiieiie et e e te e e e e e e s s et s e s ssss et et e e e e ereeeeeeaeaeeasssssssnsss s mom—
4.9 USB HOSt: Hardware and SOfWAIEc.uuuieeeieiee e ettt e et e e e et e e et e et e e eaa e ennerenn 24
4.10 ArcChiteCtUral EXIENSIONSuuiieeiii et e e e et e e e e e e et e s st estseenansennerenas 24
CHAPTER 5 USB DATA FLOW MODEL.....cuiiii e 25
5.1 IMPlemMENtEr VIEWPOINTSiuuiiiiiieiiiiiie ettt ettt e e e s st e e e e e s bbee e e e e s e neeee 25
5.2 BUS TOPOIOGY eeiiiiiitiiiiie ettt ettt ettt e e e ettt e e e e ekt bt e e e e e at b et s— 111
LT R U 1 = N o [0)
I U 1] = B B LY o <,
5.2.3 Physical Bus Topology
5.2.4 LOQICAl BUS TOPOIOQYtteeteiiiiiiiiiiaaaeeae ettt ettt e e e e e e e e e e e s e s s e bbe bt st e e s smmmmmmmmmneee
5.2.5 Client Software-to-function RelationShip..........cooiii e 30...
5.3 USB Communication Flow
5.3.1 DeVice ENAPOINTS ...ttt e e e e e e e e
B 32 PP S ittt ettt et e e e e e e e e e e e et e oo et e s ¢ ———— 111ttt e e
I N = 0 1 = i Y/ o 1= PSPPSR PPPTR 35
LR T e a1 0]I I =Y 151 (=] £ 36
5.5.1 Control Transfer Data FOIMAL.........coiiiieeriiiiiiieiie et e e e e s e e e s e eaaaa e e e s eesbaeaees 36
5.5.2 CoNntrol TranSfer Dir€CHIONuuu it e e e e e e e s et s e e s s eba e e e s esbasseernsnnnaees 37
5.5.3 Control Transfer Packet Size CONSIIAINTS..........ooiiiieriiiiiiiiiie e e e e e e eab s 37.....
5.5.4 Control Transfer Bus Access Constraints
5.5.5 Control Transfer DAt SEQUENCES.........u ittt e e e e e e e e e e e e e s s 40..
NS I (Yo Tod a1 (o] g Lo 1N IS N = T 5] (=] £ PSP 41
5.6.1 Isochronous Transfer Data FOrMAL..........c.uoiieuniiiiii i e e 41...
5.6.2 1SOChronouUS TranSTer DIrECHONcue it e e e e e e e e e s e e et e e st s esaneeenan 41
5.6.3 Isochronous Transfer Packet Size CONSIIAINTSuiivuiiieiiiii e e e e e aa e 41..........
5.6.4 Isochronous Transfer Bus ACCESS CONSITAINTScccuuiivuiiiiiiieeee e e e e e e e 42...........
5.6.5 Isochronous Transfer Data SEQUENCES.ciiviieeeieeieeiiie ettt e reeeeeaaeeaee e e s s e s s o 43......
B.7 INEITUPE TrANSTEIS ..ottt e e st e e e e st e e e e s s snreeeeeeanes 43
5.7.1 Interrupt Transfer Data FOIMALuuuiiiiiiiiieieeeei i ies e e e e e e e e e e e e s e e e s ennnnrenes 43
5.7.2 Interrupt Transfer DIFECHONuuiiiiiiiieiie e e e e e e e e e e e s e e s e s e s annnnnnes 43
5.7.3 Interrupt Transfer Packet Size CONStraintS............cooovicciiiiiiiiiiiiiereer e eeeees 43.....
5.7.4 Interrupt Transfer Bus ACCESS CONSIIAINTS......ciiviiiiieeeieii i e e e e e e e a4......
5.7.5 Interrupt Transfer Data SEOQUENCESccuiiiiiiiiiiaa ettt e e e e e e e e e e e e e s 46...
oI T =1 V1| I =1 013 (< £ 46
5.8.1 Bulk Transfer Data FOIMALccuoiiiuiiiiiiieiieeieeeeee e ee s e s s e e s e e svn s s mnmmmmnnnnnn D T
5.8.2 BUIK TranSTEr DIFECHIONcuuuiiieieii ettt et e et e e et e e st e e e st s e saasssta s e st mmmmmmmmmnn s 47
5.8.3 Bulk Transfer Packet Size CONSIIAINTScccuuiieiieiie e e e e s e s e e eaa s mmees 41....

Universal Serial Bus Specification Revision 1.1

5.8.4 Bulk Transfer Bus AcCeSS CONSIIAINtSuuiiieieeeeeiiiiieiiiiiicie e eeeeeeeeeevnveiiee e e e e s mmmeeeBi
5.8.5 Bulk Transfer Data SEQUENCESccoiiiiiiiaaiiaiie ittt et e e e e e e e e e e e e e eb e e e eeeeeas 48.
5.9 BUS ACCESS fOr TraNS OIS, ... it ittt e e e e e e e e e et s e e e e e e s s s
5.9.1 Transfer Management
5.9.2 Transaction TraCKiNg..........coiiiiiiuieiiieiiee et e e e e e e e ee e e e e e e s s s s sss s e reeeeeeeeeeeeeeeees s mmmmmnn
5.9.3 Calculating Bus TranSaction TiMES.......ccccccuurruuririieeererrierieeeeeesssssssasssssssrsssnsseeeeseesss smmmmmnn 54..
5.9.4 Calculating Buffer Sizes in Functions and SOftWare............cccccoovveivecciiiiiiiiiieeeee e S 5
5.9.5 Bus Bandwidth ReCIamationcoooiiiiiiiiiiiiiiiiiee e 55
5.10 Special Considerations for ISOChronous Transfers.........ccoviiiiiiiiiiiii e b55.....
5.10.1 Example Non-USB Isochronous AppliCation...........coooiiiiiiiiiiiiiiiiiieeieceee e 56..........
5.10.2 USB CIOCK MOGELcuuiiiieiiiiiiiiee ettt e e e e e e e e sttt e e e e e e antba e s sneeeaessnmnnsees 59
5.10.3 ClOCK SYNCIIONIZATION ...ttt ettt ettt e e e e e e a2 s smmmmmmmmne ¢ 61
5.10.4 ISOCHIONOUS DEVICES......ccceeiiiiieeeicis et e e e e e e e e e e et s e e e e e e e e s s ———— 61
5.10.5 Data Prebuffering
5.10.6 SOF TracCKiNgcccceiieiieiiieiiieiittie e e e e e e s e e e e e e e s s e s s s s sssssseen e eeeeeeeereeeaeaaeeeeeem
L0 0 A Y ¢ o T o = o |1V TP
5.10.8 Buffering for Rate MatChingcooiiiiiiiiiiicee e mmmmmmmnens 71
CHAPTER 6 MECHANICAL.....u it e e e eaa s 73
6.1 ArChItECIUIAl OVEIVIEW.ttt ettt ettt ettt e e e e e e e e e e e s e e s e ab s e e e neeaeeenanannes 73
6.2 Keyed CONNECLOr PrOtOCOL.........ccceeiii e e e e e e e e e e e emmmm———— 73
B.3 GBI .t e e et et e e e e e eeeeete et m—————————————eeeeeseeeeerres 74
L O o] L= XY= o1 o] P 74
6.4.1 Detachable Cable ASSEMDIIEScooiiiiiiiiiii e smmme e 74.
6.4.2 Full-speed Captive Cable ASSEMDBIIESuuuiiiiiiiiiiiiiiee e eeeaa 76.....
6.4.3 Low-speed Captive Cable ASSEMDBIIESccoeeiiiiiiiiice e e 78.......
6.4.4 Prohibited Cable ASSEMDBIIES.........ciiiiiiiiie e e— 80
6.5 Connector Mechanical Configuration and Material Requirementscccccoeeeevvieveeiviiiiiie e, 80
6.5.1 USB ICON LOCALION.....ceiiiiiiiiii i ee et e e e e e e e e et e et s e e e e e e e e e e e ese sttt aa e s eeeaaaaeeennnes 81
6.5.2 USB Connector Termination DAtacc.ccoeeiiiiiiiiiiiiiiiiiie e ee et s e e e e e e e e e e eeee s nnnnas 82....
6.5.3 Series “A” and Series “B” RECEPLACIESccuuuiiiiiiiiieiiiiie e 82....
6.5.4 Series “A” and Series “B” PIUQScooiiiiiiiiie ettt e e e e e 86
6.6 Cable Mechanical Configuration and Material ReEqQUIremMeNtscccovviiviiiiiiiiiiiie e, 90
LG T 0 =TT o7 o (T o IS, 90
LG O o o 1S3 {1 4 o o [P PPPPI 91
6.6.3 Electrical CharaCteriStiCSuiiiiiiiiiiiie ettt et e meeesmmmmmnee e 93
6.6.4 Cable Environmental CharaCteriStiCScoiiiiiiiiiiiiiiiiiiiiee e 93...
LGS T N1] o PP 94
6.7 Electrical, Mechanical and Environmental Compliancestandardscccccvveeieeieeeeneeiieiiiiiccnnnns 94
6.7.1 ApPPlICabIE DOCUMENESttt ettt e e e e e e e e e e e e e s 102
(SRS T U 1S = 3 €] o 11 o 1 Vo U 102
6.9 PCB REfErenNCE DIraWINGS.....ccvvuiiiiiiiii i e e e e e et e ettt s e e s e e e e e e e et e ettt e s s e e e e eaeaeeeeesss s s om— 102

Universal Serial Bus Specification Revision 1.1

CHAPTER 7 ELECTRICAL ...ttt ettt ea s 107
4% A 1 To [=1 oo PP OPPPTRRPPPPI
7.1.1 USB Driver Characteristics
7.1.2 Data Signal RiSe and Falluueiiiiiiiiiiiiaaa et ammmmmennaees
T7.1.3 CAbIE SKEW. ...t e e e e e e e e e e e e e e e e aeeeaean
7.1.4 ReceiVer CRaraCteriStiCSuuuuureeiiieiieiiieeiee e e et eee e e e e e e e e e e e e e e e e e
7.1.5 Device Speed Identification
7.1.6 INPUL CharaCteriSHICS. .. uueeeiiiiiiiieiee ettt e e e e e e e e e e e e e e bbb bbb meemmnmnnnnn e
% A ST | o= 1T [o T == (PR
7.1.8 Data ENcoding/DECOAING ..eeeeeeeeeieiieiiee ettt e e e e e e e e e s e e s e s rreeeeeaees
%S = 11 0 (U1 o PSP
0 O O TV T = 11 (=T o
7.1.11 Data SignaliNng RAE.......cccccuuiiiiiiiieiieiie e e e ee e e e s s s e e e e e e e e aeeeeee e s e s sammnmmnnnnenee s
7.1.12 Frame Interval and Frame Interval AdjuStmentcooovveeeiiiiii e 26......... 1
A R R D - 1 = 01U (o= 3R T | = 1T T 127
7.1.14 Hub SignNaling TiMINGS ..ceeeiiiiiaiiaeaaee ettt ettt e e e e e e e e e e e e e et eaeeeeaeeaaaaas 128
7.1.15 RECEIVEI DAt@ JItEEI ...ttt ettt e e e e e e e e e e e e e s s mnnnnnneeeee e s 130
7116 CAbIE DEIAYttt et e e e e e e e e e e e e e et e —— 132
7.1.17 Cable ATENUALION.uuiiiiieiiiieii ettt et e e e e e e e e e e e e e s s e b b e e b s e ennnnn e e 133
7.1.18 Bus Turn-around Time and Inter-packet Delay.........cccccccoeiiiiiiiiiiiiiiiieeeee e 33 1
7.1.19 Maximum End-to-end Signal Delay............coceeiieiiiiiiiiiiieeee e 133....
A2 =0 = T3 g o1 1T o P
7.2.1 ClasSES Of DEVICES......uuiiiiieiiiiiiiee ettt e e et e e e s e st e e e e e e
7.2.2 Voltage Drop BUAQELooeviieeeie ittt e e e e e e s s nee e
7.2.3 Power Control During Suspend/Resume
7.2.4 Dynamic Attach and Detach.............coooiiiiiiiiiie e 140
B T = 1)Y= (o= 1 = = 141
7.3.1 ReguIatory ReQUITEIMENTSttt e ettt e e e e e e e e e e e e e e s 142
7.3.2 Bus Timing/Electrical Characteristics .
7.3.3 TIMING WAVETOIMS ...ttt e et e e e e e e e e e e aaaaaeeeaaans
CHAPTER 8 PROTOCOL LAYER ...ttt 155
S A =11 A (o L= o oo [P P PRPR PP 155
S T 4 \\ [O = =1 (o O S SPPPPP 155
8.3 PacCKet FIeld FOIMALScooiiiiiiiiiiite ettt et e e e e e e e s bbbt b s e s e e 155
8.3.1 Packet Identifier FIlduuuieiiiiiiiiie e oo 155
8.3.2 AAArESS FIBIUS ...ttt e e e e e e e e 156
8.3.3 Frame NUMDEI FIEIueiiiiiiiii et e e — 157
8.3.4 Data Field .
8.3.5 Cyclic RedundanCy CRECKS..........cooiiiiiiii e+ s 158
G e ol (T B o] 4= SRR
S R o =T g I o= Tod (] (=T PR
8.4.2 Start-of-Frame Packets
8.4.3 DaAta PACKELSciiiiiiiiiiiii et -
8.4.4 HaNAShAKE PACKELS.......cciiiiiiiiiiiie ittt et e s eemmmmeeeeeean

8.4.5 Handshake Responses

Vi

Universal Serial Bus Specification Revision 1.1

8.5 TranSaCtON FOIMMALSuuuiiiiiiiiiiiiii ettt e e e e e e e e e e s e s e
8.5.1 Bulk Transactions
8.5.2 CoNtrol TranSerS.......ueiiii it
TR B) (=1 U] o I = g T= Uod 1 T £ 167
LRSI S [~ Yo Tod o] {0 aTo 10 AR I =T g Y- 1o 10 o PSP 168
8.6 Data Toggle Synchronization and RELIYcoiiiiiiiiiiiie et 168..
8.6.1 Initialization via SETUP TOKENcoiiiiiiiiiiiiie ettt et e e e e e 169
8.6.2 Successful Data TranSACHONSciiiuuiiiiie ittt e e s s eb e s smmmmeeeea 169
8.6.3 Data Corrupted O NOt ACCEPIEMAooii ittt e e bbb eeeeann 170.
8.6.4 Corrupted ACK HandShaKe...........ooiiiiiiiiiiiie e ee e 170
8.6.5 LOW-SPEEA TraNSACHIONSttt ettt et e e e e e e e e e ettt e et e e e eaaaaeee e e e s 171
8.7 Error Detection and RECOVEIY.......uuuuiiiii it e e ettt s s e e e e e e e e e e e aa et eeeeees 172
8.7.1 PaACKEt ErTOr CAtEUOIMES. .. uuuueeeiiiiiiiiiiiae i e ettt e e et e e e e e e e e e e e e e e e 172
8.7.2 BUS TUM-ArOUNd TiMINQ ...eeeeeieiiiiiiiaaaee ettt e e e e e e e e e e e e e e s e e s enb bbb e s e s eeeeeeaeenan 172
B.7.3 FAlISE EOPS ... ettt ettt e ——— 173
8.7.4 Babble and LSS Of ACHVItY RECOVEIYuuiiiiiiiiiiiieee e e et e e ee e e e e e e e e e e e e e e e s 174....
CHAPTER 9 USB DEVICE FRAMEWORK ...t 175
0.1 USB DEVICE SEALES. ...ttt eei et e e e e ettt e et e e e e e e e s s s e bbb bbbttt et e e eeaaeeaesassamnnnneeaeeaeeeaanan 175
9.1.1 ViSIDIE DEVICE SEAtES.....ciii i ittt e e e e e e e e e e e e e s eemmemmmmnnne s 175
9.1.2 BUS ENUMEIALION ...ttt e e e e et e e e e e e a2 e st o 179
9.2 Generic USB DeViCe OPEIatiONScoiiuuiiiiieiiiiiiiiteesiitieeeee s s sttt e e e s ssibbaeeaeesasbereeee s s sseeenna 180
9.2.1 Dynamic Attachment and REMOVaAL.............c.ooiiiiiiiiiiiieee e 180.....
9.2.2 AdAreSS ASSIGNIMENT.....iciiiiieeeeee it e et e e e et e e e e e e e s e s s s s s s s s nnraebeeraeeereeeeeraeaaeaeaanan 180
LS 72 T o o Vi o [0 = 11T o

S R B - - R = 11 5] =] PSP
9.2.5 Power Management
9.2.6 Request Processing

0.2.7 REOQUEST EITON ..ttt e e e e et e e e e e et e bbb aaaaeeeenenenn e es

9.3 USB DEVICE REQUESES......ccciiieeiiieiiiii it e et s e e e e e e e e e e et e et s e s e e e e e aeeeeeete s meeenennnnnnnn s 183
1S TR T N o0 4| 2 LT [0 1= S] Y o1 TP 183
0.3.2 DREOUEST ...ttt e e e e e e e e e e e e e e bbb e re et eeaaaaaaaaaaaan 184
0.3.3 WVAIUE ettt e oo e e et e e et e e e e e e e e e aaaaaaaaaaaaaaaaan 184
LS 0 V1 1o To [PSP 184
9.3.5 WLEBNGLN ..t rraraaaaaaaeaaaaann 184

9.4 Standard DeVICE REQUESTES.ciiiiiiiiii ittt ettt e e e s b e e s saneeeees 185
S R O [L T 1 (F [PP 188
LS 11 @ o 1o U= L1 o] o PR 189
LS B 11 D 1= o 1 o] (o R 189
9.4.4 Get Interface
.45 GBE SEALUS ...ttt oottt e e e e e e et et e et ettt e e e e e e e e et et bet b aeaaaaaaaaeaaeas
0.4.6 SEE AUUINESS. ..ttt ettt ettt e e e e e e e e e e oo e oo ab bbb et et et e eeteeaaaaaeeaaaaaaaanrrree
9.4.7 Set CONfIQUIALION ...ttt ettt e et e e e e e e e e e e s e e s e eb s e eeeeeeeeeease e 193
0.4.8 SOl DESCIIPION ...ttt ettt ettt ettt e e et e e e e e e e e e e e e e e e e e s —— 193
0.4, SEE AU ...ttt ettt e e e e e e e e e e e s 194
S KO Y= A [01 0= 7= Lo J PP 195
1S T Y o Tod T = U= P 195

LSS B =TTl o] (o] £ T PSPPI 196

vii

9.6 Standard USB Descriptor DefinitiONS...........uuuiiiiiiiii it e e 196
O.6.1 DIBVICE .uuiiii it e e e e e aeeeeeeetete ettt —————————————— 196
LS 2 @0 o Vi o U= 11T o Y 199
G TRC T] (=1 o = ot PRSP 201
1S LG S =t o | o T | PSP 203
LS LG T 1 o Y 204

9.7 DeVvice Class DefiNitiONSuuiiiiiiii ittt e e e e e e e e e e e e e eeabebaba e smmmmmmmmmmeerere 205
1S A T D =TT od] o (o 205
9.7.2 Interface(s) and ENAPOINt USAQEuuuiuiiiiiiiiiiiiiieiiaa et e e e e e e e e eeeeeeas 205.
O.7.3 REOUESTES ...ttt oottt ettt e e e e e e e e et ettt e bbb e e smmameeeeannnnnseeeaes 206

CHAPTER 10 USB HOST: HARDWARE AND SOFTWAREcccoooiiiiiiiieennnn. 207

10.1 Overview Of the USB HOSL.......uuuiiiiiiiiiiiiecie et r e e e e e e e e e e s e e s s e s e s 207
Tt O R @Y= o T PP 207
10.1.2 CoNtrol MECNANISIMSuuiiiiiiiiiiiiie et et e e e e s st e e e e s st b eeeeeeeeeeanne 210
T R T B = = i [0 1 PSPPI 210
10.1.4 Collecting Status and ACtiVity StatiStICSuuuuerieiiiiiiiiiiiiie e 211
10.1.5 Electrical Interface CoNSIAEratiONScccieieieiiiiiiiiiiiiieis e e e e e e e e e e e e aeeeneaeas 211

10.2 Host Controller REQUIFEMENTSuuiiiiiiiiii e e e eee et e s e e e e e e e e e e e e s e e e e e e e aeeeeesaeeaananees
02 R S = 1 (S o =g |1 Vo PP
10.2.2 SerialiZer/DESEIANIZENuviiiiiiiie et e e e e e e e e e e e+ mmm——
10.2.3 Frame GENEIALIONuuiiieeiiiiiiiie e ettt e e ettt e e e e ettt e e e e s bttt e e e e satbbee e e e e e st s e s em——
10.2.4 Data PrOCESSING .. .uuuturteeeiieiririieeeeeeasssisaiissssssensiesreerererrereeeaeeeeeeessnsannannnnns
0 22 ST = o 1o Yo] B = 5T 11 =
10.2.6 Transmission Error Handling
10.2.7 REMOLE WaAKEUPccie i ittt e e e e e e e e e e e e s e s s es e e e e e e e e e e aaeaeeaesses s rmmmmemmemmnnm s
10.2.8 RO HUD ...t e st e s e mmm e s
10.2.9 HOSt SYSteM INTEITACEcoiiiiiiiee et smammm e

10.3 Overview of Software MEeCHANISIMSuuuiiiiiiiiiiiiii et e e e e mmneees 214
10.3.1 DeVvice CONFIQUIALIONuuieiiiiiiieiiii ettt ettt e e e e e e e e e e e e e e e e s e rmmmneneeeeeeeas 215
10.3.2 RESOUICE MANAGEIMENTiiiiiiiiiitiiia e e e e et ettt ettt s s e e e e e e e teeeeeaeebaba e e s e e e eeeeees mmmmennnnnns 217
10.3.3 Data Transfers
10.3.4 Common Data Definitions

10.4 HOSE CONIOIET DIIVET.....ccce i e et ee s ettt e e e e e e e e e e s e e s e s s e et b e eeeeeereeeeeaeeaaaeaeeaeasesannn 218

10.5 Universal Serial BUS DIIVETuuuuuiiiiiiiiiiieeeeee e e s e s s sses e teeeeeeeeeeneeaaeeeeeeesessasann s ennnnnnnnnneees 219
10.5.1 USBD OVEIVIEW ...cuiiiiiiiie ittt e e sttt sttt e e s s sttt e e s sttt e e e e s e bbb et e e e s anbbbeeaeeennareeneas 219
10.5.2 USBD Command Mechanism REQUIFEMENESuuurririiiiiiiiiierieeeeeeesessssasssssssnnsenseeeereeeeeeaeaeeaes
10.5.3 USBD Pipe MEChANISMScccoi ittt e e e e e e e s e 223
10.5.4 Managing the USB via the USBD MEChANISMS.........uuuuiiiiiiiiiiiieeei e r e e e e e e e
10.5.5 Passing USB Preboot Control to the Operating SYStemccoociiiiiiiiiiiiiiiieeeeee e

10.6 Operating System ENVIroNmMENt GUIOES.........uiiiiieie it e e e e e e e e e e e e eeeeaees 227..

CHAPTER 11 HUB SPECIFICATION ...ttt 229

0 O O 1V =T Y= PR
11.1.1 Hub Architecture
11.1.2 Hub Connectivity

viii

Universal Serial Bus Specification Revision 1.1

Universal Serial Bus Specification Revision 1.1

T11.2 HUD Frame TimMEr...couui i ieeiie ettt et e e e et e e e e e et s e e e e et e e e eeetaa e eeeesaan s snnnnnmnnnneeesees 232
11.2.1 Frame Timer SYNCAIrONIZAtIONcooiiiiiiiiii ettt e e aeaaaeas 233
11.2.2 EOF1 and EOF2 Timing POINSuuuiiiiiiiiiiiiiiiieeee e e e e e e s e e s sesssesieeiaeteeeeeeeeseeaeaaeeeessmmmmne 234..

11.3 Host Behavior at ENA-0f-Frame@...........uoiiiiiiiiiii ettt e s eeenns
11.3.1 LateSt HOSt PACKELcceviiiiiiieii e e e e e e e e e e e eeenes
11.3.2 Packet NUHIfICAtIONcciiiiiiiieeeeeeeeee e

11.3.3 Transaction Completion Prediction

R S [01 1=T 1 g F= 1 o] APPSR UT T PPPPPPPR
I 3 T [= Tox 11 PP PPPPPPO
11.4.2 SUSPENA DEIAYeeeeeiiiiiiiiiiie ettt e e e e e e e e e et b s e e e -
11.4.3 FUll SUSPENA (FSUS) .. ittt et e e e e e e e e e e e e e ettt s e e e e e e e e e e e e e« s
11.4.4 Generate Resume (GResume)

11.5 DOWNSIIEAM POITS ..ouiiiiiiii ittt e e et e e e et e et e et e et e s e em e nnnnsbasren 239
11.5.1 Downstream Port State DeSCIPLIONS........ooiiiiiiitiiiiee e e ee s 24Q...
11.5.2 Disconnect Detect Timer

L11.6 UPSIIEAM PO, ..ottt e e e e e ettt e e e e e e e e e e s s e s s e e e e e e nnnnnnes
L11.6.1 RECEIVET......uteeiiee ittt ettt e e e sttt e e e s e nb e e e e e s abbaeeeeeeaas
O ST I = 011 411 = PSP
11.7 HUD REPEALET ...eeiiiiii ittt e bbb e e e e
11.7.1 Wait for Start of Packet from Upstream Port (WFSOPFU)
11.7.2 Wait for End of Packet from Upstream Port (WFEOPFU)cccoiiiiiiiiieiieeeeeee
11.7.3 Wait for Start of Packet (WEFSOP) ...t
11.7.4 Wait for End of Packet (WFEOP) ...ttt
11.8 BUS State BEVAIUALIONcoooiiiiiieee e e e e e e e 251
R T R o ¢ A = ¢ (o TSP PP PTTTRPRR
11.8.2 Speed Detection
L11.8.3 COllISION ..ettiiiieeeitieiee ettt
11.8.4 Full- versus LOW-Speed BEhAVION...........uuuiiiiiiiiiiiiiiiieiee e ee s e e e e e e e e e s eneeenaan 252
11.9 SUSPENT AN RESUMIE...cciiiiiitiiiiee ettt ettt e ettt e e e ettt e e e s st be et e e e s s sabbe e e e e e s snbbeeeeeessaanee 253
11.10 HUD RESEE BENAVIOI......ceiiiiiiiiiiiieee e e ettt e et e e e e e e e e e e s s e s asssnee s b ee e e s e s o s 254
11.10.1 Hub Receiving Reset 0n UPSIream POr..........uuueiiiiiiiiieeee e ccciineeeeeeee e e e 254......
11.11 Hub POrt POWEN CONIIOL. ..ottt ettt e et e e e e e e e e e e mmmmmmmnnneeees 255
0 O Y B 11 o] L= =T g o PRSPPI 255
11.12 Hub I/O BUffer REQUITEMENTScoieiiiiieiiiie e e e e e e e e e e e e s e e e e e e e e e s soe——
11.12.1 Pull-up and Pull-down Resistors
11.12.2 Edge RAE CONIOL...ciiiiiiiieeeei ettt e e e e e bbbt e e e e e e e aa e e mmme e s
L11.13 HUD CONIOIET ...ttt ettt e ettt et e e e e e e e e e e e s aeeaaaaaaaaannnnnnnes 256
11.13.1 Endpoint OrganiZatiOneeueeueeeieeeieeeeeeeeeessesisssssssseeerreereeeererreeeeeeeeeessssss s mmmmmmmmemmnn 257
11.13.2 Hub Information Architecture and OPEration..............cocoeeciviiiiniiiieererr e 257......
11.13.3 Port Change Information ProCeSSING.......uuuuuiiiiiiiiiieeeeeeeiiesiessseseeaeee e e ereeeeeeaee e s smmmnan 259..
11.13.4 Hub and Port Status Change BitMapuuuuiumiimiiiiiiiirieeeeeeeiesiessssssienieaeneeeeeee e e e s smmma 259....
11.13.5 Over-current Reporting and RECOVETYccccccuvuiiiiiiiiiiieieeeeee e e e e e e e e s e e s ss s ssvrreveeeeeeeenenes 260....
e o T o T @ T U > o PSP 261

Universal Serial Bus Specification Revision 1.1

R B TS0l o] (] 263
11.15.1 Standard DESCHPIOISuuuieiiiiiiiee ettt e e et e e e e e e e e e e e e e e e e e e s e .263
11.15.2 Class-SPECIfiC DESCIIPIOISccicceeeiiiiiitieiie et e e e eeeeae e e e s e et e s s ss s bae et eeereeeaaeaeeeessmammmmmnnnnees 264

L1168 REQUESTS. ...ttt ettt et e e e e e et e oottt ettt e et e e e e e e e e e e oo e ———— 1112111
11.16.1 Standard REQUESEScccocceiiiiiiiiiiiiii e e e e e e e e e e e e e s s e s s ree e e e e eaaaaaaaees

11.16.2 Class-specific Requests

Universal Serial Bus Specification Revision 1.1

Figures

Figure 3-1. Application SPace TaXONOMYcccoiiiiiiiiiiiiiiiiiieei ettt e e e e e et e e e e e e e e e e s e s s e aaaaaabebbesbemnnneeeeeeeeeeseees 12
o [0 = I =W = o] o Yo oo |V P 16
FIQUIE 4-2. USB CaDIE..... ettt e e oot e oottt e e ¢ o £ £ £ £ 2242222222211 17
Figure 4-3. A TYPICAI HUDuuiieiiieiiiice e e e e e e e e et e e s e s e srm— e 22
Figure 4-4. Hubs in a Desktop Computer ENVIFONMENTcoiiiiiiiiiiiaiiiaii e mmemeeees 23.
Figure 5-1. Simple USB HOSU/DEVICE VIBWcciiiiiiieeeeeeiie e ettt e e e taeaa e e e e e e s sessns s eeneeneeeeeensees 25
Figure 5-2. USB IMPIeMENTAtION AFEASuuuriiiiiiiiiiiiaaie e e ettt et e e e e e e e aaaaaaaaeeaeeeaaasaeaaannns 26
Figure 5-3. HOSt COMPOSITION ...uuuiiiiiiiiiiiiieiiee e e e e e e e e s es s e st e e e e e e e e aaeaeaaesaesse s s m—— s 27
Figure 5-4. Physical Device COMPOSITIONeiiiiiiiiiiiiaaiieeie ettt e e e e e e e e e e e e e e e e s ae e e e e 28
Figure 5-5. USB Physical Bus Topology .29
Figure 5-6. USB L0OQiCal BUS TOPOIOQY -....tuttieiiieiiiiiiiiieaee ettt e e e e e e e e e e e e e e e e ee e 30
Figure 5-7. Client Software-to-function RelationShipsS..........ccccooiiiiiiiiiiiiicceeeeeeee e o« 30
Figure 5-8. USB HOSt/DeVice Detailed VIBWccoiiiiiiii ittt ememeeeeeeeeeeeee 31
Figure 5-9. USB COMMUNICALION FIOWuvviiiiiiiiiieiee e e e e e e e e e e s e e vmmeeeeenenens e ee 32
Figure 5-10. USB Information Conversion From Client Software to Bus..............ooooiiiiiiiiiiiiiiiiieeee, 50..........
Figure 5-11. Transfers for Communication FIOWS...........ccccuuiiiiiiiiiiiiiice e eeere e e 52
Figure 5-12. Arrangement of IRPS to TransactionS/Framesooooiiiiiiiiiiiiiiieeee e 53...
Figure 5-13. Non-USB ISOChron0ous EXamPlecccoeeiiiiiiiiiicciieeeee e s 57
Figure 5-14. USB ISOChronous APPlICALION..........eeiiiiiiiiiiiieeai it e e s e« 22 - 00
Figure 5-15. Example Source/SinK CONNECHIVILYccccoiiiii it e e e e e e e e s s s eeeeeeeeeeees 66
Figure 5-16. Data Prebuffering ... 211 70
Figure 5-17. Packet and Buffer Size Formulas for Rate-Matched Isochronous Transfers..............ccccoevveicinnnns
Figure 6-1. Keyed CoONNECIOr ProtOCOIuuuiiiiiiiiiiiiiie ettt 73
Figure 6-2. USB Detachable Cable ASSEMDBIYooooi i 75
Figure 6-3. USB Full-speed Hardwired Cable ASSEMDIY ... e, 11..
Figure 6-4. USB Low-speed Hardwired Cable ASSEMDBIYccovvviiiieeiiiiiiii e mmmeeee d D
FIQUIE B-5. USB 100N ...ttt e oottt ettt et e e e aaaaaaeeeaaeaaaaannnnebneeeneneee 81
Figure 6-6. Typical USB Plug Orientationcccoiiiiiiiiiiiiiieeieeer e s e e e e e e e e s e e s s e s s eeeeeeeeseeaeesenannnns 81
Figure 6-7. USB Series "A" Receptacle Interface and Mating Drawingcccoeeeeeeiiiiiiiiiiiciniiiiiiennes 83
Figure 6-8. USB Series "B" Recptacle Interface and Mating Drawingccoeovveeveiienvvnnvinnneeeeerese o 84.........
Figure 6-9. USB Series "A" Plug Interface DraWing.........ccccouuiieiiiiiiiiiieeieaee e e O T
Figure 6-10. USB Series “B” Plug Interface Drawing..........cccooeiiiiiiiiiiiiiiiiiiiiieeere e e e eeeae e e e e e e s smmmmmmmmneees 88
Figure 6-11. Typical Full-speed Cable CONSIIUCHIONuuuiiiiiiiiiiiiaaea e e e 90
Figure 6-12. Single Pin-Type Series "A" RECEPLACIEcoovviive e e 103

Xi

Figure 6-13.
Figure 6-14.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.
Figure 7-16.
Figure 7-17.
Figure 7-18.
Figure 7-19.
Figure 7-20.
Figure 7-21.
Figure 7-22.
Figure 7-23.
Figure 7-24.
Figure 7-25.
Figure 7-26.
Figure 7-27.
Figure 7-28.
Figure 7-29.
Figure 7-30.
Figure 7-31.
Figure 7-32.
Figure 7-33.
Figure 7-34.
Figure 7-35.
Figure 7-36.

Xii

Universal Serial Bus Specification Revision 1.1

Dual Pin-Type Series "A" ReCeptacle.......cccccceeiiiiiiiiiiiiiiiiiiiiiiiieieeeeee e smemnneenn L 04
Single Pin-Type Series "B" RECEPLACIEuuvuriiiiiiiiiiieii e eemeeeneeens 105
Maximum Input Waveforms for USB Signalingccooeeeiiiiiiiiiiiiiieeeeeeen e 107....
Example Full-speed CMOS Driver CirCUIt..........cccccuuuriiriiiiiierrerreeeeeeeeeeseessssssene s emeennns 108
Full-speed Buffer V/I CharacteriStiCscciuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e e e smmmmmmene e LO9
Full-speed Signal WavefOrmMSuuiiiiiiiiiiiiiiiiiceeee e e e e e s seeeseemmmmnne s 110
Low-speed Driver Signal WaveformMs.ueeiiii e 110
Data Signal Rise and Fall TiMecccccciiiiiiiiiiiieer e e e e e s s e 111
[T oL T o [1o = Lo [PR 111
[0 1YV o 1=T=To B =0T o o =T OO 112
Differential Input SenSitivity RANGEeueiiiiiiiiiiiiaiia e 113
Full-speed Device Cable and Resistor CONNECHiONS...........ccooevveiiecceniiiiiiniieeeeeee e e e e e 113....
Low-speed Device Cable and ResiStor CONNECLIONS...........uuuieiiiiiiiiiiiaaaaaaeeee e 114.......
Placement of Optional Edge Rate Control Capacitors.............ccceccvvvviiiiiieieierieeeee e 115.......
Upstream Full-speed POrt TranSCeIVETcooii ittt e e ammmmmeeeeeees 117
DOWNSEream POIt TraNSCEIVETccuviiiiieie ettt eemmmme e e o 117
DISCONNECE DELECLION ...ttt et e e e e e e e e e e e e ee e 118
Full-speed Device CoNNECt DEtECLION........cccccuuuriiiiiiiiiiieir e e e e e e e e e s e e annnnneees 118
Low-speed Device ConNECt DeteCION.........cuiiiiiii it 119
Bus State Evaluation after reset (optional)..........cccccuviiiiiiiiiriiiieeee e 119
Power-on and Connection EVents TiMiNgooooiiiiiiiiiiiiieeieeee e 120.
Packet VOIAgE LEVEIS........ccoo oottt e e e e e e e e e s eneeeees 121
NRZI DAta ENCOING ..eeeeeeiiiiiiiieeeee ettt e e e e e e e a e e 11 124
2 TS (1) 3T o PP 124
Illustration of Extra Bit Preceding EOPoooiiiiiiiieeeee e eeeeeees 125
Flow Diagram for Bit StUffiNg.......ccccuiiiiiiii e 125
) (ol o= 11 (] ¢ o U PUUPTURPPPPPTPPPIN 126
D= 1= B 1 = g I V(o o] 1) TP 127
SEO for EOP Width TimMiNg ...cceiiiiii ittt e e e e e e ee e e 128
Hub Propagation Delay of Full-speed Differential Signals...............coooooeecciviiiiienieeeee e 129......
Full-speed Cable Delay ... e 132
LOW-SPEEd Cable DEIAYuuuuiiiiiiiiiiiiiiei e r e e e e e e e e e e s emmmmmmmmmmmnene e 132
Worst-case End to End Signal Delay Model.............ooiiiiiiiiiieeeeeeeeeceeeeeee 134.
Compound Bus-powered HUDB.............oooiiiiiier e e 135
Compound Self-powered HUD ... e L 30
Low-power Bus-powered FUNCHION..........cccciiiiiiiiiieiiicic e e e e e e e e e s s e e e e e eee e 137
High-power Bus-powered FUNCON...........cooiiiiiiiii et 137
Self-powered FUNCHON...........ooi o e s mmmenneeeeeeeeeeeeeees 138

Universal Serial Bus Specification Revision 1.1

Figure 7-37. Worst-case Voltage Drop Topology (Steady State)coooiiiiiiiiiiiiiiiieeieeeee e e 138.....
Figure 7-38. Typical Suspend Current Averaging Profile ..o 139
Figure 7-39. Differential DAt JItter............ ittt e e eeeeeeeeeeeee e e e e e e e aaeeas 151
Figure 7-40. Differential-to-EOP Transition Skew and EOP Widthccccoiiiiiiiiiiiiiieeee e 151.......
Figure 7-41. ReCIVEr JIEEN TOIBIANCE.ueeiiiiiiieiiie ettt e e e e e e e e e s £ 222 151
Figure 7-42. Hub Differential Delay, Differential Jitter, and SOP Distortionccccccvvveeereriiereeeenns 152......
Figure 7-43. Hub EOP Delay and EOP SKEW..........couiiiiiiiiiiaiaiia ettt e e e e e e e e e emmmneeees 153
1o T =TS R = I B o 4 - | SO
FIQure 8-2. ADDR FIUuueiiieiiiiiii ettt e e e e e e ettt £ e
Figure 8-3. ENAPOINT FIEIU........uueeieiiiiiiiieee e e e e e e e e e s e e e e e e e e e e e e eaeeeeeeeeenas
Figure 8-4. Data FIield FOMMALoooi it e a2 e e e e e s
FIQUIE 8-5. TOKEN FOIMAL........uuiiiiiiiiiiiiieiiie e i e e e e e e e e e e s e e s s s s sttt e e e e e eeeaaaaaaeaaessesss s m————— 11 nrenes
FIQUre 8-6. SOF PACKET.......ueeiiiiiiiiiiie et

Figure 8-7. Data Packet Format

Figure 8-8. Handshake PacCKetoo ettt
Figure 8-9. BUIK TranSacCtion FOIMAL.........ccccuuuiiiiiiiiiiieieieesee e e e e e e s e e s ss s s e e e e e e e e s s mmm— s 163
Figure 8-10. BUIK REAAS @Nd WIILESuuuiiiiiiiiiiiie ettt e e e e e e e e e e s emmmmmmmmmmmne e e s 164
Figure 8-11. Control SETUP TranSaACONcccuuuuiiiiiiiiiiiiriiieeieeeeeeeseesssssseinsteereeaseeeeeeeeessseeeeeesnsnnnnnes 164
Figure 8-12. Control Read and WIte SEQUENCES.........uuitiiiiiiiiiaiiaaaa et eee e e e mmmmmeanneeees 165
Figure 8-13. Interrupt TranSaction FOIMALccciiiiniiiiiiiiieeir e e e e e e e e e e e e e e s s rrrereeeeeeaeaaeeens 167
Figure 8-14. 1s0chronous TranSacCtion FOFMAL.............uiiiiiiiiiiiiiaa e e e e e e e e e e e e 168
Figure 8-15. SETUP INIAlIZAtIONuuviiiiiiiiiiiieieee et r e e e e e e e e e e e e e s s e mmmmmm s e e e e 169
Figure 8-16. CONSECULIVE TIraNSACHIONS.cciiiiii e ettt ettt e e e e e e e e e e e e e e e e e e e mmmneeeeeenes 169
Figure 8-17. NAKed Transaction With REIIY.........cuviiiiiiiii i e e eme e e eeeeeee s 170
Figure 8-18. Corrupted ACK Handshake With Retry ... 170
Figure 8-19. LOW-SPEed TranSACHONccciiieiiiiiiiiieieeeeer e e re e e e e e e e e e s s e s ss s st eeeaeeeee e e s s mmmmmm—— 11 171

Figure 8-20. Bus Turn-around TIMEr USAQgE.........uuuuuuruiiiiiiiieaiaaaaaaaaaeaaeeaeaaeniteeeeeeeeeeeeee s e s s L1 3

Figure 9-1. DevVvice State DIagramccoeiiiiiiiiiiiiiiie e e e e e e e e e e et e s s s s s st e e reeeeeeesseeeene e nnreeeeeees 176
Figure 9-2. windex Format when Specifying an ENdpOint ... 184.
Figure 9-3. windex Format when Specifying an INterfaceccccceeeeee it e 184
Figure 9-4. Information Returned by a GetStatus() Request to a Deviceooooiiiiiiiiiiiiiiiieeeeeen. 191........
Figure 9-5. Information Returned by a GetStatus() Request to a Interfaceccccccevveeeeeiiiiiiiiiiccinn 191.........
Figure 9-6. Information Returned by a GetStatus() Request to an Endpoint..........ccccceviieeainnid 92.......... 1
Figure 10-1. Interlayer Communications MOGEl...........cceeeieiiiiiii i mmmmmmemeeeees 207
Figure 10-2. HOSt COMMUNICATIONSuuuttiiiiieieiiiee e e e e e e e ettt ettt e e e e aaaaeaaee e s e s e aaaaananrenneenes 208
Figure 10-3. Frame CrEatiON..........coooiiiiiiiiiiiiiiiiie et e e e e et e e e e e e e e e e s s e s as s st ateeaeeeeeeeeeesaeeaaenasssnsennnnnes 212
Figure 10-4. Configuration INtEIraCliONSoeiiiiiiiiiiia e e e e e e e e e e e e e emmmmmmmmemeees s eeeeee 215
Figure 10-5. Universal Serial BuS DIVEr StIUCLUIE...........uuuiiiiiiiiiiiiiiiiieeeeeeeeeesessesssesse e eee s semmmmmmnnnns 219

Universal Serial Bus Specification Revision 1.1

Figure 11-1. HUD AFCNITECIUIE......eeiiiiiiiieie ettt e e e e e e e e e et be e e e e aeeaaeaeaannnnennes 230
Figure 11-2. Hub Signaling CONNECTIVILYccuuuiiiiiiiiiiiiieer e e e e e e e s e s ss s e e e e e eeeeeeeeeeeeennnnrnnes 231
Figure 11-3. RESUME CONNECLIVILYuuuieiiiiiiiiiieeiee e e e e e ettt e ettt e e e e e e e e e e e e e e e s e e aaaban e eeeeeeeees 232
Figure 11-4. EOF TiMiNG POINTSccoiiiiiiii e e e e e e e e s e s s s s s e e e e e e e e s smmmmmmmmmmmms s 234
Figure 11-5. Internal Port State MacChine. ..o e ee e e 237
Figure 11-6. Downstream Hub Port State Maching............cccoooiiiiiiiiiiiiieeer e ennnnnes 239
Figure 11-7. Upstream Port Receiver State Machineueeiiiiiiiiiiiie e e 244
Figure 11-8. Upstream Hub Port Transmitter State Machingceevvvviiiiieieiii e s 246....
Figure 11-9. Hub Repeater State MaChiNe..........ccooiiiiiiiiii e e 249
Figure 11-10. Example Remote-Wakeup Resume Signalingccooeveeeeiiiiiiiiiiiciiiieieeeeeeeee e 254.......
Figure 11-11. Example Hub Controller Organizationoooiiiiiiiiiiiiiiiiieceieeee e 257
Figure 11-12. Relationship of Status, Status Change, and Control Information to Device States..................
Figure 11-13. Port Status Handling Methodcc.uuuiiiiiiiee e 259
Figure 11-14. Hub and Port Status Change BitMap.........ccceeeeeieiiiiiiiiicciiiieieeeee e e e e e e e e e e e e e mmmmemmenees 260
Figure 11-15. Example Hub and Port Change Bit Samplingueeeeiiiiiiiiiiiiia e 260....

Xiv

Universal Serial Bus Specification Revision 1.1

Tables

Table 5-1. Full-speed Control Transfer LIMItS ..ot e s 39
Table 5-2. Low-speed Control Transfer LIMItS ... cccccciiiiiieieeeee e s e e e e e s 2. 40
Table 5-3. Isochronous Transaction LIMItSoooiiiiiiiiiiiiiie e 42
Table 5-4. Full-speed Interrupt Transaction LiMItSccooeiiiiii i e e e e e e e mmmmmmmmmmnmnn e 45
Table 5-5. Low-speed Interrupt Transaction LIMItSuuuueiiiiiiiiiiiiiaaaeae e oo 46
Table 5-6. Bulk TranSacCtion LIMILS.........cuoiiiiiiiiiieiiiiiiee ettt cmmmneeeeeaan s nereeeee s 48

Table 5-7. Synchronization CharacteriStiCSooiiiuiiiiiiiiiiiiiii e o 0.0 2
Table 5-8. CoNNECtiON REQUITEMENESuiiiiiiiiieieeee e e e e e eee e e e e e ae e e e e e et e e s e s s eeenennennnnn e e e e s 68

Table 6-1. USB Connector Termination ASSIGNMENT.............uuuiiiiiiiiiiiieiieaeae e D2

TADIE B-2. POWET PAINciiiiiieiiiii ettt ettt e st e mmmmmemnmmmne e e s ree e e s nre e 91
TaDIE B-3. SIGNAI PAIeeeiiieeieeie ettt et e e e e e e e e e e e e e e s—_ £t nn e 91
Table 6-4. Drain Wire Signal Pairccccociiiiiiiiiiieiecic e e e e e e e e e eee e nmmne e e e aaeaeee s 92
Table 6-5. Nominal Cable DIameter..........ooii it e e mmmneeeeeeeeaeeeeeeeeas 93
Table 6-6. CONAUCIOr RESISLANCEeiiiiiiiiiieie ettt senmenemsmne e e e e snre e 93
Table 6-7. USB Electrical, Mechnaical and Environmental Compliance Standardscccccooooiiiiiiiiiiiiiiineen.
LI o1 L= IS T T F= 1T o I C = £SO 116
Table 7-2. Full-speed JItter BUAGET..........u ittt e e e e e e e e e ee e 131
Table 7-3. LOW-SPEEA JItter BUAQEL.eviiiiiiiieeee ettt e e e e e e e e e e e e s e e e e nerer e e e eeeaeaeeeee s 131
Table 7-4. SigNal ATENUATIONuueeiiieiiieii ettt ettt e e e e e e e e e e e e e s e rmmmmemmeeeeat et e e e e e eeean 133
Table 7-5. DC Electrical CharaCteriStiCS.uucirrriiiiiiieiiieee i esssmeseesmn e 142
Table 7-6. Full-speed Source Electrical CharacteriStiCSoooviiiiiiiiiiiiiiiiiiiieeeee e 144
Table 7-7. Low-speed Source Electrical CharacteristiCscccvuviiiiiiiiiiiiieeeeie e eeeneenaas 145
Table 7-8. Hub/Repeater Electrical CharaCteriStiCSouuiiiiiiiiiiiiiiiiiie e 146
Table 7-9. Cable CharacteristicsS (NOtE 14).......cccciiiiiieiiiiieeee e e e eemem————— e 147
Table 7-10. HUb BEVENE TIMINGS ...oooiiiiiiiiiiaaeiiie ettt e e e e s e e 148
Table 7-11. DeVICe EVENE TIMINGS ..uuiiiiiiiiiiiieee e ie e st e e e e e e e aeeeae e e s e et asasnssse s s o— 11 149
LIz o] L= I | Y/ o1 OO PPPR 156

Table 8-2. Function Responses to IN TranSaCtioNSccvvveeeeeeeeeiiiiiiiiccciiiiiinieeeereeeee s e e e e s e O L
Table 8-3. Host Responses to IN TranSACHONSueiiiiiiiiiieeeeeeae ettt ieeeee e et e e e e e« s LO 2
Table 8-4. Function Responses to OUT Transactions in Order of PrecedencCe..........cccceeeeviviieicciinnviineeeeeeeeen

Table 8-5. Status Stage RESPONSES.cooii ittt et e e e e e e e e e e e e e e s e s e aaennteseeesee e e e e s s« <2+« « LOO

LI Lo o S T o= Tod =Y A (o) g 1Y o =R 172
Table 9-1. ViSiDIe DEVICE STALES.........cuuuuiiiiiii it e e e e e e e s s e neeaeeeesesraaannes 177
Table 9-2. FOrmat of SEIUP DALAuuvuiiiiiiiiiiiiiie e e e e e e e e e e e e e e s e e s smmmmmemeeeneenr e s e e eeees 183

XV

Universal Serial Bus Specification Revision 1.1

Table 9-3. Standard DeviCe REQUESTESccccuuiiiiiiiiiiiiieiie ettt e e« s e+« LOO

Table 9-4. Standard REQUESE COUESuuiiiiiiiiie e e e e it e e e e e e e e e e e e e s aa s s e sansrerreraneeeeees 187
LIz o] (e R T B Lo Tt ol T o (o g Y/ o 1= SR 187
Table 9-6. Standard FEature SEIECIOIScoii i e 188
Table 9-7. Standard DeVICE DESCIIPLON.iii et a e e e e e ——— 197
Table 9-8. Standard Configuration DESCIIPIONuuuuriieeiiiiieeieeeeeees e e s ces s e e re e e e e e eeeeeesesaannes 199

Table 9-9. Standard Interface DESCIPLON.uuiiiiiiiiiiiieaee e e e e e e s e« 222 202
Table 9-10. Standard Endpoint DESCIPLONccoeeiiii ittt e e e e e e e e e e e e e e e s s 0 203

Table 9-11. Codes Representing Languages Supported by the Devicecccccciiiiiiiiiiiiiiiiieeeee, 05............
Table 9-12. UNICODE String DESCHPLONuvuutiiiiieiieeiieeteeeeeeeieesisssssiiestasareeereeeaaaaaaaeeesssssassasnnnnsenes 205
Table 11-1. Hub and Host EOF Timing POINTS.......ccooiiiiiiiiiiiiiiiiieiie et emmmmmeeeeeeees 235
Table 11-2. Internal Port Signal/Event DefiNitioNsSuueiiiiiiiiiieiee e smmcmmmamaees 237
Table 11-3. Downstream Hub Port Signal/Event Definitions. ... 240..
Table 11-4. Upstream Hub Port Receiver Signal/Event Definitionsccccccciviiiieiiiiiiiieeeee e 245.......
Table 11-5. Upstream Hub Port Transmit Signal/Event Definitions ... 247.......
Table 11-6. Hub Repeater Signal/Event Definitionsccccciiiiiiiiiiiiiicceeceeee e e 250
Table 11-7. Hub Power Operating MOde SUMMAIYooiiiiiiiiiiiiiiiie e eee e e e e e e e e e e e eeeeeeeeas 261.
Table 11-8. HUD DESCIIPION ...ueiiiiiiiiiieiee e e e e e e e e e et e e e e e e e e e e s s s s ss e s nnensbee s e s mmm— e n e 264
Table 11-9. Hub Responses to Standard Device REQUESTEScoocuiiiiiiiiiiiiiieee e e 266.....
Table 11-10. HUb Class REQUESESc..uuuiiiiiiiiiiiiiiiie et e e e e e e e e e s e e s s e e e e e e e aeeee e s smmmmmmmmmmmmnnns s s e e e 267
Table 11-11. Hub Class ReQUESE COUES.ccoiiiiiiiiiiiiite ettt e e e e areeeeeeeeeeaaaeas 268
Table 11-12. Hub Class Feature SEIECIOIS.........uii it e e e s 268
Table 11-13. Hub Status FIelHUDSTAtUS ... e e e 272
Table 11-14. Hub Change FieltdHUDCRANGE..........coiiiiii e 272
Table 11-15. Port Status FIellPOMSIAtUS........oooi et e e e e e e e e e e e e e e e 274
Table 11-16. Port Change FielPOrtChaNQe........viiiiiiie e e e e eee e 277

XVi

Universal Serial Bus Specification Revision 1.1

Chapter 1
Introduction

1.1 Motivation
The motivation for the Universal Serial Bus (USB) comes from three interrelated considerations:

e Connection of the PC to the telephone
It is well understood that the merge of computing and communication will be the basis for the next
generation of productivity applications. The movement of machine-oriented and human-oriented data
types from one location or environment to another depends on ubiquitous and cheap connectivity.
Unfortunately, the computing and communication industries have evolved independently. The USB
provides a ubiquitous link that can be used across a wide range of PC-to-telephone interconnects.

o Ease-of-use
The lack of flexibility in reconfiguring the PC has been acknowledged as the Achilles’ heel to its
further deployment. The combination of user-friendly graphical interfaces and the hardware and
software mechanisms associated with new-generation bus architectures have made computers less
confrontational and easier to reconfigure. However, from the end user’s point of view, the PC’s I/O
interfaces, such as serial/parallel ports, keyboard/mouse/joystick interfaces, etc., do not have the
attributes of plug-and-play.

e Port expansion
The addition of external peripherals continues to be constrained by port availability. The lack of a bi-
directional, low-cost, low-to-mid speed peripheral bus has held back the creative proliferation of
peripherals such as telephone/fax/modem adapters, answering machines, scanners, PDA’s, keyboards,
mice, etc. Existing interconnects are optimized for one or two point products. As each new function
or capability is added to the PC, a new interface has been defined to address this need.

The USB is the answer to connectivity for the PC architecture. It is a fast, bi-directional, isochronous,
low-cost, dynamically attachable serial interface that is consistent with the requirements of the PC
platform of today and tomorrow.

1.2 Objective of the Specification

This document defines an industry-standard USB. The specification describes the bus attributes, the
protocol definition, types of transactions, bus management, and the programming interface required to
design and build systems and peripherals that are compliant with this standard.

The goal is to enable such devices from different vendors to interoperate in an open architecture. The
specification is intended as an enhancement to the PC architecture, spanning portable, business desktop,
and home environments. It is intended that the specification allow system OEMs and peripheral developers
adequate room for product versatility and market differentiation without the burden of carrying obsolete
interfaces or losing compatibility.

Universal Serial Bus Specification Revision 1.1

1.3 Scope of the Document

e Target audience

The specification is primarily targeted to peripheral developers and system OEMSs, but provides
valuable information for platform operating system/ BIOS/ device driver, adapter IHVs/ISVs, and
platform/adapter controller vendors.

e Benefit
This version of the USB Specification can be used for planning new products, engineering an early

prototype, and preliminary software development. All final products are required to be compliant with
the USB Specification 1.1.

1.4 Document Organization

Chapters 1 through 5 provide an overview for all readers, while Chapters 6 through 11 contain detailed
technical information defining the USB.

e Peripheral implementers should particularly read Chapters 5 through 11.
e USB Host Controller implementers should particularly read Chapters 5 through 8, 10, and 11.
e USB device driver implementers should particularly read Chapters 5, 9, and 10.

This document is complemented and referenced bytieersal Serial Bus Device Class Specifications.

Device class specifications exist for a wide variety of devices. Please contact the USB Implementers
Forum for further details.

Readers are also requested to contact operating system vendors for operating system bindings specific to
the USB.

Universal Serial Bus Specification Revision 1.1

Chapter 2

Terms and Abbreviations

This chapter lists and defines terms and abbreviations used throughout this specification.

ACK

Active Device

Asynchronous Data

Asynchronous RA

Asynchronous SRC

Audio Device

AWG#

Babble
Bandwidth

Big Endian

Bit

Bit Stuffing

b/s
B/s
Buffer

Bulk Transfer

Bus Enumeration

Handshake packet indicating a positive acknowledgment.
A device that is powered and is not in the Suspend state.
Data transferred at irregular intervals with relaxed latency requirements.

The incoming data rategFand the outgoing data rates, Fof the RA process

are independent (i.e., there is no shared master clock). See also Rate
Adaptation.

The incoming sample rates Fand outgoing sample rates,fof the SRC

process are independent (i.e., there is no shared master clock). See also
Sample Rate Conversion.

A device that sources or sinks sampled analog data.

The measurement of a wire’s cross section, as defined by the American Wire
Gauge standard.

Unexpected bus activity that persists beyond a specified point in a frame.

The amount of data transmitted per unit of time, typically bits per second (b/s)
or bytes per second (B/s).

A method of storing data that places the most significant byte of multiple-byte
values at a lower storage addresses. For example, a 16-bit integer stored in big
endian format places the least significant byte at the higher address and the
most significant byte at the lower address. See also Little Endian.

A unit of information used by digital computers. Represents the smallest
piece of addressable memory within a computer. A bit expresses the choice
between two possibilities and is typically represented by a logical one (1) or
zero (0).

Insertion of a “0” bit into a data stream to cause an electrical transition on the
data wires, allowing a PLL to remain locked.

Transmission rate expressed in bits per second.
Transmission rate expressed in bytes per second.

Storage used to compensate for a difference in data rates or time of occurrence
of events, when transmitting data from one device to another.

One of the four USB transfer types. Bulk transfers are non-periodic, large
bursty communication typically used for a transfer that can use any available
bandwidth and can also be delayed until bandwidth is available. See also
Transfer Type.

Detecting and identifying USB devices.

Byte
Capabilities

Characteristics

Client

Configuring
Software

Control Endpoint

Control Pipe

Control Transfer

CRC
CTl

Cyclic Redundancy
Check (CRC)

Default Address

Default Pipe

Device

Device Address

Universal Serial Bus Specification Revision 1.1

A data element that is eight bits in size.
Those attributes of a USB device that are administrated by the host.

Those qualities of a USB device that are unchangeable; for example, the
device class is a device characteristic.

Software resident on the host that interacts with the USB System Software to
arrange data transfer between a function and the host. The client is often the
data provider and consumer for transferred data.

Software resident on the host software that is responsible for configuring a
USB device. This may be a system configurator or software specific to the
device.

A pair of device endpoints with the same endpoint number that are used by a
control pipe. Control endpoints transfer data in both directions and therefore
use both endpoint directions of a device address and endpoint number
combination. Thus, each control endpoint consumes two endpoint addresses.

Same as a message pipe.

One of the four USB transfer types. Control transfers support
configuration/command/status type communications between client and
function. See also Transfer Type.

See Cyclic Redundancy Check.
Computer Telephony Integration.

A check performed on data to see if an error has occurred in transmitting,
reading, or writing the data. The result of a CRC is typically stored or
transmitted with the checked data. The stored or transmitted result is
compared to a CRC calculated for the data to determine if an error has
occurred.

An address defined by the USB Specification and used by a USB device when
it is first powered or reset. The default address is O0H.

The message pipe created by the USB System Software to pass control and
status information between the host and a USB device’s endpoint zero.

A logical or physical entity that performs a function. The actual entity
described depends on the context of the reference. At the lowest level, device
may refer to a single hardware component, as in a memory device. At a
higher level, it may refer to a collection of hardware components that perform
a particular function, such as a USB interface device. At an even higher level,
device may refer to the function performed by an entity attached to the USB;
for example, a data/FAX modem device. Devices may be physical, electrical,
addressable, and logical.

When used as a non-specific reference, a USB device is either a hub or a
function.

A seven-bit value representing the address of a device on the USB. The
device address is the default address (OOH) when the USB device is first
powered or the device is reset. Devices are assigned a unigue device address
by the USB System Software.

Device Endpoint

Device Resources

Device Software

Downstream

Driver

DWORD

Dynamic Insertion
and Removal

E’PROM
EEPROM

Electrically
Erasable
Programmable
Read Only Memory
(EEPROM)

End User
Endpoint
Endpoint Address

Endpoint Direction

Endpoint Number

EOF
EOP
External Port

False EOP

Frame

Universal Serial Bus Specification Revision 1.1

A uniquely addressable portion of a USB device that is the source or sink of
information in a communication flow between the host and device. See also
Endpoint Address.

Resources provided by UB devices, such as buffer space and endpoints. See
also Host Resources and Universal Serial Bus Resources.

Software that is responsible for using a USB device. This software may or
may not also be responsible for configuring the device for use.

The direction of data flow from the host or away from the host. A
downstream port is the port on a hub electrically farthest from the host that
generates downstream data traffic from the hub. Downstream ports receive
upstream data traffic.

When referring to hardware, an 1/0 pad that drives an external load. When
referring to software, a program responsible for interfacing to a hardware
device; that is, a device driver.

Double word. A data element that is two words (i.e., four bytes or 32 bits) in
size.

The ability to attach and remove devices while the host is in operation.

See Electrically Erasable Programmable Read Only Memory.
See Electrically Erasable Programmable Read Only Memory.

Non-volatile rewritable memory storage technology.

The user of a host.
See Device Endpoint.

The combination of an endpoint number and an endpoint direction on a USB
device. Each endpoint address supports data transfer in one direction.

The direction of data transfer on the USB. The direction can be either IN or
OUT. IN refers to transfers to the host; OUT refers to transfers from the host.

A four-bit value between OH and FH, inclusive, associated with an endpoint
on a USB device.

End-of-Frame.
End-of-Packet.
See Port.

A spurious, usually noise-induced event that is interpreted by a packet receiver
as an EOP.

The time from the start of one SOF token to the start of the subsequent SOF
token; consists of a series of transactions.

Frame Pattern

Fs
Full-duplex

Function

Handshake Packet

Host

Host Controller

Host Controller
Driver (HCD)

Host Resources

Hub
Hub Tier

Interrupt Request

(IRQ)

Interrupt Transfer

I/O Request Packet

IRP
IRQ
Isochronous Data

Isochronous Device

Isochronous Sink
Endpoint

Isochronous Source
Endpoint

Isochronous
Transfer

Universal Serial Bus Specification Revision 1.1

A sequence of frames that exhibit a repeating pattern in the number of samples
transmitted per frame. For a 44.1kHz audio transfer, the frame pattern could
be nine frames containing 44 samples followed by one frame containing 45
samples.

See Sample Rate.
Computer data transmission occurring in both directions simultaneously.

A USB device that provides a capability to the host, such as an ISDN
connection, a digital microphone, or speakers.

A packet that acknowledges or rejects a specific condition. For examples, see
ACK and NAK.

The host computer system where the USB Host Controller is installed. This
includes the host hardware platform (CPU, bus, etc.) and the operating system
in use.

The host’s USB interface.

The USB software layer that abstracts the Host Controller hardware. The Host
Controller Driver provides an SPI for interaction with a Host Controller. The
Host Controller Driver hides the specifics of the Host Controller hardware
implementation.

Resources provided by the host, such as buffer space and interrupts. See also
Device Resources and Universal Serial Bus Resources.

A USB device that provides additional connections to the USB.

The level of connect within a USB network topology, given as the number of
hubs through which the data has to flow.

A hardware signal that allows a device to request attention from a host. The
host typically invokes an interrupt service routine to handle the condition that
caused the request.

One of the four USB transfer types. Interrupt transfer characteristics are small
data, non-periodic, low-frequency, and bounded-latency. Interrupt transfers
are typically used to handle service needs. See also Transfer Type.

An identifiable request by a software client to move data between itself (on the
host) and an endpoint of a device in an appropriate direction.

See 1/0 Request Packet.
See Interrupt Request.
A stream of data whose timing is implied by its delivery rate.

An entity with isochronous endpoints, as defined in the USB Specification,
that sources or sinks sampled analog streams or synchronous data streams.

An endpoint that is capable of consuming an isochronous data stream that is
sent by the host.

An endpoint that is capable of producing an isochronous data stream and
sending it to the host.

One of the four USB transfer types. Isochronous transfers are used when
working with isochronous data. Isochronous transfers provide periodic,
continuous communication between host and device. See also Transfer Type.

Jitter

kb/s
kB/s
Little Endian

LOA
LSb
LSB
Mb/s
MB/s

Message Pipe

MSb
MSB
NAK

Non Return to Zero
Invert (NRZI)

NRZI
Object
Packet

Packet Buffer

Packet ID (PID)

Phase

Phase Locked Loop
(PLL)

Physical Device

PID

Universal Serial Bus Specification Revision 1.1

A tendency toward lack of synchronization caused by mechanical or electrical
changes. More specifically, the phase shift of digital pulses over a
transmission medium.

Transmission rate expressed in kilobits per second.
Transmission rate expressed in kilobytes per second.

Method of storing data that places the least significant byte of multiple-byte
values at lower storage addresses. For example, a 16-bit integer stored in little
endian format places the least significant byte at the lower address and the
most significant byte at the next address. See also Big Endian.

Loss of bus activity characterized by an SOP without a corresponding EOP.
Least significant bit.

Least significant byte.

Transmission rate expressed in megabits per second.

Transmission rate expressed in megabytes per second.

A bi-directional pipe that transfers data using a request/data/status paradigm.
The data has an imposed structure that allows requests to be reliably identified
and communicated.

Most significant bit.
Most significant byte.
Handshake packet indicating a negative acknowledgment.

A method of encoding serial data in which ones and zeroes are represented by
opposite and alternating high and low voltages where there is no return to zero
(reference) voltage between encoded bits. Eliminates the need for clock
pulses.

See Non Return to Zero Invert.
Host software or data structure representing a USB entity.

A bundle of data organized in a group for transmission. Packets typically
contain three elements: control information (e.g., source, destination, and
length), the data to be transferred, and error detection and correction bits.

The logical buffer used by a USB device for sending or receiving a single
packet. This determines the maximum packet size the device can send or
receive.

A field in a USB packet that indicates the type of packet, and by inference, the
format of the packet and the type of error detection applied to the packet.

A token, data, or handshake packet; a transaction has three phases.

A circuit that acts as a phase detector to keep an oscillator in phase with an
incoming frequency.

A device that has a physical implementation; e.g., speakers, microphones, and
CD players.

See Packet ID.

Pipe

PLL
Polling
POR
Port

Power On Reset
(POR)

Programmable
Data Rate

Protocol

RA
Rate Adaptation

Request

Retire

Root Hub

Root Port

Sample

Sample Rate (k)

Sample Rate
Conversion (SRC)

Service

Service Interval

Service Jitter
Service Rate
SOF
SOP

Universal Serial Bus Specification Revision 1.1

A logical abstraction representing the association between an endpoint on a
device and software on the host. A pipe has several attributes; for example, a
pipe may transfer data as streams (stream pipe) or messages (message pipe).
See also Stream Pipe and Message Pipe.

See Phase Locked Loop.
Asking multiple devices, one at a time, if they have any data to transmit.
See Power On Reset.

Point of access to or from a system or circuit. For the USB, the point where a
USB device is attached.

Restoring a storage device, register, or memory to a predetermined state when
power is applied.

Either a fixed data rate (single-frequency endpoints), a limited number of data
rates (32kHz, 44.1kHz, 48kHz, ...), or a continuously programmable data rate.
The exact programming capabilities of an endpoint must be reported in the
appropriate class-specific endpoint descriptors.

A specific set of rules, procedures, or conventions relating to format and
timing of data transmission between two devices.

See Rate Adaptation.

The process by which an incoming data stream, sampley] &t ¢onverted to
an outgoing data stream, sampled gith a certain loss of quality,
determined by the rate adaptation algorithm. Error control mechanisms are
required for the process.s and ks, can be different and asynchronous; i

the input data rate of the RAgHs the output data rate of the RA.

A request made to a USB device contained within the data portion of a SETUP
packet.

The action of completing service for a transfer and notifying the appropriate
software client of the completion.

A USB hub directly attached to the Host Controller. This hub is attached to
the host (tier 0).

The downstream port on a Root Hub.

The smallest unit of data on which an endpoint operates; a property of an
endpoint.

The number of samples per second, expressed in Hertz (Hz).

A dedicated implementation of the RA process for use on sampled analog data
streams. The error control mechanism is replaced by interpolating techniques.

A procedure provided by a System Programming Interface (SPI).

The period between consecutive requests to a USB endpoint to send or receive
data.

The deviation of service delivery from its scheduled delivery time.
The number of services to a given endpoint per unit time.
See Start-of-Frame.

Start-of-Packet.

SPI
SRC
Stage

Start-of-Frame
(SOF)

Stream Pipe

Synchronization
Type
Synchronous RA

Synchronous SRC

System
Programming
Interface (SPI)

TDM
Termination
Time Division
Multiplexing
(TDM)
Timeout
Token Packet

Transaction

Transfer

Transfer Type

Turn-around Time

USBD

Universal Serial
Bus Driver (USBD)

Universal Serial Bus Specification Revision 1.1

See System Programming Interface.
See Sample Rate Conversion.

One part of the sequence composing a control transfer; stages include the
Setup stage, the Data stage, and the Status stage.

The first transaction in each frame. An SOF allows endpoints to identify the
start of the frame and synchronize internal endpoint clocks to the host.

A pipe that transfers data as a stream of samples with no defined USB
structure.

A classification that characterizes an isochronous endpoint’s capability to
connect to other isochronous endpoints.

The incoming data rategFand the outgoing data rates, Fof the RA process
are derived from the same master clock. There is a fixed relation between F
and Fs,.

The incoming sample rates Fand outgoing sample rates,fof the SRC
process are derived from the same master clock. There is a fixed relation
between k and k..

A defined interface to services provided by system software.

See Time Division Multiplexing.

Passive components attached at the end of cables to prevent signals from being
reflected or echoed.

A method of transmitting multiple signals (data, voice, and/or video)
simultaneously over one communications medium by interleaving a piece of
each signal one after another.

The detection of a lack of bus activity for some predetermined interval.
A type of packet that identifies what transaction is to be performed on the bus.

The delivery of service to an endpoint; consists of a token packet, optional
data packet, and optional handshake packet. Specific packets are
allowed/required based on the transaction type.

One or more bus transactions to move information between a software client
and its function.

Determines the characteristics of the data flow between a software client and
its function. Four transfer types are defined: control, interrupt, bulk, and
isochronous.

The time a device needs to wait to begin transmitting a packet after a packet
has been received to prevent collisions on the USB. This time is based on the
length and propagation delay characteristics of the cable and the location of
the transmitting device in relation to other devices on the USB.

See Universal Serial Bus Driver.

The host resident software entity responsible for providing common services
to clients that are manipulating one or more functions on one or more Host
Controllers.

10

Universal Serial
Bus Resources

Upstream

Virtual Device

Word

Universal Serial Bus Specification Revision 1.1

Resources provided by the USB, such as bandwidth and power. See also
Device Resources and Host Resources

The direction of data flow towards the host. An upstream port is the port on a
device electrically closest to the host that generates upstream data traffic from
the hub. Upstream ports receive downstream data traffic.

A device that is represented by a software interface layer. An example of a
virtual device is a hard disk with its associated device driver and client
software that makes it able to reproduce an audio .WAV file.

A data element that is two bytes (16 bits) in size.

Universal Serial Bus Specification Revision 1.1

Chapter 3
Background

This chapter presents a brief description of the background of the Universal Serial Bus (USB), including
design goals, features of the bus, and existing technologies.

3.1

Goals for the Universal Serial Bus

The USB is specified to be an industry-standard extension to the PC architecture with a focus on Computer
Telephony Integration (CTI), consumer, and productivity applications. The following criteria were applied
in defining the architecture for the USB:

Ease-of-use for PC peripheral expansion

Low-cost solution that supports transfer rates up to 12Mb/s

Full support for real-time data for voice, audio, and compressed video

Protocol flexibility for mixed-mode isochronous data transfers and asynchronous messaging
Integration in commodity device technology

Comprehension of various PC configurations and form factors

Provision of a standard interface capable of quick diffusion into product

Enablement of new classes of devices that augment the PC’s capability.

11

3.2

3.3

12

Universal Serial Bus Specification Revision 1.1

Taxonomy of Application Space

Figure 3-1 describes a taxonomy for the range of data traffic workloads that can be serviced over a USB.
As can be seen, a 12Mb/s bus comprehends the mid-speed and low-speed data ranges. Typically, mid-
speed data types are isochronous, while low-speed data comes from interactive devices. The USB being
proposed is primarily a desktop bus but can be readily applied to the mobile environment. The software
architecture allows for future extension of the USB by providing support for multiple USB Host
Controllers.

PERFORMANCE APPLICATIONS ATTRIBUTES
Keyboard, Mouse Lower Cost
LOW-SPEED Stylus Hot Plug-unplug
* Interactive Devices Game Peripherals Ease-of-use

» 10 — 100kb/s

MEDIUM-SPEED

* Phone, Audio,
Compressed Video

500Kb/S - 10Mb/s

Virtual Reality Peripherals
Monitor Configuration

ISDN
PBX
POTS
Audio

Multiple Peripherals

Low Cost

Ease-of-use
Guaranteed Latency
Guaranteed Bandwidth

Dynamic Attach-Detach

Multiple devices

Video
Disk

HIGH-SPEED
* Video, Disk
» 25 - 500Mb/s

High Bandwidth
Guaranteed Latency
Ease-of-use

Figure 3-1. Application Space Taxonomy

Feature List

The USB Specification provides a selection of attributes that can achieve multiple price/performance
integration pointsi and can enable functions that allow differentiation at the system and component level.
Features are categorized by the following benefits:

Easy to use for end user

e Single model for cabling and connectors

e Electrical details isolated from end user (e.g., bus terminations)

e Self-identifying peripherals, automatic mapping of function to driver, and configuration

e Dynamically attachable and reconfigurable peripherals

Universal Serial Bus Specification Revision 1.1

Wide range of workloads and applications

e Suitable for device bandwidths ranging from a few kb/s to several Mb/s

e Supports isochronous as well as asynchronous transfer types over the same set of wires
e Supports concurrent operation of many devices (multiple connections)

e Supports up to 127 physical devices

e Supports transfer of multiple data and message streams between the host and devices
e Allows compound devices (i.e., peripherals composed of many functions)

e Lower protocol overhead, resulting in high bus utilization

Isochronous bandwidth
e Guaranteed bandwidth and low latencies appropriate for telephony, audio, etc.

e |sochronous workload may use entire bus bandwidth

Flexibility
e Supports a wide range of packet sizes, which allows a range of device buffering options
e Allows a wide range of device data rates by accommodating packet buffer size and latencies

e Flow control for buffer handling is built into the protocol

Robustness
e Error handling/fault recovery mechanism is built into the protocol
e Dynamic insertion and removal of devices is identified in user-perceived real-time

e Supports identification of faulty devices

Synergy with PC industry
e Protocol is simple to implement and integrate
e Consistent with the PC plug-and-play architecture

e Leverages existing operating system interfaces

Low-cost implementation

e Low-cost subchannel at 1.5Mb/s

e Optimized for integration in peripheral and host hardware
e Suitable for development of low-cost peripherals

e Low-cost cables and connectors

e Uses commodity technologies

Upgrade path

e Architecture upgradeable to support multiple USB Host Controllers in a system

13

14

Universal Serial Bus Specification Revision 1.1

Universal Serial Bus Specification Revision 1.1

Chapter 4
Architectural Overview

This chapter presents an overview of the Universal Serial Bus (USB) architecture and key concepts. The
USB is a cable bus that supports data exchange between a host computer and a wide range of
simultaneously accessible peripherals. The attached peripherals share USB bandwidth through a host-
scheduled, token-based protocol. The bus allows peripherals to be attached, configured, used, and
detached while the host and other peripherals are in operation.

Later chapters describe the various components of the USB in greater detail.

4.1 USB System Description
A USB system is described by three definitional areas:

e USB interconnect
e USB devices
e USB host.

The USB interconnect is the manner in which USB devices are connected to and communicate with the
host. This includes the following:

e Bus Topology: Connection model between USB devices and the host.

e Inter-layer Relationships: In terms of a capability stack, the USB tasks that are performed at each
layer in the system.

o Data Flow Models: The manner in which data moves in the system over the USB between producers
and consumers.

e USB Schedule: The USB provides a shared interconnect. Access to the interconnect is scheduled in
order to support isochronous data transfers and to eliminate arbitration overhead.

USB devices and the USB host are described in detail in subsequent sections.

15

Universal Serial USB Specification Revision 1.1

4.1.1 Bus Topology

The USB connects USB devices with the USB host. The USB physical interconnect is a tiered star
topology. A hub is at the center of each star. Each wire segment is a point-to-point connection between
the host and a hub or function, or a hub connected to another hub or function. Figure 4-1 illustrates the
topology of the USB.

Host (Root Tier)

Tier 1

— Tier 2
/‘ * (Node] [Node]
/ ﬁ [Node) [Node)

Figure 4-1. Bus Topology

Tier 3

Tier 4

4.1.1.1 USB Host

There is only one host in any USB system. The USB interface to the host computer system is referred to as
the Host Controller. The Host Controller may be implemented in a combination of hardware, firmware, or
software. A root hub is integrated within the host system to provide one or more attachment points.

Additional information concerning the host may be found in Section 4.9 and in Chapter 10.

4.1.1.2 USB Devices
USB devices are one of the following:

e Hubs, which provide additional attachment points to the USB

e Functions, which provide capabilities to the system, such as an ISDN connection, a digital joystick, or
speakers.

16

Universal Serial Bus Specification Revision 1.1

USB devices present a standard USB interface in terms of the following:

e Their comprehension of the USB protocol

e Their response to standard USB operations, such as configuration and reset
e Their standard capability descriptive information.

Additional information concerning USB devices may be found in Section 4.8 and in Chapter 9.

4.2 Physical Interface

The physical interface of the USB is described in the electrical (Chapter 7) and mechanical (Chapter 6)
specifications for the bus.

4.2.1 Electrical

The USB transfers signal and power over a four-wire cable, shown in Figure 4-2. The signaling occurs
over two wires on each point-to-point segment.

There are two data rates:
e The USB full-speed signaling bit rate is 12Mb/s.
e Alimited capability low-speed signaling mode is also defined at 1.5Mb/s.

The low-speed mode requires less EMI protection. Both modes can be supported in the same USB bus by
automatic dynamic mode switching between transfers. The low-speed mode is defined to support a limited
number of low-bandwidth devices, such as mice, because more general use would degrade bus utilization.

The clock is transmitted, encoded along with the differential data. The clock encoding scheme is NRZI
with bit stuffing to ensure adequate transitions. A SYNC field precedes each packet to allow the
receiver(s) to synchronize their bit recovery clocks.

VBUS ; VBUS
D+ D+
GND \7 GND

Figure 4-2. USB Cable

The cable also carriesB¥s and GND wires on each segment to deliver power to devicess i¥

nominally +5V at the source. The USB allows cable segments of variable lengths, up to several meters, by
choosing the appropriate conductor gauge to match the specified IR drop and other attributes such as
device power budget and cable flexibility. In order to provide guaranteed input voltage levels and proper
termination impedance, biased terminations are used at each end of the cable. The terminations also permit
the detection of attach and detach at each port and differentiate between full-speed and low-speed devices.

4.2.2 Mechanical

The mechanical specifications for cables and connectors are provided in Chapter 6. All devices have an
upstream connection. Upstream and downstream connectors are not mechanically interchangeable, thus
eliminating illegal loopback connections at hubs. The cable has four conductors: a twisted signal pair of
standard gauge and a power pair in a range of permitted gauges. The connector is four-position, with
shielded housing, specified robustness, and ease of attach-detach characteristics.

17

Universal Serial USB Specification Revision 1.1

4.3 Power
The specification covers two aspects of power:

e Power distribution over the USB deals with the issues of how USB devices consume power provided
by the host over the USB.

e Power management deals with how the USB System Software and devices fit into the host-based
power management system.

4.3.1 Power Distribution

Each USB segment provides a limited amount of power over the cable. The host supplies power for use by
USB devices that are directly connected. In addition, any USB device may have its own power supply.
USB devices that rely totally on power from the cable are called bus-powered devices. In contrast, those
that have an alternate source of power are called self-powered devices. A hub also supplies power for its
connected USB devices. The architecture permits bus-powered hubs within certain constraints of topology
that are discussed later in Chapter 11. In Figure 4-4 (see Section 4.8.2.1), the keyboard, pen, and mouse
can all be bus-powered devices.

4.3.2 Power Management

A USB host may have a power management system that is independent of the USB. The USB System
Software interacts with the host’s power management system to handle system power events such as
suspend or resume. Additionally, USB devices typically implement additional power management features
that allow them to be power managed by system software.

The power distribution and power management features of the USB allow it to be designed into power-
sensitive systems such as battery-based notebook computers.

4.4 Bus Protocol
The USB is a polled bus. The Host Controller initiates all data transfers.

All bus transactions involve the transmission of up to three packets. Each transaction begins when the Host
Controller, on a scheduled basis, sends a USB packet describing the type and direction of transaction, the
USB device address, and endpoint number. This packet is referred to as the “token packet.” The USB
device that is addressed selects itself by decoding the appropriate address fields. In a given transaction,
data is transferred either from the host to a device or from a device to the host. The direction of data
transfer is specified in the token packet. The source of the transaction then sends a data packet or indicates
it has no data to transfer. The destination, in general, responds with a handshake packet indicating whether
the transfer was successful.

The USB data transfer model between a source or destination on the host and an endpoint on a device is
referred to as a pipe. There are two types of pipes: stream and message. Stream data has no USB-defined
structure, while message data does. Additionally, pipes have associations of data bandwidth, transfer
service type, and endpoint characteristics like directionality and buffer sizes. Most pipes come into
existence when a USB device is configured. One message pipe, the Default Control Pipe, always exists
once a device is powered, in order to provide access to the device’s configuration, status, and control
information.

The transaction schedule allows flow control for some stream pipes. At the hardware level, this prevents
buffers from underrun or overrun situations by using a NAK handshake to throttle the data rate. When
NAKed, a transaction is retried when bus time is available. The flow control mechanism permits the
construction of flexible schedules that accommodate concurrent servicing of a heterogeneous mix of stream
pipes. Thus, multiple stream pipes can be serviced at different intervals and with packets of different sizes.

18

Universal Serial Bus Specification Revision 1.1

4.5 Robustness
There are several attributes of the USB that contribute to its robustness:
e Signal integrity using differential drivers, receivers, and shielding
e CRC protection over control and data fields
e Detection of attach and detach and system-level configuration of resources
e Self-recovery in protocol, using timeouts for lost or corrupted packets
e Flow control for streaming data to ensure isochrony and hardware buffer management

o Data and control pipe constructs for ensuring independence from adverse interactions between
functions.

4.5.1 Error Detection

The core bit error rate of the USB medium is expected to be close to that of a backplane and any glitches
will very likely be transient in nature. To provide protection against such transients, each packet includes
error protection fields. When data integrity is required, such as with lossless data devices, an error
recovery procedure may be invoked in hardware or software.

The protocol includes separate CRCs for control and data fields of each packet. A failed CRC is
considered to indicate a corrupted packet. The CRC gives 100% coverage on single- and double-bit errors.

4.5.2 Error Handling

The protocol allows for error handling in hardware or software. Hardware error handling includes
reporting and retry of failed transfers. A USB Host Controller will try a transmission that encounters errors
up to three times before informing the client software of the failure. The client software can recover in an
implementation-specific way.

4.6 System Configuration

The USB supports USB devices attaching to and detaching from the USB at any time. Consequently,
system software must accommodate dynamic changes in the physical bus topology.

4.6.1 Attachment of USB Devices

All USB devices attach to the USB through ports on specialized USB devices known as hubs. Hubs have
status indicators that indicate the attachment or removal of a USB device on one of its ports. The host
gueries the hub to retrieve these indicators In the case of an attachment, the host enables the port and
addresses the USB device through the device’s control pipe at the default address.

The host assigns a unique USB address the to the device and then determines if the newly attached USB
device is a hub or a function The host establishes its end of the control pipe for the USB device using the
assigned USB address and endpoint number zero.

If the attached USB device is a hub and USB devices are attached to its ports, then the above procedure is
followed for each of the attached USB devices.

If the attached USB device is a function, then attachment notifications will be handled by host software that
is appropriate for the function.

19

Universal Serial USB Specification Revision 1.1

4.6.2 Removal of USB Devices

When a USB device has been removed from one of a hub’s ports, the hub disables the port and provides an
indication of device removal to the host The removal indication is then handled by appropriate USB

System Software. If the removed USB device is a hub, the USB System Software must handle the removal
of both the hub and of all of the USB devices that were previously attached to the system through the hub.

4.6.3 Bus Enumeration

Bus enumeration is the activity that identifies and assigns unique addresses to devices attached to a bus.
Because the USB allows USB devices to attach to or detach from the USB at any time, bus enumeration is
an on-going activity for the USB System Software. Additionally, bus enumeration for the USB also
includes the detection and processing of removals.

4.7 Data Flow Types

The USB supports functional data and control exchange between the USB host and a USB device as a set
of either uni-directional or bi-directional pipes. USB data transfers take place between host software and a
particular endpoint on a USB device. Such associations between the host software and a USB device
endpoint are called pipes. In general, data movement though one pipe is independent from the data flow in
any other pipe. A given USB device may have many pipes. As an example, a given USB device could
have an endpoint that supports a pipe for transporting data to the USB device and another endpoint that
supports a pipe for transporting data from the USB device.

The USB architecture comprehends four basic types of data transfers:

e Control Transfers: Used to configure a device at attach time and can be used for other device-specific
purposes, including control of other pipes on the device.

o Bulk Data Transfers: Generated or consumed in relatively large and bursty quantities and have wide
dynamic latitude in transmission constraints.

e Interrupt Data Transfers: Used for characters or coordinates with human-perceptible echo or feedback
response characteristics.

e |sochronous Data Transfers: Occupy a prenegotiated amount of USB bandwidth with a prenegotiated
delivery latency. (Also called streaming real time transfers).

A pipe supports only one of the types of transfers described above for any given device configuration. The
USB data flow model is described in more detail in Chapter 5.

4.7.1 Control Transfers

Control data is used by the USB System Software to configure devices when they are first attached. Other
driver software can choose to use control transfers in implementation-specific ways. Data delivery is
lossless.

4.7.2 Bulk Transfers

Bulk data typically consists of larger amounts of data, such as that used for printers or scanners. Bulk data
is sequential. Reliable exchange of data is ensured at the hardware level by using error detection in
hardware and invoking a limited number of retries in hardware. Also, the bandwidth taken up by bulk data
can vary, depending on other bus activities.

20

Universal Serial Bus Specification Revision 1.1

4.7.3 Interrupt Transfers

A small, limited-latency transfer to or from a device is referred to as interrupt data. Such data may be
presented for transfer by a device at any time and is delivered by the USB at a rate no slower than is
specified by the device.

Interrupt data typically consists of event notification, characters, or coordinates that are organized as one or
more bytes. An example of interrupt data is the coordinates from a pointing device. Although an explicit
timing rate is not required, interactive data may have response time bounds that the USB must support.

4.7.4 Isochronous Transfers

Isochronous data is continuous and real-time in creation, delivery, and consumption. Timing-related
information is implied by the steady rate at which isochronous data is received and transferred.
Isochronous data must be delivered at the rate received to maintain its timing. In addition to delivery rate,
isochronous data may also be sensitive to delivery delays. For isochronous pipes, the bandwidth required
is typically based upon the sampling characteristics of the associated function. The latency required is
related to the buffering available at each endpoint.

A typical example of isochronous data is voice. If the delivery rate of these data streams is not maintained,
drop-outs in the data stream will occur due to buffer or frame underruns or overruns. Even if data is
delivered at the appropriate rate by USB hardware, delivery delays introduced by software may degrade
applications requiring real-time turn-around, such as telephony-based audio conferencing.

The timely delivery of isochronous data is ensured at the expense of potential transient losses in the data

stream. In other words, any error in electrical transmission is not corrected by hardware mechanisms such
as retries. In practice, the core bit error rate of the USB is expected to be small enough not to be an issue.
USB isochronous data streams are allocated a dedicated portion of USB bandwidth to ensure that data can
be delivered at the desired rate. The USB is also designed for minimal delay of isochronous data transfers.

4.7.5 Allocating USB Bandwidth

USB bandwidth is allocated among pipes. The USB allocates bandwidth for some pipes when a pipe is
established. USB devices are required to provide some buffering of data. It is assumed that USB devices
requiring more bandwidth are capable of providing larger buffers. The goal for the USB architecture is to
ensure that buffering-induced hardware delay is bounded to within a few milliseconds.

The USB’s bandwidth capacity can be allocated among many different data streams. This allows a wide
range of devices to be attached to the USB. For example, telephony devices ranging from 1B+D all the
way up to T1 capacity can be accommodated. Further, different device bit rates, with a wide dynamic
range, can be concurrently supported.

The USB Specification defines the rules for how each transfer type is allowed access to the bus.

4.8 USB Devices

USB devices are divided into device classes such as hub, locator, or text device. The hub device class
indicates a specially designated USB device that provides additional USB attachment points (refer to
Chapter 11). USB devices are required to carry information for self-identification and generic
configuration. They are also required at all times to display behavior consistent with defined USB device
states.

4.8.1 Device Characterizations

All USB devices are accessed by a USB address that is assigned when the device is attached and
enumerated. Each USB device additionally supports one or more pipes through which the host may
communicate with the device. All USB devices must support a specially designated pipe at endpoint zero

21

Universal Serial USB Specification Revision 1.1

to which the USB device's USB control pipe will be attached. All USB devices support a common
accesses mechanism for accessing information through this control pipe.

Associated with the control pipe at endpoint zero is the information required to completely describe the
USB device. This information falls into the following categories:

e Standard: This is information whose definition is common to all USB devices and includes items such
as vendor identification, device class, and power management. Device, configuration, interface, and
endpoint descriptions carry configuration-related information about the device. Detailed information
about these descriptors can be found in Chapter 9.

e Class: The definition of this information varies, depending on the device class of the USB device.

e USB Vendor: The vendor of the USB device is free to put any information desired here. The format,
however, is not determined by this specification.

Additionally, each USB device carries USB control and status information.

4.8.2 Device Descriptions

Two major divisions of device classes exist: hubs and functions. Only hubs have the ability to provide
additional USB attachment points. Functions provide additional capabilities to the host.

4.8.2.1 Hubs

22

Hubs are a key element in the plug-and-play architecture of the USB. Figure 4-3 shows a typical hub.
Hubs serve to simplify USB connectivity from the user’s perspective and provide robustness at low cost
and complexity.

Hubs are wiring concentrators and enable the multiple attachment characteristics of the USB. Attachment
points are referred to as ports. Each hub converts a single attachment point into multiple attachment points.
The architecture supports concatenation of multiple hubs.

The upstream port of a hub connects the hub towards the host. Each of the downstream ports of a hub
allows connection to another hub or function. Hubs can detect attach and detach at each downstream port
and enable the distribution of power to downstream devices. Each downstream port can be individually
enabled and attached to either full- or low-speed devices. The hub isolates low-speed ports from full-speed
signaling.

A hub consists of two portions: the Hub Controller and the Hub Repeater. The Hub Repeater is a
protocol-controlled switch between the upstream port and downstream ports. It also has hardware support
for reset and suspend/resume signaling. The Host Controller provides the interface registers to allow
communication to/from the host. Hub-specific status and control commands permit the host to configure a
hub and to monitor and control its ports.

| | | |
(Port Port Port \
#1 #2 #3

Upst Port :l
D5 HUB 7

Port Port Port
_ #7 46 #5)
| | |

Figure 4-3. A Typical Hub

Universal Serial Bus Specification Revision 1.1

Figure 4-4 illustrates how hubs provide connectivity in a typical computer environment.

USB

=7 [

[T
_—

TYPICAL USB ARCHITECTURAL
CONFIGURATION

Hub/Function Hub/Function Host/Hub
KBD Monitor PC
TT] TT] TT7T
L L L l
Pen Mouse Speaker Mic Phone Hub
Function Function Function Function Function Hub

Figure 4-4. Hubs in a Desktop Computer Environment

4.8.2.2 Functions

A function is a USB device that is able to transmit or receive data or control information over the bus. A
function is typically implemented as a separate peripheral device with a cable that plugs into a port on a
hub. However, a physical package may implement multiple functions and an embedded hub with a single
USB cable. This is known as a compound device. A compound device appears to the host as a hub with
one or more non-removable USB devices.

Each function contains configuration information that describes its capabilities and resource requirements.
Before a function can be used, it must be configured by the host. This configuration includes allocating
USB bandwidth and selecting function-specific configuration options.

Examples of functions include the following:

e Alocator device such as a mouse, tablet, or light pen

e Aninput device such as a keyboard

23

Universal Serial USB Specification Revision 1.1

An output device such as a printer

A telephony adapter such as ISDN.

4.9 USB Host: Hardware and Software

The USB host interacts with USB devices through the Host Controller. The host is responsible for the
following:

Detecting the attachment and removal of USB devices
Managing control flow between the host and USB devices
Managing data flow between the host and USB devices
Collecting status and activity statistics

Providing power to attached USB devices.

The USB System Software on the host manages interactions between USB devices and host-based device
software. There are five areas of interactions between the USB System Software and device software:

Device enumeration and configuration
Isochronous data transfers
Asynchronous data transfers

Power management

Device and bus management information.

Whenever possible, the USB System Software uses existing host system interfaces to manage the above
interactions.

4.10 Architectural Extensions

The USB architecture comprehends extensibility at the interface between the Host Controller Driver and
USB Driver. Implementations with multiple Host Controllers, and associated Host Controller Drivers, are
possible.

24

Universal Serial Bus Specification Revision 1.1

Chapter 5
USB Data Flow Model

This chapter presents information about how data is moved across the USB. The information in this
chapter affects all implementers. The information presented is at a level above the signaling and protocol
definitions of the system. Consult Chapter 7 and Chapter 8 for more details about their respective parts of
the USB system. This chapter provides framework information that is further expanded in Chapters 9
through 11. All implementers should read this chapter so they understand the key concepts of the USB.

5.1 Implementer Viewpoints

The USB provides communication services between a host and attached USB devices. However, the
simple view an end user sees of attaching one or more USB devices to a host, as in Figure 5-1, is in fact a
little more complicated to implement than is indicated by the figure. Different views of the system are
required to explain specific USB requirements from the perspective of different implementers. Several
important concepts and features must be supported to provide the end user with the reliable operation
demanded from today’s personal computers. The USB is presented in a layered fashion to ease explanation
and allow implementers of particular USB products to focus on the details related to their product.

USB Host USB Device

Figure 5-1. Simple USB Host/Device View

Figure 5-2 shows a deeper overview of the USB, identifying the different layers of the system that will be
described in more detail in the remainder of the specification. In particular, there are four focus
implementation areas:

e USB Physical Device: A piece of hardware on the end of a USB cable that performs some useful end
user function.

o Client Software: Software that executes on the host, corresponding to a USB device. This client
software is typically supplied with the operating system or provided along with the USB device.

e USB System Software: Software that supports the USB in a particular operating system. The USB
System Software is typically supplied with the operating system, independently of particular USB
devices or client software.

e USB Host Controller (Host Side Bus Interface): The hardware and software that allows USB devices
to be attached to a host.

There are shared rights and responsibilities between the four USB system components. The remainder of
this specification describes the details required to support robust, reliable communication flows between a
function and its client.

25

Universal Serial Bus Specification Revision 1.1

Host Interconnect Physical Device

Client SW Function .
Function Layer
USB Logical

USBSS\)/vstem Devi(?e USB Device

t Layer

USB Host 4_’ USB Bus UfSB Bus

Controller Interface Interface Layer

M Actual communications flow

Logical communications flow

Implementation Focus Area

Figure 5-2. USB Implementation Areas

As shown in Figure 5-2, the simple connection of a host to a device requires interaction between a number
of layers and entities. The USB Bus Interface layer provides physical/signaling/packet connectivity
between the host and a device. The USB Device Layer is the view the USB System Software has for
performing generic USB operations with a device. The Function Layer provides additional capabilities to
the host via an appropriate matched client software layer. The USB Device and Function layers each have
a view of logical communication within their layer that actually uses the USB Bus Interface Layer to
accomplish data transfer.

The physical view of USB communication as described in Chapters 6, 7, and 8 is related to the logical
communication view presented in Chapters 9 and 10. This chapter describes those key concepts that affect
USB implementers and should be read by all before proceeding to the remainder of the specification to find
those details most relevant to their product.

To describe and manage USB communication, the following concepts are important:

e Bus Topology: Section 5.2 presents the primary physical and logical components of the USB and how
they interrelate.

e Communication Flow Models: Sections 5.3 through 5.8 describe how communication flows between
the host and devices through the USB and defines the four USB transfer types.

e Bus Access Management: Section 5.9 describes how bus access is managed within the host to support
a broad range of communication flows by USB devices.

e Special Consideration for Isochronous Transfers: Section 5.10 presents features of the USB specific to
devices requiring isochronous data transfers. Device implementers for non-isochronous devices do not
need to read Section 5.10.

Universal Serial Bus Specification Revision 1.1

5.2 Bus Topology

There are four main parts to USB topology:
e Host and Devices: The primary components of a USB system.
e Physical Topology: How USB elements are connected.

e Logical Topology: The roles and responsibilities of the various USB elements and how the USB
appears from the perspective of the host and a device.

o Client Software-to-function Relationships: How client software and its related function interfaces on a
USB device view each other.

5.2.1 USB Host

The host’s logical composition is shown in Figure 5-3, and includes the following:
e USB Host Controller
e Aggregate USB System Software (USB Driver, Host Controller Driver, and host software)

e Client.

Host

:

Client SW

|

USB System SW

!

USB Host G ——
Controller

Gl 15| communications flow

Logical communications flow
Figure 5-3. Host Composition

The USB host occupies a unique position as the coordinating entity for the USB. In addition to its special
physical position, the host has specific responsibilities with regard to the USB and its attached devices.
The host controls all access to the USB. A USB device gains access to the bus only by being granted
access by the host. The host is also responsible for monitoring the topology of the USB.

For a complete discussion of the host and its duties, refer to Chapter 10.

27

Universal Serial Bus Specification Revision 1.1

5.2.2 USB Devices

28

A USB physical device’s logical composition is shown in Figure 5-4, and includes the following:
e USB bus interface

o USB logical device

e Function.

USB physical devices provide additional functionality to the host. The types of functionality provided by
USB devices vary widely. However, all USB logical devices present the same basic interface to the host.
This allows the host to manage the USB-relevant aspects of different USB devices in the same manner.

To assist the host in identifying and configuring USB devices, each device carries and reports
configuration-related information. Some of the information reported is common among all logical devices.
Other information is specific to the functionality provided by the device. The detailed format of this
information varies, depending on the device class of the device.

For a complete discussion of USB devices, refer to Chapter 9.

Physical Device

l

Function

|

USB Logical
Device

!

s USB Bus

Interface

G——)>- Actual communications flow

Logical communications flow

Figure 5-4. Physical Device Composition

Universal Serial Bus Specification Revision 1.1

5.2.3 Physical Bus Topology

Devices on the USB are physically connected to the host via a tiered star topology, as illustrated in

Figure 5-5. USB attachment points are provided by a special class of USB device known as a hub. The
additional attachment points provided by a hub are called ports. A host includes an embedded hub called
the root hub. The host provides one or more attachment points via the root hub. USB devices that provide
additional functionality to the host are known as functions. To prevent circular attachments, a tiered
ordering is imposed on the star topology of the USB. This results in the tree-like configuration illustrated

in Figure 5-5.

ECompound Devicg

Figure 5-5. USB Physical Bus Topology

Multiple functions may be packaged together in what appears to be a single physical device. For example,
a keyboard and a trackball might be combined in a single package. Inside the package, the individual
functions are permanently attached to a hub and it is the internal hub that is connected to the USB. When
multiple functions are combined with a hub in a single package, they are referred to as a compound device.
From the host’s perspective, a compound device is the same as a separate hub with multiple functions
attached. Figure 5-5 also illustrates a compound device.

29

Universal Serial Bus Specification Revision 1.1

5.2.4 Logical Bus Topology

While devices physically attach to the USB in a tiered, star topology, the host communicates with each
logical device as if it were directly connected to the root port. This creates the logical view illustrated in
Figure 5-6 that corresponds to the physical topology shown in Figure 5-5. Hubs are logical devices also,
but are not shown in Figure 5-6 to simplify the picture. Even though most host/logical device activities use
this logical perspective, the host maintains an awareness of the physical topology to support processing the
removal of hubs. When a hub is removed, all of the devices attached to the hub must be removed from the
host’s view of the logical topology. A more complete discussion of hubs can be found in Chapter 11.

Figure 5-6. USB Logical Bus Topology

5.2.5 Client Software-to-function Relationship

Even though the physical and logical topology of the USB reflects the shared nature of the bus, client
software (CSw) manipulating a USB function interface is presented with the view that it deals only with its
interface(s) of interest. Client software for USB functions must use USB software programming interfaces
to manipulate their functions as opposed to directly manipulating their functions via memory or I/O

accesses as with other buses (e.g., PCI, EISA, PCMCIA, etc.). During operation, client software should be
independent of other devices that may be connected to the USB. This allows the designer of the device and
client software to focus on the hardware/software interaction design details. Figure 5-7 illustrates a device
designer’s perspective of the relationships of client software and USB functions with respect to the USB

logical topology of Figure 5-6.

CFunc>

Figure 5-7. Client Software-to-function Relationships

30

Universal Serial Bus Specification Revision 1.1

5.3 USB Communication Flow

The USB provides a communication service between software on the host and its USB function. Functions
can have different communication flow requirements for different client-to-function interactions. The USB
provides better overall bus utilization by allowing the separation of the different communication flows to a
USB function. Each communication flow makes use of some bus access to accomplish communication
between client and function. Each communication flow is terminated at an endpoint on a device. Device
endpoints are used to identify aspects of each communication flow.

Figure 5-8 shows a more detailed view of Figure 5-2. The complete definition of the actual
communication flows of Figure 5-2 supports the logical device and function layer communication flows.
These actual communication flows cross several interface boundaries. Chapters 6 through 8 describe the
mechanical, electrical, and protocol interface definitions of the USB “wire.” Chapter 9 describes the USB
device programming interface that allows a USB device to be manipulated from the host side of the wire.
Chapter 10 describes two host side software interfaces:

e Host Controller Driver (HCD): The software interface between the USB Host Controller and USB
System Software. This interface allows a range of Host Controller implementations without requiring
all host software to be dependent on any particular implementation. One USB Driver can support
different Host Controllers without requiring specific knowledge of a Host Controller implementation.
A Host Controller implementer provides an HCD implementation that supports the Host Controller.

e USB Driver (USBD): The interface between the USB System Software and the client software. This
interface provides clients with convenient functions for manipulating USB devices.

Host Interconnect Physical Device
By gmmmmssssasssmssssssmEssssssEssssmssssssas
H H ~ H :

) f— Function
Client SW > .
H . H Interface x a collection of
manages an interface H . ’ H interfaces
|
: Pipe Bundle
i to an interface : [
A H H
[: 4 : T
Buffers No USB . E Interface- No USB
H H specific Format
v Format : H ¥
: USB Logical
: H ' Device
USB System SW H H Endpoint
) . Zero a collection of
manages devices ! Default Pipe : endpoints
to Endpoint Zero E H USB Device
Y i : ‘P Uoa i (Chapter 9)
* Transfers uss : : Data Per :
H FEramed 5 H Endpoint Framed H
H Data H H V y Data
USB Host : USBBus | i |usBBus
H Interface | : i | Interface
(Chapter 10) : Host H H
H Controller | USB Framed
Data
SIE SIE
Transactions : USB Wire

[pipe: represents connection abstraction _/

between two horizontal entities .
Mechanical,

Data transport mechanism Electrical,
Protocol
(Chapter 6, 7, 8)

USB-relevant format of transported data

>

Figure 5-8. USB Host/Device Detailed View

31

Universal Serial Bus Specification Revision 1.1

A USB logical device appears to the USB system as a collection of endpoints. Endpoints are grouped into
endpoint sets that implement an interface. Interfaces are views to the function. The USB System Software
manages the device using the Default Control Pipe. Client software manages an interface using pipe
bundles (associated with an endpoint set). Client software requests that data be moved across the USB
between a buffer on the host and an endpoint on the USB device. The Host Controller (or USB device,
depending on transfer direction) packetizes the data to move it over the USB. The Host Controller also
coordinates when bus access is used to move the packet of data over the USB.

Figure 5-9 illustrates how communication flows are carried over pipes between endpoints and host side
memory buffers. The following sections describe endpoints, pipes, and communication flows in more

detail.
Client
Software
[]« putters |
\

Vi \\ \\ < Communicatio
Pipes Flows

Endpoints

‘ USB Laaical Device‘

Interface
Figure 5-9. USB Communication Flow
Software on the host communicates with a logical device via a set of communication flows. The set of

communication flows are selected by the device software/hardware designer(s) to efficiently match the
communication requirements of the device to the transfer characteristics provided by the USB.

5.3.1 Device Endpoints

32

An endpoint is a uniquely identifiable portion of a USB device that is the terminus of a communication

flow between the host and device. Each USB logical device is composed of a collection of independent
endpoints. Each logical device has a unique address assigned by the system at device attachment time.
Each endpoint on a device is given at design time a unique device-determined identifier called the endpoint
number. Each endpoint has a device-determined direction of data flow. The combination of the device
address, endpoint number, and direction allows each endpoint to be uniquely referenced. Each endpoint is
a simplex connection that supports data flow in one direction: either input (from device to host) or output
(from host to device).

An endpoint has characteristics that determine the type of transfer service required between the endpoint
and the client software. Endpoints describe themselves by:

e Their bus access frequency/latency requirements
e Their bandwidth requirements

e Their endpoint number

e The error handling behavior requirements

o Maximum packet size that the endpoint is capable of sending or receiving

Universal Serial Bus Specification Revision 1.1

e The transfer type for the endpoint (refer to Section 5.4 for details)
e The direction data is transferred between the endpoint and the host.

Endpoints other than those with endpoint number zero are in an unknown state before being configured
and may not be accessed by the host before being configured.

5.3.1.1 Endpoint Zero Requirements

All USB devices are required to implement a default control method that uses both the input and output
endpoints with endpoint number zero. The USB System Software uses this default control method to
initialize and generically manipulate the logical device (e.g., to configure the logical device) as the Default
Control Pipe (see Section 5.3.2). The Default Control Pipe provides access to the device’s configuration
information and allows generic USB status and control access. The Default Control Pipe supports control
transfers as defined in Section 5.5. The endpoints with endpoint number zero are always accessible once a
device is attached, powered, and has received a bus reset.

5.3.1.2 Non-endpoint Zero Requirements

Functions can have additional endpoints as required for their implementation. Low-speed functions are
limited to two optional endpoints beyond the two required to implement the Default Control Pipe. Full-
speed devices can have additional endpoints only limited by the protocol definition (i.e., a maximum of 15
additional input endpoints and 15 additional output endpoints).

Endpoints other than those for the Default Control Pipe cannot be used until the device is configured as a
normal part of the device configuration process (refer to Chapter 9).

5.3.2 Pipes

A USB pipe is an association between an endpoint on a device and software on the host. Pipes represent
the ability to move data between software on the host via a memory buffer and an endpoint on a device.
There are two different, mutually exclusive, pipe communication modes:

e Stream: Data moving through a pipe has no USB-defined structure
o Message: Data moving through a pipe has some USB-defined structure.

The USB does not interpret the content of data it delivers through a pipe. Even though a message pipe
requires that data be structured according to USB definitions, the content of the data is not interpreted by
the USB.

Additionally, pipes have the following associated with them:
e Aclaim on USB bus access and bandwidth usage.
e A transfer type.

e The associated endpoint’s characteristics, such as directionality and maximum data payload sizes. The
data payload is the data that is carried in the data field of a data packet within a bus transaction (as
defined in Chapter 8).

The pipe that consists of the two endpoints with endpoint number zero is called the Default Control Pipe.
This pipe is always available once a device is powered and has received a bus reset. Other pipes come into
existence when a USB device is configured. The Default Control Pipe is used by the USB System

Software to determine device identification and configuration requirements, and to configure the device.

The Default Control Pipe can also be used by device-specific software after the device is configured. The
USB System Software retains “ownership” of the Default Control Pipe and mediates use of the pipe by

other client software.

33

Universal Serial Bus Specification Revision 1.1

A software client normally requests data transfers via I/O Request Packets (IRPs) to a pipe and then either
waits or is notified when they are completed. Details about IRPs are defined in an operating system-
specific manner. This specification uses the term to simply refer to an identifiable request by a software
client to move data between itself (on the host) and an endpoint of a device in an appropriate direction. A
software client can cause a pipe to return all outstanding IRPs if it desires. The software client is notified
that an IRP has completed when the bus transactions associated with it have completed either successfully
or due to errors.

If there are no IRPs pending or in progress for a pipe, the pipe is idle and the Host Controller will take no
action with regard to the pipe; i.e., the endpoint for such a pipe will not see any bus transactions directed to
it. The only time bus activity is present for a pipe is when IRPs are pending for that pipe.

If a non-isochronous pipe encounters a condition that causes it to send a STALL to the host (refer to
Chapter 8) or three bus errors are encountered on any packet of an IRP, the IRP is aborted/retired, all
outstanding IRPs are also retired, and no further IRPs are accepted until the software client recovers from
the condition (in an implementation-dependent way) and acknowledges the halt or error condition via a
USBD call. An appropriate status informs the software client of the specific IRP result for error versus halt
(refer to Chapter 10). Isochronous pipe behavior is described in Section 5.6.

An IRP may require multiple data payloads to move the client data over the bus. The data payloads for
such a multiple data payload IRP are expected to be of the maximum packet size until the last data payload
that contains the remainder of the overall IRP. See the description of each transfer type for more details.
For such an IRP, short packets (i.e., less than maximum-sized data payloads) on input that do not
completely fill an IRP data buffer can have one of two possible meanings, depending upon the expectations
of a client:

e A client can expect a variable-sized amount of data in an IRP. In this case, a short packet that does not
fill an IRP data buffer can be used simply as an in-band delimiter to indicate “end of unit of data.”
The IRP should be retired without error and the Host Controller should advance to the next IRP.

* Aclient can expect a specific-sized amount of data. In this case, a short packet that does not fill an
IRP data buffer is an indication of an error. The IRP should be retired, the pipe should be stalled, and
any pending IRPs associated with the pipe should also be retired.

Because the Host Controller must behave differently in the two cases and cannot know on its own which
way to behave for a given IRP, it is possible to indicate per IRP which behavior the client desires.

An endpoint can inform the host that it is busy by responding with NAK. NAKSs are not used as a retire
condition for returning an IRP to a software client. Any number of NAKs can be encountered during the
processing of a given IRP. A NAK response to a transaction does not constitute an error and is not counted
as one of the three errors described above.

5.3.2.1 Stream Pipes

34

Stream pipes deliver data in the data packet portion of bus transactions with no USB-required structure on
the data content. Data flows in at one end of a stream pipe and out the other end in the same order. Stream
pipes are always uni-directional in their communication flow.

Data flowing through a stream pipe is expected to interact with what the USB believes is a single client.

The USB System Software is not required to provide synchronization between multiple clients that may be
using the same stream pipe. Data presented to a stream pipe is moved through the pipe in sequential order:
first-in, first-out.

A stream pipe to a device is bound to a single device endpoint number in the appropriate direction (i.e.,
corresponding to an IN or OUT token as defined by the protocol layer). The device endpoint number for
the opposite direction can be used for some other stream pipe to the device.

Stream pipes support bulk, isochronous, and interrupt transfer types, which are explained in later sections.

Universal Serial Bus Specification Revision 1.1

5.3.2.2 Message Pipes

Message pipes interact with the endpoint in a different manner than stream pipes. First, a request is sent to
the USB device from the host. This request is followed by data transfer(s) in the appropriate direction.
Finally, a Status stage follows at some later time. In order to accommodate the request/data/status
paradigm, message pipes impose a structure on the communication flow that allows commands to be
reliably identified and communicated. Message pipes allow communication flow in both directions,
although the communication flow may be predominately one-way. The Default Control Pipe is always a
message pipe.

The USB System Software ensures that multiple requests are not sent to a message pipe concurrently. A

device is required to service only a single message request at a time per message pipe. Multiple software

clients on the host can make requests via the Default Control Pipe, but they are sent to the device in a first-
in, first-out order. A device can control the flow of information during the Data and Status stages based on
its ability to respond to the host transactions (refer to Chapter 8 for more details).

A message pipe will not normally be sent the next message from the host until the current message’s
processing at the device has been completed. However, there are error conditions whereby a message
transfer can be aborted by the host and the message pipe can be sent a new message transfer prematurely
(from the device’s perspective). From the perspective of the software manipulating a message pipe, an
error on some part of an IRP retires the current IRP and all queued IRPs. The software client that
requested the IRP is notified of the IRP completion with an appropriate error indication.

A message pipe to a device requires a single device endpoint number in both directions (IN and OUT
tokens). The USB does not allow a message pipe to be associated with different endpoint numbers for each
direction.

Message pipes support the control transfer type, which is explained in Section 5.5.

5.4 Transfer Types

The USB transports data through a pipe between a memory buffer associated with a software client on the
host and an endpoint on the USB device. Data transported by message pipes is carried in a USB-defined
structure, but the USB allows device-specific structured data to be transported within the USB-defined
message data payload. The USB also defines that data moved over the bus is packetized for any pipe
(stream or message), but ultimately the formatting and interpretation of the data transported in the data
payload of a bus transaction is the responsibility of the client software and function using the pipe.
However, the USB provides different transfer types that are optimized to more closely match the service
requirements of the client software and function using the pipe. An IRP uses one or more bus transactions
to move information between a software client and its function.

Each transfer type determines various characteristics of the communication flow including the following:
e Data format imposed by the USB

e Direction of communication flow

e Packet size constraints

e Bus access constraints

e Latency constraints

e Required data sequences

e Error handling.

The designers of a USB device choose the capabilities for the device’s endpoints. When a pipe is
established for an endpoint, most of the pipe’s transfer characteristics are determined and remain fixed for
the lifetime of the pipe. Transfer characteristics that can be modified are described for each transfer type.

35

Universal Serial Bus Specification Revision 1.1

The USB defines four transfer types:

e Control Transfers: Bursty, non-periodic, host software-initiated request/response communication,
typically used for command/status operations.

* |sochronous Transfers: Periodic, continuous communication between host and device, typically used
for time-relevant information. This transfer type also preserves the concept of time encapsulated in the
data. This does not imply, however, that the delivery needs of such data is always time-critical.

e Interrupt Transfers: Small-data, low-frequency, bounded-latency communication.

o Bulk Transfers: Non-periodic, large-packet bursty communication, typically used for data that can use
any available bandwidth and can also be delayed until bandwidth is available.

Each transfer type is described in detail in the following four major sections. The data for any IRP is
carried by the data field of the data packet as described in Section 8.4.3. Chapter 8 also describes details of
the protocol that are affected by use of each particular transfer type.

5.5 Control Transfers

Control transfers allow access to different parts of a device. Control transfers are intended to support
configuration/command/status type communication flows between client software and its function. A

control transfer is composed of a Setup bus transaction moving request information from host to function,
zero or more Data transactions sending data in the direction indicated by the Setup transaction, and a Status
transaction returning status information from function to host. The Status transaction returns “success”
when the endpoint has successfully completed processing the requested operation. Section 8.5.2 describes
the details of what packets, bus transactions, and transaction sequences are used to accomplish a control
transfer. Chapter 9 describes the details of the defined USB command codes.

Each USB device is required to implement the Default Control Pipe as a message pipe. This pipe is used
by the USB System Software. The Default Control Pipe provides access to the USB device’s
configuration, status, and control information. A function can, but is not required to, provide endpoints for
additional control pipes for its own implementation needs.

The USB device framework (refer to Chapter 9) defines standard, device class, or vendor-specific requests
that can be used to manipulate a device’s state. Descriptors are also defined that can be used to contain
different information on the device. Control transfers provide the transport mechanism to access device
descriptors and make requests of a device to manipulate its behavior.

Control transfers are carried only through message pipes. Consequently, data flows using control transfers
must adhere to USB data structure definitions as described in Section 5.5.1.

The USB system will make a “best effort” to support delivery of control transfers between the host and
devices. A function and its client software cannot request specific bus access frequency or bandwidth for
control transfers. The USB System Software may restrict the bus access and bandwidth that a device may
desire for control transfers. These restrictions are defined in Section 5.5.3 and Section 5.5.4.

5.5.1 Control Transfer Data Format

36

The Setup packet has a USB-defined structure that accommodates the minimum set of commands required
to enable communication between the host and a device. The structure definition allows vendor-specific
extensions for device specific commands. The Data transactions following Setup have a USB-defined
structure except when carrying vendor-specific information. The Status transaction also has a USB-defined
structure. Specific control transfer Setup/Data definitions are described in Section 8.5.2 and Chapter 9.

Universal Serial Bus Specification Revision 1.1

5.5.2 Control Transfer Direction

Control transfers are supported via bi-directional communication flow over message pipes. As a
consequence, when a control pipe is configured, it uses both the input and output endpoint with the
specified endpoint number.

5.5.3 Control Transfer Packet Size Constraints

An endpoint for control transfers specifies the maximum data payload size that the endpoint can accept
from or transmit to the bus. The USB defines the allowable maximum control data payload sizes for full-
speed devices to be either 8, 16, 32, or 64 bytes. Low-speed devices are limited to only an eight-byte
maximum data payload size. This maximum applies to the data payloads of the Data packets following a
Setup; i.e., the size specified is for the data field of the packet as defined in Chapter 8, not including other
information that is required by the protocol. A Setup packet is always eight bytes. A control pipe
(including the Default Control Pipe) always usesildaxPacketSizealue for data payloads.

An endpoint reports in its configuration information the value for its maximum data payload size. The
USB does not require that data payloads transmitted be exactly the maximum size; i.e., if a data payload is
less than the maximum, it does not need to be padded to the maximum size.

All Host Controllers are required to have support for 8-, 16-, 32-, and 64-byte maximum data payload sizes
for full-speed control endpoints and only eight-byte maximum data payload sizes for low-speed control
endpoints. No Host Controller is required to support larger or smaller maximum data payload sizes.

In order to determine the maximum packet size for the Default Control Pipe, the USB System Software
reads the device descriptor. The host will read the first eight bytes of the device descriptor. The device
always responds with at least these initial bytes in a single packet. After the host reads the initial part of

the device descriptor, it is guaranteed to have read this default wige’sPacketSizéield (byte 7 of the

device descriptor). It will then allow the correct size for all subsequent transactions. For all other control
endpoints, the maximum data payload size is known after configuration so that the USB System Software
can ensure that no data payload will be sent to the endpoint that is larger than the supported size. The host
will always use a maximum data payload size of at least eight bytes.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
wMaxPacketSiz&efer to Chapter 9). When a control transfer involves more data than can fit in one data
payload of the currently established maximum size, all data payloads are required to be maximum-sized
except for the last data payload, which will contain the remaining data.

The Data stage of a control transfer from an endpoint to the host is complete when the endpoint does one of
the following:

e Has transferred exactly the amount of data specified during the Setup stage
o Transfers a packet with a payload size less widaxPacketSizer transfers a zero-length packet.

When a Data stage is complete, the Host Controller advances to the Status stage instead of continuing on
with another data transaction. If the Host Controller does not advance to the Status stage when the Data
stage is complete, the endpoint halts the pipe as was outlined in Section 5.3.2. If a larger-than-expected
data payload is received from the endpoint, the IRP for the control transfer will be aborted/retired.

The Data stage of a control transfer from the host to an endpoint is complete when all of the data has been
transferred. If the endpoint receives a larger-than-expected data payload from the host, it halts the pipe.

37

Universal Serial Bus Specification Revision 1.1

5.5.4 Control Transfer Bus Access Constraints

38

Control transfers can be used by full-speed and low-speed USB devices.

An endpoint has no way to indicate a desired bus access frequency for a control pipe. The USB balances
the bus access requirements of all control pipes and the specific IRPs that are pending to provide “best
effort” delivery of data between client software and functions.

The USB requires that part of each frame be reserved to be available for use by control transfers as follows:

e |f the control transfers that are attempted (in an implementation-dependent fashion) consume less than
10% of the frame time, the remaining time can be used to support bulk transfers (refer to Section 5.8).

* A control transfer that has been attempted and needs to be retried can be retried in the current or a
future frame; i.e., it is not required to be retried in the same frame.

e |f there are more control transfers than reserved time, but there is additional frame time that is not
being used for isochronous or interrupt transfers, a Host Controller may move additional control
transfers as they are available.

o |If there are too many pending control transfers for the available frame time, control transfers are
selected to be moved over the bus as appropriate.

e |f there are control transfers pending for multiple endpoints, control transfers for the different
endpoints are selected according to a fair access policy that is Host Controller implementation-
dependent.

e Atransaction of a control transfer that is frequently being retried should not be expected to consume
an unfair share of the bus time.

These requirements allow control transfers between host and devices to be regularly moved over the bus
with “best effort.”

The rate of control transfers to a particular endpoint can be varied by the USB System Software at its
discretion. An endpoint and its client software cannot assume a specific rate of service for control
transfers. A control endpoint may see zero or more transfers in a single frame. Bus time made available to
a software client and its endpoint can be changed as other devices are inserted into and removed from the
system or also as control transfers are requested for other device endpoints.

The bus frequency and frame timing limit the maximum number of successful control transfers within a
frame for any USB system to less than 29 full-speed eight-byte data payloads or less than four low-speed
eight-byte data payloads. Table 5-1 lists information about different-sized full-speed control transfers and
the maximum number of transfers possible in a frame. This table was generated assuming that there is one
Data stage transaction and that the Data stage has a zero-length status phase. The table illustrates the
possible power of two data payloads less than or equal to the allowable maximum data payload sizes. The
table does not include the overhead associated with bit stuffing.

Universal Serial Bus Specification Revision 1.1

Table 5-1. Full-speed Control Transfer Limits

Protocol Overhead (45 bytes) (9 SYNC bytes, 9 PID bytes, 6 Endpoint + CRC bytes, 6
CRC bytes, 8 Setup data bytes, and a 7-byte interpacket
delay (EOP, etc.))

Data Max Bandwidth Frame Max Bytes Bytes/Frame

Payload (bytes/second) Bandwidth Transfers Remaining Useful Data

per
Transfer

1 32000 3% 32 23 32

2 62000 3% 31 43 62

4 120000 3% 30 30 120

8 224000 4% 28 16 224

16 384000 4% 24 36 384

32 608000 5% 19 37 608

64 832000 7% 13 83 832

Max 1500000 1500

The 10% frame reservation for non-periodic transfers means that in a system with bus time fully allocated,
all full-speed control transfers in the system contend for a nominal three control transfers per frame.
Because the USB system uses control transfers for configuration purposes in addition to whatever other
control transfers other client software may be requesting, a given software client and its function should not
expect to be able to make use of this full bandwidth for its own control purposes. Host Controllers are also
free to determine how the individual bus transactions for specific control transfers are moved over the bus
within and across frames. An endpoint could see all bus transactions for a control transfer within the same
frame or spread across several noncontiguous frames. A Host Controller, for various implementation
reasons, may not be able to provide the theoretical maximum number of control transfers per frame.

Both full-speed and low-speed control transfers contend for the same available frame time. Low-speed
control transfers simply take longer to transfer. Table 5-2 lists information about different-sized low-speed
packets and the maximum number of packets possible in a frame. The table does not include the overhead
associated with bit stuffing. For both speeds, because a control transfer is composed of several packets, the
packets can be spread over several frames to spread the bus time required across several frames.

39

Universal Serial Bus Specification Revision 1.1

Table 5-2. Low-speed Control Transfer Limits

Protocol Overhead (46 bytes)

Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload | (Approximate) Bandwidth Transfers Remaining Useful Data
per Transfer

1 3000 25% 3 46 3
2 6000 26% 3 43 6
4 12000 27% 3 37 12
8 24000 29% 3 25 24
Max 187500 187
5.5.5 Control Transfer Data Sequences

40

Control transfers require that a Setup bus transaction be sent from the host to a device to describe the type
of control access that the device should perform. The Setup transaction is followed by zero or more

control Data transactions that carry the specific information for the requested access. Finally, a Status
transaction completes the control transfer and allows the endpoint to return the status of the control transfer
to the client software. After the Status transaction for a control transfer is completed, the host can advance
to the next control transfer for the endpoint. As described in Section 5.5.4, each control transaction and the
next control transfer will be moved over the bus at some Host Controller implementation-defined time.

The endpoint can be busy for a device-specific time during the Data and Status transactions of the control
transfer. During these times when the endpoint indicates it is busy (refer to Chapter 8 and Chapter 9 for
details), the host will retry the transaction at a later time.

If a Setup transaction is received by an endpoint before a previously initiated control transfer is completed,
the device must abort the current transfer/operation and handle the new control Setup transaction. A Setup
transaction should not normally be sent before the completion of a previous control transfer. However, if a
transfer is aborted, for example, due to errors on the bus, the host can send the next Setup transaction
prematurely from the endpoint’s perspective.

After a halt condition is encountered or an error is detected by the host, a control endpoint is allowed to
recover by accepting the next Setup PID; i.e., recovery actions via some other pipe are not required for
control endpoints. For the Default Control Pipe, a device reset will ultimately be required to clear the halt
or error condition if the next Setup PID is not accepted.

The USB provides robust error detection and recovery/retransmission for errors that occur during control
transfers. Transmitters and receivers can remain synchronized with regard to where they are in a control
transfer and recover with minimum effort. Retransmission of Data and Status packets can be detected by a
receiver via data retry indicators in the packet. A transmitter can reliably determine that its corresponding
receiver has successfully accepted a transmitted packet by information returned in a handshake to the
packet. The protocol allows for distinguishing a retransmitted packet from its original packet except for a
control Setup packet. Setup packets may be retransmitted due to a transmission error; however, Setup
packets cannot indicate that a packet is an original or a retried transmission.

Universal Serial Bus Specification Revision 1.1

5.6 Isochronous Transfers

In non-USB environments, isochronous transfers have the general implication of constant-rate, error-
tolerant transfers. In the USB environment, requesting an isochronous transfer type provides the requester
with the following:

e Guaranteed access to USB bandwidth with bounded latency
e Guaranteed constant data rate through the pipe as long as data is provided to the pipe
¢ Inthe case of a delivery failure due to error, no retrying of the attempt to deliver the data.

While the USB isochronous transfer type is designed to support isochronous sources and destinations, it is
not required that software using this transfer type actually be isochronous in order to use the transfer type.
Section 5.10 presents more detail on special considerations for handling isochronous data on the USB.

5.6.1 Isochronous Transfer Data Format
The USB imposes no data content structure on communication flows for isochronous pipes.

5.6.2 Isochronous Transfer Direction

An isochronous pipe is a stream pipe and is, therefore, always uni-directional. An endpoint description
identifies whether a given isochronous pipe’s communication flow is into or out of the host. If a device
requires bi-directional isochronous communication flow, two isochronous pipes must be used, one in each
direction.

5.6.3 Isochronous Transfer Packet Size Constraints

An endpoint in a given configuration for an isochronous pipe specifies the maximum size data payload that
it can transmit or receive. The USB System Software uses this information during configuration to ensure
that there is sufficient bus time to accommodate this maximum data payload in each frame. If there is
sufficient bus time for the maximum data payload, the configuration is established; if not, the configuration
is not established. The USB System Software does not adjust the maximum data payload size for an
isochronous pipe as is the case for a control pipe. An isochronous pipe can simply either be supported or
not supported in a given USB system configuration.

The USB limits the maximum data payload size to 1,023 bytes for each isochronous pipe. Table 5-3 lists
information about different-sized isochronous transactions and the maximum number of transactions
possible in a frame. The table does not include the overhead associated with bit stuffing.

41

Universal Serial Bus Specification Revision 1.1

Table 5-3. Isochronous Transaction Limits

Protocol Overhead (9 bytes) (2 SYNC bytes, 2 PID bytes, 2 Endpoint + CRC bytes, 2 CRC
bytes, and a 1-byte interpacket delay)
Data Max Frame Max Bytes Bytes/Frame
Payload Bandwidth Bandwidth Transfers Remaining Useful Data
per Transfer
1 150000 1% 150 0 150
2 272000 1% 136 4 272
4 460000 1% 115 5 460
8 704000 1% 88 4 704
16 960000 2% 60 0 960
32 1152000 3% 36 24 1152
64 1280000 5% 20 40 1280
128 1280000 9% 10 130 1280
256 1280000 18% 5 175 1280
512 1024000 35% 2 458 1024
1023 1023000 69% 1 468 1023
Max 1500000 1500

5.6

42

Any given transaction for a isochronous pipe need not be exactly the maximum size specified for the
endpoint. The size of a data payload is determined by the transmitter (client software or function) and can
vary as required from transaction to transaction. The USB ensures that whatever size is presented to the
Host Controller is delivered on the bus. The actual size of a data payload is determined by the data
transmitter and may be less than the prenegotiated maximum size. Bus errors can change the actual packet
size seen by the receiver. However, these errors can be detected by either CRC on the data or by
knowledge the receiver has about the expected size for any transaction.

4 1sochronous Transfer Bus Access Constraints
Isochronous transfers can be used only by full-speed devices.

The USB requires that no more than 90% of any frame be allocated for periodic (isochronous and
interrupt) transfers.

An endpoint for an isochronous pipe does not include information about bus access frequency. All
isochronous pipes normally move exactly one data packet each frame (i.e., every 1ms). Errors on the bus
or delays in operating system scheduling of client software can result in no packet being transferred for a
frame. An error indication should be returned as status to the client software in such a case. A device can
also detect this situation by tracking SOF tokens and noticing two SOF tokens without an intervening data
packet for an isochronous endpoint.

Universal Serial Bus Specification Revision 1.1

The bus frequency and frame timing limit the maximum number of successful isochronous transactions
within a frame for any USB system to less than 151 full-speed one-byte data payloads. A Host Controller,
for various implementation reasons, may not be able to provide the theoretical maximum number of
isochronous transactions per frame.

5.6.5 Isochronous Transfer Data Sequences

Isochronous transfers do not support data retransmission in response to errors on the bus. A receiver can
determine that a transmission error occurred. The low-level USB protocol does not allow handshakes to be
returned to the transmitter of an isochronous pipe. Normally, handshakes would be returned to tell the
transmitter whether a packet was successfully received or not. For isochronous transfers, timeliness is
more important than correctness/retransmission, and given the low error rates expected on the bus, the
protocol is optimized by assuming transfers normally succeed. Isochronous receivers can determine
whether they missed data during a frame. Also, a receiver can determine how much data was lost. Section
5.10 describes these USB mechanisms in more detail.

An endpoint for isochronous transfers never halts because there is no handshake to report a halt condition.
Errors are reported as status associated with the IRP for an isochronous transfer, but the isochronous pipe is
not halted in an error case. If an error is detected, the host continues to process the data associated with the
next frame of the transfer. Limited error detection is possible because the protocol for isochronous
transactions does not allow per-transaction handshakes.

5.7 Interrupt Transfers

The interrupt transfer type is designed to support those devices that need to send or receive small amounts
of data infrequently, but with bounded service periods. Requesting a pipe with an interrupt transfer type
provides the requester with the following:

e Guaranteed maximum service period for the pipe

o Retry of transfer attempts at the next period, in the case of occasional delivery failure due to error on
the bus.

5.7.1 Interrupt Transfer Data Format
The USB imposes no data content structure on communication flows for interrupt pipes.

5.7.2 Interrupt Transfer Direction

An interrupt pipe is a stream pipe and is therefore always uni-directional. An endpoint description
identifies whether a given interrupt pipe’s communication flow is into or out of the host.

5.7.3 Interrupt Transfer Packet Size Constraints

An endpoint for an interrupt pipe specifies the maximum size data payload that it will transmit or receive.
The maximum allowable interrupt data payload size is 64 bytes or less for full-speed. Low-speed devices
are limited to eight bytes or less maximum data payload size. This maximum applies to the data payloads
of the data packets; i.e., the size specified is for the data field of the packet as defined in Chapter 8, not
including other protocol-required information. The USB does not require that data packets be exactly the
maximum size; i.e., if a data packet is less than the maximum, it does not need to be padded to the
maximum size.

All Host Controllers are required to have support for up to 64-byte maximum data payload sizes for full-
speed interrupt endpoints and eight bytes or less maximum data payload sizes for low-speed interrupt
endpoints. No Host Controller is required to support larger maximum data payload sizes.

43

Universal Serial Bus Specification Revision 1.1

The USB System Software determines the maximum data payload size that will be used for a interrupt pipe
during device configuration. This size remains constant for the lifetime of a device’s configuration. The
USB System Software uses the maximum data payload size determined during configuration to ensure that
there is sufficient bus time to accommodate this maximum data payload in its assigned period. If there is
sufficient bus time, the pipe is established; if not, the pipe is not established. The USB System Software
does not adjust the bus time made available to an interrupt pipe as is the case for a control pipe. An
interrupt pipe can simply either be supported or not supported in a given USB system configuration.
However, the actual size of a data payload is still determined by the data transmitter and may be less than
the maximum size.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
wMaxPacketSizealue. A device can move data via an interrupt pipe that is largewtflarPacketSize

A software client can accept this data via an IRP for the interrupt transfer that requires multiple bus
transactions without requiring an IRP-complete notification per transaction. This can be achieved by
specifying a buffer that can hold the desired data size. The size of the buffer is a multiple of
wMaxPacketSizevith some remainder. The endpoint must transfer each transaction except the last as
wMaxPacketSizand the last transaction is the remainder. The multiple data transactions are moved over
the bus at the period established for the pipe.

When an interrupt transfer involves more data than can fit in one data payload of the currently established
maximum size, all data payloads are required to be maximum-sized except for the last data payload, which
will contain the remaining data. An interrupt transfer is complete when the endpoint does one of the
following:

e Has transferred exactly the amount of data expected
o Transfers a packet with a payload size less widaxPacketSizer transfers a zero-length packet.

When an interrupt transfer is complete, the Host Controller retires the current IRP and advances to the next
IRP. If a data payload is received that is larger than expected, the interrupt IRP will be aborted/retired and
the pipe will stall future IRPs until the condition is corrected and acknowledged.

5.7.4 Interrupt Transfer Bus Access Constraints

44

Interrupt transfers can be used by full-speed and low-speed devices.

The USB requires that no more than 90% of any frame be allocated for periodic (isochronous and
interrupt) transfers.

The bus frequency and frame timing limit the maximum number of successful interrupt transactions within
a frame for any USB system to less than 108 full-speed one-byte data payloads or 14 low-speed one-byte
data payloads. A Host Controller, for various implementation reasons, may not be able to provide the
above maximum number of interrupt transactions per frame.

Table 5-4 lists information about different sized full-speed interrupt transactions and the maximum number
of transactions possible in a frame. Table 5-5 lists similar information for low-speed interrupt transactions.
The tables do not include the overhead associated with bit stuffing.

Universal Serial Bus Specification Revision 1.1

Table 5-4. Full-speed Interrupt Transaction Limits

Protocol Overhead (13 bytes) (3 SYNC bytes, 3 PID bytes, 2 Endpoint + CRC bytes, 2
CRC bytes, and a 3-byte interpacket delay)
Data Max Frame Max Bytes Bytes/Frame
Payload Bandwidth Bandwidth Transfers Remaining Useful Data
per Transfer
1 107000 1% 107 2 107
2 200000 1% 100 0 200
4 352000 1% 88 4 352
8 568000 1% 71 9 568
16 816000 2% 51 21 816
32 1056000 3% 33 15 1056
64 1216000 5% 19 37 1216
Max 1500000 1500

An endpoint for an interrupt pipe specifies its desired bus access period. A full-speed endpoint can specify
a desired period from 1ms to 255ms. Low-speed endpoints are limited to specifying only 10ms to 255ms.
The USB System Software will use this information during configuration to determine a period that can be
sustained. The period provided by the system may be shorter than that desired by the device up to the
shortest period defined by the USB (1ms). The client software and device can depend only on the fact that
the host will ensure that the time duration between two transaction attempts with the endpoint will be no
longer than the desired period. Note that errors on the bus can prevent an interrupt transaction from being
successfully delivered over the bus and consequently exceed the desired period. Also, the endpoint is only
polled when the software client has an IRP for an interrupt transfer pending. If the bus time for performing
an interrupt transfer arrives and there is no IRP pending, the endpoint will not be given an opportunity to
transfer data at that time. Once an IRP is available, its data will be transferred at the next allocated period.

45

Universal Serial Bus Specification Revision 1.1

Table 5-5. Low-speed Interrupt Transaction Limits
Protocol Overhead (13 bytes)
Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload | (Approximate) Bandwidth Transfers Remaining Useful Data
per Transfer

1 13000 7% 13 5 13
2 24000 8% 12 7 24
4 44000 9% 11 0 44
8 64000 11% 8 19 64
Max 187500 187

5.7

5.8

46

Interrupt transfers are moved over the USB by accessing an interrupt endpoint every period. For input
interrupt endpoints, the host has no way to determine whether an endpoint will source an interrupt without
accessing the endpoint and requesting an interrupt transfer. If the endpoint has no interrupt data to transmit
when accessed by the host, it responds with NAK. An endpoint should only provide interrupt data when it
has an interrupt pending to avoid having a software client erroneously notified of IRP complete. A zero-
length data payload is a valid transfer and may be useful for some implementations.

.5 Interrupt Transfer Data Sequences

Interrupt transactions may use either alternating data toggle bits, such that the bits are toggled only upon
successful transfer completion, or a continuously toggling of data toggle bits. The host in any case must
assume that the device is obeying full handshake/retry rules as defined in Chapter 8. A device may choose
to always toggle DATAO/DATAL PIDs so that it can ignore handshakes from the host. However, in this
case, the client software can miss some data packets when an error occurs, because the Host Controller
interprets the next packet as a retry of a missed packet.

If a halt condition is detected on an interrupt pipe due to transmission errors or a STALL handshake being
returned from the endpoint, all pending IRPs are retired. Removal of the halt condition is achieved via
software intervention through a separate control pipe. This recovery will reset the data toggle bit to
DATAO for the endpoint on both the host and the device. Interrupt transactions are retried due to errors
detected on the bus that affect a given transfer.

Bulk Transfers

The bulk transfer type is designed to support devices that need to communicate relatively large amounts of
data at highly variable times where the transfer can use any available bandwidth. Requesting a pipe with a
bulk transfer type provides the requester with the following:

e Access to the USB on a bandwidth-available basis
e Retry of transfers, in the case of occasional delivery failure due to errors on the bus
e Guaranteed delivery of data, but no guarantee of bandwidth or latency.

Bulk transfers occur only on a bandwidth-available basis. For a USB with large amounts of free
bandwidth, bulk transfers may happen relatively quickly; for a USB with little bandwidth available, bulk
transfers may trickle out over a relatively long period of time.

Universal Serial Bus Specification Revision 1.1

5.8.1 Bulk Transfer Data Format
The USB imposes no data content structure on communication flows for bulk pipes.

5.8.2 Bulk Transfer Direction

A bulk pipe is a stream pipe and, therefore, always has communication flowing either into or out of the
host for a given pipe. If a device requires bi-directional bulk communication flow, two bulk pipes must be
used, one in each direction.

5.8.3 Bulk Transfer Packet Size Constraints

An endpoint for bulk transfers specifies the maximum data payload size that the endpoint can accept from
or transmit to the bus. The USB defines the allowable maximum bulk data payload sizes to be only 8, 16,
32, or 64 bytes. This maximum applies to the data payloads of the data packets; i.e.; the size specified is
for the data field of the packet as defined in Chapter 8, not including other protocol-required information.

A bulk endpoint is designed to support a maximum data payload size. A bulk endpoint reports in its
configuration information the value for its maximum data payload size. The USB does not require that
data payloads transmitted be exactly the maximum size; i.e., if a data payload is less than the maximum, it
does not need to be padded to the maximum size.

All Host Controllers are required to have support for 8-, 16-, 32-, and 64-byte maximum packet sizes for
bulk endpoints. No Host Controller is required to support larger or smaller maximum packet sizes.

During configuration, the USB System Software reads the endpoint’s maximum data payload size and
ensures that no data payload will be sent to the endpoint that is larger than the supported size.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
reportedvMaxPacketSizealue. When a bulk IRP involves more data than can fit in one maximum-sized
data payload, all data payloads are required to be maximum size except for the last data payload, which
will contain the remaining data. A bulk transfer is complete when the endpoint does one of the following:

e Has transferred exactly the amount of data expected
o Transfers a packet with a payload size less widaxPacketSizer transfers a zero-length packet.

When a bulk transfer is complete, the Host Controller retires the current IRP and advances to the next IRP.
If a data payload is received that is larger than expected, all pending bulk IRPs for that endpoint will be
aborted/retired.

5.8.4 Bulk Transfer Bus Access Constraints
Bulk transfers can be used only by full-speed devices.

An endpoint has no way to indicate a desired bus access frequency for a bulk pipe. The USB balances the
bus access requirements of all bulk pipes and the specific IRPs that are pending to provide “good effort”
delivery of data between client software and functions. Moving control transfers over the bus has priority
over moving bulk transfers.

There is no time guaranteed to be available for bulk transfers as there is for control transfers. Bulk
transfers are moved over the bus only on a bandwidth-available basis. If there is bus time that is not being
used for other purposes, bulk transfers will be moved over the bus. If there are bulk transfers pending for
multiple endpoints, bulk transfers for the different endpoints are selected according to a fair access policy
that is Host Controller implementation-dependent.

All bulk transfers pending in a system contend for the same available bus time. Because of this, the bus
time made available for bulk transfers to a particular endpoint can be varied by the USB System Software
at its discretion. An endpoint and its client software cannot assume a specific rate of service for bulk

47

Universal Serial Bus Specification Revision 1.1

transfers. Bus time made available to a software client and its endpoint can be changed as other devices are
inserted into and removed from the system or also as bulk transfers are requested for other device
endpoints. Client software cannot assume ordering between bulk and control transfers; i.e., in some
situations, bulk transfers can be delivered ahead of control transfers.

The bus frequency and frame timing limit the maximum number of successful bulk transactions within a
frame for any USB system to less than 72 eight-byte data payloads. Table 5-6 lists information about
different-sized bulk transactions and the maximum number of transactions possible in a frame. The table
does not include the overhead associated with bit stuffing.

Table 5-6. Bulk Transaction Limits

Protocol Overhead (13 bytes) (3 SYNC bytes, 3 PID bytes, 2 Endpoint + CRC bytes, 2 CRC
bytes, and a 3-byte interpacket delay)
Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload (bytes/second) Bandwidth Transfers Remaining Useful Data
per Transfer
1 107000 1% 107 2 107
2 200000 1% 100 0 200
4 352000 1% 88 4 352
8 568000 1% 71 9 568
16 816000 2% 51 21 816
32 1056000 3% 33 15 1056
64 1216000 5% 19 37 1216
Max 1500000 1500

5.8

48

Host Controllers are free to determine how the individual bus transactions for specific bulk transfers are
moved over the bus within and across frames. An endpoint could see all bus transactions for a bulk
transfer within the same frame or spread across several frames. A Host Controller, for various
implementation reasons, may not be able to provide the above maximum number of transactions per frame.

.5 Bulk Transfer Data Sequences

Bulk transactions use data toggle bits that are toggled only upon successful transaction completion to
preserve synchronization between transmitter and receiver when transactions are retried due to errors.
Bulk transactions are initialized to DATAO when the endpoint is configured by an appropriate control
transfer. The host will also start the first bulk transaction with DATAOQ. If a halt condition is detected on
an bulk pipe due to transmission errors or a STALL handshake being returned from the endpoint, all
pending IRPs are retired. Removal of the halt condition is achieved via software intervention through a
separate control pipe. This recovery will reset the data toggle bit to DATAO for the endpoint on both the
host and the device.

Bulk transactions are retried due to errors detected on the bus that affect a given transaction.

Universal Serial Bus Specification Revision 1.1

5.9 Bus Access for Transfers

Accomplishing any data transfer between the host and a USB device requires some use of the USB
bandwidth. Supporting a wide variety of isochronous and asynchronous devices requires that each
device’s transfer requirements are accommodated. The process of assigning bus bandwidth to devices is
called transfer management. There are several entities on the host that coordinate the information flowing
over the USB: client software, the USB Driver (USBD), and the Host Controller Driver (HCD).
Implementers of these entities need to know the key concepts related to bus access:

e Transfer Management: The entities and the objects that support communication flow over the USB.

e Transaction Tracking: The USB mechanisms that are used to track transactions as they move through
the USB system.

e Bus Time: The time it takes to move a packet of information over the bus.
o Device/Software Buffer Size: The space required to support a bus transaction.

¢ Bus Bandwidth Reclamation: Conditions where bandwidth that was allocated to other transfers but
was not used and can now be possibly reused by control and bulk transfers.

The previous sections focused on how client software relates to a function and what the logical flows are
over a pipe between the two entities. This section focuses on the different parts of the host and how they
must interact to support moving data over the USB. This information may also be of interest to device
implementers so they understand aspects of what the host is doing when a client requests a transfer and
how that transfer is presented to the device.

5.9.1 Transfer Management

Transfer management involves several entities that operate on different objects in order to move
transactions over the bus:

o Client Software: Consumes/generates function-specific data to/from a function endpoint via calls and
callbacks requesting IRPs with the USBD interface.

e USB Driver (USBD): Converts data in client IRPs to/from device endpoint via calls/callbacks with the
appropriate HCD. A single client IRP may involve one or more transfers.

e Host Controller Driver (HCD): Converts IRPs to/from transactions (as required by a Host Controller
implementation) and organizes them for manipulation by the Host Controller. Interactions between
the HCD and its hardware is implementation-dependent and is outside the scope of the USB
Specification.

e Host Controller: Takes transactions and generates bus activity via packets to move function-specific
data across the bus for each transaction.

Figure 5-10 shows how the entities are organized as information flows between client software and the
USB. The objects of primary interest to each entity are shown at the interfaces between entities.

49

Universal Serial Bus Specification Revision 1.1

Client Software

|

Data

| USBD
Tl Interface
IRPs
ﬂ |0 HCD
Tt u Interface
Transaction List Transactions HW/SW
Transaction Interface

=l

Host Controller

Packets

. USB

Figure 5-10. USB Information Conversion From Client Software to Bus

5.9.1.1 Client Software

50

Client software determines what transfers need to be made with a function. It uses appropriate operating
system-specific interfaces to request IRPs. Client software is aware only of the set of pipes (i.e., the
interface) it needs to manipulate its function. The client is aware of and adheres to all bus access and
bandwidth constraints as described previously for each transfer type. The requests made by the client
software are presented via the USBD interface.

Some clients may manipulate USB functions via other device class interfaces defined by the operating
system and may themselves not make direct USBD calls. However, there is always some lowest level
client that makes USBD calls to pass IRPs to the USBD. All IRPs presented are required to adhere to the
prenegotiated bandwidth constraints set when the pipe was established. If a function is moved from a non-
USB environment to the USB, the driver that would have directly manipulated the function hardware via
memory or I/O accesses is the lowest client software in the USB environment that now interacts with the
USBD to manipulate the driver's USB function.

Universal Serial Bus Specification Revision 1.1

After client software has requested a transfer of its function and the request has been serviced, the client
software receives notification of the completion status of the IRP. If the transfer involved function-to-host
data transfer, the client software can access the data in the data buffer associated with the completed IRP.

The USBD interface is defined in Chapter 10.

5.9.1.2 USB Driver

The Universal Serial Bus Driver (USBD) is involved in mediating bus access at two general times:
e While a device is attached to the bus during configuration
e During normal transfers.

When a device is attached and configured, the USBD is involved to ensure that the desired device
configuration can be accommodated on the bus. The USBD receives configuration requests from the
configuring software that describe the desired device configuration: endpoint(s), transfer type(s), transfer
period(s), data size(s), etc. The USBD either accepts or rejects a configuration request based on bandwidth
availability and the ability to accommodate that request type on the bus. If it accepts the request, the

USBD creates a pipe for the requester of the desired type and with appropriate constraints as defined for
the transfer type. Bandwidth allocation for periodic endpoints does not have to be made when the device is
configured and, once made, an bandwidth allocation can be released without changing the device
configuration.

The configuration aspects of the USBD are typically operating system-specific and heavily leverage the
configuration features of the operating system to avoid defining additional (redundant) interfaces.

Once a device is configured, the software client can request IRPs to move data between it and its function
endpoints.

5.9.1.3 Host Controller Driver

The Host Controller Driver (HCD) is responsible for tracking the IRPs in progress and ensuring that USB
bandwidth and frame time maximums are never exceeded. When IRPs are made for a pipe, the HCD adds
them to the transaction list. When an IRP is complete, the HCD notifies the requesting software client of
the completion status for the IRP. If the IRP involved data transfer from the function to the software client,
the data was placed in the client-indicated data buffer.

IRPs are defined in an operating system-dependent manner.

5.9.1.4 Transaction List

The transaction list is a Host Controller implementation-dependent description of the current outstanding

set of bus transactions that need to be run on the bus. Only the HCD and its Host Controller have access to
the specific representation. Each description contains transaction descriptions in which parameters, such as
data size in bytes, the device address and endpoint number, and the memory area to which data is to be sent
or received, are identified.

A transaction list and the interface between the HCD and its Host Controller is typically represented in an
implementation-dependent fashion and is not defined explicitly as part of the USB Specification.

5.9.1.5 Host Controller

The Host Controller has access to the transaction list and translates it into bus activity. In addition, the
Host Controller provides a reporting mechanism whereby the status of a transaction (done, pending, halted,
etc.) can be obtained. The Host Controller converts transactions into appropriate implementation-
dependent activities that result in USB packets moving over the bus topology rooted in the root hub.

51

Universal Serial Bus Specification Revision 1.1

The Host Controller ensures that the bus access rules defined by the protocol are obeyed, such as
inter-packet timings, timeouts, babble, etc. The HCD interface provides a way for the Host Controller to
participate in deciding whether a new pipe is allowed access to the bus. This is done because Host
Controller implementations can have restrictions/constraints on the minimum inter-transaction times they
may support for combinations of bus transactions.

The interface between the transaction list and the Host Controller is hidden within an HCD and Host
Controller implementation.

5.9.2 Transaction Tracking

52

A USB function sees data flowing across the bus in packets as described in Chapter 8. The Host Controller
uses some implementation-dependent representation to track what packets to transfer to/from what
endpoints at what time or in what order. Most client software does not want to deal with packetized
communication flows because this involves a degree of complexity and interconnect dependency that limits
the implementation. The USB System Software (USBD and HCD) provides support for matching data
movement requirements of a client to packets on the bus. The Host Controller hardware and software uses
IRPs to track information about one or more transactions that combine to deliver a transfer of information
between the client software and the function. Figure 5-11 summarizes how transactions are organized into
IRPs for the four transfer types. Detailed protocol information for each transfer type can be found in
Chapter 8. More information about client software views of IRPs can be found in Chapter 10 and in the
operating system specific-information for a particular operating system.

Data Flow Types
All transfers are
composed of one or more
IRP transactions. An IRP

| | corresponds to one or
more transfers.

Transaction ; Transaction | Transaction

A control transfer is an OUT
Control Transfer Setup transaction followed

by multiple IN or OUT Data
transactions followed by one
“opposite of data direction”
Setup Data Status Additional Status transaction.
Transaction Transaction | | Transaction Control Transfers

IRP

Interrupt Transfer

An interrupt transfer is one
or more IN/ OUT Data
transactions.

IRP

Transaction | Transaction

Isochronous Transfer

An isochronous transfer
is one or more IN/ OUT
IRP) : Data transactions.

Transaction . Transacton =~ Transaction

Bulk Transfer A bulk transfer is one

or more IN/ OUT Data
transactions.

IRP

Transaction . Transaction | . Transaction

Figure 5-11. Transfers for Communication Flows

Universal Serial Bus Specification Revision 1.1

Even though IRPs track the bus transactions that need to occur to move a specific data flow over the USB,
Host Controllers are free to choose how the particular bus transactions are moved over the bus subject to
the USB-defined constraints (e.g., exactly one transaction per frame for isochronous transfers). In any
case, an endpoint will see transactions in the order they appear within an IRP unless errors occur. For
example, Figure 5-12 shows two IRPs, one each for two pipes where each IRP contains three transactions.
For any transfer type, a Host Controller is free to move the first transaction of the first IRP followed by the
first transaction of the second IRP somewhere in Frame 1, while moving the second transaction of each
IRP in opposite order somewhere in Frame 2. If these are isochronous transfer types, that is the only
degree of freedom a Host Controller has. If these are control or bulk transfers, a Host Controller could
further move more or less transactions from either IRP within either frame. Functions cannot depend on
seeing transactions within an IRP back-to-back within a frame nor should they depend on not seeing
transactions back-to-back within a frame.

IRP 1 IRP 2
N I
Transaction Transaction TransactionW Transaction Transaction ‘ Transaction
1-0 1-1 1-2 ‘ 2-0 2-1 2-2 |
- _— L _—
Frame 1 Frame 2
Token Data, Token, Data, Token, Data, Token, Data,
Handshake Handshake Handshake Handshake
(1-0) (2-0) (2-1) (1-1)

Figure 5-12. Arrangement of IRPs to Transactions/Frames

53

Universal Serial Bus Specification Revision 1.1

5.9.3 Calculating Bus Transaction Times

54

When the USB System Software allows a new pipe to be created for the bus, it must calculate how much
bus time is required for a given transaction. That bus time is based on the maximum packet size
information reported for an endpoint, the protocol overhead for the specific transaction type request, the
overhead due to signaling imposed bit stuffing, inter-packet timings required by the protocol,
inter-transaction timings, etc. These calculations are required to ensure that the time available in a frame is
not exceeded. The equations used to determine transaction bus time are:

KEY:
Data_bc The byte count of data payload

Host_Delay The time required for the host to prepare for or
recover from the transmission; Host Controller
implementation-specific

Floor() The integer portion of argument
Hub_LS_Setup The time provided by the Host Controller for hubs to
enable low-speed ports; measured as the delay from the

end of the PRE PID to the start of the low-speed SYNC;
minimum of four full-speed bit times

BitStuffTime Function that calculates theoretical additional time
required due to bit stuffing in signaling; worst case
is (1.1667*8*Data_bc)

Full-speed (Input)

Non-Isochronous Transfer (Handshake Included)
= 9107 +(83.54 *Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

Isochronous Transfer (No Handshake)
= 7268 +(83.54 *Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

Full-speed (Output)

Non-Isochronous Transfer (Handshake Included)
= 9107 +(83.54 *Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

Isochronous Transfer (No Handshake)
= 6265 +(83.54 *Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

Low-speed (Input)

= 64060 + (2*Hub_LS_ Setup) +
(676.67 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

Low-speed (Output)

= 64107 + (2* Hub_LS_Setup) +
(667.0 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay

The bus times in the above equations are in nanoseconds and take into account propagation delays due to
the distance the device is from the host. These are typical equations that can be used to calculate bus time;
however, different implementations may choose to use coarser approximations of these times.

The actual bus time taken for a given transaction will almost always be less than that calculated because bit
stuffing overhead is data-dependent. Worst case bit stuffing is calculated as 1.1667 (7/6) times the raw
time (i.e., the BitStuffTime function multiplies the Data_bc by 8*1.1667 in the equations). This means that
there will almost always be time unused on the bus (subject to data pattern specifics) after all regularly

Universal Serial Bus Specification Revision 1.1

scheduled transactions have completed. The bus time made available due to less bit stuffing can be reused
as discussed in Section 5.9.5.

The Host_Delay term in the equations is Host Controller- and system-dependent and allows for additional
time a Host Controller may require due to delays in gaining access to memory or other implementation
dependencies. This term is incorporated into an implementation of these equations by using the transfer
management functions provided by the HCD interface. These equations are typically implemented by a
combination of USBD and HCD software working in cooperation. The results of these calculations are
used to determine whether a transfer or pipe creation can be supported in a given USB configuration.

5.9.4 Calculating Buffer Sizes in Functions and Software

Client software and functions both need to provide buffer space for pending data transactions awaiting their
turn on the bus. For non-isochronous pipes, this buffer space needs to be just large enough to hold the next
data packet. If more than one transaction request is pending for a given endpoint, the buffering for each
transaction must be supplied. Methods to calculate the precise absolute minimum buffering a function may
require because of specific interactions defined between its client software and the function are outside the
scope of the USB Specification.

The Host Controller is expected to be able to support an unlimited number of transactions pending for the
bus subject to available system memory for buffer and descriptor space, etc. Host Controllers are allowed
to limit how many frames into the future they allow a transaction to be requested.

For isochronous pipes, Section 5.10.4 describes details affecting host side and device side buffering
requirements. In general, buffers need to be provided to hold approximately twice the amount of data that
can be transferred in 1ms.

5.9.5 Bus Bandwidth Reclamation

The USB bandwidth and bus access are granted based on a calculation of worst case bus transmission time
and required latencies. However, due to the constraints placed on different transfer types and the fact that
the bit stuffing bus time contribution is calculated as a constant but is data-dependent, there will frequently
be bus time remaining in each frame time versus what the frame transmission time was calculated to be. In
order to support the most efficient use of the bus bandwidth, control and bulk transfers are candidates to be
moved over the bus as bus time becomes available. Exactly how a Host Controller supports this is
implementation-dependent. A Host Controller can take into account the transfer types of pending IRPs and
implementation-specific knowledge of remaining frame time to reuse reclaimed bandwidth.

5.10 Special Considerations for Isochronous Transfers

Support for isochronous data movement between the host and a device is one of the system capabilities
supported by the USB. Delivering isochronous data reliably over the USB requires careful attention to
detail. The responsibility for reliable delivery is shared by several USB entities:

e The device/function

e The bus

e The Host Controller

e One or more software agents.

Because time is a key part of an isochronous transfer, it is important for USB designers to understand how
time is dealt with within the USB by these different entities.

All isochronous devices must report their capabilities in the form of device-specific descriptors. The
capabilities should also be provided in a form that the potential customer can use to decide whether the

55

Universal Serial Bus Specification Revision 1.1

device offers a solution to his problem(s). The specific capabilities of a device can justify price
differences.

In any communication system, the transmitter and receiver must be synchronized enough to deliver data
robustly. In an asynchronous communication system, data can be delivered robustly by allowing the
transmitter to detect that the receiver has not received a data item correctly and simply retrying
transmission of the data.

In an isochronous communication system, the transmitter and receiver must remain time- and data-
synchronized to deliver data robustly. The USB does not support transmission retry of isochronous data so
that minimal bandwidth can be allocated to isochronous transfers and time synchronization is not lost due
to a retry delay. However, it is critical that a USB isochronous transmitter/receiver pair still remain
synchronized both in normal data transmission cases and in cases where errors occur on the bus.

In many systems that deal with isochronous data, a single global clock is used to which all entities in the
system synchronize. An example of such a system is the PSTN (Public Switched Telephone Network).
Given that a broad variety of devices with different natural frequencies may be attached to the USB, no
single clock can provide all the features required to satisfy the synchronization requirements of all devices
and software while still supporting the cost targets of mass-market PC products. The USB defines a clock
model that allows a broad range of devices to coexist on the bus and have reasonable cost implementations.

This section presents options or features that can be used by isochronous endpoints to minimize behavior
differences between a non-USB implemented function and a USB version of the function. An example is
included to illustrate the similarities and differences between the non-USB and USB versions of a function.

The remainder of the section presents the following key concepts:

e USB Clock Model: What clocks are present in a USB system that have impact on isochronous data
transfers

e USB Frame Clock-to-function Clock Synchronization Options: How the USB frame clock can relate
to a function clock

e SOF Tracking: Responsibilities and opportunities of isochronous endpoints with respect to the SOF
token and USB frames

o Data Prebuffering: Requirements for accumulating data before generation, transmission, and
consumption

e Error Handling: Isochronous-specific details for error handling

o Buffering for Rate Matching: Equations that can be used to calculate buffer space required for
isochronous endpoints.

5.10.1 Example Non-USB Isochronous Application

56

The example used is a reasonably generalized example. Other simpler or more complex cases are possible
and the relevant USB features identified can be used or not as appropriate.

The example consists of an 8kHz mono microphone connected through a mixer driver that sends the input
data stream to 44kHz stereo speakers. The mixer expects the data to be received and transmitted at some
sample rate and encoding. A rate matcher driver on input and output converts the sample rate and
encoding from the natural rate and encoding of the device to the rate and encoding expected by the mixer.
Figure 5-13 illustrates this example.

20ms service
period

Universal Serial Bus Specification Revision 1.1

Rate
Matcher

Microphone
Device Driver/

4

2x160 Byte Buffer
(2 Services,

160 samples per service) g - =~

1 sample at a time

Mono
Microphone

Each DD has
independent
service rate

Mixer Device
Driver

T

Master Clock

Transfer
Complete
~ _ Interrupt

2x1 Byte Buffer
(2 Samples)

Transfer
Complete

Interrupt -~

1 speaker DD
service period
(n sample)
slop buffer

Rate
Matcher

20ms service
period

Speaker
Device Driver,

DMA
controller /. _ -

- (2 Services,

_____ Software_

2x3528 Byte Buffer Hardware

882 samples per service)

Traditional Bus
(e.g. PCI, ISA, ..)
Single sample
‘transfers

8MHz Bus Clock

8kHz Sample Clock
(1 byte/sample)

1 sample at a time

CD Stereo
Speakers

2x4 Byte Buffer
(2 Samples)

44.1KHz Sample Clock
(4 bytes/sample)

Figure 5-13. Non-USB Isochronous Example

57

58

Universal Serial Bus Specification Revision 1.1

A master clock (which can be provided by software driven from the real time clock) in the PC is used to
awaken the mixer to ask the input source for input data and to provide output data to the output sink. In

this example, assume it awakens every 20ms. The microphone and speakers each have their own sample
clocks that are unsynchronized with respect to each other or the master mixer clock. The microphone
produces data at its natural rate (one-byte samples, 8,000 times a second) and the speakers consume data at
their natural rate (four-byte samples, 44,100 times a second). The three clocks in the system can drift and
jitter with respect to each other. Each rate matcher may also be running at a different natural rate than

either the mixer driver, the input source/driver, or output sink/driver.

The rate matchers also monitor the long-term data rate of their device compared to the master mixer clock
and interpolate an additional sample or merge two samples to adjust the data rate of their device to the data
rate of the mixer. This adjustment may be required every couple of seconds, but typically occurs
infrequently. The rate matchers provide some additional buffering to carry through a rate match.

Note: Some other application might not be able to tolerate sample adjustment and would need some other
means of accommodating master clock-to-device clock drift or else would require some means of
synchronizing the clocks to ensure that no drift could occur.

The mixer always expects to receive exactly a service period of data (20ms service period) from its input
device and produce exactly a service period of data for its output device. The mixer can be delayed up to
less than a service period if data or space is not available from its input/output device. The mixer assumes
that such delays do not accumulate.

The input and output devices and their drivers expect to be able to put/get data in response to a hardware
interrupt from the DMA controller when their transducer has processed one service period of data. They
expect to get/put exactly one service period of data. The input device produces 160 bytes (ten samples)
every service period of 20ms. The output device consumes 3,528 bytes (882 samples) every 20ms service
period. The DMA controller can move a single sample between the device and the host buffer at a rate
much faster than the sample rate of either device.

The input and output device drivers provide two service periods of system buffering. One buffer is always
being processed by the DMA controller. The other buffer is guaranteed to be ready before the current
buffer is exhausted. When the current buffer is emptied, the hardware interrupt awakens the device driver
and it calls the rate matcher to give it the buffer. The device driver requests a new IRP with the buffer
before the current buffer is exhausted.

The devices can provide two samples of data buffering to ensure that they always have a sample to process
for the next sample period while the system is reacting to the previous/next sample.

The service periods of the drivers are chosen to survive interrupt latency variabilities that may be present in
the operating system environment. Different operating system environments will require different service
periods for reliable operation. The service periods are also selected to place a minimum interrupt load on
the system, because there may be other software in the system that requires processing time.

Universal Serial Bus Specification Revision 1.1

5.10.2 USB Clock Model

Time is present in the USB system via clocks. In fact, there are multiple clocks in a USB system that must
be understood:

e Sample Clock: This clock determines the natural data rate of samples moving between client software
on the host and the function. This clock does not need to be different between non-USB and USB
implementations.

e Bus Clock: This clock runs at a 1.000ms period (1kHz frequency) and is indicated by the rate of SOF
packets on the bus. This clock is somewhat equivalent to the 8MHz clock in the non-USB example.
In the USB case, the bus clock is often a lower-frequency clock than the sample clock, whereas the bus
clock is almost always a higher-frequency clock than the sample clock in a non-USB case.

e Service Clock: This clock is determined by the rate at which client software runs to service IRPs that
may have accumulated between executions. This clock also can be the same in the USB and non-USB
cases.

In most existing operating systems, it is not possible to support a broad range of isochronous
communication flows if each device driver must be interrupted for each sample for fast sample rates.
Therefore, multiple samples, if not multiple packets, will be processed by client software and then given to
the Host Controller to sequence over the bus according to the prenegotiated bus access requirements.
Figure 5-14 presents an example for a reasonable USB clock environment equivalent to the non-USB
example in Figure 5-13.

59

20ms service

period
CTranslfetr Transfer
Ir(13tr::rprue te Complete
1 sample || Microphone P Interrupt Speaker 20ms service
slop buffer period

Universal Serial Bus Specification Revision 1.1

2x161 Byte Buffer . 2x3532 Byte Buffer
_ (2 Services, .« _ (2 Setvices, 1??1’ gitr(\a/ii;:ger L ;0%""3’9_ .
159-161 samples per 881-883 samples per . ardware
.) 1 feedback per service
service, service 1 packets/service)
20 packets/service) 20 packets/service) P
v

Each DD has
independent
service rate

Mixer Device
Driver

Master Clock

Rate service period
| Matcher (n sample)
. slop buffer
7

1 speaker DD

1KHz Bus Clock

172-184 Byte Packets
43-46 samples per packet

7-9 Byte Packets\

7-9 samples per packet

Feedback Info

3 byte packets /

CD Stereo
Speaker

Mono
Microphone

1x3 Byte
Buffer
(1 Packets)

(44+45+1+1)x4
Byte Buffer
(2 Packets)

8+9 Byte Buffer
(2 Packets)

44.1KHz Sample Clock
(4 bytes/sample)

8kHz Sample Clock
(1 byte/sample)

Figure 5-14. USB Isochronous Application

Universal Serial Bus Specification Revision 1.1

Figure 5-14 shows a typical round trip path of information from a microphone as an input device to a
speaker as an output device. The clocks, packets, and buffering involved are also shown. Figure 5-14 will
be explored in more detail in the following sections.

The focus of this example is to identify the differences introduced by the USB compared to the previous
non-USB example. The differences are in the areas of buffering, synchronization given the existence of a
USB bus clock, and delay. The client software above the device drivers can be unaffected in most cases.

5.10.3 Clock Synchronization

In order for isochronous data to be manipulated reliably, the three clocks identified above must be
synchronized in some fashion. If the clocks are not synchronized, several clock-to-clock attributes can be
present that can be undesirable:

e Clock Drift: Two clocks that are nominally running at the same rate can, in fact, have implementation
differences that result in one clock running faster or slower than the other over long periods of time. If
uncorrected, this variation of one clock compared to the other can lead to having too much or too little
data when data is expected to always be present at the time required.

o Clock Jitter: A clock may vary its frequency over time due to changes in temperature, etc. This may
also alter when data is actually delivered compared to when it is expected to be delivered.

e Clock-to-clock Phase Differences: If two clocks are not phase locked, different amounts of data may
be available at different points in time as the beat frequency of the clocks cycle out over time. This
can lead to quantization/sampling related artifacts.

The bus clock provides a central clock with which USB hardware devices and software can synchronize to
one degree or another. However, the software will, in general, not be able to phase- or frequency-lock
precisely to the bus clock given the current support for “real time-like” operating system scheduling
support in most PC operating systems. Software running in the host can, however, know that data moved
over the USB is packetized. For isochronous transfer types, a single packet of data is moved exactly once
per frame and the frame clock is reasonably precise. Providing the software with this information allows it
to adjust the amount of data it processes to the actual frame time that has passed.

5.10.4 Isochronous Devices

The USB includes a framework for isochronous devices that defines synchronization types, how
isochronous endpoints provide data rate feedback, and how they can be connected together. Isochronous
devices include sampled analog devices (for example, audio and telephony devices) and synchronous data
devices. Synchronization type classifies an endpoint according to its capability to synchronize its data rate
to the data rate of the endpoint to which it is connected. Feedback is provided by indicating accurately
what the required data rate is, relative to the SOF frequency. The ability to make connections depends on
the quality of connection that is required, the endpoint synchronization type, and the capabilities of the host
application that is making the connection. Additional device class-specific information may be required,
depending on the application.

Note: the term “data” is used very generally, and may refer to data that represents sampled analog
information (like audio), or it may be more abstract information. “Data rate” refers to the rate at which
analog information is sampled, or the rate at which data is clocked.

61

Universal Serial Bus Specification Revision 1.1

The following information is required in order to determine how to connect isochronous endpoints:
e Synchronization type:
— Asynchronous: Unsynchronized, although sinks provide data rate feedback
— Synchronous: Synchronized to the USB’s SOF
— Adaptive: Synchronized using feedback or feedforward data rate information
e Available data rates
¢ Available data formats.

Synchronization type and data rate information are needed to determine if an exact data rate match exists
between source and sink, or if an acceptable conversion process exists that would allow the source to be
connected to the sink. It is the responsibility of the application to determine whether the connection can be
supported within available processing resources and other constraints (like delay). Specific USB device
classes define how to describe synchronization type and data rate information.

Data format matching and conversion is also required for a connection, but it is not a unique requirement
for isochronous connections. Details about format conversion can be found in other documents related to
specific formats.

5.10.4.1 Synchronization Type

Three distinct synchronization types are defined. Table 5-7 presents an overview of endpoint
synchronization characteristics for both source and sink endpoints. The types are presented in order of
increasing capability.

Table 5-7. Synchronization Characteristics

Source Sink

Asynchronous Free running Fs Free running Fs

Provides implicit feedforward (data stream) | Provides explicit feedback (interrupt pipe)

Synchronous Fs locked to SOF Fs locked to SOF
Uses implicit feedback (SOF) Uses implicit feedback (SOF)
Adaptive Fs locked to sink Fs locked to data flow
Uses explicit feedback (control pipe) Uses implicit feedforward (data stream)

5.10.4.1.1 Asynchronous

62

Asynchronous endpoints cannot synchronize to SOF or any other clock in the USB domain. They source
or sink an isochronous data stream at either a fixed data rate (single-frequency endpoints), a limited
number of data rates (32kHz, 44.1kHz, 48kHz, ...), or a continuously programmable data rate. If the data
rate is programmable, it is set during initialization of the isochronous endpoint. Asynchronous devices
must report their programming capabilities in the class-specific endpoint descriptor as described in their
device class specification. The data rate is locked to a clock external to the USB or to a free-running
internal clock. These devices place the burden of data rate matching elsewhere in the USB environment.
Asynchronous source endpoints carry their data rate information implicitly in the number of samples they
produce per frame. Asynchronous sink endpoints must provide explicit feedback information to an
adaptive driver (refer to Section 5.10.4.2).

Universal Serial Bus Specification Revision 1.1

An example of an asynchronous source is a CD-audio player that provides its data based on an internal
clock or resonator. Another example is a Digital Audio Broadcast (DAB) receiver or a Digital Satellite
Receiver (DSR). Here too, the sample rate is fixed at the broadcasting side and is beyond USB control.

Asynchronous sink endpoints could be low-cost speakers, running off of their internal sample clock.

Another case arises when there are two or more devices present on the USB that need to have mastership
control over SOF generation in order to operate as synchronous devices. This could happen if there were
two telephony devices, each locked to a different external clock. One telephony device could be digitally
connected to a Private Branch Exchange (PBX) that is not synchronized to the ISDN. The other device
could be connected directly to the ISDN. Each device will source or sink data to/from the network side at
an externally driven rate. Because only one of the devices can take mastership over the SOF, the other will
sink or source data at a rate that is asynchronous to the SOF. This example indicates that every device
capable of SOF mastership may be forced to operate as an asynchronous device.

5.10.4.1.2 Synchronous

Synchronous endpoints can have their clock system (their notion of time) controlled externally through
SOF synchronization. These endpoints must be doing one of the following:

e Slaving their sample clock to the 1ms SOF tick (by means of a programmable PLL).

o Controlling the rate of USB SOF generation so that their data rate becomes automatically locked to
SOF. In case these endpoints are not granted SOF mastership, they must degenerate to the
asynchronous mode of operation (refer to the asynchronous example).

Synchronous endpoints may source or sink isochronous data streams at either a fixed data rate (single-
frequency endpoints), a limited number of data rates (32kHz, 44.1kHz, 48kHz, ...), or a continuously
programmable data rate. If programmable, the operating data rate is set during initialization of the
isochronous endpoint. The number of samples or data units generated in a series of USB frames is
deterministic and periodic. Synchronous devices must report their programming capabilities in the class-
specific endpoint descriptor as described in their device class specification.

An example of a synchronous source is a digital microphone that synthesizes its sample clock from SOF
and produces a fixed number of audio samples every USB frame. Another possibility is a 64kb/s bit-
stream from an ISDN “modem.” If the USB SOF generation is locked to the PSTN clock (perhaps through
the same ISDN device), the data generation will also be locked to SOF and the endpoint will produce a
stable 64kb/s data stream, referenced to the SOF time notion.

5.10.4.1.3 Adaptive

Adaptive endpoints are the most capable endpoints possible. They are able to source or sink data at any
rate within their operating range. Adaptive source endpoints produce data at a rate that is controlled by the
data sink. The sink provides feedback (refer to Section 5.10.4.2) to the source, which allows the source to
know the desired data rate of the sink. Adaptive endpoints can communicate with all types of sink

endpoints. For adaptive sink endpoints, the data rate information is embedded in the data stream. The
average number of samples received during a certain averaging time determines the instantaneous data rate.
If this number changes during operation, the data rate is adjusted accordingly.

The data rate operating range may center around one rate (e.g., 8kHz), select between several
programmable or auto-detecting data rates (32kHz, 44.1kHz, 48kHz, ...), or may be within one or more
ranges (e.g., 5kHz to 12kHz or 44kHz to 49kHz). Adaptive devices must report their programming
capabilities in the class-specific endpoint descriptor as described in their device class specification

An example of an adaptive source is a CD player that contains a fully adaptive sample rate converter (SRC)
so that the output sample frequency no longer needs to be 44.1kHz but can be anything within the
operating range of the SRC. Adaptive sinks include such endpoints as high-end digital speakers, headsets,
etc.

63

Universal Serial Bus Specification Revision 1.1

5.10.4.2 Feedback

64

An asynchronous sink provides feedback to an adaptive source by indicating accurately what its desired
data rate (F is, relative to the USB SOF frequency. The required data rate is accurate to better than one
sample per second (1Hz) in order to allow a high-quality source rate to be created and to tolerate delays
and errors in the feedback loop.

The K value consists of a fractional part, in order to get the required resolution with 1kHz frames, and an
integer part, which gives the minimum number of samples per frame. Ten bits are required to resolve one
sample within a 1kHz frame frequency (1000 / 2210 = 0.98). This is a ten-bit fraction, represented in
unsigned fixed binary point 0.10 format. The integer part needs ten bits (2210 = 1024) to encode up to
1,023 one-byte samples per frame. The ten-bit integer is represented in unsigned fixed binary point 10.0
format. The combinedfivalue can be coded in unsigned fixed binary point 10.10 format, which fits into
three bytes (24 bits). Because the maximum integer value is fixed to 1,023, the 10.10 number will be left-
justified in the 24 bits, so that it has a 10.14 format. Only the first ten bits behind the binary point are
required. The lower four bits may be optionally used to extend the precision athErwise, they shall be
reported as zero. The bit and byte ordering follows the definitions of other multi-byte fields contained in
Chapter 8.

Each frame, the adaptive source add®Rny remaining fractional sample count from the previous frame,
sources the number of samples in the integer part of the sum, and retains the fractional sample count for the
next frame. The source can look at the behavior o/€r many frames to determine an even more

accurate rate, if it needs to.

The sink can determing By counting cycles of a clock with a frequency ef R*P for a period of

27(10-P) frames, where P is an integer. P is practically bound to be in the range [0,10] because there is no
point in using a clock slower than Fs, and no point in trying to update more than once a frame. The
counter is read intofland reset every 2°(10-P) frames. As long as no clock cycles are skipped, the count
will be accurate over the long term. An endpoint needs to implement only the number of counter bits that
it requires for its maximumfF

A digital telephony endpoint, for example, will usually derive its 8kklbydividing down the 64kHz

clock (P=3) which it uses to serialize the data stream. The 64kHz clock phase can also give an additional
one bit of accuracy, effectively giving P=4. This would giveifdates every 2°(10-4) = 64 frames. A 13-

bit counter would be required to obtaiy With three bits for eight samples per frame, and ten bits for the
fractional part. The 13 bits would provide a 3.10 field within the 10tMalbe, with the remaining bits

set to zero.

The choice of P is endpoint-specific. Use the following guidelines when choosing P:
e P should be in the range [1,9].

o Larger values of P are preferred, because they reduce the size of the frame counter and increase the
rate at which Fis updated. More frequent updates result in a tighter control of the source data rate,
which reduces the buffer space required to handéh&nges.

e P should be less than ten so thiaisFaveraged across at least two frames in order to reduce SOF jitter
effects.

e P should not be zero in order to keep the deviation in the number of samples sourced to less than 1 in
the event of a lostffvalue.

Isochronous transfers are used to reafidm the feedback register. The desired reporting rate for the
feedback should be 2*(10-P) frames.witl be reported at most once per update period. There is nothing
to be gained by reporting the sames&lue more than once per update period. The endpoint may choose
to report Fonly if the updated value has changed from the previoual&e.

It is possible that the source will deliver one too many or one too few samples over a long period, due to
errors or accumulated inaccuracies in measuringl ke sink must have sufficient buffer capability to
accommodate this. When the sink recognizes this condition, it should adjust the repoaled ©

Universal Serial Bus Specification Revision 1.1

correct it. This may also be necessary to compensate for relative clock drifts. The implementation of this
correction process is endpoint-specific and is not specified.

An adaptive source may obtain the sink data rate information from an adaptive sink that is locked to the
same clock as the sink, as would be the case for a two-way speech connection. In this case, the feedback
pipe is not needed.

5.10.4.3 Connectivity

In order to fully describe the source-to-sink connectivity process, an interconnect model is presented. The
model indicates the different components involved and how they interact to establish the connection.

The model provides for multi-source/multi-sink situations. Figure 5-15 illustrates a typical situation
(highly condensed and incomplete). A physical device is connected to the host application software
through different hardware and software layers as described in the USB Specification. At the client
interface level, a virtual device is presented to the application. From the application standpoint, only
virtual devices exist. Itis up to the device driver and client software to decide what the exact relation is
between physical and virtual device.

65

66

Universal Serial Bus Specification Revision 1.1

Host Environment

CD-ROM
©
| _ | Ige_vlce Client
{Physical Sources river
Isoc. Pipe Device ;
Client
Source) Driver
Isoc. Pipe Device ;
Sourc i Client—
Driver | | [[(| ... _
\Virtual Sources
USB Environment Application
L Virtual Sinks |
Isoc. Pipe Device ;
. Client
Sink Driver
Sink Isoc. Pipe De_vice Client
Driver
J— |
i Physical Sinks De_\/lce Client
Driver
Hard Disk

Figure 5-15. Example Source/Sink Connectivity

Device manufacturers (or operating system vendors) must provide the necessary device driver software and
client interface software to convert their device from the physical implementation to a USB-compliant
software implementation (the virtual device). As stated before, depending on the capabilities built into this
software, the virtual device can exhibit different synchronization behavior from the physical device.
However, the synchronization classification applies equally to both physical and virtual devices. All
physical devices belong to one of the three possible synchronization types. Therefore, the capabilities that
have to be built into the device driver and/or client software are the same as the capabilities of a physical
device. The word “application” must be replaced by “device driver/client software.” In the case of a
physical source to virtual source connection, “virtual source device” must be replaced by “physical source
device” and “virtual sink device” must be replaced by “virtual source device.” In the case of a virtual sink
to physical sink connection, “virtual source device” must be replaced by “virtual sink device” and “virtual
sink device” must be replaced by “physical sink device.”

Universal Serial Bus Specification Revision 1.1

Placing the rate adaptation (RA) functionality into the device driver/client software layer has the distinct
advantage of isolating all applications, relieving the device from the specifics and problems associated with
rate adaptation. Applications that would otherwise be multi-rate degenerate to simpler mono-rate systems.

Note: the model is not limited to only USB devices. For example, a CD-ROM drive containing 44.1kHz
audio can appear as either an asynchronous, synchronous, or adaptive source. Asynchronous operation
means that the CD-ROM fills its buffer at the rate that it reads data from the disk, and the driver empties
the buffer according to its USB service interval. Synchronous operation means that the driver uses the
USB service interval (e.g., 10ms) and nominal sample rate of the data (44.1kHz) to determine to put out
441 samples every USB service interval. Adaptive operation would build in a sample rate converter to
match the CD-ROM output rate to different sink sampling rates.

Using this reference model, it is possible to define what operations are necessary to establish connections
between various sources and sinks. Furthermore, the model indicates at what level these operations must
or can take place. First there is the stage where physical devices are mapped onto virtual devices and vice
versa. This is accomplished by the driver and/or client software. Depending on the capabilities included in
this software, a physical device can be transformed into a virtual device of an entirely different
synchronization type. The second stage is the application that uses the virtual devices. Placing rate
matching capabilities at the driver/client level of the software stack relieves applications communicating
with virtual devices from the burden of performing rate matching for every device that is attached to them.
Once the virtual device characteristics are decided, the actual device characteristics are not any more
interesting than the actual physical device characteristics of another driver.

As an example, consider a mixer application that connects at the source side to different sources, each
running at their own frequencies and clocks. Before mixing can take place, all streams must be converted
to a common frequency and locked to a common clock reference. This action can be performed in the
physical-to-virtual mapping layer or it can be handled by the application itself for each source device
independently. Similar actions must be performed at the sink side. If the application sends the mixed data
stream out to different sink devices, it can either do the rate matching for each device itself or it can rely on
the driver/client software to do that, if possible.

Table 5-8 indicates at the intersections what actions the application must perform to connect a source
endpoint to a sink endpoint.

67

68

Universal Serial Bus Specification Revision 1.1

Table 5-8. Connection Requirements

Source Endpoint

Sink Endpoint Asynchronous Synchronous Adpptive
Asynchronous Async Source/Sink RA Async SOF/Sink RA Data + Feedback
See Note 1. See Note 2. Feedthrough
See Note 3.
Synchronous Async Source/SOF RA Sync RA Data Feedthrough +
See Note 4. See Note 5. Application Feedback
See Note 6.
Adaptive Data Feedthrough Data Feedthrough Data Feedthrough
See Note 7. See Note 8. See Note 9.

Notes:

Asynchronous RA in the application. Fsjis determined by the source, using the feedforward information
embedded in the data stream. Fsq is determined by the sink, based on feedback information from the
sink. If nominally Fsj = Fsgq, the process degenerates to a feedthrough connection if slips/stuffs due to
lack of synchronization are tolerable. Such slips/stuffs will cause audible degradation in audio
applications.

Asynchronous RA in the application. Fsjis determined by the source but locked to SOF. Fsg is
determined by the sink, based on feedback information from the sink. If nominally Fsj = Fsq, the

process degenerates to a feedthrough connection if slips/stuffs due to lack of synchronization are
tolerable. Such slips/stuffs will cause audible degradation in audio applications.

If Fsg falls within the locking range of the adaptive source, a feedthrough connection can be established.
Fsj = Fsp and both are determined by the asynchronous sink, based on feedback information from the
sink. If Fsq falls outside the locking range of the adaptive source, the adaptive source is switched to
synchronous mode and Note 2 applies.

Asynchronous RA in the application. Fsjis determined by the source. Fsq is determined by the sink
and locked to SOF. If nominally Fsj = Fsq, the process degenerates to a feedthrough connection if

slips/stuffs due to lack of synchronization are tolerable. Such slips/stuffs will cause audible degradation
in audio applications.

Synchronous RA in the application. Fsjis determined by the source and locked to SOF. Fsg is
determined by the sink and locked to SOF. If Fsj = Fsq, the process degenerates to a loss-free
feedthrough connection.

The application will provide feedback to synchronize the source to SOF. The adaptive source appears
to be a synchronous endpoint and Note 5 applies.

If Fs;j falls within the locking range of the adaptive sink, a feedthrough connection can be established.
Fsj = Fsg and both are determined by and locked to the source.

If Fsj falls outside the locking range of the adaptive sink, synchronous RA is done in the host to provide
an Fsq that is within the locking range of the adaptive sink.

If Fs;j falls within the locking range of the adaptive sink, a feedthrough connection can be established.
Fso = Fsj and both are determined by the source and locked to SOF.

If Fsj falls outside the locking range of the adaptive sink, synchronous RA is done in the host to provide
an Fsq that is within the locking range of the adaptive sink.

The application will use feedback control to set Fsg of the adaptive source when the connection is set

up. The adaptive source operates as an asynchronous source in the absence of ongoing feedback
information and Note 7 applies.

Universal Serial Bus Specification Revision 1.1

In cases where RA is needed but not available, the rate adaptation process could be mimicked by sample
dropping/stuffing. The connection could then still be made, possibly with a warning about poor quality;
otherwise, the connection cannot be made.

5.10.4.3.1 Audio Connectivity

When the above is applied to audio data streams, the RA process is replaced by sample rate conversion,
which is a specialized form of rate adaptation. Instead of error control, some form of sample interpolation
is used to match incoming and outgoing sample rates. Depending on the interpolation techniques used, the
audio quality (distortion, signal to noise ratio, etc.) of the conversion can vary significantly. In general,
higher quality requires more processing power.

5.10.4.3.2 Synchronous Data Connectivity

For the synchronous data case, RA is used. Occasional slips/stuffs may be acceptable to many applications
that implement some form of error control. Error control includes error detection and discard, error
detection and retransmit, or forward error correction. The rate of slips/stuffs will depend on the clock
mismatch between the source and sink, and may be the dominant error source of the channel. If the error
control is sufficient, then the connection can still be made.

5.10.5 Data Prebuffering

The USB requires that devices prebuffer data before processing/transmission to allow the host more
flexibility in managing when each pipe’s transaction is moved over the bus from frame to frame.

For transfers from function to host, the endpoint must accumulate samples during frame X until it receives
the SOF token for frame X+1. It “latches” the data from frame X into its packet buffer and is now ready to
send the packet containing those samples during frame X+1. When it will send that data during the frame
is determined solely by the Host Controller and can vary from frame to frame.

For transfers from host to function, the endpoint will accept a packet from the host sometime during frame
Y. When it receives the SOF for frame Y+1, it can then start processing the data received in frame Y.

This approach allows an endpoint to use the SOF token as a stable clock with very little jitter and/or drift
when the Host Controller moves the packet over the bus. This approach also allows the Host Controller to
vary within a frame precisely when the packet is actually moved over the bus. This prebuffering

introduces some additional delay between when a sample is available at an endpoint and when it moves
over the bus compared to an environment where the bus access is at exactly the same time offset from SOF
from frame to frame.

Figure 5-16 shows the time sequence for a function-to-host transfer (IN process)., Bataddmulated
during frame Fat timeTi, and transmitted to the host during frameLF Similarly, for a host-to-function
transfer (OUT process), datg IS received by the endpoint during framei1fand processed during frame
Fi+2.

69

Universal Serial Bus Specification Revision 1.1

Time: T. Tt T T o T LI
Frame: Fi Fi+1 Fi+2 Fi+3 Fm Fm+1
Data on Bus: b, D, D, .. D, D,
OUT Process: D, D, D,
IN Process D, D, D,

Figure 5-16. Data Prebuffering

5.10.6 SOF Tracking

Functions supporting isochronous pipes must receive and comprehend the SOF token to support
prebuffering as previously described. Given that SOFs can be corrupted, a device must be prepared to
recover from a corrupted SOF. These requirements limit isochronous transfers to full-speed devices only,
because low-speed devices do not see SOFs on the bus. Also, because SOF packets can be damaged in
transmission, devices that support isochronous transfers need to be able to synthesize the existence of an
SOF that they may not see due to a bus error.

Isochronous transfers require the appropriate data to be transmitted in the corresponding frame. The USB
requires that when an isochronous transfer is presented to the Host Controller, it identifies the frame
number for the first frame. The Host Controller must not transmit the first transaction before the indicated
frame number. Each subsequent transaction in the IRP must be transmitted in succeeding frames. If there
are no transactions pending for the current frame, then the Host Controller must not transmit anything for
an isochronous pipe. If the indicated frame number has passed, the Host Controller must skip (i.e., not
transmit) all transactions until the one corresponding to the current frame is reached.

5.10.7 Error Handling

70

Isochronous transfers provide no data packet retries (i.e., no handshakes are returned to a transmitter by a
receiver) so that timeliness of data delivery is not perturbed. However, it is still important for the agents
responsible for data transport to know when an error occurs and how the error affects the communication
flow. In particular, for a sequence of data packets (A, B, C, D), the USB allows sufficient information such
that a missing packet (A, _, C, D) can be detected and will not unknowingly be turned into an incorrect
data or time sequence (A, C, D or A, _, B, C, D). The protocol provides four mechanisms that support this:
exactly one packet per frame, SOF, CRC, and bus transaction timeout.

e |sochronous transfers require exactly one data transaction every frame for normal operation. The USB
does not dictate what data is transmitted in each frame. The data transmitter/source determines
specifically what data to provide. This regular data-per-frame provides a framework that is
fundamental to detecting missing data errors. Any phase of a transaction can be damaged during
transmission on the bus. Chapter 8 describes how each error case affects the protocol.

e Because every frame is preceded by an SOF and a receiver can see SOFs on the bus, a receiver can
determine that its expected transaction did not occur between two SOFs. Additionally, because even
an SOF can be damaged, a device must be able to reconstruct the existence of a missed SOF as
described in Section 5.10.6.

Universal Serial Bus Specification Revision 1.1

e A data packet may be corrupted on the bus; therefore, CRC protection allows a receiver to determine
that the data packet it received was corrupted.

e The protocol defines the details that allow a receiver to determine via bus transaction timeout that it is
not going to receive its data packet after it has successfully seen its token packet.

Once a receiver has determined that a data packet was not received, it may need to know the size of the
data that was missed in order to recover from the error with regard to its functional behavior. If the
communication flow is always the same data size per frame, then the size is always a known constant.
However, in some cases the data size can vary from frame to frame. In this case, the receiver and
transmitter have an implementation-dependent mechanism to determine the size of the lost packet.

In summary, whether a transaction is actually moved successfully over the bus or not, the transmitter and
receiver always advance their data/buffer streams one transaction per frame to keep data-per-time
synchronization. The detailed mechanisms described above allow detection, tracking, and reporting of
damaged transactions so that a function or its client software can react to the damage in a function-
appropriate fashion. The details of that function- or application-specific reaction are outside the scope of
the USB Specification.

5.10.8 Buffering for Rate Matching

Given that there are multiple clocks that affect isochronous communication flows in the USB, buffering is
required to rate match the communication flow across the USB. There must be buffer space available both
in the device per endpoint and on the host side on behalf of the client software. These buffers provide
space for data to accumulate until it is time for a transfer to move over the USB. Given the natural data
rates of the device, the maximum size of the data packets that move over the bus can also be calculated.
Figure 5-17 shows the equations used to determine buffer size on the device and host and maximum packet
size that must be requested to support a desired data rate. These equations allow a device and client
software design time-determined service clock rate (variable X), sample clock rate (variable C), and sample
size (variable S). The USB allows only one transaction per bus clock. These equations should provide
design information for selecting the appropriate packet size that an endpoint will report in its characteristic
information and the appropriate buffer requirements for the device/endpoint and its client software. Figure
5-14 shows actual buffer, packet, and clock values for a typical isochronous example.

71

72

Universal Serial Bus Specification Revision 1.1

Isochronous Rate (Clock) Matching
By Buffering

X Service Clock

M= (2*N*P) Byte Buffer
for 2 Services,
N = (CEIL(1KHz / X)) packets
per service

1KHz Bus Clock

P = (CEIL(C / 1KHz) * S)

Byte Packets
C Sample Clock
(S byte/sample)
B=2*P
Byte Buffer
(2 Packets)

Figure 5-17. Packet and Buffer Size Formulas for Rate-Matched Isochronous Transfers

The USB data model assumes that devices have some natural sample size and rate. The USB supports the
transmission of packets that are multiples of sample size to make error recovery handling easier when
isochronous transactions are damaged on the bus. If a device has no natural sample size or if its samples
are larger than a packet, it should describe its sample size as being one byte. If a sample is split across a
data packet, the error recovery can be harder when an arbitrary transaction is lost. In some cases, data
synchronization can be lost unless the receiver knows in what frame number each partial sample is
transmitted. Furthermore, if the number of samples can vary due to clock correction (e.g., for a

non-derived device clock), it may be difficult or inefficient to know when a partial sample is transmitted.
Therefore, the USB does not split samples across packets.

Universal Serial Bus Specification Revision 1.1

Chapter 6
Mechanical

This chapter provides the mechanical and electrical specifications for the cables, connectors, and cable
assemblies used to interconnect USB devices. The specification includes the dimensions, materials,
electrical, and reliability requirements. This chapter documents minimum requirements for the external
USB interconnect. Substitute material may be used as long as it meets these minimums.

6.1 Architectural Overview

The USB physical topology consists of connecting the downstream hub port to the upstream port of another
hub or to a device. The USB can operate at two speeds. Full-speed, 12 Mb/s, requires the use of a shielded
cable with two power conductors and twisted pair signal conductors. Low-speed, 1.5 Mb/s, relaxes the

cable requirement. Low-speed cable does not require shielding or twisted pair signal conductors.

The connectors are designed to be hot plugged. The USB Icon on the plugs provides tactile feedback
making it easy to obtain proper orientation.

6.2 Keyed Connector Proto col

To minimize end user termination problems, USB uses a “keyed connector” protocol. The physical
difference in the Series “A” and “B” connectors insure proper end user connectivity. The “A” connector is
the principle means of connecting USB devices. All USB devices must have an “A” connector. The “B”
connector allows device vendors to provide a standard detachable cable. This facilitates end user cable
replacement. Figure 6-1 illustrates the keyed connector protocol.

Series "A" Connectors Series "B" Connectors
¢ Series "A" plugs are ¢ Series "B" plugs are
always orientedipstream always oriented
towards théHost System downstreamtowards the
USB Device
"A" Plugs
(From the "B" Plu
. gS
USB Devicg (From the
Host Systein

"A" Receptacles

(Downstream Output

from the USB Host or
Hub)

"B" Receptacles
(Upstream Input to the | - f
USB Device or Hup

Figure 6-1. Keyed Connector Protocol
The following list explains how the plugs and receptacles can be mated:

73

Universal Serial Bus Specification Revision 1.1

e Series “A” receptaclenates with a Series “A” plug. Electrically, Series “A” receptacles function as
outputs from host systems and/or hubs.

e Series “A” plugmates with a Series “A” receptacle. The Series “A” plug always is oriented towards
the host system.

e Series “B” receptacle mates with a Series “B” plug (male). Electrically, Series “B” receptacles
function as inputs to hubs or devices.

e Series “B” plug mates with a Series “B” receptacle. The Series “B” plug is always oriented towards
the USB hub or device.

6.3 Cable

USB cable consists of four conductors, two power conductors and two signal conductors.

Full-speed cable consists of a signaling twisted paysyGND, and an overall shield. Full-speed cable

must be marked to indicate suitability for USB usage (see Section 6.6.2). Full-speed cable may be used
with either Low-speed or Full-speed devices. When Full-speed cable is used with Low-speed devices, the
cable must meet all Low-speed requirements.

Low-speed cable does not require twisted signaling conductors or the overall shield.

6.4 Cable Assembly

This specification describes three USB cable assemblies. Detachable cable, Full-speed captive cable, and
Low-speed captive cable.

The color used for the cable assembly is vendor specific, recommended colors are White, Grey, or Black.

6.4.1 Detachable Cable Assemblies

74

Full-speed devices can utilize the “B” connector. This allows the device to have a detachable USB cable.
This eliminates the need to build the device with a hardwired cable and minimizes end user problems if
cable replacement is necessary.

Devices utilizing the “B” connector must be designed to work with worst case maximum length detachable
cable. Detachable cable assemblies may be used only on Full-speed devices. Using a Full-speed detachable
cable on a Low-speed device may exceed the maximum Low-speed cable length.

Figure 6-2 illustrates a detachable cable assembly.

Universal Serial Bus Specification Revision 1.1

8 [7 [6 [5 4 [3 [2 [1
IMPORTANT NOTICE: All detachable cable assemblies must be Full Speed .
H
A A - » B
] 7
o’ [< J A (<]
G
. A= » B
Overmolded Series "A" Plug Overmolded Series "B" Plug -
(Always upstream towards the "host" system.) (Always downstream towards the USB Device.)
F
Detail C - C
_ _ (Typical USB Shielded Cable)
Detail A - A Detail B - B .
(Series "A" P|ug) (Series "B" P|ug) Polyvinyl Chloride (PVC) Jacket
> 65% Tinned Copper Braided Shield
Aluminum Metallized Polyester InnerShield |—
28 AWG STC Drain Wire
D
* * Red (Vaus) Green (D +)
D O 12.0 12.0 Black (Ground) White (D -) o
o T v
% 210 SJO % ¢
— ' — All dimensions are in millimeters (mm)
v unless otherwise noted.
4 _y Dimensions are TYPICAL and are for
vy 4 general reference purposes only.
9.0 . J
B
9.0
Optional Molded
Strain Relief
Series "A" Plug to Series "B" Plug
USB Detachable
Cable Assembly A
SIZE DATE DRAWING NUMBER REV
A | 298 N/A C
SCALE: N/A [SHEET 10f1
8 7 6 5 4 3 [2 [1

Figure 6-2. USB Detachable Cable Assembly

75

Universal Serial Bus Specification Revision 1.1

Detachable Cables must meet the following electrical requirements:

e The cable must be terminated on one end with an overmolded Series “A” plug and the opposite end is
terminated with an overmolded Series “B” plug.

e The cable must be rated for Full-speed.

e The cable impedance must match the impedance of the Full-speed drivers. The drivers are
characterized to drive specific cable impedance. Refer to Section 7.1.1 for details.

o The maximum allowable cable length is determined by signal pair attenuation. Refer to Section 7.1.17
for details.

e The maximum allowable cable length determined by the cable propagation delay. The USB utilizes an
unterminated transmission scheme. Exceeding this limit will cause signaling reflections to interfere
with data transmission. Refer to Section 7.1.14 for details.

e Differences in propagation delay between the two signal conductors must be minimized. Refer to
Chapter 7.1.3 for details.

o The GND lead provides a common ground reference between the upstream and downstream ports. The
maximum cable length is limited by the voltage drop across the GND lead. Refer to Section 7.2.2 for
details. The minimum acceptable wire gauge is calculated assuming the attached device is high power

e The VBuUslead provides power to the connected device. For detachable cablesygheiuirement
is the same as the GND lead.

6.4.2 Full-speed Captive Cable Assemblies

Full-speed captive cable assemblies may be used with either Full-speed or Low-speed devices. Assemblies
are considered captive if they are provided with a vendor-specific disconnect means. When using a Full-
speed captive cable on a Low-speed device the cable must meet all Low-speed requirements.

Figure 6-3 illustrates a Full-speed cable assembly.

76

Universal Serial Bus Specification Revision 1.1

8 7 6 5 4 3 2 1
A - —» B H
O B
A - “» B
. G
Overmolded Series "A" Plug
(Always upstreamtowards the "host" system.)
Detail A - A
(Series "A" Plug)
F
15.7
"7 ﬂ 7.5 Cut End
- (Always downstreamtowards the USB Device.) [
| [
=V
A Detail B - B (Typical Terminations) E
O O 120
° \ L S
Blunt Cut Termination Prepared Termination
R -
T Polyvinyl Chloride (PVC) Polyvinyl Chloride (PVC) Jacket
?Jacket) L > 65% Tinned Copper Braided
27.0 piune vut Termination Shield
(Length Dimension Point) .
28 AWG STC Drain Wire D
\d Red (Vsus)
A Black (Ground)
v > Green (D +) ||
— White (D -)
9.0 User Specified
Length Dimension Point
Optional Molded ¢
Strain Relief
All dimensions are in millimeters (mm) B
unless otherwise note.
Dimensions are TYPICAL and are for
general reference purposes only. Series "A" Plug to Cut End
USB Full Speed
Hardwired Cable Assembly |a
SIZE DATE DRAWING NUMBER REV
A | 2/98 N/A c
SCALE: N/A [SHEET 10f1
8 7 6 5 4 3 [2 [1

Figure 6-3. USB Full-speed Hardwired Cable Assembly

77

6.4.3

78

Universal Serial Bus Specification Revision 1.1

Full-speed Captive Cables must meet the following electrical requirements:

The cable must be terminated on one end with an overmolded Series “A” plug and the opposite end is
vendor specific. If the vendor specific interconnect is to be hot plugged it must meet the same
performance requirements as the USB “B” connector.

The cable must be rated for Full-speed.

The cable impedance must match the impedance of the Full-speed drivers. The drivers are
characterized to drive specific cable impedance. Refer to Section 7.1.1 for details.

The maximum cable length is determined by the attenuation of the signal pair. Refer to Section 7.1.17
for details.

The maximum cable length is determined by the propagation delay though the cable. The USB utilizes
an unterminated transmission scheme, exceeding this limit will cause signaling reflections to interfere
with data transmission. Refer to Section 7.1.14 for details.

Differences in propagation delay between the two signal conductors must be minimized. Refer to
Section 7.1.3 for details.

The GND lead provides a common reference between the upstream and downstream ports. The
maximum cable length is determined by the voltage drop across the GND lead. Refer to Section 7.2.2
for details. The minimum wire gauge is calculated using the worst case current consumption.

The \VBUS lead provides power to the connected device. The minimum wire gauge is vendor specific.

Low-speed Captive Cable Assemblies

Assemblies are considered captive if they are provided with a vendor-specific disconnect means. Low-
speed cable may only be used on Low-speed devices.

Figure 6-4 illustrates a Low-speed cable assembly.

Universal Serial Bus Specification Revision 1.1

8 [7 [6 [5 [4 [3 [2 [1
IMPORTANT NOTICE: For use in Low Speed applications only.
H
A - —» B
O [—J
A - L B G
Overmolded Series "A" Plug]
(Always upstream towards the "host" system.)
. F
Detail A - A
(Series "A" Plug)
Cut End
(Always downstream towards the USB Device.)
. . . . E
Detail B - B (Typical Terminations)
i N L ||
o ol 120 Blunt Cut Termination Prepared Termination
‘ o * Polyvinyl Chloride (PVC) Polyvinyl Chloride (PVC) Jacket
fa ket
& iunt Cut Termination /"~ Red (Vaus)
%E 777777777777777 ‘ (Length Dimension Point) " Black (Ground) D
27.0
:\\ Green (D +)
White (D -)]
A -] User Specified
B \ Length Dimension Point c
9.0
Optional Molded 1
Strain Relief
B
All dimensions are in millimeters (mm)
unless otherwise noted.
Dimensions are TYPICAL and are for Series "A" Plug to Cut End
general reference purposes only. USB Low Speed
Hardwired Cable Assembly [a
SIZE DATE DRAWING NUMBER REV
A 2/98 N/A C
SCALE: N/A |SHEET lofl
8 7 6 5 4 3 [2 [1

Figure 6-4. USB Low-speed Hardwired Cable Assembly

79

Universal Serial Bus Specification Revision 1.1

Low-speed Captive Cables must meet the following electrical requirements:

6.4.4

The cable must be terminated on one end with an overmolded Series “A” plug and the opposite end is
vendor specific. If the vendor specific interconnect is to be hot plugged it must meet the same
performance requirements as the USB “B” connector.

Low-Speed drivers are characterized for operation over a range of capacitive loads. This value includes
all sources of capacitance on the D+ and D-lines, not just the cable. Cable selection must insure that
total load capacitance falls between specified minimum and maximum values. If the desired
implementation does not meet the minimum requirement, additional capacitance needs to be added to
the device. Refer to section 7.1.1.2 for details.

The maximum Low-speed cable length determined by the rise and fall times of Low-speed signaling.
This forces Low-speed cable to be significantly shorter then Full-speed. Refer to Section 7.1.1.2 for
details.

Differences in propagation delay between the two signal conductors must be minimized. Refer to
Section 7.1.3 for details.

The GND lead provides a common reference between the upstream and downstream ports. The
maximum cable length is determined by the voltage drop across the GND lead. Refer to Section 7.2.2
for details. The minimum wire gauge is calculated using the worst case current consumption.

The \VBUS lead provides power to the connected device. The minimum wire gauge is vendor specific.

Prohibited Cable Assemblies

USB is optimized for ease of use. The expectation it that if the device can be plugged in it will work.
By specification, the only conditions that prevent a USB device from being successfully utilized are
lack of power, lack of bandwidth, and excessive topology depth. These conditions are well understood
by the system software.

Non-acceptable cables may work in some situations but they cannot be guaranteed to work in all
instances.

« Extension cable
Cables that provide a Series “A” plug with a series “A” receptacle or a Series “B” plug with a
Series “B” receptacle. This allows multiple cable segments to be connected together, possibly
exceeding the maximum permissible cable length.

o Cable assembly that violates USB topology rules
A cable with both ends terminated in either Series “A” plugs or Series “B” receptacles. This cable
allows two downstream ports to be directly connected.

Note: This prohibition does not prevent using a USB device to provide a bridge between two USB
busses.

e Low-speed detachable cable
Detachable cables must be Full-speed. Low-speed devices are prohibited from using detachable
cables. Detachable cable is Full-speed rated, using a long Full-speed cable exceeds the capacitive
load of Low-speed.

6.5 Connector Mechanical Configuration and Material Requirements
The USB Icon is used to identify USB plugs and the receptacles. Figure 6-5 illustrates the USB Icon

80

Universal Serial Bus Specification Revision 1.1

All dimensions are + 5%
L

) Dia:1.33L, 033L
Dia:1.67 L

Dia:L

e
«— >

<« 1.67L—»

«—233L—>

<3755l

«—5.00 L >

<« 517L >

«6.25L >

<«—8.00L >

Figure 6-5. USB Icon

6.5.1 USB Icon Location

The USB Icon is embossed, in a recessed area, on the topside of the USB plug. This provides easy user
recognition and facilitates alignment during the mating process. The USB Icon and Manufacture’s logo
should not project beyond the overmold surface. The USB Icon is required, while the Manufacture’s logo is
recommended, for both Series “A” and “B” plug assemblies. The USB Icon is also located adjacent to each
receptacle. Receptacles should be oriented to allow the Icon on the plug to be visible during the mating
process. Figure 6-6 illustrates the typical plug orientation.

Top View
-
Optional Top A |
"Locator Detail" -

mm==]
o

Locator
Height
Approximately
0.6mm
(0.024")
Manufacturer's

Engraved Logo

Engraved USB

Icon \
Locator Width
Approximately

LT/ RNY— 1]

Overmolding — —~—_| 0.5mm
(0.020")
0.6mm (0.024") 0.6mm (0.024") Max
Max Manufacturer's)
USB Icon 4’{ F % Logo Optional Top
Engraving Recess Engraving Recess "Locator Detail"

Section A - A

(Plug Cross-Section)

Figure 6-6. Typical USB Plug Orientation

81

Universal Serial Bus Specification Revision 1.1

6.5.2 USB Connector Termination Data

Table 6-1 provides the standardized contact terminating assignments by number and electrical value for
Series “A” and Series “B” connectors.

Table 6-1. USB Connector Termination Assignment

Contact _ Typical Wiring
Signal Name _
Number Assignment
1 VBUS Red
2 D- White
3 D+ Green
4 GND Black
Shell Shield Drain Wire

6.5.3 Series “A” and Series “B” Receptacles

Electrical and mechanical interface configuration data for Series "A" and Series "B" receptacles are shown
in Figure 6-7 and Figure 6-8. Also, refer to Figure 6-12, Figure 6-13, and Figure 6-14 at the end of this

chapter for typical PCB receptacle layouts.

82

Universal Serial Bus Specification Revision 1.1

8 7 | 6 | 5 | 4 | 3 | 2 1
USB Series "A" Receptacle Interface
a—12.50 £ 0.10———> "
11.10 £ 0.10
re—8.88 =+ 0.20——» R 0.64 £ 0.13 (Typical ||
[B] Center Line | .84 £ 0.05 eiea)
«—38.38 £ 0.08—» h R 0.32 £ 0.13 (Typical)
: . 0.50 + 0.10]
T, e |
) |
/ W 300420 (2) [3 i
] T ¥
Y I\\/\ f F& 512+010 L o o ||
::@5=_j 0.38 +0.13 i L —
v = ﬁ
F—’—> Center Line of 5.12 0.64 +0.13 (8) i
4,98 £ 0.25 Receptacle Contact 1.00 + 0.05 (2) -
Contact Point 3.50 £ 0.05 (2)—|« -]
Printed Circuit Board ! 1.00 £ 0.05 (
4.13 REF C\ Center Line
]I\//\/[E
All dimensions are in millimeters fnm) unless _|4
otherwise noted. : I | :
| | —
| | | :
L
USB Series "A" Receptacle and Plug Ly
Mating Features pavs === — = |
+‘«
Fully Mated Series "A"
| Receptacle and Plug 0.50£0.10 (2)
‘ [] 300+ 20(2)
Py X o]
o
7 :
o
© 8.0 MAX |
T €
I :
- &
e B
Receptacle Flange K !
1 2.67 MIN - > . .
L Interface and Mating Drawing
Allow a minimum spacing of 2.67mm between ; WA
the face of the receptacle and the plug Series "A Receptade
overmold boot. SIZE | DATE DRAWING NUMBER REV
A | 2/98 N/A C
SCALE: N/A [SHEET 10f1
8 | 7 6 5 4 | 3 | 2 | 1

Figure 6-7. USB Series "A" Receptacle Interface and Mating Drawing

83

Universal Serial Bus Specification Revision 1.1

@
~
o

[5 [4 [3 [2 1

USB Series "B" Receptacle Interface

A

4] e 8.45 + 0.10—>

«8.88 + 0.20+

48.38 + 0.08> [CF#{5:60 £ 010} 43y 05 9)

Receptacle Contact

B| Center Line<

4.98 + 0.25—= >

7 450+ 0.5°(2)

_300120(4)\ . m, D : ? 7.78;0.10
(i t v 3.18 + 0.05

(| N

v T

F_A_\\l_ T 3.67 + 0.08 CIL N ‘4_'\ TP 0.80 + 0.08
0.38 + 0.13 (4)

k R 0.38 (6) \

Contact Point
1.00 + 0.05 (4)—te= == 1.25 + 0.10 (4)

\ :::é—:—{\ Center Line
o .

L 4 fReceptacIe Housing

300+ 2°(2)
[B] Center Line §
/7% All dimensions are in millimeters (mm)
r——- unless otherwise noted.
& ﬁ
L_ 1% TN 0.50 + 0.10 (2)

L X

N

3.67 Center Line

J]

Receptacle Shell

USB Series "B" Receptacle and Plug Mating Features

77777 f] e [

- 5 5
(@} (@}
M M
o o
o / 10.5 MAX 5] 11.5 MAX
£ £
[[
> >
o o

g — v v
f 2.67 M|N4 +i1 J
Interface and Mating Drawing

Receptacle Shell

Fully Mated Plug and Receptacle USB Series "B" Receptacle
Allow a minimum spacing of 2.67mm between the SIZE [DATE DRAWING NUMBER REV
face of the receptacle and the plug overmold boot. A | 2098 N/A c
SCALE: N/A [SHEET 10f1

8 [7 [6 [5 4 3 | 2 | 1

Figure 6-8. USB Series "B" Recptacle Interface and Mating Drawing

Universal Serial Bus Specification Revision 1.1

6.5.3.1 Receptacle Injection Molded Thermoplastic Insulator Material

Minimum UL 94-V0 rated, thirty percent (30%) glass-filled polybutylene terephthalate (PBT) or
polyethylene terephthalate (PET) or better.

Typical Colors: Black, Gray and Natural.

Flammability Characteristics: UL 94-VO0 rated.

Flame Retardant Package must meet or exceed the requirements for UL, CSA, VDE, et cetera.
Oxygen Index (LOI): Greater than 21%. ASTM D 2863.

6.5.3.2 Receptacle Shell Materials
Substrate Material: 0.30 + 0.05 mm phosphor bronze, nickel silver or other copper based high strength
materials.
Plating:
1. Underplate: Optional. Minimum 1.00 micrometers (40 microinches) Nickel. In addition,
manufacturer may use a copper underplate beneath the nickel.
2. Outside: Minimum 2.5 micrometers (100 microinches) Bright Tin or Bright Tin-Lead.
6.5.3.3 Receptacle Contact Materials

Substrate Material: 0.30 + 0.05 mm minimum half-hard phosphor bronze or other the high strength copper

based material.

Plating: Contacts are to be selectively plated.
A. Option |

1. Underplate: Minimum 1.25 micrometers (50 microinches) Nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) Gold over a minimum of 0.70
micrometers (28 microinches) Palladium.

3. Solder Tails: Minimum 3.8 micrometers (150 microinches) Bright Tin-Lead over the
underplate.

B. Option Il

1. Underplate: Minimum 1.25 micrometers (50 microinches) Nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) Gold over a minimum of 0.75
micrometers (30 microinches) Palladium-Nickel.

3. Solder Tails: Minimum 3.8 micrometers (150 microinches) Bright Tin-Lead over the
underplate.

C. Option lli

1. Underplate: Minimum 1.25 micrometers (50 microinches) Nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.75 micrometers (30 microinches) Gold.

Solder Tails: Minimum 3.8 micrometers (150 microinches) Bright Tin-Lead over the
underplate.

85

Universal Serial Bus Specification Revision 1.1

6.5.4 Series “A” and Series “B” Plugs

Electrical and mechanical interface configuration data for Series "A" and Series "B" plugs are shown in
Figure 6-9 and Figure 6-10.

86

Universal Serial Bus Specification Revision 1.1

8 [7 [6 [5 [4 [3 [2
12.00 £0.10—» R 0.64+0.13 Typical [+——11.75 MIN—»
8.0 MAX —»1«—0.315 + 0.03 Typical 0.15 £ 0.10 Typical 300 + 20 Typical R
y va /\ 4.50 £ 0.10
4 0 0 ’ T]
S | AR NN | 300+ 2 >__!
1" il il | il | VA
| 4 3 2 1 | | vk
| | S X
vy | 195005 < 0.38%0.13 ¢
* lt—8.0 MAX—» \/ Plug Contact UL 94-VO Plug Housing
A A .
fe—16.0 MAX———» /1 W 11.75 MIN—
cownx [B Cemertine 516010 —ja——sem—— 202010
1.00 £ 0.05 (4) ;
L S U A I
e e B =
X [E— | o
2.50£0.05(2— * N 2 -
S S
i)
[B] Center Line | - 2.00+0.05 (2) RE— E
L__'_—__'| =
Section A - A T =l :
ection A - ' Ly 1 o
2.50 + 0.13 (4) = '
L .
Overmold Boot > B
Overall connector and cable assembly
length is measured from Datum 'A" of |,
1 the Series "A" Plug to Datum 'A" of the
I T 8.65+0.19 Series "B" Plug or to the blunt end
5 7412031 termination. -
4.2 MIN 6.41 + 0.31
COLD PLATE AREA _— Ll All dimensions are in millimeters gm)
d unless otherwise noted.
c
> e 1.0 £ 0.05 (2)
S 3.5+ 0.05 (2)
+—9.70 * 0.13—|]
Section B - B
B
{ , v Interface Drawing
0.16 + 0.15 USB Series "A" PlUg
SIZE DATE DRAWING NUMBER REV
0.13+0.13 A | 2198 N/A c
SCALE: N/A | SHEET 10f1
8 7 6 [5 4 3 [2 [

Figure 6-9. USB Series "A" Plug Interface Drawing

87

Universal Serial Bus Specif

ication Revision 1.1

" 8.00 + 0.10—
< - 5.83 £ 0.10
|| A }: 0.38 MAX 10.5 MAX
1.46+0.10 [A . 0 4 20 Typi 1
‘ n 30° £ 29 Typical
? # A _ == =
AT 1 :
G| 450+ 0.5°(2) SRR —_ —I @
; 3.29+0.05 %
. \
| I i | i) i 7.26 £ 0.10 \ J %
Y == v I 7 S
_ \ | 0:80 £ 0.05 l }// A o)
Centeere‘* = =
. of 2.85 _) v 300+ 2°(2) v
A | A
i 2.85+0.13 (2)]C\ Center Line ‘ B‘ Center Line ‘ 11.75 MIN
11.5 MAX
/1 k3.70 +0.13 —
o[—>8
£ . i — — = — —
Section A - A — —_I_— - =
— |3
i — | L] |5
c—— 1 |§
J 0.25 + 0.05 —|— — g
b 6.41 +0.31 J;;Fi= ©
4.20 MIN T T |
Gold Plate Area > B X
]] 8.65 +0.19
NY v Overall connector and cable assembly length
X N U Y is measured from Datum 'A' of the Series "B"
Plug to Datum 'A' of the Series "A" Plug or
c 1.16 MAX 7.41+£0.31 g oot d
the blunt end termination.
1.25 + 0.10 (4) g
»—4.67 + 0.10
N Center Line All dimensions are in millimeters (mm)
unless otherwise noted.
SectionB - B
B
— 0.16 £ 0.15 0.13+0.13
Typical Typical Interface Drawing
v
t USB Series "B" Plug

\

SIZE DATE
A 2/98

DRAWING NUMBER REV

N/A C

SCALE: N/A

| SHEET 10f1

3 [[1

88

Figure 6-10. USB Series “B”

Plug Interface Drawing

Universal Serial Bus Specification Revision 1.1

6.5.4.1 Plug Injection Molded Thermoplastic Insulator Material

Minimum UL 94-VO0 rated, thirty percent (30%) glass-filled polybutylene terephthalate (PBT) or
polyethylene terephthalate (PET) or better.

Typical Colors: Black, Gray and Natural.

Flammability Characteristics: UL 94-VO0 rated.

Flame Retardant Package must meet or exceed the requirements for UL, CSA and VDE.

Oxygen Index (LOI): 21%. ASTM D 2863.

6.5.4.2 Plug Shell Materials

Substrate Material: 0.30 + 0.05 mm phosphor bronze, nickel silver or other suitable material.

Plating:

A. Underplate: Optional. Minimum 1.00 micrometers (40 microinches) nickel. In addition,
manufacturer may use a copper underplate beneath the nickel.

B. Outside: Minimum 2.5 micrometers (100 microinches) bright tin or bright tin-lead.

6.5.4.3 Plug (Male) Contact Materials
Substrate Material. 0.30 + 0.05 mm half-hard phosphor bronze.

Plating. Contacts are to be selectively plated.
A. Option |

1.

Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) gold over a minimum of 0.70
micrometers (28 microinches) palladium.
3. Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.
B. Option Il
1. Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.
2. Mating Area: Minimum 0.05 micrometers (2 microinches) gold over a minimum of 0.75
micrometers (30 microinches) palladium-nickel.
3. Wire Crimp/Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over
the underplate.
C. Option lli
1. Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.
2. Mating Area: Minimum 0.75 micrometers (30 microinches) gold.

Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.

89

Universal Serial Bus Specification Revision 1.1

6.6 Cable Mechanical Configuration and Material Requirements

Full-speed and Low-speed cables differ in data conductor arrangement and shielding. Low-speed cable
does not require twisted data conductors or a shield. Figure 6-11 shows the typical Full-speed cable
construction.

Non-Twisted Power Pair: Polyvinyl Chloride (PVC) Jacket
Red: V sus

Black: Power Ground

Outer Shield >_65% Interwoven
Tinned Copper Braid

Inner Shield Aluminum
Metallized Polyester

Twisted Signaling Pair:
White: D-
Green: D+

28 AWG Tinned
Copper Drain Wire

Figure 6-11. Typical Full-speed Cable Construction

6.6.1 Description

Full-speed cable consists of one 28 to 20 AWG non-twisted power pair and one 28 AWG twisted data pair
with an aluminum metallized polyester inner shield, 28 AWG stranded tinned copper drain wire, > 65%
tinned copper wire interwoven (braided) outer shield and PVC outer jacket.

Low-speed cable does not require the data pair be twisted or a shield and drain wire.

90

Universal Serial Bus Specification Revision 1.1

6.6.2 Construction

Raw materials used in the fabrication of this cable shall be of such quality that the fabricated cable is
capable of meeting or exceeding the mechanical and electrical performance criteria of the most current
USB Specification Revision, and all applicable domestic and international safety/testing agency
requirements, e.g., UL, CSA, BSA, NEC, et cetera, for electronic signaling and power distribution cables in
its category.

Table 6-2. Power Pair

American Wire Nominal Conductor | Stranded Tinned
Gauge (AWG) Outer Diameter Conductors
0.381 mm (0.015") 7 x 36
28 0.406 mm (0.016") 19 x40
o6 0.483 mm (0.019”) 7x 34
0.508 mm (0.020") 19 x 38
” 0.610 mm (0.024") 7x32
0.610 mm (0.024") 19 x 36
- 0.762 mm (0.030") 7x30
0.787 mm (0.031") 19x 34
20 0.890 mm (0.035") 7x 28
0.931 mm (0.037") 19 x 32

Note: Minimum conductor construction shall be stranded tinned copper.

Non-Twisted Power Pair:

A. Wire Gauge: Minimum 28 AWG or as specified by the user contingent upon the specified cable
length. Refer to Table 6-2.

B. Wire Insulation: Semirigid polyvinyl chloride (PVC).
1. Nominal Insulation Wall Thickness: 0.25 mm (0.010").
2. Typical Power (V9 Conductor: Red Insulation.

3. Typical Ground Conductor: Black Insulation.

Signal Pair:
A. Wire Gauge: 28 AWG minimum. Refer to Table 6-3.

Table 6-3. Signal Pair

American Wire Nominal Conductor Stranded Tinned
Gauge (AWG) Outer Diameter Conductors
08 0.381 mm (0.015") 7 x 36
0.406 mm (0.016") 19 x 40

91

92

Universal Serial Bus Specification Revision 1.1

Note: Minimum conductor construction shall be stranded tinned copper
B. Wire Insulation: High-density polyethylene (HDPE), alternately foamed polyethylene or foamed
polypropylene.
1. Nominal Insulation Wall Thickness: 0.31 mm (0.012").
2. Typical Data Plus (+) Conductor: Green Insulation.
3. Typical Data Minus (-) Conductor: White Insulation.

C. Nominal Twist Ratio (not required for Low-speed): One full twist every 60 mm (2.36") to 80 mm
(3.157).

Aluminum Metallized Polyester Inner Shield (not required for Low-speed):
A. Substrate Material: Polyethylene terephthalate (PET) or equivalent material.
B. Metallizing: Vacuum deposited aluminum.

C. Assembly:

1. The aluminum metallized side of the inner shield shall be positioned facing out to ensure
direct contact with the drain wire.

2. The aluminum metallized inner shield shall over lap by approximately one-quarter turn.

Drain Wire (not required for Low-speed):

A. Wire Gauge: Minimum 28 AWG stranded tinned copper (STC) non-insulated. Refer to Table
6-4.

Table 6-4. Drain Wire Signal Pair

American Wire Nominal Conductor | Stranded Tinned
Gauge (AWG) Outer Diameter Conductors
08 0.381 mm (0.015") 7 x 36
0.406 mm (0.016") 19 x40

Interwoven (Braided) Tinned Copper Wire (ITCW) Outer Shield (not required for Low-speed):
A. Coverage Area: Minimum 65%.

B. Assembly. The interwoven (braided) tinned copper wire outer shield shall encase the aluminum
metallized PET shielded power and signal pairs and shall be in direct contact with the drain wire.

Outer Polyvinyl Chloride (PVC) Jacket:

A. Assembly: The outer PVC jacket shall encase the fully shielded power and signal pairs and shall
be in direct contact with the tinned copper outer shield.

B. Nominal Wall Thickness: 0.64 mm (0.025").
Marking: The cable shall be legibly marked using contrasting color permanent ink.
A. Minimum marking information for Full-speed cable shall include:
USB SHIELDED <Gauge/2C + Gauge/2C> UL CM T5— UL Vendor ID
B. Minimum marking information for Low-speed cable shall include:

USB specific marking is not required for Low-speed cable.

Universal Serial Bus Specification Revision 1.1

Nominal Fabricated Cable Outer Diameter:

This is a nominal value and may vary slightly from manufacturer to manufacturer as function of the
conductor insulating materials and conductor specified. Refer to Table 6-5.

Table 6-5. Nominal Cable Diameter

Shielded USB Nominal Outer

Cable Configuration Cable Diameter
28/28 4.06 mm (0.160")
28/26 4.32 mm (0.170")
28/24 4.57 mm (0.180")
28/22 4.83 mm (0.190")
28/20 5.21 mm (0.205")

6.6.3 Electrical Characteristics
All electrical characteristics shall be measured at or referencedt€+«86 F).

Voltage Rating: 30 Vrms maximum.

Conductor Resistance: Conductor resistance shall be measured in accordance with ASTM-D-4566 Section
13. Refer to Table 6-6.

Conductor Resistance Unbalance (Pairs): Conductor resistance unbalance between two (2) conductors of
any pair shall not exceed five percent (5%) when measured in accordance with ASTM-D-4566 Section 15.

Table 6-6. Conductor Resistance

American Ohms (@) / 100 Meters
Wire Gauge (AWG) Maximum

28 23.20Q

26 14.60Q

24 9.09Q2

22 5.74Q2

20 3.58Q

6.6.4 Cable Environmental Characteristics
Temperature Range:

A. Operating Temperature Range?® @to +50 C.
B. Storage Temperature Range: *-20to +60 C.
C. Nominal Temperature Rating: +20.

Flammability: All plastic materials used in the fabrication of this product shall meet or exceed the
requirements of NEC Article 800 for communications cables Type CM (Commercial).

93

6.6.5 Listing

Universal Serial Bus Specification Revision 1.1

The product shall be UL listed per UL Subject 444, Class 2, Type CM for Communications Cable

Requirements.

6.7 Electrical, Mechanical and Environmental Compliance

Standards

Table 6-7 lists the minimum test criteria for all USB cable, cable assemblies and connectors

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards

Test Description

Test Procedure

Performance Requirement

Visual and Dimensional
Inspection

EIA 364-18

Visual, dimensional and functiong
inspection in accordance the USH
quality inspection plans.

Must meet or exceed the
requirements specified by the
most current version of Chapter
| of the USB Specification.
3

[¢2]

Insulation Resistance

EIA 364-21

The object of this test procedure i
to detail a standard method to
assess the insulation resistance g
USB connectors. This test
procedure is used to determine th
resistance offered by the insulatig
materials and the various seals o
connector to a DC potential
tending to produce a leakage of
current through or on the surface
these members.

1,000 M2 minimum.

n

of

Dielectric
Withstanding Voltage

EIA 364-20

The object of this test procedure i
to detail a test method to prove th
a USB connector can operate
safely at its rated voltage and
withstand momentary over

potentials due to switching, surge
and/or other similar phenomena.

The dielectric must withstand 50
VAC for one minute at sea level

7]

n

(=)

Low Level
Contact Resistance

EIA 364-23

The object of this test is to detail amust be in a connector housing.

standard method to measure the
electrical resistance across a pai
mated contacts such that the
insulating films, if present, will not
be broken or asperity melting will
not occur.

30 N2 maximum when measure
at 20 mV maximum open circuit
at 100 mA. Mated test contacts

of

94

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Contact Current
Rating

EIA 364-70 — Method B

The object of this test procedure i
to detail a standard method to

assess the current carrying capacigny point in the USB connector
of mated USB connector contacts. under test.

1.5 A at 250 VAQminimum
when measured at an ambient
temperature of Z5C. With

spower applied to the contacts, th
A T shall not exceed +8@ at

Contact Capacitance

EIA 364-30

The object of this test is to detail

standard method to determine the
capacitance between conductive
elements of a USB connector.

2 pF maximununmated per
contact

<5}

Insertion Force

EIA 364-13

The object of this test is to detail
standard method for determining

the mechanical forces required for

inserting a USB connector.

35 Newtons maximum at a
maximum rate of 12.5 mm
(0.492") per minute

a

Extraction Force

EIA 364-13

The object of this test is to detail

standard method for determining

the mechanical forces required f
extracting a USB connector.

10 Newtons minimum at a
maximum rate of 12.5 mm
(0.492") per minute

a

or

Durability

EIA 364-09

The object of this test procedure i
to detail a uniform test method fo
determining the effects caused by
subjecting a USB connector to the
conditioning action of insertion
and extraction, simulating the
expected life of the connectors.
Durability cycling with a gauge is
intended only to produce
mechanical stress. Durability
performed with mating
components is intended to produ
both mechanical and wear stress

1,500 insertion/extraction cycles
at a maximum rate of 200 cycleq
per hour

S

1%

e

95

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Cable Pull-Out

EIA 364-38
Test Condition A

The object of this test procedure i
to detail a standard method for
determining the holding effect of
USB plug cable clamp without
causing any detrimental effects
upon the cable or connector
components when the cable is
subjected to inadvertent axial
tensile loads.

After the application of a steady
state axial load of 40 Newtons fq
one minute

n

554

Physical Shock

EIA 364-27
Test Condition H

The object of this test procedure i
to detail a standard method to
assess the ability of a USB
connector to withstand specified
severity of mechanical shock.

No discontinuities of 1iS or
longer duratiorwhen mated USB

connectors are subjected to 11 s

duration 30 Gs half-sine shock
pulses. Three shocks in each
Sdirection applied along three
mutually perpendicular planes fa
a total of 18 shocks

Random Vibration

EIA 364-28
Test Condition V Test Letter A

This test procedure is applicable to

USB connectors that may, in
service, be subjected to condition
involving vibration. Whether a
USB connector has to function
during vibration or merely to
survive conditions of vibration
should be clearly stated by the
detailed product specification. In
either case, the relevant
specification should always
prescribe the acceptable
performance tolerances.

No discontinuities of 1iS or
longer duratiorwhen mated USB
connectors are subjected to 5.3
Gs RMS. 15 minutes in each of
three mutually perpendicular
planes

%)

96

=

—

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Thermal Shock

EIA 364-32

Test Condition |

The object of this test is to

determine the resistance of a US
connector to exposure at extreme
of high and low temperatures and

to the shock of alternate exposures

to these extremes, simulating the
worst case conditions for storage
transportation and application.

10 Cycles —5%C and +85C. The
USB connectors under test mus
be mated

W

Humidity Life

EIA 364-31
Test Condition A Method IlI

The object of this test procedure i
to detail a standard test method f
the evaluation of the properties of
materials used in USB connector
as they are influenced by the

effects of high humidity and heat.

168 Hours minimum (seven (7)
complete cycles). The USB
connectors under test shall be
tested in accordance with EIA
364-31

Or

D

Solderability

EIA 364-52

The object of this test procedure i
to detail a uniform test method fo
determining USB connector
solderability. The test procedure
contained herein utilizes the soldé
dip technique. It is not intended t
test or evaluate solder cup, solde
eyelet, other hand-soldered type
SMT type terminations.

USB contact solder tails shall

pass 95% coverage after one hd

steam aging as specified in
sCategory 2

D
=

- O

Flammability

UL 94 V-0

This procedure is to ensure
thermoplastic resin compliance ta
UL flammability standards.

The manufacturer will require it
thermoplastic resin vendor to
supply a detailed C of C with

shall clearly show the resin’s UL
listing number, lot number, date
code, et cetera.

97

each resin shipment. The C of ¢

ur

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Cable Imedance
Only required for Full-speed

The object of this test is to insure
the signal conductors have the
proper impedance.

1. Connect the Time Domain
Reflectometer (TDR) outputs
to the impedance/delay/skew
test fixture (Note 1). Use
separate 50 Ohm cables for t
plus (or true) and minus (or
complement) outputs. Set the
TDR head to differential TDR
mode.

2. Connect the Series "A" plug @
the cable to be tested to the
text fixture, leaving the other
end open-circuited.

3. Define a waveform compose
of the difference between the|
true and complement
waveforms, to allow
measurement of differential
impedance.

4. Measure the minimum and
maximum impedances found

between the connector and the

open circuited far end of the
cable.

he

=4

)

Impedance must be in the rangd
specified in Table 7-9 @.

98

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Signal Pair Attenuation

Only required for Full-speed

The object of this test is to insure
that adequate signal strength is
presented to the receiver to
maintain a low error rate.

1. Connect the Network
Analyzer output port (port 1)
to the input connector on the
attenuation test fixture (Note
2).

2. Connect the Series “A” plug
of the cable to be tested to the
test fixture, leaving the other
end open-circuited.

3. Calibrate the network analyze
and fixture using the
appropriate calibration
standards, over the desired
frequency range.

4. Follow the method listed in
Hewlett Packard Application
Note 380-2 to measure the
open-ended response of the
cable.

5. Short circuit the Series “B”
end (or bare leads end, if a
captive cable), and measure
the short-circuit response.

6. Using the software in H-P
App. Note 380-2 or
equivalent, calculate the cabl
attenuation, accounting for
resonance effects in the cable
as needed.

92

D

=

Refer to Section 7.1.17 for
frequency range and allowable
attenuation.

99

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Propagation Delay

The purpose of the test is to verify Full-speed

the end to end propagation of the
cable.

1. Connect one output of the
TDR sampling head to the D+
and D- inputs of the
impedance/delay/skew test
fixture (Note 1). Use one D
cable for each signal, and set
the TDR head to differential
TDR mode.

2. Connect the cable to be teste
to the test fixture. If
detachable, plug both
connectors in to the matching
fixture connectors. If captive,
plug the series “A” plug into
the matching fixture
connector, and solder the
stripped leads on the other e
to the test fixture.

3. Measure the propagation delz
of the test fixture by
connecting a short piece of
wire across the fixture from
input to output, and recording
the delay.

4. Remove the short piece of
wire and re-measure the
propagation delay. Subtract
from it the delay of the test
fixture measured in the
previous step.

See Section 7.1.1.1, Section
7.1.4, Section 7.1.16 and Tabl
7-9 (TFscBL)

I Low-speed

See Section 7.1.1.2, Section
7.1.16 and Table 7-9 (§cBL)

o

nd

1y

11%

100

Universal Serial Bus Specification Revision 1.1

Table 6-7. USB Electrical, Mechanical and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Propagation Delay Skew

This test insures that the signal on Propagation skew must meet

both the D+ and D- lines arrive at
the receiver at the same time.

1. Connectthe TDR to the
fixture with test sample
cable, as in the previous
section.

2. Measure the difference in

delay for the two conductors

in the test cable. Use the
TDR cursors to find the
open-circuited end of each
conductor (where the
impedance goes infinite),
and subtract the time
difference between the two
values.

the requirements as listed in
Section 7.1.3.

Capacitive Load

Only required for Low-speed

The purpose of this test is to insu
the distributed inter-wire
capacitance is less then the lump

capacitance specified by the Lowr

speed transmit driver.

1. Connect the one lead of the
Impedance Analyzer to the D
pin on the
impedance/delay/skew fixture
(Note 1), and the other lead t
the D- pin.

2. Connect the series "A" plug t
the fixture, with the series “B”
end leads open-circuited.

3. Set the Impedance Analyzer
a frequency of 100 kHz, to
measured the capacitance.

re See Section 7.1.1.2 and Tabl€|
7-7 (QLINUA)
ed

+

to

Notel:

Impedance, propagation delay and skew test fixture.
This fixture will be used with the TDR for measuring the time domain performance of the cable under test.

The fixture impedance should be matched to the equipment, typic&lly 60axial connectors should be
provided on the fixture for connection from the TDR.

Note 2:

Attenuation text fixture
This fixture provides a means of connection from the network analyzer to the Series "A" plug. Since USB

signals are differential in nature and operate over balanced cable, a transformer or balun (North Hills

NH13734 or equivalent) is ideally used. The transformer converts the unbalanced (also known as single-

ended) signal from the signal generator which is typically¢a &@put, to the balanced (also known as

differential) and likely different impedance loaded presented by the cable. A second transformer or balun

101

Universal Serial Bus Specification Revision 1.1

should be used on the other end of the cable under test, to convert the signal back to unbalanced from of the
correct impedance to match the network analyzer.

6.7.1 Applicable Documents
American National Standard/Electronic Industries Association

ANSI/EIA-364-C (12/94) Electrical Connector/Socket Test Procedures
Including Environmental Classifications

American Standard Test Materials

ASTM-D-4565 Physical and Environmental Performance Properties
of Insulation and Jacket for Telecommunication
Wire and Cable, Test Standard Method

ASTM-D-4566 Electrical Performance Properties of Insulation and
Jacket for Telecommunication Wire and Cable, Test
Standard Method

Underwriters’ Laboratory, Inc.

UL STD-94 Test for Flammability of Plastic materials for Parts
in Devices and Appliances

UL Subject-444 Communication Cables

6.8 USB Grounding

The shield must be terminated to the connector plug for completed assemblies. The shield and chassis
are bonded together. The user selected grounding scheme for USB devices and cables must be consistent
with accepted industry practices and regulatory agency standards for safety and EMI/ESD/RFI.

6.9 PCB Reference Drawings

The following drawings describe typical receptacle PCB interfaces. This is included for information
purposes only.

102

Universal Serial Bus Specification Revision 1.1

8 7 [6 [5 [4 [3 [2 1

m

Reference Drawing Only

H
16.0 REF
6.5 REF 6.0
4——13.1 REF—»» 2.80 + 0.10 ’47 13.9 REF 4’{ ||
2.0 REF -
i LIULI L.[ULI

5 N H= _f :
14.3 REF

10.3 REF —

VAT A EREVALY

12.5+0.10
11120,

-

4

T

R 0.64 + 0.13 Typical (2) 1

1.84 + 0.05

[
—— 1 5.12+0.10
/

v

2.56 £ 0.05

Thermoplastic Insulator UL 94-VO

250 0.05 -I‘*J"H.SO + 005 L0+ 0.05 Wide - Selectively Plated Contact (4) 5

2.00 + 0.05

160.92+0.10 (4)

i 7.00 +0.10 4—»‘
2.00+£0.10 —l"

4 bbb

NOTES:

1. Critical Dimensions are TOLERANCED
and should not be deviated. c

A dhdh o ! 2. Dimensions that are labeled REF are n
B A G} i typical dimensions and may vary from
! manufacturer to manufacturer.
2.71+0.10 /¢ | ‘

@

3. All dimensions are in millimeters (mm) unless
otherwise noted.

}4* 13.14+ 0.10 4’{

@ 2.30+0.10 (2)
Printed Circuit Board (PCB) Layout

Single Pin-Type

Series "A" Receptacle

SIZE DATE DRAWING NUMBER REV
A 2/98 C

SCALE: N/A |SHEET 1of 1

8 7 6 5 4 3 [2 [1

Figure 6-12. Single Pin-Type Series "A" Receptacle

103

Universal Serial Bus Specification Revision 1.1

NOTES:

and should not be deviated.

1. Critical Dimensions are TOLERANCED

Dimensions that are labeled REF are
typical dimensions and may vary from

manufacturer to manufacturer.

unless otherwise noted.

. All dimensions are in millimeters (mm)

8 [7 6 5 [4 [3 2 [1
1 T ’(E—u’ ——
— A A
H 1 ﬁl | ! — ﬂ) H
— o T S
15.60 REF KA A A
B O I —]
14.70 £ 0.10 1
Y Y WA
D 1 2 3 4]
G G
[e — |) o
Y T A A T
|| Y A U = |J", |
13.78 +0.10 U
12.30 REF
F 2.62+0.05 11.01£ 0.10 F
it It -
|<_,|_ ! |
m 570 REF 13.07 £ 0.10 (2)—e—w»le »—7.00£0.10
e»l—2.00 REE : 2.00 £ 0.10 “>le>—250£0.10 |
12.50 + 0.10 |
+ 2.50 +0.10 - !
|
E [[|
? —1 | 262:0.05 i
— I .
j | y OO -O O 5.68£0.10 !
i e
O ©
! |
b i i
- | .
, @ 0.92 £ 0.10 (8)
L I A 10.28 + 0.20 [
5 : @ 2.3+0.10 (4) !
L - 11.10 REF | !
|
c 10.30 REF | —— Connector Front Edge — |
|
—16.95 REF—— | Printed Circuit Board (PCB) Layout !
i 1

Reference Drawing Only

Dual Pin-Type

Series "A" Receptacle

SIZE DATE DRAWING NUMBER REV

A 2/98 N/A C

SCALE: N/A |SHEET 1of 1

8 [7 [6

3 [2 [1

104

Figure 6-13. Dual Pin-Type Series "A" Receptacle

Universal Serial Bus Specification Revision 1.1

1.0 + 0.05 Wide - Selectively Plated Contacts (4)

Thermoplastic Insulator UL 94-VO0

q A

T oo [
11.50 REF T 17 +_'_" 1 6

— — v

gD LU

|t

$0.92+0.1 (4)
NOTES: @2.30+0.1 (2)

Printed Circuit Board (PCB) Layout

2714010l =I== 3.01+0.10 3.50 REF Pl—mo.lo
845+ 0.10—»
2.00 +0.10 -
4.71+ 0,10« >
|
i I £
| ——12.04 + 0.10—» |
: 2.50 + 0.10 -« : -
12.00REf | 477*0.10—= > i
| 2.00+0.10 |
i i OO [D
I y m Fan) I
i Y O L
| TR ~ i H
i N] |
«—10.30 REF4>‘ | 2.71+0.10 I
i i
'« 16.00REF————» i I ¢
i i
i i
i i
i i
i i

1. Critical Dimensions are TOLERANCED
and should not be deviated.

2. Dimensions that are labeled REF are Reference DraWIng Only

e — e

typical dimensions and may vary from]]
manufacturer to manufacturer. Single Pin-Type
3. All dimensions are in millimeters (mm) Series "B" Receptacle
Un|eSS OtherWiSe noted. SIZE DATE DRAWING NUMBER REV
A 2/98 N/A C
SCALE: N/A |SHEET lofl
8 [7 [6 5 4 | 3 [2 [1

Figure 6-14. Single Pin-Type Series "B" Receptacle

105

Universal Serial Bus Specification Revision 1.1

106

Universal Serial Bus Specification Revision 1.1

Chapter 7
Electrical

This chapter describes the electrical specification for the USB. It contains signaling, power distribution,
and physical layer specifications.

7.1 Signaling

The signaling specification for the USB is described in the following subsections.

7.1.1 USB Driver Characteristics

The USB uses a differential output driver to drive the USB data signal onto the USB cable. The static
output swing of the driver in its low state must be belaw Ymax) of 0.3V with a 1.5R load to 3.6V and

in its high state must be above the”{min) of 2.8V with a 15K load to ground as listed in Table 7-5.
Full-speed drivers have more stringent requirements, as described in Section 7.1.1.1. The output swings
between the differential high and low state must be well-balanced to minimize signal skew. Slew rate
control on the driver is required to minimize the radiated noise and cross talk. The driver’s outputs must
support three-state operation to achieve bi-directional half-duplex operation.

USB devices must be capable of withstanding continuous exposure to the waveforms shown in Figure 7-1
while in any drive state. These waveforms are applied directly into each USB data pin from a voltage
source with an output impedance o£89The open-circuit voltage of the source shown in Figure 7-1 is
based on the expected worst-case overshoot and undershoot.

It is recommended that these DC and AC stresses be used as qualification criteria against which the long-
term reliability of each device is evaluated.

Evaluation Setup

D+ or D- pin 60nS
on USB connector <« (min) P

nearest device 4.6V

R 4-20ns

USB SRC
Device & N a
- -1.0v
<) <>
166.7ns
Rsrc = 390 +2% « (6MHz) —>

The signal produced by the voltage generator may be

distorted when observed at the data pin due to input

protection devices possibly incorporated in the USB
device.

Figure 7-1. Maximum Input Waveforms for USB Signaling

A USB device must be able to withstand a continuous short circuit of D+ and Bug) @ND, other data
line, or the cable shield at the connector. The device must not be damaged when presented with a driving
signal that provides a duty cycle of 50% transmit and 50% receive. The transmit phase consists of a

symmetrical signal that toggles between drive high and drive low. This requirement must be met for max
value of \BUS.

107

Universal Serial Bus Specification Revision 1.1

7.1.1.1 Full-speed (12Mb/s) Driver Characteristics

A full-speed USB connection is made through a shielded, twisted pair cable with a characteristic
impedance (g of 9002 £15% and a maximum one-way delay of 26ns. The impedance of each of the
drivers (DRv) must be between 2Band 442 i.e. within the grey area in Figure 7-3.

For a CMOS implementation, the driver impedance will typically be realized by a CMOS driver with an
impedance significantly less than this resistance with a discrete series resistor making up the balance as
shown in Figure 7-2. The series resistari®included in the buffer impedance requirement shown in

Figure 7-3. In the rest of the chapter, references to the buffer assume a buffer with the series impedance
unless stated otherwise.

Buffer Output Imped. (Z BuUF)

TxD+ Rs
\ D+ (28Qto 44Q Equiv. Imped.)
— Identical
O CMOS
Buffers
TXD- WW——> D- (28Q to 44Q Equiv. Imped.)
Rs

Figure 7-2. Example Full-speed CMOS Driver Circuit

The buffer impedance must be measured for driving high as well as driving low. Figuateows the
composite V/I characteristics for the full-speed drivers with included series damping ressstor iR
characteristics are normalized to the steady-state, unloaded output swing of the driver. The normalized
driver characteristics are found by dividing the measured voltages and currents by the actual swing of the
driver under test. The normalized V/I curve for the driver must fall entirely inside the shaded region. The
V/I region is bounded by the minimum driver impedance above and the maximum driver impedance
below. The minimum drive region is intersected by a constant current region ob#firiA‘when driving

low and -|6.1\WWH|MAwhen driving high. This is the minimum current drive level necessary to ensure that
the waveform at the receiver crosses the opposite single-ended switching level on the first reflection.

When testing, the current into or out of the device need not exd€edl*VoH mA and the voltage
applied to D+/D- need not exceed 0.8 for the drive low case and need not drop below Oorfor
the drive high case.

108

Universal Serial Bus Specification Revision 1.1

drive low
louT
MA 1 Slope = 1/280
T
10.71 * [Von|- Test Limit
6.1* [Von] .
2.32 Slope = 1/44Q
0
0 * * V
OV 027Nen 03Noryur (Volts) oH
0
drive hi gh ol Janc
ope = \
-6.1* Vo
. Test Limit !
A0 TNe 4= mmm e e r ! Slope = 1/28Q
I
I
louT !
(mA) ||
I
I
I
I
1
° Vour (Volts) 0.7"Vou 0.73"Vox Vor

Figure 7-3. Full-speed Buffer V/I Characteristics

109

Universal Serial Bus Specification Revision 1.1

Figure 7-4 shows the full-speed driver signal waveforms.

Driver
Signal Pins

Vss

One Bit
< Time

(12Mb/s) p_ L

One-Way
Trip Cable
Delay

VIH (min)

AN

Receiver

Signal Pins

Signal pins pass
input spec levels
after one cable
delay

)\ .

\

VIL (max) X
Vss

Figure 7-4. Full-speed Signal Waveforms

7.1.1.2 Low-speed (1.5Mb/s) Driver Characteristics

A low-speed device must have a captive cable with the Series A connector on the plug end. The
combination of the cable and the device must have a single-ended capacitance of no less than 200pF and no

more than 450pF on the

D+ or D- lines.

The propagation delay (8cBL) of a low-speed cable must be less than 18ns. This is to ensure that the
reflection occurs during the first half of the signal rise/fall, which allows the cable to be approximated by a

lumped capacitance.

ya

One Bit
Time
(1.5Mb/s)

AVAN

VIH (min)

Driver
Signal Pins

AV

Signal pins
pass output
spec levels
with minimal
reflections and
ringing

VIL (max)
Vss L

J K

J N\

Figure 7-5. Low-speed Driver Signal Waveforms

7.1.2 Data Signal Rise and Fall

The output rise time and fall times are measured between 10% and 90% of the signal (Figure 7-6). Rise
and fall time requirements apply to differential transitions as well as to transitions between differential and

single-ended signaling.

110

Universal Serial Bus Specification Revision 1.1

The rise and fall times for full-speed buffers are measured with the load shown in Figure 7-7. The rise and
fall times must be between 4ns and 20ns, and matched to wit®% to minimize RFI emissions and
signal skew. The transitions must be monotonic.

The rise and fall times for low-speed buffers are measured with the load shown in Figure 7-8. The
capacitive load shown in Figure 7-8 is representative of the worst-case load allowed by the specification.

A downstream port is allowed 150pF of input/output capacitanc®}JC A low-speed device (including

cable) may have a capacitance of as little as 200pF and as much as 450pF. This gives a range of 200pF to
600pF as the capacitive load that a downstream low-speed buffer might encounter. Upstream buffers on
low-speed devices must be designed to drive the capacitance of the attached cable plus an additional
150pF. If a low-speed buffer is designed for an application where the load capacitance is known to fall in a
different range, the test load can be adjusted to match the actual application. Low-speed buffers on hosts
and hubs that are attached to USB receptacles must be designed for the 200pF to 600pF range. The rise
and fall time must be between 75ns and 300ns for any balanced, capacitive test load. In all cases, the edges
must be matched to withit20% to minimize RFI emissions and signal skew. The transitions must be
monotonic.

For both full-speed and low-speed signaling, the crossover voltagrs)(¥hust be between 1.3V and
2.0v.

This specification does not require matching signal swing matching to any greater degree than described
above. However, when signaling, it is preferred that the average voltage on the D+ and D- lines should be
constant. This means that the amplitude of the signal swing on both D+ and D- should be the same; the

low and high going transition should begin at the same time and change at the same rate; and the crossover
voltage should be the same when switching to a J or K. Deviations from signal matching will result in
common-mode noise that will radiate and affect the ability of devices and systems to pass tests that are
mandated by government agencies.

Rise Time Fall Time

Differential
Data Lines

Figure 7-6. Data Signal Rise and Fall Time

Full-speed
Buffer
| Rs 1
TxD+ | > AA !
1 1
1 1
1 N Cp
i Rs 1 1
TxD- AN 1 -
1 1
1
C.=50pF

Figure 7-7. Full-speed Load

111

Universal Serial Bus Specification Revision 1.1

Low-speed Low-speed
____Buffer —__
] Rs !
TXD_+L>J\/\/_;j__
! 1
: :,I C. 3.6V
: Rs '= 1.5KQ
T&L> '
! 1
] i C
C. = 200pF to 600pF C. = 50pF to 150pF
Low-speed downstream port load Low-speed upstream port load

Figure 7-8. Low-speed Port Loads

Note: the CL for low-speed port load only represents the range of loading that might be added when the
low-speed device is attached to a hub. The low-speed buffer must be designed to drive the load of its
attached cable plus CL. A low-speed buffer design that can drive the downstream port test load would be
capable of driving any legitimate upstream load.

7.1.2.1 Driver Usage

The upstream ports (towards the host) of all hubs and full-speed functions must use full-speed drivers.

The upstream hub port transmits data at both full- and low-speed data rates. However, the signaling
always uses full-speed signaling conventions and edge rates (refer to Figure 7-13 Upstream Full Speed Port
Transceiver and Table 7-1 Signaling Levels). Transmission of low-speed data does not change the driver’s
characteristics. The upstream port of low-speed functions must use a low-speed driver.

External downstream ports of all hubs (including the host), are required to be capable of both driver
characteristics, such that any type of device can be plugged in to these ports. When the transceiver is in
full-speed mode it uses full-speed signaling conventions and edge rates. In low-speed it uses low-speed
signaling conventions and edge rates (refer to Figure 7-14 Downstream Port Transceiver and Table 7-1
Signaling Levels).

7.1.3 Cable Skew

The maximum skew introduced by the cable between the differential signaling pair (i.e., D+ and D-
(Tskew)) must be less than 400pS and is measured as described in Section 6.7.

7.1.4 Receiver Characteristics

A differential input receiver must be used to accept the USB data signal. The receiver must feature an
input sensitivity (\b1) of at least 200mV when both differential data inputs are in the differential common
mode range (¥wm) of 0.8V to 2.5V, as shown in Figure 7-9.

In addition to the differential receiver, there must be a single-ended receiver for each of the two data lines.
The receivers must have a switching threshold between 0.8y dgid 2.0V (\H). It is recommended that
the single-ended receivers incorporate hysteresis to reduce their sensitivity to noise.

Both D+ and D- may temporarily be less than Vih(min) during differential signal transitions. This period
can be up to 14ns €87) for full-speed transitions and up to 210ns<T) for low-speed transitions. Logic
in the receiver must ensure that that this is not interpreted as an SEO.

112

Universal Serial Bus Specification Revision 1.1

Differential Input Voltage Range

A
v

Differential Output

Crossover
\Voltage Range
1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1
l L L L L I L 1 1 1 1 1 1 1 1 1 1 1 1
-1.0 e 0.0 02 04 06 038 1.0 1.2 1.4 1.6 1.8 2.0 2.2 24 26 2.8 3.0 3.2 e 4.6

Input Voltage Range (volts)

Figure 7-9. Differential Input Sensitivity Range

7.1.5 Device Speed Identification

The USB is terminated at the hub and function ends as shown in Figure 7-10 and Figure 7-11. Full-speed
and low-speed devices are differentiated by the position of the pull-up resistor on the downstream end of
the cable:

e Full-speed devices are terminated as shown in Figure 7-10 with the pull-up resistor on the D+ line.
e Low-speed devices are terminated as shown in Figure 7-11 with the pull-up resistor on the D- line.
e The pull-down terminators on downstream ports are resistors 6f 5% connected to ground.

The design of the pull-up resistor must ensure that the signal levels satisfy the requirements specified in
Table 7-1 In order to facilitate bus state evaluation that may be performed at the end of a reset, the design
must be able to pull-up D+ or D- from OV totMmin) within the minimum reset relaxation time of 255

A device that has a detachable cable must dsBk& +5% resistor tied to a voltage source between 3.0V

and 3.6V (MERM) to satisfy these requirements. Devices with captive cables may use alternative
termination means. However, the Thevenin resistance of any termination must be no less(than 900

Note: Thevenin resistance of termination does not include th® 5%o resistor on host/hub.

The voltage source on the pull-up resistor must be derived from or controlled by the power supplied on the
USB cable such that whersYs is removed, the pull-up resistor does not supply current on the data line to
which it is attached.

|Full-speed USB
Full-speed or .
Low-speed USB Rpd :@): Transceiver

Transceiver |D- | D- |

Z,=90Q £15%

Rpd
’ Rpa=15KQ £5% Hub Upstream Port
Host or or .
Hub Port Rpu=1.5KQ £5% Full-speed Function

Figure 7-10. Full-speed Device Cable and Resistor Connections

113

7.1

114

Universal Serial Bus Specification Revision 1.1

D+ ;RWDJr Low-speed USB
Full-speed or | J Transceiver
Low-speed USB Rpa 'H):
Transceiver - —I D- I Slow Slew Rate
Ry Rpa=15K Q) 5% Buffers
Host or Rpu=1.5K2 £5% (nominal)
Hub Port Low-speed Function

Figure 7-11. Low-speed Device Cable and Resistor Connections

.6 Input Characteristics

The input impedance of D+ or D- without termination should B&0 K2 (ZINP). The input capacitance of

a port is measured at the connector pins. Upstream and downstream ports are allowed different values of
capacitance. The maximum capacitance (differential or single-ended) (CIND) allowed on a downstream
port of a hub or host is 150pF on D+ or D-. This is comprised of up to 75pF of lumped capacitance to
ground on each line at the transceiver and in the connector, and an additional 75pF capacitance on each
conductor in the transmission line between the receptacle and the transceiver. The transmission line
between the receptacle and iRust be 9O +15%).

The maximum capacitance on an upstream port of a full-speed device with a detachablencatjés(C

100pF on D+ or D- . This is comprised of up to 75 pF of lumped capacitance to ground on each line at the
transceiver and in the connector, and an additional 25pF capacitance on each conductor in the transmission
line between the receptacle and the transceiver. The difference in capacitance between D+ and D- must be
less than 10%.

For full-speed devices with captive cables, the device itself may have up to 75pF of lumped capacitance to
ground on on D+ and D-. The cable accounts for the remainder of the input capacitance .

A low-speed device is required to have a captive cable. The input capacitance of the low-speed device will
include the cable. The maximum single-ended or differential input capacitance of a low-speed device is
450pF (QINUA).

For devices with captive cables, the single-ended input capacitance must be consistent with the termination
scheme used. The termination must be able to charge the D+ or D- line from BMmainy) within 2.5us.

The capacitance on D+/D- includes the single-ended input-capacitance of the device (measured from the
pins on the connector on the cable) and the 150pF of input capacitance of the host/hub.

An implementation may use small capacitors at the transceiver for purposes of edge rate control. The sum
of the capacitance of the added capacit@D(E) , the transceiver, and the trace connecting capacitor and
transceiver to Rmust not exceed 75pF (either single-ended or differential) and the capacitance must be
balanced to within 10%. The added capacitor, if present, must be placed between the transceiver pins and
Rs see Figure 7-12

Use of ferrite beads on the D+ or D- lines of full-speed devices is discouraged.

Universal Serial Bus Specification Revision 1.1

Rs
TxD+|
T Cepce
- Rs
IxD-|
rj Cepce

Figure 7-12. Placement of Optional Edge Rate Control Capacitors

7.1.7 Signaling Levels

Table 7-1 summarizes the USB signaling levels. The source is required to drive the levels specified in the
second column and the target is required to identify the correct bus state when it sees the levels in the

third column. (Target receivers can be more sensitive as long as they are within limits specified in the
fourth column).

115

Universal Serial Bus Specification Revision 1.1

Table 7-1. Signaling Levels

Bus State Signaling Levels
At originating source At final target connector
connector (at end of bit time) Required Acceptable
Differential “1” D+ > VOoH (min) and D- < VoL (max) | (D+) - (D-) > 200mV (D+) - (D-) > 200mV
and D+ > ViH (min)
Differential “0” D- > VoH (min) and D+ < VoL (max) | (D-) - (D+) > 200mV (D-) - (D+) > 200mV

and D- > VIH (min)

Single-ended 0 (SEO)

D+ and D- < VoL (max)

D+ and D- < ViL (max)

D+ and D- < VIH (min)

Data J state:

Low-speed Differential “0” Differential “0”
Full-speed Differential “1” Differential “1”
Data K state:
Low-speed Differential “1” Differential “1”
Full-speed Differential “0” Differential “0”
Idle state: N.A.
Low-speed D- > ViHz (min) and D- > ViHz (min) and
D+ < VIL (max) D+ < VIH (min)
Full-speed D+ > ViHz (min) and D+ > ViHz (min) and

D- < ViL (max)

D- < ViH (min)

Resume state

Data K state

Data K state

Start-of-Packet (SOP)

Data lines switch from Idle to K state

End-of-Packet (EOP)*

SEO for approximately 2 bit times*
followed by a J for 1 bit time®

SEO for > 1 bit time®
followed by a J state

SEO for > 1 bit time?
followed by a J state

for 1 bit time
Disconnect N.A. SEO for >2.5us
(at downstream port)
Connect N.A. Idle for >2ms Idle for >2.5 us

(at downstream port)

Reset

D+ and D- < VOL (max) for >10ms

D+ and D- < VIL (max)
for >10ms

D+ and D- < VIL (max)
for >2.5 us

Note 1: The width of EOP is defined in bit times relative to the speed of transmission. (Specification EOP widths are
given in Table 7-5 and Table 7-6.)

Note 2: The width of EOP is defined in bit times relative to the device type receiving the EOP. The bit time is

approximate.

Note 3: The width of the J state following the EOP is defined in bit times relative to the buffer edge rate. The J state from
a low-speed buffer must be a low-speed bit time wide and from a full-speed buffer, a full-speed bit time wide.

Note 4: The keep-alive is a low-speed EOP.

116

Universal Serial Bus Specification Revision 1.1

The J and K data states are the two logical levels used to communicate differential data in the system.
Differential signaling is measured from the point where the data line signals cross over. Differential data
signaling is not concerned with the level at which the signals cross, as long as the crossover voltage meets
the requirements in Section 7.1.2. Note that, at the receiver, the Idle and Resume states are logically
equivalent to the J and K states respectively.

As shown in Table 7-1, the J and K states for full-speed signaling are inverted from those for low-speed
signaling. The sense of data, idle, and resume signaling is set by the type of device that is being attached to
a port. If a full-speed device is attached to a port, that segment of the USB uses full-speed signaling
conventions (and fast rise and fall times), even if the data being sent across the data lines is at the low-
speed data rate. The low-speed signaling conventions shown in Table 7-1 (plus slow rise and fall times)

are used only between a low-speed device and the port to which it is attached.

| L5KQ £5%
| or equivalent
|

RxD

?
Y
O

Differential Receiver

B RxD+

\V4

Single-gnded Receivers

>—> RxD-

® / - TXD+

Output Buffers OE

\—< TXD-

Figure 7-13. Upstream Full-speed Port Transceiver

RxD

Differential Receiver

* S B RuD+
e

Single-gnded Receivers
> P> RxD-

—-
TxD+

< OE
Speed

\ < 1,D-

Note: additional logic is required
to invert signal polarity on
data in/out when low-speed
devices are attached.

Output Buffers

Figure 7-14. Downstream Port Transceiver

117

Universal Serial Bus Specification Revision 1.1

7.1.7.1 Connect and Disconnect Signaling

When no function is attached to the downstream port of the host or hub, the pull-down resistors present
there will cause both D+ and D- to be pulled below the single-ended low threshold of the host or hub port
when that port is not being driven by the hub. This creates an SEO state on the downstream port. A
disconnect condition @DIs) is indicated if the host or hub is not driving the data lines and an SEO persists
on a downstream port for more thanisgsee Figure 7-15).

A connect condition (DcNN) will be detected when the hub detects that one of the data lines is pulled
above its \WH threshold for more than 215 (see Figure 7-16 and Figure 7-17).

Hubs may optionally determine the speed of the attached device by sampling the state of the bus
immediately before driving SEO to indicate a reset condition to the device. Alternatively, the hub may float
the bus after driving reset and perform bus state evaluation after@&Shown in Figure 7-18.

All signaling levels given in Table 7-1 are set for this bus segment (and this segment alone) once the speed
of the attached device is determined. The mechanics of speed detection are described in Section 11.8.2.

D+/D-
VIHZ (min) \
A
VIL
D-/D+
Vss —
“— >25uS —
Device Disconnect
Disconnected Detected
Figure 7-15. Disconnect Detection
D+
VIH
D-
Vss
T > 25,S——”
Device Connect
Connected Detected

Figure 7-16. Full-speed Device Connect Detection

118

Universal Serial Bus Specification Revision 1.1

D_
VIH
D+
Vss
T 5 25,5 ——>
Device Connect
Connected Detected

Figure 7-17. Low-speed Device Connect Detection

VOH(min) ‘\ /) ‘\
VIH(min) \
Differential
data li
VIL / ata lines
VIL(max) j/
VOL(max) —\ 4
/7
Vss
Diff 1 or >|e >
Diff 0 T > 10ms > 25,8
SEO T T
Port driving Reset completed Bus evaluated after reset:
reset and bus is floated Diff 1 = FS connected

Diff 0 = LS connected
SEO = Disconnected

Figure 7-18. Bus State Evaluation after reset (optional)

Because USB components may be hot plugged, and hubs may implement power switching, it is necessary

to comprehend the delays between power switching and/or device attach and when the device’s internal
power has stabilized. Figure 7-19 shows all the events associated with both turning on port power with a
device connected and hot-plugging a device. There are six delays and a sequence of events that are defined
by this specification.

119

Hub port
power OK

Hub port
power-on

Universal Serial Bus Specification Revision 1.1

Attach Detected }—\ Reset Recovery
\ Time

i

USB System Software

VBUS reads device speed
VIH(MIN) - o oo e e e KA VPR U
VIH oo e PN OOV A
D+ - /
or /
I
D- < »ie 100ms 10ms‘
Atl At2

120

Atl

At2

At3

At4

AtS
At6

Figure 7-19. Power-on and Connection Events Timing

This is the amount of time required for the hub port power switch to operate. This delay is a
function of the type of hub port switch. Hubs report this time in the hub descriptor (see Section
11.15.2.1), which can be read via a request to the Hub Controller (see Section 11.16.2.4). Ifa
device were plugged into a non-switched or already-switched orApbiis equal to zero.

(TSIGATT) This is the maximum time from wh&Bus is up to valid level (4.01V) to when a device
has to signal attacht2 represents the time required for the device’s internal power rail to stabilize
and for D+ or D- to reach (min) at the hub.At2 must be less than 100ms for all hub and device
implementations. (This requirement only applies if the device is drawing power from the bus).

(TATTDB) This is a debounce interval with a minimum duration of 100ms that is provided by the USB
System Software. It ensures that the electrical and mechanical connection is stable before software
attempts to reset the attached device. The interval starts when the USB System Software is notified
of a connection detection. The interval restarts if there is a disconnect. The debounce interval
ensures that power is stable at the device for at least 100ms before any requests will be sent to the
device.

(T2sush Anytime a device observes no bus activity, it must obey the rules of going into suspend (see
Section 7.1.7.4).

(TorsT) This is the period of time hubs drive reset to a device. Refer to Section 11.5.1.5 for details.

(TRSTRCY) The USB System Software guarantees a minimum of 10ms for reset recovery. Device
response to any bus transactions addressed to the default device address during the reset recovery
time is undefined.

Universal Serial Bus Specification Revision 1.1

7.1.7.2 Data Signaling
Data transmission within a packet is done with differential signals.

The start of a packet (SOP) is signaled by the originating port by driving the D+ and D- lines from the Idle
state to the opposite logic level (K state). This switch in levels represents the first bit of the SYNC field.
Hubs must limit the change in the width of the first bit of SOP when it is retransmitted to lesSrisan
Distortion can be minimized by matching the nominal data delay through the hub with the output enable
delay of the hub.

The SEO state is used to signal an end-of-packet (EOP). EOP will be signaled by driving D+ and D- to the
SEO state for two bit times followed by driving the lines to the J state for one bit time. The transition from
the SEO to the J state defines the end of the packet at the receiver. The J state is asserted for one bit time
and then both the D+ and D- output drivers are placed in their high-impedance state. The bus termination
resistors hold the bus in the Idle state. Figure 7-20 shows the signaling for start and end of a packet.

VOH(min)) i i 1
VIH(min) , ‘
VIL(max) ‘
VOoL(max) |A | \ "
Vss Bus Idle | L
SOP First Bit
of Packet
Last Bit Bus Driven to
of Packet J State at end
of EOP
SEO
«—portion » Bus Idle
of EOP
VOH(min) [{ [{
VIH(min)
ViL(max)
VOL(maX)J | | | |
AVASTS

Figure 7-20. Packet Voltage Levels

121

Universal Serial Bus Specification Revision 1.1

7.1.7.3 Reset Signaling

A hub signals reset to a downstream port by driving an extended SEO at the port. After the reset is
removed, the device will be in the Default state (refer to Section 9.1).

The reset signaling can be generated on any Hub or Host Controller port by request from the USB System
Software. The reset signaling must be driven for a minimum of 10orss(]. After the reset, the hub

port will transition to the Enabled state (refer to Section 11.5). Host Controllers and the USB System
Software must ensure that resets issued to the root ports drive reset long enough to overwhelm any
concurrent resume attempts by downstream devices. Resets from root ports should be nominally 50ms
(TbrsTR. ltis not required that this be 50ms of continuous Reset signaling. However, if the reset is not
continuous, the interval(s) between signaling reset must be less thanrBrsi{T

A device seeing an SEO on its upstream port for more thas ZTIBETRST) may treat that signal as a
reset. The reset must have taken effect before the reset signaling ends.

Hubs will propagate traffic to a newly reset port after the port is in the Enabled state. The device attached
to this port must recognize this bus activity and keep from going into the Suspend state.

Hubs must be able to accept all hub requests and devices must be able to accept a SetAddress() request
(refer to Section 11.16.2 and Section 9.4 respectively) after the reset recovery time ASTrRe (lafter

the reset is removed. Failure to accept this request may cause the device not to be recognized by the USB
system software. Hubs and devices must complete commands within the times specified in Chapter 9 and
Chapter 11.

Reset must wake a device from the Suspend state.

7.1.7.4 Suspending
All devices must support the Suspend state. Devices can go into the Suspend state from any powered state.

They begin the transition to the Suspend state after they see a constant Idle state on their upstream bus lines

for more than 3.0ms. The device must actually be suspended, drawing only suspend current from the bus
after no more than 10ms of bus inactivity on all its ports. Any bus activity on the upstream port will keep a
device out of the Suspend state. In the absence of any other bus traffic, the SOF token (refer to

Section 8.4.2) will occur once per frame to keep full-speed devices from suspending. In the absence of any
low-speed traffic, low-speed devices will see at least one keep-alive (defined in Table 7-1) in every frame

in which an SOF occurs, which keeps them from suspending. Hubs generate this keep-alive as described in
Section 11.8.4.1.

While in the Suspend state, a device must continue to provide power to its D+ (full-speed) or D- (low-
speed) pull-up resistor to maintain an idle so that the upstream hub can maintain the correct connectivity
status for the device.

7.1.7.4.1 Global Suspend

Global suspend is used when no communication is desired anywhere on the bus and the entire bus is placed
in the Suspend state. The host signals the start of global suspend by ceasing all its transmissions (including
the SOF token). As each device on the bus recognizes that the bus is in the Idle state for the appropriate
length of time, it goes into the Suspend state.

7.1.7.4.2 Selective Suspend

Segments of the bus can be selectively suspended by sending the command

SetPortFeature(PORT_SUSPEND) to the hub port to which that segment is attached. The suspended port
will block activity to the suspended bus segment and devices on that segment will go into the Suspend state
after the appropriate delay as described above.

122

Universal Serial Bus Specification Revision 1.1

Section 11.5 describes the port Suspend state and its interaction with the port state machine. Suspend is
further described in Section 11.9.

7.1.7.5 Resume

If a device is in the Suspend state, its operation is resumed when any non-idle signaling is received on its
upstream port. Additionally, the device can signal the system to resume operation if its remote wakeup
capability has been enabled by the USB System Software. Resume signaling is used by the host or a
device to bring a suspended bus segment back to the active condition. Hubs play an important role in the
propagation and generation of resume signaling. The following description is an outline of a general
global resume sequence. A complete description of the resume sequence, the special cases caused by
selective suspend, and the role of the hub are given in Section 11.9.

The host may signal resumeDRESMDN) at any time. It must send the resume signaling for at least 20ms

and then end the resume signaling with a standard, low-speed EOP (two low-speed bit times of SEQ
followed by a J). The 20ms of resume signaling ensures that all devices in the network that are enabled to
see the resume are awakened. The EOP tears down the connectivity established by the resume signaling
and prepares the hubs for normal operation. After resuming the bus, the host must begin sending bus
traffic (at least the SOF token) within 3ms to keep the system from going back into the Suspend state.

A device with remote wakeup capability may not generate resume signaling unless the bus has been
continuously in the Idle state for 5SmsWTrRsM). This allows the hubs to get into their Suspend state and
prepare for propagating resume signaling. The remote wakeup device must hold the resume signaling for
at least 1ms but for no more than 15msr3MUP). At the end of this period, the device stops driving the

bus (puts its drivers into the high-impedance state and does not drive the bus to the J state).

If the hub upstream of a remote wakeup device is suspended, it will propagate the resume signaling to its
upstream port and to all of its enabled downstream ports, including the port that originally signaled the
resume. The hub must begin this rebroadcask$l) of the resume signaling within 108 of receiving

the original resume. The resume signal will propagate in this manner upstream until it reaches the host or a
non-suspended hub (refer to Section 11.9), which will reflect the resume downstream and take control of
resume timing. This hub is termed the controlling hub. Intermediate hubs (hubs between the resume
initiator and the controlling hub) drive resumeRBMUP) on their upstream port for at least 1ms during
which time they also continue to drive resume on enabled downstream ports. An intermediate hub will
stop driving resume on the upstream port and reverse the direction of connectivity from upstream to
downstream within 15ms after first asserting resume on its upstream port. When all intermediate hubs
have reversed connectivity, resume is being driven from the controlling hub through all intermediate hubs
and to all enabled ports. The controlling hub must rebroadcast the resume signaling wjthin 100
(TURSM) and ensures that resume is signaled for at least 2@mRsMDN). The hub may then begin

normal operation by terminating the resume process as described above.

The USB System Software must provide a 10ms resume recovery &serTY) during which it will not
attempt to access any device connected to the affected (just-activated) bus segment.

Port connects and disconnects can also cause a hub to send a resume signal and awaken the system. These
events will cause a hub to send a resume signal only if the hub has been enabled as a remote-wakeup
source. Refer to Section 11.4.4 for more details.

Refer to Section 7.2.3 for a description of power control during suspend and resume.

7.1.8 Data Encoding/Decoding

The USB employs NRZI data encoding when transmitting packets. In NRZI encoding, a “1” is represented
by no change in level and a “0” is represented by a change in level. Figure 7-21 shows a data stream and
the NRZI equivalent. The high level represents the J state on the data lines in this and subsequent figures
showing NRZI encoding. A string of zeros causes the NRZI data to toggle each bit time. A string of ones
causes long periods with no transitions in the data.

123

Universal Serial Bus Specification Revision 1.1

0 1101 01000 100 110

Data dle || I I [1] | L
J

NRZI « mdle L [1 [L L

Figure 7-21. NRZI Data Encoding

7.1.9 Bit Stuffing

In order to ensure adequate signal transitions, bit stuffing is employed by the transmitting device when
sending a packet on USB (see Figure 7-22 and Figure 7-24). A zero is inserted after every six consecutive
ones in the data stream before the data is NRZI encoded, to force a transition in the NRZI data stream.
This gives the receiver logic a data transition at least once every seven bit times to guarantee the data and
clock lock. Bit stuffing is enabled beginning with the Sync Pattern and throughout the entire transmission.
The data “one” that ends the Sync Pattern is counted as the first one in a sequence. Bit stuffing by the
transmitter is always enforced, without exception. If required by the bit stuffing rules, a zero bit will be
inserted even if it is the last bit before the end-of-packet (EOP) signal.

The receiver must decode the NRZI data, recognize the stuffed bits, and discard them. If the receiver sees
seven consecutive ones anywhere in the packet, then a bit stuffing error has occurred and the packet should
be ignored. The time interval just before an EOP is a special case. The last data bit before the EOP can
become stretched by hub switching skews. This is known as dribble and can lead to the case illustrated in
Figure 7-23, which shows where dribble introduces a sixth bit that does not require a bit stuff. Therefore,

the receiver must accept a packet for which there are up to six full bit times at the port with no transitions
prior to the EOP.

Data Encoding Sequence:

Raw Data

Packet Data 4>|
/Stuffed Bit

|
>
[L LI L
|<— Sync Pattern | >|< Packet Data 4>|
>

|<— Sync Pattern

Bit Stuffed Data

Six Ones 4>|

Packet Data 4>|

NRZI e || L L] |

Encoded Data |<_ Sync Pattern

Figure 7-22. Bit Stuffing

124

Transmitted
Data

Universal Serial Bus Specification Revision 1.1

<
<

CRC

Data

Transmitter

p——

from

Y

Y

EOP

EOP J

EOP /[

A

Acceptable
Extra Bit, Dat
No Error Rec

p_—

a at
eiver 7

CRC

Y

-

Extra

bit

\=r /.

Figure 7-23. lllustration of Extra Bit Preceding EOP

No Packet
Transmission

Power Up

Idle

<

+ Begin Packet Transmission

Reset Bit
Counter to 0

v

Get Next

No

Bit

Increment
the Counter

No

Insert a
Zero Bit

v

Reset Bit
Counter to 0

—

Is Packet
Transfer
Done?

Yes

e —

Yes

Figure 7-24. Flow Diagram for Bit Stuffing

125

Universal Serial Bus Specification Revision 1.1

7.1.10 Sync Pattern

The NRZI bit pattern shown in Figure 7-25 is used as a synchronization pattern and is prefixed to each
packet. This pattern is equivalent to a data pattern of seven zeroes followed by a one (80H).

€4 SYNCPATTERN ————— P
NRZIData™ |gie \ [\ |/ _/_\ [PiDo Y PID1Y

Encoding

Figure 7-25. Sync Pattern

7.1.11 Data Signaling Rate

The full-speed data rate is nominally 12.000Mb/s. The data-rate tolerance for host, hub, and full-speed
functions is +0.25% (2,500ppm). The accuracy of the Host Controller’s data rate must be known and
controlled to better than £0.05% (500ppm). This tolerance includes inaccuracies from all sources:

o Initial frequency accuracy

e Crystal capacitive loading

e Supply voltage on the oscillator
e Temperature

e Aging.

The low-speed data rate is nominally 1.50Mb/s. The permitted data-rate tolerance for low-speed functions

is +1.5% (15,000ppm). This tolerance includes inaccuracies from all sources:
o Initial frequency accuracy

e Crystal capacitive loading

e Supply voltage on the oscillator

e Temperature

e Aging.

This tolerance allows the use of resonators in low cost, low-speed devices.

7.1.12 Frame Interval and Frame Interval Adjustment

The USB defines a frame interval to be 1.000ms +500ns long. The frame interval is measured from any
point in an SOF token in one frame to the same point in the SOF token of the next frame.

The Host Controller must be able to adjust the frame interval. There are two possible components to the
frame interval adjustment. If the host's data rate clock is not exactly 12.000Mb/s, then the initial £0.05%
frame interval accuracy can be met by changing the default number of bits per frame from the nominal of

12,000. A Host Controller component that has a range of possible clock-source values may have to make

this initial frame count a programmable value. An additional adjustmetitsofull-speed bit times is
required to allow the host to synchronize to an external time reference. During normal bus operation,
software may not change the frame interval by more than one full-speed bit time every six frames. If no
adjustment is being made, the frame interval repeatability (difference in frame interval between two
successive frames) must be less than 0.5 full-speed bit times. (I an adjustment is being made the

frame interval repeatability must be less than 1.5 full-speed bit tinresa(l).

126

Universal Serial Bus Specification Revision 1.1

Hubs and certain full-speed functions need to track the frame interval. They also are required to have
sufficient frame timing adjustment to compensate for their own frequency tolerance and track the host’s

+15 full-speed bit time variability.

7.1.13 Data Source Signaling

This section covers the timing characteristics of data produced and sent from a port (the data source).
Section 7.1.14 covers the timing characteristics of data that is transmitted through the Hub Repeater section
of a hub. In this section,PERIODIs defined as the actual period of the data rate that can have a range as

defined in Section 7.1.11.

7.1.13.1 Data Source Jitter

The source of data can have some variation (jitter) in the timing of edges of the data transmitted. The time
between any set of data transitions is NPERIOD= jitter time, where ‘N’ is the number of bits between

the transitions. The data jitter is measured with the same load used for maximum rise and fall times and is
measured at the crossover points of the data lines, as shown in Figure 7-26.

. . Crossover
lefereptlal Points
Data Lines \

J|tter_>| Consecutlve Integer multiples of Teeriop

Transitions Paired
Transitions

Figure 7-26. Data Jitter Taxonomy

e For full-speed transmissions, the jitter time for any consecutive differential data transitions must be
within +2.0ns and withirt1.0ns for any set of paired (JK-to-next JK transition or KJ-to-next KJ
transition) differential data transitions.

e For low-speed transmissions, the jitter time for any consecutive differential data transitions must be
within +25ns and withirt10ns for any set of paired differential data transitions.

These jitter numbers include timing variations due to differential buffer delay and rise and fall time
mismatches, internal clock source jitter, and noise and other random effects.

7.1.13.2 EOP Width

The width of the SEO in the EOP is approximately 2°ERioD. The SEO width is measured with the same
load used for maximum rise and fall times and is measured at the same level as the differential signal

crossover points of the data lines (see Figure 7-27).

127

Universal Serial Bus Specification Revision 1.1

TprerioD —P \ \ \ \

/ Data
Differential | —— Crossover
Data Lines \ (vvvvvvvvvvvvvvvvvvvvvvvvv Loval T 7

< SEO for —p
EOP

Width
Figure 7-27. SEO for EOP Width Timing

e For full-speed transmissions, the SEO for EOP width from the transmitter must be between 160ns and
175ns.

e For low-speed transmissions, the transmitter’s SEO for EOP width must be betwesnah@3.50s.

These ranges include timing variations due to differential buffer delay and rise and fall time mismatches
and to noise and other random effects.

A receiver must accept any valid EOP. Receiver design should note that the single-ended input threshold
voltage can be different from the differential crossover voltage and the SEO transitions will in general be
asynchronous to the clock encoded in the NRZI stream.

e Afull-speed EOP may have the SEO interval reduced to as little as §&awPland a low-speed
SEO interval may be as short as 670nsE0PR).

A hub may tear down connectivity if it sees an SEO of at le=st dr TLST followed by a transition to the
J state. A hub must tear down connectivity on any valid EOP.

7.1.14 Hub Signaling Timings

The propagation of a full-speed, differential data signal through a hub is shown in Figure 7-28. The
downstream signaling is measured without a cable connected to the port and with the load used for
measuring rise and fall times. The total delay through the upstream cable and hub electronics must be a
maximum of 70ns (fibb1). If the hub has a USB detachable cable, then the detmpg) through hub

electronics and the associated transmission line must be a maximum of 44ns to allow for a worst-case cable
delay of 26ns (FscBL). The delay through this hub is measured in both the upstream and downstream
directions, as shown in Figure 7-28B, from data line crossover at the input port to data line crossover at the
output port.

128

Universal Serial Bus Specification Revision 1.1

Data Line
Upstream End Downstream Crossover
of Cable Port 44— Point
u 50% Point of
¥—_ Initial Swing
Vss /
50% Point of
Initjal Swing
D Li
Downstream Hub Delay Upstream End Hub Delay bl
Port «— Doumstream of Cable — o 4 Point
70ns (max) 70ns (max)
Vss
A. Downstream Hub Delay B. Upstream Hub Delay

upstream end of cable upstream port downstream port
plug receptacle
Host or
Hub |: :| Al |:

downstream signaling————p|
|¢—————upstream signaling

4

Function

C. Measurement Points

Figure 7-28. Hub Propagation Delay of Full-speed Differential Signals

Low-speed propagation delay for differential signals is measured in the same fashion as for full-speed
signaling. The maximum low-speed hub delay is 300p8{®). This allows for the slower low-speed

buffer propagation delay and rise and fall times. It also provides time for the hub to re-clock the low-speed
data in the upstream direction.

When the hub acts as a repeater, it must reproduce the received, full-speed signal accurately on its outputs.
This means that for differential signals, the propagation delays of a J-to-K state transition must match
closely to the delays of a K-to-J state transition. For full-speed propagation, the maximum difference
allowed between these two delaysi01) (see Figure 7-28 and Figure 7-42) for a hub plus cahbig.tns.
Similarly, the difference in delay between any two J-to-K or K-to-J transitions through aHmuz)(ihust

be less thar1.0ns. For low-speed propagation in the downstream direction, the corresponding allowable
jitter (TLDHJ1) is +45ns and (TbHJ2) £15ns, respectively. For low-speed propagation in the upstream
direction, the allowable jitter i845ns in both cases (THJ1 and TLUHJ2).

An exception to this case is the skew that can be introduced in the Idle-to-K state transition ets$®P (T
andTLsoP) (refer to Section 7.1.7.2). In this case, the delay to the opposite port includes the time to enable
the output buffer. However, the delays should be closely matched to the normal hub delay and the
maximum additional delay difference over a normal J-to-K transitiaB.i3ns. This limits the maximum
distortion of the first bit in the packet.

Note: because of this distortion of the SOP transition relative to the next K-to-J state transition, the first
SYNC field bit should not be used to synchronize the receiver to the data stream.

The EOP must be propagated through a hub in the same way as the differential signaling. The propagation
delay for sensing an SEO must be no less than the greater of the J-to-K, or K-to-J differential data delay (to
avoid truncating the last data bit in a packet), but not more than 15ns greater than the larger of these
differential delays at full-speed and 200ns at low-speed (to prevent creating a bit stuff error at the end of
the packet). EOP delays are shown in Figure 7-43.

Because the sense levels for the SEO state are not at the midpoint of the signal swing, the width of SEO
state will be changed as it passes through each hub. A hub may not change the width of the SEO state in a

129

7.1

130

Universal Serial Bus Specification Revision 1.1

full-speed EOP by more thaii5ns (TFHESK), as measured by the difference of the leading edge and

trailing edge delays of the SEO state (see Figure 7-43). An SEO from a low-speed device has long rise and
fall times and is subject to greater skew, but this conditions exists only on the cable from the low-speed
device to the port to which it is connected. Thereafter, the signaling uses full-speed buffers and their faster
rise and fall times. The SEO from the low-speed device cannot be changed by maG9dren(THESK)

as it passes through the hub to which the device is connected. This time allows for some signal
conditioning in the low-speed port to reduce its sensitivity to noise.

.15 Receiver Data Jitter

The data receivers for all types of devices must be able to properly decode the differential data in the
presence of jitter. The more of the bit cell that any data edge can occupy and still be decoded, the more
reliable the data transfer will be. Data receivers are required to decode differential data transitions that
occur in a window plus and minus a nominal quarter bit cell from the nominal (centered) data edge
position. (A simple 4X over-sampling state machine DPLL can be built that satisfies these requirements.)
This requirement is derived in Table 7-2 and Table 7-3. The tables assume a worst-case topology of five
hubs between the host and device and the worst-case number of seven bits between transitions. The
derived numbers are rounded up for ease of specification.

Jitter will be caused by the delay mismatches discussed above and by mismatches in the source and
destination data rates (frequencies). The receive data jitter budgets for full- and low-speed are given in
Table 7-2 and Table 7-3. These tables give the value and totals for each source of jitter for both
consecutive (next) and paired transitions. Note that the jitter component related to the source or destination
frequency tolerance has been allocated to the appropriate device (i.e., the source jitter includes bit shifts
due to source frequency inaccuracy over the worst-case data transition interval). The output driver jitter
can be traded off against the device clock accuracy in a particular implementation as long as the jitter
specification is met.

The low-speed jitter budget table has an additional line in it because the jitter introduced by the hub to
which the low-speed device is attached is different from all the other devices in the data path. The
remaining devices operate with full-speed signaling conventions (though at low-speed data rate).

Universal Serial Bus Specification Revision 1.1

Table 7-2. Full-speed Jitter Budget

Jitter Source Full-speed
Next Transition Paired Transition
Each (ns) |Total (ns) [Each (ns) Total (ns)
Source Driver Jitter 2.0 2.0 1.0 1.0
Source Frequency Tolerance (worst-case)| 0.21/bit 15 0.21/bit 3.0
Source Jitter Total 35 4.0
Hub Jitter 3.0 15.0 1.0 5.0
Jitter Specification 18.5 9.0
Destination Frequency Tolerance 0.21/hit 15 0.21/hit 3.0
Receiver Jitter Budget 20.0 12.0
Table 7-3. Low-speed Jitter Budget
Jitter Source Low-speed Upstream
Next Transition Paired Transition
Each (ns) |Total (ns) KEach (ns) Total (ns)
Function Driver Jitter 25.0 25.0 10.0 10.0
Function Frequency Tolerance (worst-case) 10.0/bit 70.0 10.0/bit 140.0
Source (Function) Jitter Total 95.0 150.0
Hub with Low-speed Device Jitter 45.0 45.0 45.0 45.0
Remaining (full-speed) Hubs' Jitter 3.0 12.0 1.0 4.0
Jitter Specification 152.0 199.0
Host Frequency Tolerance 1.7/bit 12.0 1.7/bit 24.0
Host Receiver Jitter Budget 164.0 223.0
Low-speed Downstream

Next Transition

Paired Transition

Each (ns) |Total (ns) [Each (ns) Total (ns)
Host Driver Jitter 2.0 2.0 1.0 1.0
Host Frequency Tolerance (worst-case) 1.7/bit 12.0 1.7/bit 24.0
Source (Host) Jitter Total 14.0 25.0
Hub with Low-speed Device Jitter 45.0 45.0 15.0 15.0
Remaining (full-speed) Hubs' Jitter 3.0 12.0 1.0 4.0
Jitter Spec 71.0 44.0
Function Frequency Tolerance 10.0/bit 70.0 10.0/bit 140.0
Function Receiver Jitter Budget 141.0 184.0

Note: this table describes the host transmitting at low-speed data rate using full-speed signaling to
a low-speed device through the maximum number of hubs. When the host is directly connected to
the low-speed device, then it uses low-speed data rate and low-speed signaling, and the host has to

meet the source jitter listed in the “Jitter Specification” row.

131

7.1

132

Universal Serial Bus Specification Revision 1.1

.16 Cable Delay

Except (in certain cases) for the SOP, only one data transition is allowed on a USB cable at a time. A full-
speed signal edge has to propagate to the far end of the cable, return, and settle within one full-speed bit
time. Therefore, the maximum total one-way signal propagation delay allowed is 30ns. The allocation for
cable delay is 26ns. A maximum delay of 3ns is allowed from a Host or Hub Controller downstream port

to its exterior downstream connector, while a maximum delay of 1ns is allowed from the upstream

connector to the upstream port of any device. For a standard USB detachable cable, the cable delay is
measured from the Series A connector pins to the Series B connector pins and is no more than 26ns. For
other cables, the delay is measured from the series A connector to the point where the cable is connected to
the device.

The maximum one-way data delay on a full-speed cable is measured as shown in Figure 7-29.

One-way cable delay for low-speed cables must be less than 18ns. It is measured as shown in
Figure 7-30.

Host/Hub

Traces on Board -
/ Hub/Device

Il Upstream
Port

Downstream

A-'Cmﬂector B-Conneétor

Total One-Way
1 Propagation Delay
30ns (max)

:4— 1ns (max)
1

L]

1
o

1
1

Driver End | R)

of Cable |: | !
A ¥—50% Point of Initial Swing | 1
ves - 1 " :
! : Y| ::

I 4§

Receiver 1 : One Way Cable i\ Data Line
End of | le—— Delay26ns —k Crossover
Cable v (max) Point at input of

: . H B-connector
VS .

1 1 1

1 1

Figure 7-29. Full-speed Cable Delay

Traces on Board
/— Low-speed
Device

Host/Hub

Downstream
Port

A-Connector + cable

1
1
1
! 1
! 1
1
14— 18nS (max) —b:
! 1

One-way Propagation Delay

Figure 7-30. Low-speed Cable Delay

Universal Serial Bus Specification Revision 1.1

7.1.17 Cable Attenuation

The allowable attenuation of the signal pair (D+, D-) for full speed signaling per cable is listed in Table
7-4. The cable attenuation measurement is defined in Section 6.7.

Table 7-4. Signal Attenuation

Frequency (MHz) Attenuation (maximum) dB/cable
0.064 0.08
0.256 0.11
0.512 0.13
0.772 0.15
1.000 0.20
4.000 0.39
8.000 0.57
12.000 0.67
24.000 0.95
48.000 1.35
96.000 1.9

7.1.18 Bus Turn-around Time and Inter-packet Delay

Inter-packet delays are measured from the SEO-to-J transition at the end of the EOP to the J-to-K transition
that starts the next packet.

A device is required to allow two bit times of inter-packet delay. The delay is measured at the responding
device with a bit time defined in terms of the response. This provides adequate time for the device sending
the EOP to drive J for one bit time and then turn off its output buffers.

The host must provide at least two bit times of J after the SEO of an EOP and the start of a new packet
(TiPD). If a function is expected to provide a response to a host transmission, the maximum inter-packet
delay for a function or hub with a detachableg®IPD) cable is 6.5 bit times measured at the Series B
receptacle. If the device has a captive cable, the inter-packet delssgdd must be less than 7.5 bit

times as measured at the Series-A plug. These timings apply to both full-speed and low-speed devices and
the bit times are referenced to the data rate of the packet.

The maximum inter-packet delay for a host response is 7.5 bit times, measured at the host’s port pins.
There is no maximum inter-packet delay between packets in unrelated transactions.

7.1.19 Maximum End-to-end Signal Delay

A device expecting a response to a transmission will invalidate the transaction if it does not see the start-of-
packet (SOP) transition within the timeout period after the end of the transmission (after the SEO-to-J state
transition in the EOP). This can occur between an IN token and the following data packet or between a

133

7.2

7.2

134

Universal Serial Bus Specification Revision 1.1

data packet and the handshake packet (refer to Chapter 8). The device expecting the response will not time
out before 16 bit times but will timeout before 18 bit times (measured at the data pins of the device from

the SEO-to-J transition at the end of the EOP). The host will wait at least 18 bit times for a response to start
before it will start a new transaction.

Figure 7-31 depicts the configuration of six signal hops (cables) that results in allowable worst-case signal
delay. The maximum propagation delay from the upstream end of a hub’s cable to any downstream port
connector is 70ns.

Co:t?cfltler @S’I @L @ @ @];I Ijiction

Cable Delay + Hub Delay < 70ns (each) Propagation Delay < 30ns

Figure 7-31. Worst-case End to End Signal Delay Model

Power Distribution
This section describes the USB power distribution specification.

.1 Classes of Devices

The power source and sink requirements of different device classes can be simplified with the introduction
of the concept of a unit load. A unit load is defined to be 100mA. The number of unit loads a device can
draw is an absolute maximum, not an average over time. A device may be either low-power at one unit
load or high-power, consuming up to five unit loads. All devices default to low-power. The transition to
high-power is under software control. It is the responsibility of software to ensure adequate power is
available before allowing devices to consume high-power.

The USB supports a range of power sourcing and power consuming agents; these include the following:

e Root port hubs. Are directly attached to the USB Host Controller. Hub power is derived from the
same source as the Host Controller. Systems that obtain operating power externally, either AC or DC
must supply at least five unit loads to each port. Such ports are called high-power ports. Battery-
powered systems may supply either one or five unit loads. Ports that can supply only one unit load are
termed low-power ports.

e Bus-powered hubs Draw all of their power for any internal functions and downstream ports from
VBUs on the hub’s upstream port. Bus-powered hubs may only draw up to one unit load upon power-
up, and five unit loads after configuration. The configuration power is split between allocations to the
hub, any non-removable functions and the external ports. External ports in a bus-powered hub can
supply only one unit load per port regardless of the current draw on the other ports of that hub. The
hub must be able to supply this port current when the hub is in the Active or Suspend state.

e Self-powered hubs Power for the internal functions and downstream ports does not come from
VBuUS. However, the USB interface of the hub may draw up to one unit load from its upsteesm V
to allow the interface to function when the remainder of the hub is powered down. Hubs that obtain
operating power externally (from the USB) must supply five unit loads to each port. Battery-powered
hubs may supply either one or five unit loads per port.

e Low-power bus-powered functions All power to these devices comes froraUé. They may draw
no more than one unit load at any time.

e High-power bus-powered functions All power to these devices comes froreUs. They must draw
no more than one unit load upon power-up and may draw up to five unit loads after being configured.

Universal Serial Bus Specification Revision 1.1

e Self-powered functions May draw up to one unit load fronBJs to allow the USB interface to
function when the remainder of the function is powered down. All other power comes from an
external (to the USB) source.

No device shall supply (source) current oBUg at its upstream port at any time. FromaUé on its

upstream port, a device may only draw (sink) current. They may not provide power to the pull-up resistor
on D+/D- unless Busis present (see Section 7.1.5). On power-up, a device needs to ensure that its
upstream port is not driving the bus, so that the device is able to receive the reset signaling. Devices must
also ensure that the maximum operating current drawn by a device is one unit load, until configured. Any
device that draws power from the bus must be able to detect lack of activity on the bus, enter the Suspend
state and reduce its current consumption frawsd/(refer to Section 7.2.3 and Section 9.2.5.1).

7.2.1.1 Bus-powered Hubs

Bus-powered hub power requirements can be met with a power control circuit such as the one shown in
Figure 7-32. Bus-powered hubs often contain at least one non-removable function. Power is always
available to the hub’s controller, which permits host access to power management and other configuration
registers during the enumeration process. A non-removable function(s) may require that its power be
switched, so that upon power-up the entire device (hub and non-removable functions) draws no more than
one unit load. Power switching on any non-removable function may be implemented either by removing
its power or by shutting off the clock. Switching on the non-removable function is not required if the
aggregate power drawn by it and the Hub Controller is less than one unit load. However, as long as the
hub port associated with the function is in the Power-off state, the function must be logically reset and the
device must appear to be not connected. The total current drawn by a bus-powered device is the sum of the
current to the Hub Controller, any non-removable function(s), and the downstream ports.

Figure 7-32 shows the partitioning of power based upon the maximum upstream current draw of five unit
loads: one unit load for the Hub Controller and the non-removable function, and one unit load for each of
the external downstream ports. If more than four external ports are required, then the hub will need to be
self-powered. If the non-removable function(s) and Hub Controller draw more than one unit load, then the
number of external ports must be appropriately reduced. Power control to a bus-powered hub may require
a regulator. If present, the regulator is always enabled to supply the Hub Controller. The regulator can
also power the non-removable functions(s). Inrush current limiting must also be incorporated into the
regulator subsystem.

l -
|t . Downstream
Upstream I) Hub Controller f—————————————— Data Ports
Data Port [
Iportctrl
Tt
On/Off
Upstream VBus !] L — | Non-removable
5 unit loads > H Regulator ' Function
1 ——
o __ 1 1unitload 4portctrl
On/Off
- ——
i 1 unit load/port P
Switch P . Downstream VBUS
_>

Figure 7-32. Compound Bus-powered Hub
Power to external downstream ports of a bus-powered hub must be switched. The Hub Controller supplies

a software controlled on/off signal from the host, which is in the “off’ state when the device is powered up
or after reset signaling. When switched to the “on” state, the switch implements a soft turn-on function that

135

Universal Serial Bus Specification Revision 1.1

prevents excessive transient current from being drawn from the upstream port. The voltage drop across the
upstream cable, connectors, and switch in a bus-powered hub must not exceed 350mV at maximum rated
current.

7.2.1.2 Self-powered Hubs

Self-powered hubs have a local power supply that furnishes power to any non-removable functions and to
all downstream ports, as shown in Figure 7-33. Power for the Hub Controller, however, may be supplied
from the upstream BUS (a “hybrid” powered hub) or the local power supply. The advantage of supplying
the Hub Controller from the upstream supply is that communication from the host is possible even if the
device’s power supply remains off. This makes it possible to differentiate between a disconnected and an
unpowered device. If the hub draw power for its upstream port frBos \it may not draw more than one

unit load.

Upstream V Bus ! ‘ Downstream

7.2.

136

1 unit load (max)~ ~ ~ ™' Regulator -~ - . Data Ports

| | Hub Controller

Upstream -
Data Port -
L)
I
|
rmETTTTTA
. i
Local Power >: Regulator ! l;lon—:_emovable
Supply _ ! ! unction
On/Off
——
Current Limit |
—|
5 unit loads/port Downstream V gus
— .
Current Limit .
—> .

Figure 7-33. Compound Self-powered Hub

The number of ports that can be supported is limited only by the address capability of the hub and the
local supply.

Self-powered hubs may experience loss of power. This may be the result of disconnecting the power cord
or exhausting the battery. Under these conditions, the hub may force a re-enumeration of itself as a bus-
powered hub. This requires the hub to implement port power switching on all external ports. When power
is lost, the hub must ensure that upstream current does not exceed low-power. All the rules of a bus-
powered hub then apply.

1.2.1 Over-current Protection

The host and all self-powered hubs must implement over-current protection for safety reasons, and the hub
must have a way to detect the over-current condition and report it to the USB software. Should the
aggregate current drawn by a gang of downstream ports exceed a preset value, the over-current protection
circuit removes or reduces power from all affected downstream ports. The over-current condition is
reported through the hub to Host Controller, as described in Section 11.13.5. The preset value cannot
exceed 5.0 A and must be sufficiently above the maximum allowable port current such that transient
currents (e.g. during power up or dynamic attach or reconfiguration) do not trip the over-current protector.

Universal Serial Bus Specification Revision 1.1

If an over-current condition occurs on any port, subsequent operation of the USB is not guaranteed, and
once the condition is removed, it may be necessary to reinitialize the bus as would be done upon power-up.
The over-current limiting mechanism must be resettable without user mechanical intervention. Polymeric
PTCs and solid-state switches are examples of methods, which can be used for over-current limiting.

7.2.1.3 Low-power Bus-powered Functions

A low-power function is one that draws up to one unit load from the USB cable when operational. Figure
7-34 shows a typical bus-powered, low-power function, such as a mouse. Low-power regulation can be
integrated into the function silicon. Low-power functions must be capable of operating with Bysit V
voltages as low as 4.40V, measured at the plug end of the cable.

Upstream _)
DataPort d Function
| I _______ 1
1 1
> Regulator !
1

Upstream V gus
1 unit load (max)

Figure 7-34. Low-power Bus-powered Function

7.2.1.4 High-power Bus-powered Functions

A function is defined as being high-power if, when fully powered, it draws over one but less than five unit
loads from the USB cable. A high-power function requires staged switching of power. It must first come
up in a reduced power state of less than one unit load. At bus enumeration time, its total power
requirements are obtained and compared against the available power budget. If sufficient power exists, the
remainder of the function may be powered on. A typical high-power function is shown in Figure 7-35.

The function’s electronics have been partitioned into two sections. The function controller contains the
minimum amount of circuitry necessary to permit enumeration and power budgeting. The remainder of the
function resides in the function block. High-power functions must be capable of operating in their low-
power (one unit load) mode with an input voltage as low as 4.40V, so that it may be detected and
enumerated even when plugged into a bus-powered hub. They must also be capable of operating at full
power (up to five unit loads) with aBUs voltage of 4.75V, measured at the upstream plug end of the

cable.

| —— -
~4—®| Function Controller Function

—

On/Off
1 unit loa
(max)

1
1
Upstream VBUS _y, ! Regulator 1
1
1

Upstream
Data Port

5 unit loads (max)

Figure 7-35. High-power Bus-powered Function

7.2.1.5 Self-powered Functions

Figure 7-36 shows a typical self-powered function. The function controller is powered either from the
upstream bus via a low-power regulator or from the local power supply. The advantage of the former
scheme is that it permits detection and enumeration of a self-powered function whose local power supply is
turned off. The maximum upstream power that the function controller can draw is one unit load, and the

137

Universal Serial Bus Specification Revision 1.1

regulator block must implement inrush current limiting. The amount of power that the function block may
draw is limited only by the local power supply. Because the local power supply is not required to power
any downstream bus ports, it does not need to implement current limiting, soft start, or power switching.

Upstream

Data Port ~“®———®| Function Controller ~&—®» Function
_>
! [

| B 1
\ I
UpstreamVBus _ g ! !
P 1 unit load (max) > : Regulator ;
\ |
Vo |

Local Power ! i

— i Regulator

Supply ! i

1

e ____ 1

Figure 7-36. Self-powered Function

7.2.2 Voltage Drop Budget
The voltage drop budget is determined from the following:

e The voltage supplied by high-powered hub ports is 4.75V to 5.25V.
e The voltage supplied by low-powered hub ports is 4.4V to 5.25V.

e Bus-powered hubs can have a maximum drop of 350mV from their cable plug (where they attach to a
source of power) to their output port connectors (where they supply power).

o The maximum voltage drop (for detachable cables) between the A-series plug and B-series plug on
VBUSis 125mV (MBUSD).

e The maximum voltage drop for all cables between upstream and downstream on GND is 125mV
(VGNDD).

o All hubs and functions must be able to provide configuration information with as little as 4.40V at the
connector end of their upstream cables. Only low-power functions need to be operational with this
minimum voltage.

e Functions drawing more than one unit load must operate with a 4.75V minimum input voltage at the
connector end of their upstream cables.

Figure 7-37 shows the minimum allowable voltages in a worst-case topology consisting of a bus-powered
hub driving a bus-powered function.

Host or Bus-powered Low-power
Powered Hub Hub Function

* 4.397V 4.378V
4.400V\ N

4,735V 4.640V
4'750\/\ K4'625V

4.500V

0.000

0.000V 0.015V 0.110V 0.125v 0.003V 0.022V

¢ Referenced Referenced
to Source to Hub

—

*Under transient conditions, supply at hub can drop from 4.400V to 4.070V
Figure 7-37. Worst-case Voltage Drop Topology (Steady State)

138

Universal Serial Bus Specification Revision 1.1

7.2.3 Power Control During Suspend/Resume

Suspend current is a function of unit load allocation. All USB devices initially default to low-power. Low-
power devices or high-power devices operating at low-power are limited pA50&Guspend current. If

the device is configured for high-power and enabled as a remote wakeup source, it may draw up to 2.5mA
during suspend. When computing suspend current, the current osithough the bus pull-up and

pull-down resistors must be included. Configured bus-powered hubs may also consume a maximum of
2.5mA, with 50Q.A allocated to each available external port and the remainder available to the hub and its
internal functions. If a hub is not configured, it is operating as a low-power device and must limit its
suspend current to 508.

While in the Suspend state, a device may briefly draw more than the average current. The amplitude of the
current spike cannot exceed the device power allocation 200mA (or 500mA). A maximum of 1.0 second is
allowed for an averaging interval. The average current cannot exceed the average suspend current limit
(IccsHor Iccsl, see Table 7-5) during any 1.0s intervad($AvG1). The profile of the current spike is
restricted so the transient response of the power supply (which may be an efficient, low-capacity, trickle
power supply) is not overwhelmed. The rising edge of the current spike must be no more tham400mA/
Downstream ports must be able to absorb the 500mA peak current spike and meet the voltage droop
requirements defined for inrush current during dynamic attach (see Section 7.2.4.1). Figure 7-38
illustrates a typical example profile for an averaging interval. If the supply to the pull-up resistor on D+/D-
is derived from \BuUs, then the suspend current will never go to zero because the pull-up and pull-down
resistors will always draw power.

ICONFIGURED(max)
Edge rate must Current Spike
not exceed
100mA/us \
lccs(H|L)
! 0mA
- < Averaging Interval g
time

Figure 7-38. Typical Suspend Current Averaging Profile

Devices are responsible for handling the bus voltage reduction due to the inductive and resistive effects of

the cable. When a hub is in the Suspend state, it must still be able to provide the maximum current per port
(one unit load of current per port for bus-powered hubs and five unit loads per port for self-powered hubs).

This is necessary to support remote wakeup-capable devices that will power-up while the remainder of the

system is still suspended. Such devices, when enabled to do remote wakeup, must drive resume signaling
upstream within 10ms of starting to draw the higher, non-suspend current. Devices not capable of remote

wakeup must draw the higher current only when not suspended.

When devices wakeup, either by themselves (remote wakeup) or by seeing resume signaling, they must
limit the inrush current on BUS. The target maximum droop in the hubBds is 330mV. The device must

have sufficient on-board bypass capacitance or a controlled power-on sequence such that the current drawn
from the hub does not exceed the maximum current capability of the port at any time while the device is
waking up.

139

Universal Serial Bus Specification Revision 1.1

7.2.4 Dynamic Attach and Detach

The act of plugging or unplugging a hub or function must not affect the functionality of another device on
other segments of the network. Unplugging a function will stop the transaction between that function and
the host. However, the hub to which this function was attached will recover from this condition and will
alert the host that the port has been disconnected.

7.2.4.1 Inrush Current Limiting

When a function or hub is plugged into the network, it has a certain amount of on-board capacitance
between Bus and ground. In addition, the regulator on the device may supply current to its output bypass
capacitance and to the function as soon as power is applied. Consequently, if no measures are taken to
prevent it, there could be a surge of current into the device which might pulbtieeov the hub below its
minimum operating level. Inrush currents can also occur when a high-power function is switched into its
high-power mode. This problem must be solved by limiting the inrush current and by providing sufficient
capacitance in each hub to prevent the power supplied to the other ports from going out of tolerance. An
additional motivation for limiting inrush current is to minimize contact arcing, thereby prolonging
connector contact life.

The maximum droop in the huBYsis 330mV, or about 10% of the nominal signal swing from the
function. In order to meet this requirement, the following conditions must be met:

e The maximum load (@rB) that can be placed at the downstream end of a cablgksii@arallel
with 44Q. The 1@F capacitance represents any bypass capacitor directly connected acr@sssthe V
lines in the function plus any capacitive effects visible through the regulator in the device.(0rhe 44
resistance represents one unit load of current drawn by the device during connect.

* If more bypass capacitance is required in the device, then the device must incorporate some form of
VBuUssurge current limiting, such that it matches the characteristics of the above load.

e The hub downstream porJs power lines must be bypassedif®) with no less than 120 of low-
ESR capacitance per hub. Standard bypass methods should be used to minimize inductance and
resistance between the bypass capacitors and the connectors to reduce droop. The bypass capacitors
themselves should have a low dissipation factor to allow decoupling at higher frequencies.

The upstream port of a hub is also required to meet the above requirements. Furthermore, a bus-powered
hub must provide additional surge limiting in the form of a soft-start circuit when it enables power to its
downstream ports.

A high-power bus-powered device that is switching from a lower power configuration to a higher power
configuration must not cause droop > 330 mV on thed/at its upstream hub . The device can meet this
by ensuring that changes in the capacitive load it presents do not exaéed 10

Signal pins are protected from excessive currents during dynamic attach by being recessed in the connector
such that the power pins make contact first. This guarantees that the power rails to the downstream device
are referenced before the signal pins make contact. In addition, the signal lines are in a high-impedance
state during connect, so that no current flows for standard signal levels.

7.2.4.2 Dynamic Detach

When a device is detached from the network with power flowing in the cable, the inductance of the cable

will cause a large flyback voltage to occur on the open end of the device cable. This flyback voltage is not
destructive. Proper bypass measures on the hub ports will suppress any coupled noise. The frequency
range of this noise is inversely dependent on the length of the cable, to a maximum of 60MHz for a one-
meter cable. This will require some low capacitance, very low inductance bypass capacitors on each hub
port connector. The flyback voltage and the noise it creates is also moderated by the bypass capacitance on
the device end of the cable. Also, there must be some minimum capacitance on the device end of the cable

140

Universal Serial Bus Specification Revision 1.1

to ensure that the inductive flyback on the open end of the cable does not cause the voltage on the device
end to reverse polarity. A minimum of 1P is recommended for bypass across/¥

7.3 Physical Layer
The physical layer specifications are described in the following subsections.

141

Universal Serial Bus Specification Revision 1.1

7.3.1 Regulatory Requirements
All USB devices should be designed to meet the applicable regulatory requirements.

7.3.2 Bus Timing/Electrical Characteristics

Table 7-5. DC Electrical Characteristics

Parameter Symbol Conditions Min. Max. nits
Supply Voltage:
High-power Port VBUS Note 2, Section 7.2.1 4.75 5.25
Low-power Port VBUS Note 2, Section 7.2.1 4.40 5.25
Supply Current:
High-power Hub Port (out) IccPRT Section 7.2.1 500 mA
Low-power Hub Port (out) lccupT Section 7.2.1 100 mA
High-power Function (in) IccHPF Section 7.2.1 500 mA
Low-power Function (in) IccLpPF Section 7.2.1 100 mA
Unconfigured Function/Hub (in) | lcciNnT Section 7.2.1.4 100 mA
Suspended High-power Device | lccsH Section 7.2.3 ; Note 15 25 mA
Suspended Low-power Device lccsL Section 7.2.3 500 A
Input Levels:
High (driven) VIH Note 4, Section 7.1.4 2.0 \%
High (floating) VIHZ Note 4, Section 7.1.4 2.7 3.6 \%
Low ViL Note 4, Section 7.1.4 0.8 \Y
Differential Input Sensitivity VDI |(D+)-(D-)]; 0.2 \%
Figure 7-9; Note 4
Differential Common Mode VcMm Includes VbI range; 0.8 2.5 \%
Range Figure 7-9; Note 4
Output Levels:
Low VoL Note 4, 5, Section 7.1.1 0.0 0.3
High (Driven) VOH Note 4, 6, Section 7.1.1 2.8 3.6
Output Signal Crossover VCRS Measured as in Figure 1.3 2.0
Voltage 7-6; Note 10
Decoupling Capacitance:
Downstream Port Bypass CHPB VBuUS to GND, Section 120 uF
Capacitance (per hub) 7.24.1
Upstream Port Bypass CRrpPB VBuUs to GND; Note 9, 1.0 10.0 uF

Capacitance

Section 7.2.4.1

142

Universal Serial Bus Specification Revision 1.1

Table 7-5. DC Electrical Characteristics (Continued)

Parameter Symbol Conditions Min. Max. nits
Input Capacitance:
Downstream Port CiND Note 2; Section 7.1.6 150 pF
Upstream Port (w/o cable) CinuB Note 3; Section 7.1.6 100 pF
Transceiver edge rate control CEDGE Section 7.1.6 75 pF
capacitance
Terminations:
Bus Pull-up Resistor on RpPu 1.5kQ +5% 1.425 1.575 kQ
Upstream Port Section 7.1.5
Bus Pull-down Resistor on RpPD 15kQ +5% 14.25 15.75 kO
Downstream Port Section 7.1.5
Input impedance exclusive of ZINP Section 7.1.6 300 kQ
pullup/pulldown
Termination voltage for VTERM Section 7.1.5 3.0 3.6 \%

upstream port pullup (Rru)

143

Universal Serial Bus Specification Revision 1.1

Table 7-6. Full-speed Source Electrical Characteristics

Parameter Symbol Conditions Min. Max. nits
Driver Characteristics:
Rise Time TFR Figure 7-6; Figure 7-7 4 20 ns
Fall Time TFF Figure 7-6; Figure 7-7 4 20 ns
Differential Rise and Fall Time TFRFM (TFR/TFF) Note 10, Section 90 111.11 %
Matching 7.1.2
Driver Output Resistance ZDRV Section 7.1.1.1 28 44 Q
Clock Timings:
Full-speed Data Rate TFDRATE | Average bit rate, Section 11.9700 12.0300 | Mb/s
7.1.11
Frame Interval TFRAME | Section 7.1.12 0.9995 1.0005 ms
Consecutive Frame Interval TRFI No clock adjustment 42 ns
Jitter
Consecutive Frame Interval TRFIADJ | With clock adjustment 126 ns
Jitter
Full-speed Data Timings:
Source Jitter Total (including Note 7, 8, 12, 10;
frequency tolerance): Measured as in Figure
To Next Transition TbJ1 7-39; -3.5 3.5 ns
For Paired Transitions TbpJ2 -4 4 ns
Source Jitter for Differential TFDEOP Note 8; Figure 7-40; -2 5 ns
Transition to SEO Transition Note 11
Receiver Jitter: Note 8; Figure 7-41
To Next Transition TIR1 -18.5 18.5 ns
For Paired Transitions TJIR2 -9 9 ns
Source SEO interval of EOP TFEOPT Figure 7-40 160 175 ns
Receiver SEQ interval of EOP TreoPR | Note 13; Section 7.1.13.2; 82 ns
Figure 7-40
Width of SEO interval during TFST Section 7.1.4 14 ns

differential transition

144

Universal Serial Bus Specification Revision 1.1

Table 7-7. Low-speed Source Electrical Characteristics

Parameter Symbol Conditions Min. Max. nits
Driver Characteristics:
Transition Time:
Rise Time TLR Measured as in Figure 7-6 75 300 ns
Fall Time TLF 75 300 ns
Rise and Fall Time Matching TLRFM (TLR/TLF) Note 10 80 125 %
Upstream Port CLINUA Note 1; Section 7.1.6 200 450 pF
(w/cable, low-speed only)
Clock Timings:
Low-speed Data Rate TLDRATE | Section 7.1.11 1.4775 1.5225 | Mb/s
Low-speed Data Timings:
Upstream port source Jitter Note 7, 8; Figure 7-39
Total (including frequenc
toleragce)‘_’ Ing frequency TubJ1 -95 95 ns
’ TupJ2 -150 150 ns
To Next Transition
For Paired Transitions
Upstream port source Jitter for | TLDEOP Note 8; Figure 7-40; -40 100 ns
Differential Transition to SEO Note 11
Transition
Upstream port differential Note 8; Figure 7-41
Receiver Jitter: ToIR1 75 75 ns
To Next Transition TDJIR2 -45 45 ns
For Paired Transitions
Downstream port source Jitter Note 7, 8; Figure 7-39
Total (including frequency ToDI1 25 25 ns
tolerance): TopJ2 -14 14 ns
To Next Transition
For Paired Transitions
Downstream port source Jitter Note 8; Figure 7-40; ns
for Differential Transition to SEO Note 11
Transition
Downstream port Differential Note 8; Figure 7-40
Receiver Jitter: - TuIRL 152 152 ns
To Next Transition TUIR2 -200 200 ns
For Paired Transitions
Source SEO interval of EOP TLEOPT Figure 7-40 1.25 1.50 ps
Receiver SEO interval of EOP TLEOPR Note 13; Section 7.1.13.2; 670 ns
Figure 7-40
Width of SEO interval during TLsT Section 7.1.4 210 ns

differential transition

145

Universal Serial Bus Specification Revision 1.1

Table 7-8. Hub/Repeater Electrical Characteristics

Parameter Symbol Conditions Min. Max. Units
Full-speed Hub Characteristics (as measured at connectors):

Driver Characteristics: Upstream port and

(Refer to Table 7-6) downstream ports

configured as full-speed
Hub Differential Data Delay: Note 7, 8
(with cable) THDD1 Figure 7-42A 70 ns
(without cable) THDD2 Figure 7-42B 44 ns

Hub Differential Driver Jitter: Note 7, 8; Figure 7-42,
(including cable) Section 7.1.14

To Next Transition THDJ1 -3 3 ns

For Paired Transitions THDJ2 -1 1 ns
Data Bit Width Distortion after SOP | Trsopr Note 8; Figure 7-42 -5 5 ns
Hub EOP Delay Relative to THDD TreopD | Note 8; Figure 7-43 0 15 ns
Hub EOP Output Width Skew TFHESK Note 8; Figure 7-43 -15 15 ns

Low-speed Hub Characteristics (as measured at connectors):

Driver Characteristics: Downstream ports

(Refer to Table 7-7) configured as low-speed
Hub Differential Data Delay TLHDD Note 7, 8; Figure 7-42 300 ns
Hub Differential Driver Jitter Note 7, 8; Figure 7-42
(including cable):
Downstream port :

To Next Transition TLDHJL -45 45 ns

For Paired Transitions TLDHJ2 -15 15 ns
Upstream port:

To Next Transition TLUHJIL -45 45 ns

For Paired Transitions TLUHJ2 -45 45 ns
Data Bit Width Distortion after SOP | TLsopr Note 8; Figure 7-42 -60 60 ns
Hub EOP Delay Relative to THDD TLEOPD | Note 8; Figure 7-43 0 200 ns
Hub EOP Output Width Skew TLHESK Note 8; Figure 7-43 -300 +300 ns

146

Universal Serial Bus Specification Revision 1.1

Table 7-9. Cable Characteristics (Note 14)

Parameter Symbol Conditions Min Max nits

VBuUs Voltage drop for VBUSD Section 7.2.2 125 mV
detachable cables
GND Voltage drop (for all VGNDD Section 7.2.2 125 mV
cables)
Differential Cable Impedance Zo (90Q2 +15%); 76.5 103.5 Q
(full-speed)
Cable Delay (one way) Section 7.1.16

Full-speed TFSCBL 26 ns

Low-speed TLsCBL 18 ns
Cable Skew TSKEW Section 7.1.3 400 ps
Unmated Contact Capacitance Cuc Section 6.7 2 pF

Note 1: Measured at A plug

Note 2: Measured at A receptacle
Note 3: Measured at B receptacle
Note 4: Measured at A or B connector
Note 5: Measured with RL of 1.425kQ to 3.6V

Note 6: Measured with RL of 14.25kQ) to GND

Note 7: Timing difference between the differential data signals

Note 8: Measured at crossover point of differential data signals

Note 9: The maximum load specification is the maximum effective capacitive load allowed that meets the target

VBus drop of 330mV

Note 10: Excluding the first transition from the Idle state

Note 11: The two transitions should be a (nominal) bit time apart

Note 12: For both transitions of differential signaling
Note 13: Must accept as valid EOP

Note 14: Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present,
shield in the cable. I.e., to measure the single-ended capacitance of D+, short D-, VBUS, GND and the

shield line together and measure the capacitance of D+ to the other conductors.
Note 15: For high power devices (non-hubs) when enabled for remote wakeup

147

Universal Serial Bus Specification Revision 1.1

Table 7-10. Hub Event Timings

Event Description Symbol Conditions Min Max Unit
Time to detect a downstream port TDCNN Section 11.5 and Section
connect event 7171
Awake Hub 25 2000 us
Suspended Hub 25 12000 us
Time to detect a disconnect event ToDIS Section 7.1.7.1
at a downstream port:
Awake Hub 2 25 us
Suspended Hub 2 10000.0 us
Duration of driving resume to a TprsMDN | Nominal; Section 7.1.7.5 20 ms
downstream port; Only from a and Section 11.5
controlling hub
Time from detecting downstream TURSM Section 7.1.7.5 100 ps
resume to rebroadcast.
Duration of driving reset to a TDRST Only for a 10 20 ms
downstream port SetPortFeature
(PORT_RESET) request;
Section 7.1.7.3 and
Section 11.5
Overall duration of driving reset to TDRSTR | only for root hubs; 50 ms
downstream port, root hub Section 7.1.7.3
Maximum interval between reset TRHRSI only for root hubs; each 3 ms
segments used to create TDRSTR reset pulse must be of
length TbRsT; Section
7.1.7.3
Time to evaluate device speed TospDEV | Optional 2.5 1000 us
after reset Section 11.8.2
Time to detect a long K from TURLK Section 11.6.1 2.5 100 us
upstream
Time to detect a long SEO from TURLSEO | Section 11.6.1 2.5 10000 us
upstream
Duration of repeating SEO TurRPSEO | Section 11.6.2 23 FS bit
upstream times
Duration of sending SEO upstream | Tubeop | Optional 2 FS bit
after EOF1 Section 11.6.2 times

148

Universal Serial Bus Specification Revision 1.1

Table 7-11. Device Event Timings

Parameter Symbol Conditions Min Max Units

Time from internal power good to TSIGATT Figure 7-19 100 ms
device pulling D+/D- beyond ViHz
(min) (signaling attach)
Debounce interval provided by TATTDB Figure 7-19 100 ms
USB system software after attach
Maximum time a device can draw Tasusp Section 7.1.7.4 10 ms
power >suspend power when bus
is continuously in idle state
Maximum duration of suspend TSUSAVGI Section 7.2.3 1 S
averaging interval
Period of idle bus before device TWTRSM Device must be 5 ms
can initiate resume remote-wakeup

enabled. Section

7.1.75
Duration of driving resume TDRSMUP Section 7.1.7.5 1 15 ms
upstream
Resume Recovery Time TRSMRCY Provided by USB 10 ms

System Software;

Section 7.1.7.5
Time to detect a reset from TDETRST Section 7.1.7.3 2.5 10000 us
upstream
Reset Recovery Time TRSTRCY Section 7.1.7.3 10 ms
Inter-packet Delay TiPD Section 7.1.18 2 bit

times

Inter-packet delay for device TRSPIPD1 Section 7.1.18 6.5 bit
response w/detachable cable times
Inter-packet delay for device TRSPIPD2 Section 7.1.18 7.5 bit
response w/captive cable times
SetAddress() Completion Time TDSETADDR Section 9.2.6.3 50 ms
Time to complete standard TDRQCMPLTND | Section 9.2.6.4 50 ms

request with no data

149

Universal Serial Bus Specification Revision 1.1

Table 7-11. Device Event Timings (Continued)

Parameter Symbol Conditions Min Max Units
Time to deliver first and TDRETDATAL Section 9.2.6.4 500 ms
subsequent (except last) data for
standard request
Time to deliver last data for TDRETDATAN Section 9.2.6.4 50 ms

standard request

150

Universal Serial Bus Specification Revision 1.1

7.3.3 Timing Waveforms

Treriop P \ \ \ \

Crossover
Differential / A Pons A
Data Lines \

Consecutive
- Transitions

N * Teeriop *+ Txoar

Paired
g Transitions —_—P

N * Teeriop + Txpaz

Figure 7-39. Differential Data Jitter

TperIoD &P \ \ | crossover Paint |
/ Crossover Extended
Differential A Point A A

Data Line‘\

Diff. Data-to-
SEO Skew —P> | 4 Source EOP Width: Teeopr
N * Teeriop + Txoeor P Tieopr
\
Receiver EOP Width: Teeopr,

TLEOPR

Figure 7-40. Differential-to-EOP Transition Skew and EOP Width

> | [T

Tperiop P

Differential * * *
Data Lines \
> | [T

xJR xJR1 —>| }4— TXJR2
—~’ —~’ —~’
4 Consecutive ! A
Transitions
N * Teeriop + Txirt
Paired
Transitions

N * Teeriop + Txir2

Figure 7-41. Receiver Jitter Tolerance

TPERIOD is the data rate of the receiver that can have the range as defined in Section 7.1.11

151

Universal Serial Bus Specification Revision 1.1

Upstcrieafm \ Upstream Crossover
End o Port of hub Point
Cable /'\ 509 Point of \
Initial Sying
Vss / AN Vss
50% Point of
Downstream Hub Delay Downstream Hub Delay Initial Swing
Port of hub “«—— Downstream Port of hub (¢— Downstream
Thpp1 Thop2
Vss Vss
A. Downstream Hub Delay with Cable B. Downstream Hub Delay without Cable
Downstream Crossover
Port of hub Point
Vss
Upstream Hub Delay Cross_over
Port or End Upstream & Point
of Cable Troo
THDDZ
Vss

C. Upstream Hub Delay with or without Cable

Hub Differential Jitter:
Thosr = Troox(J) - Troox(K) or T wopx(K) - Teoox(J) Consecutive Transit ions
THDJZ = THDDX(‘]) - THDDX(‘]) orT HDDX(K) - THDDX(K) Paired Transitions

Bit after SOP Width Distortion (s ame as data jitter for SOP and next J transition):
Trsop = Thppox(Next J) - T uppx(SOP)

Low-speed timings are determined in the s ame way for:

Tinoo, Teoraz, Tiookzs Trunaz, Teuskz, and Tisop

Figure 7-42. Hub Differential Delay, Differential Jitter, and SOP Distortion

Note: Measurement locations referenced in Figure 7-42and Figure 7-43are specified in Figure 7-28

152

Upstream
End of
Cable

Universal Serial Bus Specification Revision 1.1

50% Point of
Initial Swing /

Crossover
Point

Upstream \/
Port of hub A
Vss \

Extended

Teop+ Teop-
Downstream M / Downstream __/ *
Port of hub

VsC

>

TEOP

AN T AN

/

—

A. Downstream EOP Delay with Cable

Downstream V Crossover
Port Point
Extended
Vss
/ ¢ TeoP- ¢ Teop+
Upstream Crossover
Port or Point
End of Cable /\ \ Extended
Vss \

C. Upstream EOP Delay with or Without Cable

EOP Delay:

Treorp = Teopy - ThHopx
(Teory means that this equation applies to Tegop. and Tegop+)

EOP Skew:

Trresk = Teop+ - Teop-

Low-speed timings are determined in the same way for:
Tieoro and T pesk

Figure 7-43. Hub EOP Delay and EOP Skew

B. Downstream EOP Delay without Cable

153

Universal Serial Bus Specification Revision 1.1

154

Universal Serial Bus Specification Revision 1.1

Chapter 8
Protocol Layer

This chapter presents a bottom-up view of the USB protocol, starting with field and packet definitions.
This is followed by a description of packet transaction formats for different transaction types. Link layer
flow control and transaction level fault recovery are then covered. The chapter finishes with a discussion
of retry synchronization, babble, and loss of bus activity recovery.

8.1 Bit Ordering

Bits are sent out onto the bus least-significant bit (LSb) first, followed by the next LSb, through to the
most-significant bit (MSb) last. In the following diagrams, packets are displayed such that both individual
bits and fields are represented (in a left to right reading order) as they would move across the bus.

8.2 SYNC Field

All packets begin with a synchronization (SYNC) field, which is a coded sequence that generates a
maximum edge transition density. The SYNC field appears on the bus as IDLE followed by the binary
string “KJIKJIKJIKK,” in its NRZI encoding. It is used by the input circuitry to align incoming data with the
local clock and is defined to be eight bits in length. SYNC serves only as a synchronization mechanism
and is not shown in the following packet diagrams (refer to Section 7.1.10). The last two bits in the SYNC
field are a marker that is used to identify the end of the SYNC field and, by inference, the start of the PID.

8.3 Packet Field Formats

Field formats for the token, data, and handshake packets are described in the following section. Packet bit
definitions are displayed in unencoded data format. The effects of NRZI coding and bit stuffing have been
removed for the sake of clarity. All packets have distinct Start- and End-of-Packet delimiters. The Start-
of-Packet (SOP) delimeter is part of the SYNC field, and the End-of-Packet (EOP) delimiter is described in
Chapter 7.

8.3.1 Packet Identifier Field

A packet identifier (PID) immediately follows the SYNC field of every USB packet. A PID consists of a
four-bit packet type field followed by a four-bit check field as shown in Figure 8-1. The PID indicates the
type of packet and, by inference, the format of the packet and the type of error detection applied to the
packet. The four-bit check field of the PID ensures reliable decoding of the PID so that the remainder of
the packet is interpreted correctly. The PID check field is generated by performing a one’s complement of
the packet type field. A PID error exists if the four PID check bits are not complements of their respective
packet identifier bits.

(LSb) (MSh)

PID 0 PID 1 PID 2 PID 3 PID 0 PID 1 PID) PID3

Figure 8-1. PID Format

155

Universal Serial Bus Specification Revision 1.1

The host and all functions must perform a complete decoding of all received PID fields. Any PID received
with a failed check field or which decodes to a non-defined value is assumed to be corrupted and it, as well
as the remainder of the packet, is ignored by the packet receiver. If a function receives an otherwise valid
PID for a transaction type or direction that it does not support, the function must not respond. For
example, an IN-only endpoint must ignore an OUT token. PID types, codings, and descriptions are listed

in Table 8-1.
Table 8-1. PID Types
PID Type | PID Name | PID[3:0]* Description
Token ouT 0001B Address + endpoint number in host-to-function
transaction
IN 1001B Address + endpoint number in function-to-host
transaction
SOF 0101B Start-of-Frame marker and frame number
SETUP 1101B Address + endpoint number in host-to-function
transaction for SETUP to a control pipe
Data DATAO 0011B Data packet PID even
DATAl 1011B Data packet PID odd
Handshake | ACK 0010B Receiver accepts error-free data packet
NAK 1010B Rx device cannot accept data or Tx device cannot send
data
STALL 1110B Endpoint is halted or a control pipe request is not
supported.
Special PRE 1100B Host-issued preamble. Enables downstream bus traffic
to low-speed devices.

*Note: PID bits are shown in MSb order. When sent on the USB, the rightmost bit (bit 0) will be sent first.

PIDs are divided into four coding groups: token, data, handshake, and special, with the first two
transmitted PID bits (PID<0:1>) indicating which group. This accounts for the distribution of PID codes.

8.3.2 Address Fields

Function endpoints are addressed using two fields: the function address field and the endpoint field. A
function needs to fully decode both address and endpoint fields. Address or endpoint aliasing is not
permitted, and a mismatch on either field must cause the token to be ignored. Accesses to non-initialized
endpoints will also cause the token to be ignored.

156

Universal Serial Bus Specification Revision 1.1

8.3.2.1 Address Field

The function address (ADDR) field specifies the function, via its address, that is either the source or
destination of a data packet, depending on the value of the token PID. As shown in Figure 8-2, a total of
128 addresses are specified as ADDR<6:0>. The ADDR field is specified for IN, SETUP, and OUT
tokens. By definition, each ADDR value defines a single function. Upon reset and power-up, a function’s
address defaults to a value of zero and must be programmed by the host during the enumeration process.
Function address zero is reserved as the default address and may not be assigned to any other use.

(LSb) (MSb)

Addr0 Addr1 Addr2 Addr3 Addr4 Addr5 Addr6

Figure 8-2. ADDR Field

8.3.2.2 Endpoint Field

An additional four-bit endpoint (ENDP) field, shown in Figure 8-3 permits more flexible addressing of
functions in which more than one endpoint is required. Except for endpoint address zero, endpoint
numbers are function-specific. The endpoint field is defined for IN, SETUP, and OUT token PIDs only.
All functions must support a control pipe at endpoint number zero (the Default Control Pipe). Low-speed
devices support a maximum of three pipes per function: a control pipe at endpoint number zero plus two
additional pipes (either two control pipes, a control pipe and a interrupt endpoint, or two interrupt
endpoints). Full-speed functions may support up to the maximum of 16 endpoint numbers of any type.

(LSh) (MSh)

Endp 0 Endp 1 Endp 2 Endp 3

Figure 8-3. Endpoint Field

8.3.3 Frame Number Field

The frame number field is an 11-bit field that is incremented by the host on a per-frame basis. The frame
number field rolls over upon reaching its maximum value of 7FFH, and is sent only in SOF tokens at the
start of each frame.

8.3.4 Data Field

The data field may range from zero to 1,023 bytes and must be an integral number of bytes. Figure 8-4
shows the format for multiple bytes. Data bits within each byte are shifted out LSb first.

(MSb) (LSb) (MSb) (LSb)

p, || o,| po,| D, | Dyf D, | Ds| D] D, || D

Byte N-1 Byte N Byte N+1

Figure 8-4. Data Field Format

Data packet size varies with the transfer type, as described in Chapter 5.

157

8.3

8.3

8.3

8.4

158

Universal Serial Bus Specification Revision 1.1

.5 Cyclic Redundancy Checks

Cyclic redundancy checks (CRCs) are used to protect all non-PID fields in token and data packets. In this
context, these fields are considered to be protected fields. The PID is not included in the CRC check of a
packet containing a CRC. All CRCs are generated over their respective fields in the transmitter before bit
stuffing is performed. Similarly, CRCs are decoded in the receiver after stuffed bits have been removed.
Token and data packet CRCs provide 100% coverage for all single- and double-bit errors. A failed CRC is
considered to indicate that one or more of the protected fields is corrupted and causes the receiver to ignore
those fields, and, in most cases, the entire packet.

For CRC generation and checking, the shift registers in the generator and checker are seeded with an all-
ones pattern. For each data bit sent or received, the high order bit of the current remainder is XORed with
the data bit and then the remainder is shifted left one bit and the low-order bit set to zero. If the result of
that XOR is one, then the remainder is XORed with the generator polynomial.

When the last bit of the checked field is sent, the CRC in the generator is inverted and sent to the checker
MSb first. When the last bit of the CRC is received by the checker and no errors have occurred, the
remainder will be equal to the polynomial residual.

A CRC error exists if the computed checksum remainder at the end of a packet reception does not match
the residual.

Bit stuffing requirements must be met for the CRC, and this includes the need to insert a zero at the end of
a CRC if the preceding six bits were all ones.

.5.1 Token CRCs

A five-bit CRC field is provided for tokens and covers the ADDR and ENDP fields of IN, SETUP, and
OUT tokens or the time stamp field of an SOF token. The generator polynomial is:

GX)=X+X*+1

The binary bit pattern that represents this polynomial is 00101B. If all token bits are received without
error, the five-bit residual at the receiver will be 01100B.

.5.2 Data CRCs

The data CRC is a 16-bit polynomial applied over the data field of a data packet. The generating
polynomial is:

G(X) = X"+ X"+ X*+1

The binary bit pattern that represents this polynomial is 1000000000000101B. If all data and CRC bits are
received without error, the 16-bit residual will be 1000000000001101B.

Packet Formats

This section shows packet formats for token, data, and handshake packets. Fields within a packet are
displayed in these figures in the order in which bits are shifted out onto the bus.

Universal Serial Bus Specification Revision 1.1

8.4.1 Token Packets

Figure 8-5 shows the field formats for a token packet. A token consists of a PID, specifying either IN,
OUT, or SETUP packet type; and ADDR and ENDP fields. For OUT and SETUP transactions, the address
and endpoint fields uniquely identify the endpoint that will receive the subsequent Data packet. For IN
transactions, these fields uniquely identify which endpoint should transmit a Data packet. Only the host
can issue token packets. IN PIDs define a Data transaction from a function to the host. OUT and SETUP
PIDs define Data transactions from the host to a function.

8 bits 7 bits 4 bits 5 bits

PID ADDR ENDP CRC5

S G

Figure 8-5. Token Format

Token packets have a five-bit CRC that covers the address and endpoint fields as shown above. The CRC
does not cover the PID, which has its own check field. Token and SOF packets are delimited by an EOP
after three bytes of packet field data. If a packet decodes as an otherwise valid token or SOF but does not
terminate with an EOP after three bytes, it must be considered invalid and ignored by the receiver.

8.4.2 Start-of-Frame Packets

Start-of-Frame (SOF) packets are issued by the host at a nominal rate of once every (L Q005NS.
SOF packets consist of a PID indicating packet type followed by an 11-bit frame number field as illustrated
in Figure 8-6.

8 bits 11 bits 5 bits

PID Frame Number CRC5

|

Figure 8-6. SOF Packet

The SOF token comprises the token-only transaction that distributes an SOF marker and accompanying
frame number at precisely timed intervals corresponding to the start of each frame. All full-speed

functions, including hubs, receive the SOF packet. The SOF token does not cause any receiving function

to generate a return packet; therefore, SOF delivery to any given function cannot be guaranteed. The SOF
packet delivers two pieces of timing information. A function is informed that an SOF has occurred when it
detects the SOF PID. Frame timing sensitive functions, which do not need to keep track of frame number
(e.g., a hub), need only decode the SOF PID; they can ignore the frame number and its CRC. If a function
needs to track frame number, it must comprehend both the PID and the time stamp. Full-speed devices that
have no particular need for bus timing information may ignore the SOF packet.

159

Universal Serial Bus Specification Revision 1.1

8.4.3 Data Packets

A data packet consists of a PID, a data field containing zero or more bytes of data, and a CRC as shown in
Figure 8-7. There are two types of data packets, identified by differing PIDs: DATAO and DATAL. Two
data packet PIDs are defined to support data toggle synchronization (refer to Section 8.6).

8 bits 0-1023 bytes 16 bits
PID DATA CRC16
Y
+

Figure 8-7. Data Packet Format

Data must always be sent in integral numbers of bytes. The data CRC is computed over only the data field
in the packet and does not include the PID, which has its own check field.

8.4.4 Handshake Packets

160

Handshake packets, as shown in Figure 8-8, consist of only a PID. Handshake packets are used to report
the status of a data transaction and can return values indicating successful reception of data, command
acceptance or rejection, flow control, and halt conditions. Only transaction types that support flow control
can return handshakes. Handshakes are always returned in the handshake phase of a transaction and may
be returned, instead of data, in the data phase. Handshake packets are delimited by an EOP after one byte
of packet field. If a packet decodes as an otherwise valid handshake but does not terminate with an EOP
after one byte, it must be considered invalid and ignored by the receiver.

8 bits

PID

Figure 8-8. Handshake Packet

There are three types of handshake packets:

ACK indicates that the data packet was received without bit stuff or CRC errors over the data field and that
the data PID was received correctly. ACK may be issued either when sequence bits match and the receiver
can accept data or when sequence bits mismatch and the sender and receiver must resynchronize to each
other (refer to Section 8.6 for details). An ACK handshake is applicable only in transactions in which data
has been transmitted and where a handshake is expected. ACK can be returned by the host for IN
transactions and by a function for OUT or SETUP transactions.

NAK indicates that a function was unable to accept data from the host (OUT) or that a function has no data
to transmit to the host (IN). NAK can only be returned by functions in the data phase of IN transactions or
the handshake phase of OUT transactions. The host can never issue NAK. NAK is used for flow control
purposes to indicate that a function is temporarily unable to transmit or receive data, but will eventually be
able to do so without need of host intervention.

STALL is returned by a function in response to an IN token or after the data phase of an OUT transaction
(see Figure 8-9 and Figure 8-13). STALL indicates that a function is unable to transmit or receive data, or
that a control pipe request is not supported. The host is not permitted to return a STALL under any
condition.

Universal Serial Bus Specification Revision 1.1

The STALL handshake is used by a device in one of two distinct occasions. The first case, known as
“functional stall,” is when théialt feature associated the endpoint is set. {{&lefeature is specified in
Chapter 9 of this document.) A special case of the functional stall is the “commanded stall.” Commanded
stall occurs when the host explicitly sets the endpolf&ls feature, as detailed in Chapter 9. Once a
function’s endpoint is halted, the function must continue returning STALL until the condition causing the
halt has been cleared through host intervention.

The second case, known as “protocol stall,” is detailed in Section 8.5.2. Protocol stall is unique to control
pipes. Protocol stall differs from functional stall in meaning and duration. A protocol STALL is returned
during the Data or Status stage of a control transfer, and the STALL condition terminates at the beginning
of the next control transfer (Setup). The remainder of this section refers to the general case of a functional
stall.

8.4.5 Handshake Responses

Transmitting and receiving functions must return handshakes based upon an order of precedence detailed
in Table 8-2 through Table 8-4. Not all handshakes are allowed, depending on the transaction type and
whether the handshake is being issued by a function or the host. Note that if an error occurs during the
transmission of the token to the function, the function will not respond with any packets until the next

token is received and successfully decoded.

8.4.5.1 Function Response to IN Transactions

Table 8-2 shows the possible responses a function may make in response to an IN token. If the function is
unable to send data, due to a halt or a flow control condition, it issues a STALL or NAK handshake,
respectively. If the function is able to issue data, it does so. If the received token is corrupted, the function
returns no response.

Table 8-2. Function Responses to IN Transactions

Token Received Function Tx Function Can Action Taken
Corrupted Endpoint Halt Transmit Data

Feature
Yes Don't care Don't care Return no response
No Set Don't care Issue STALL handshake
No Not set No Issue NAK handshake
No Not set Yes Issue data packet

8.4.5.2 Host Response to IN Transactions

Table 8-3 shows the host response to an IN transaction. The host is able to return only one type of
handshake: ACK. If the host receives a corrupted data packet, it discards the data and issues no response.
If the host cannot accept data from a function, (due to problems such as internal buffer overrun) this
condition is considered to be an error and the host returns no response. If the host is able to accept data
and the data packet is received error-free, the host accepts the data and issues an ACK handshake.

161

Universal Serial Bus Specification Revision 1.1

Table 8-3. Host Responses to IN Transactions

Data Packet Host Can Handshake Returned by Host
Corrupted Accept Data

Yes N/A Discard data, return no response
No No Discard data, return no response
No Yes Accept data, issue ACK

8.4.5.3 Function Response to an OUT Transaction

Handshake responses for an OUT transaction are shown in Table 8-4. Assuming successful token decode,
a function, upon receiving a data packet, may return any one of the three handshake types. If the data
packet was corrupted, the function returns no handshake. If the data packet was received error-free and the
function’s receiving endpoint is halted, the function returns STALL. If the transaction is maintaining
sequence bit synchronization and a mismatch is detected (refer to Section 8.6 for details), then the function
returns ACK and discards the data. If the function can accept the data and has received the data error-free,
it returns ACK. If the function cannot accept the data packet due to flow control reasons, it returns NAK.

Table 8-4. Function Responses to OUT Transactions in Order of Precedence

Data Packet | Receiver Sequence Bits | Function Can Handshake Returned
Corrupted Halt Match Accept Data by Function
Feature

Yes N/A N/A N/A None

No Set N/A N/A STALL

No Not set No N/A ACK

No Not set Yes Yes ACK

No Not set Yes No NAK

8.4.5.4 Function Response to a SETUP Transaction

SETUP defines a special type of host-to-function data transaction that permits the host to initialize an
endpoint’s synchronization bits to those of the host. Upon receiving a SETUP token, a function must
accept the data. A function may not respond to a SETUP token with either STALL or NAK and the
receiving function must accept the data packet that follows the SETUP token. If a non-control endpoint
receives a SETUP token, it must ignore the transaction and return no response.

8.5 Transaction Formats

Packet transaction format varies depending on the endpoint type. There are four endpoint types: bulk,
control, interrupt, and isochronous.

162

Universal Serial Bus Specification Revision 1.1

8.5.1 Bulk Transactions

Bulk transaction types are characterized by the ability to guarantee error-free delivery of data between the
host and a function by means of error detection and retry. Bulk transactions use a three-phase transaction
consisting of token, data, and handshake packets as shown in Figure 8-9. Under certain flow control and
halt conditions, the data phase may be replaced with a handshake resulting in a two-phase transaction in
which no data is transmitted.

Idle
Token o
DATAQ/ DATAQ/
DATAL NAK STALL DATAL

Data
L L > Idle

Data |ACK | |NAK | |STALL | Data

Error | 1 Error
L A > Idle

[] Host [] Function

Figure 8-9. Bulk Transaction Format

When the host is ready to receive bulk data, it issues an IN token. The function endpoint responds by
returning either a data packet or, should it be unable to return data, a NAK or STALL handshake. NAK
indicates that the function is temporarily unable to return data, while STALL indicates that the endpoint is
permanently halted and requires USB System Software intervention. If the host receives a valid data
packet, it responds with an ACK handshake. If the host detects an error while receiving data, it returns no
handshake packet to the function.

When the host is ready to transmit bulk data, it first issues an OUT token packet followed by a data packet.
If the data is received without error by the function it will return one of three handshakes:

o ACK indicates that the data packet was received without errors and informs the host that that it may
send the next packet in the sequence.

¢ NAK indicates that the data was received without error but that the host should resend the data because
the function was in a temporary condition preventing it from accepting the data (e.qg., buffer full).

o |f the endpoint was halted, STALL is returned to indicate that the host should not retry the
transmission because there is an error condition on the function.

If the data packet was received with a CRC or bit stuff error, no handshake is returned.

163

Universal Serial Bus Specification Revision 1.1

Figure 8-10 shows the sequence bit and data PID usage for bulk reads and writes. Data packet
synchronization is achieved via use of the data sequence toggle bits and the DATAO/DATAL PIDs. A bulk
endpoint’s toggle sequence is initialized to DATAO when the endpoint experiences any configuration event
(configuration events are explained in Sections 9.1.1.5 and 9.4.5). Data toggle on an endpoint is NOT
initialized as the direct result of a short packet transfer or the retirement of an IRP.

5\;".': | ouUT (0) | | ouUT (1) | | OUT (0/) |
e DATAO DATA1 DATAO/1

Read [wo || wo |[.. | woy |
DATAO DATA1 DATAO0/1

Figure 8-10. Bulk Reads and Writes

The host always initializes the first transaction of a bus transfer to the DATAO PID with a configuration

event. The second transaction uses a DATAL PID, and successive data transfers alternate for the remainder
of the bulk transfer. The data packet transmitter toggles upon receipt of ACK, and the receiver toggles

upon receipt and acceptance of a valid data packet (refer to Section 8.6).

8.5.2 Control Transfers

Control transfers minimally have two transaction stages: Setup and Status. A control transfer may
optionally contain a Data stage between the Setup and Status stages. During the Setup stage, a SETUP
transaction is used to transmit information to the control endpoint of a function. SETUP transactions are
similar in format to an OUT, but use a SETUP rather than an OUT PID. Figure 8-11 shows the SETUP
transaction format. A SETUP always uses a DATAO PID for the data field of the SETUP transaction. The
function receiving a SETUP must accept the SETUP data and respond with ACK, if the data is corrupted,
discard the data and return no handshake.

Idle

Handshake ACK

—Pp Idle

[] Host [] Function
Figure 8-11. Control SETUP Transaction
The Data stage, if present, of a control transfer consists of one or more IN or OUT transactions and follows
the same protocol rules as bulk transfers. All the transactions in the Data stage must be in the same

direction (i.e., all INs or all OUTs). The amount of data to be sent during the data phase and its direction
are specified during the Setup stage. If the amount of data exceeds the prenegotiated data packet size, the

164

Universal Serial Bus Specification Revision 1.1

data is sent in multiple transactions (INs or OUTSs) that carry the maximum packet size. Any remaining
data is sent as a residual in the last transaction.

The Status stage of a control transfer is the last operation in the sequence. A Status stage is delineated by a
change in direction of data flow from the previous stage and always uses a DATAL PID. If, for example,

the Data stage consists of OUTSs, the status is a single IN transaction. If the control sequence has no Data
stage, then it consists of a Setup stage followed by a Status stage consisting of an IN transaction.

Figure 8-12 shows the transaction order, the data sequence bit value, and the data PID types for control
read and write sequences. The sequence bits are displayed in parentheses.

Setup Data Status
Stage Stage Stage
A A
/ \ / \
\?v?_fggm | SETUP (0) | | OouT (1) | | OUT (0) | | OUT (0/1) | | IN (1) |
1
DATAO DATAL DATAO DATAO/1 DATAL
ggggo' |SETUP(0) | | IN (1) | | IN (0) | | IN (0/1) | | OUT (1) |
DATAO DATA1 DATAO DATAO/1 DATAl1
Setup Status
Stage Stage
A A
/ VT \
No-data SETUP (0) | | IN (1)
Control
DATAO DATAL

Figure 8-12. Control Read and Write Sequences

When a STALL handshake is sent by a control endpoint in either the Data or Status stages of a control
transfer, a STALL handshake must be returned on all succeeding accesses to that endpoint until a SETUP
PID is received. The endpoint is not required to return a STALL handshake after it receives a subsequent
SETUP PID.

8.5.2.1 Reporting Status Results

The Status stage reports to the host the outcome of the previous Setup and Data stages of the transfer.
Three possible results may be returned:

e The command sequence completed successfully.
o The command sequence failed to complete.
e The function is still busy completing command.

Status reporting is always in the function-to-host direction. The Table 8-5 summarizes the type of
responses required for each. Control write transfers return status information in the data phase of the Status
stage transaction. Control read transfers return status information in the handshake phase of a Status stage
transaction, after the host has issued a zero-length data packet during the previous data phase.

165

Universal Serial Bus Specification Revision 1.1

Table 8-5. Status Stage Responses

Status Response |Control Write Transfer Control Read Transfer
(sent during data phase) (send during handshake phase)

Function completes Zero-length data packet ACK handshake

Function has an error | STALL handshake STALL handshake

Function is busy NAK handshake NAK handshake

For control reads, the host sends an OUT token to the control pipe to initiate the Status stage. The host
may only send a zero-length data packet in this phase but the function may accept any length packet as a
valid status inquiry. The pipe’s handshake response to this data packet indicates the current status. NAK
indicates that the function is still processing the command and that the host should continue the Status
stage. ACK indicates that the function has completed the command and is ready to accept a new
command. STALL indicates that the function has an error that prevents it from completing the command.

For control writes, the host sends an IN token to the control pipe to initiate the Status stage. The function
responds with either a handshake or a zero-length data packet to indicate its current status. NAK indicates
that the function is still processing the command and that the host should continue the Status stage; return
of a zero-length packet indicates normal completion of the command; and STALL indicates that the
function cannot complete the command. The function expects the host to respond to the data packet in the
Status stage with ACK. If the function does not receive ACK, it remains in the Status stage of the
command and will continue to return the zero-length data packet for as long as the host continues to send
IN tokens.

If during a Data stage a command pipe is sent more data or is requested to return more data than was
indicated in the Setup stage (see Section 8.5.2.2), it should return STALL. If a control pipe returns STALL
during the Data stage, there will be no Status stage for that control transfer.

8.5.2.2 Variable-length Data Stage

A control pipe may have a variable-length data phase in which the host request more data than is contained
in the specified data structure. When all of the data structure is returned to the host, the function should
indicate that the Data stage is ended by returning a packet that is shorter tlarRlaeketSizéor the

pipe. If the data structure is an exact multiplevbfaxPacketSizéor the pipe, the funtion will return a
zero-length packet to indicate the end of the Data stage.

8.5.2.3 Error Handling on the Last Data Transaction

If the ACK handshake on an IN transaction is corrupted, the function and the host will temporarily disagree
on whether the transaction was successful. If the transaction is followed by another IN, the toggle retry
mechanism will detect the mismatch and recover from the error. If the ACK was on the last IN of a Data
stage, the toggle retry mechanism cannot be used and an alternative scheme must be used.

The host that successfully received the data of the last IN will send ACK., Later, the host will issue an

OUT token to start the Status stage of the transfer. If the function did not receive the ACK that ended the
Data stage, the function will interpret the start of the Status stage as verification that the host successfully
received the data. Control writes do not have this ambiguity. If an ACK handshake on an OUT gets
corrupted, the host does not advance to the Status stage and retries the last data instead. A detailed analysis
of retry policy is presented in Section 8.6.4.

166

Universal Serial Bus Specification Revision 1.1

8.5.2.4 STALL Handshakes Returned by Control Pipes

Control pipes have the unique ability to return a STALL handshake due to function problems in control
transfers. If the device is unable to complete a command, it returns a STALL in the Data and/or Status
stages of the control transfer. Unlike the case of a functional stall, protocol stall does not indicate an error
with the device. The protocol stall condition lasts until the receipt of the next SETUP transaction and the
function will return STALL in response to any IN or OUT transaction on the pipe until the SETUP
transaction is received. In general, protocol stall indicates that the request or its parameters is not
understood by the device and thus provides a mechanism for extending USB requests.

A control pipe may also support functional stall as well, but this is not recommended. This is a
degenerative case, because a functional stall on a control pipe indicates that it has lost the ability to
communicate with the host. If the control pipe does support functional stall, then it must pétsiess a
feature, which can be set or cleared by the host. Chapter 9 details how to treat the specialtalse of a
feature on a control pipe. A well-designed device will associate all of its functiomadtrfdatures with
non-control endpoints. The control pipes should be reserved for servicing USB requests.

8.5.3 Interrupt Transactions

Interrupt transactions may consist of IN or OUT transfers. Upon receipt of an IN token, a function may
return data, NAK, or STALL. If the endpoint has no new interrupt information to return (i.e., no interrupt

is pending), the function returns a NAK handshake during the data phaseH#itleature is set for the

interrupt endpoint, the function will return a STALL handshake. If an interrupt is pending, the function
returns the interrupt information as a data packet. The host, in response to receipt of the data packet, issues
either an ACK handshake if data was received error-free or returns no handshake if the data packet was
received corrupted. Figure 8-13 shows the interrupt transaction format.

Idle
Token ouT
DATAO/ DATAO0/
DATAL NAK STALL DATAL
Data
L L - Idle
Handshake
Data | ACK | | NAK | |STALL | Data
Error Error
A L > Idle

[] Host [] Function

Figure 8-13. Interrupt Transaction Format

When an endpoint is using the interrupt transfer mechanism for actual interrupt data, the data toggle
protocol must be followed. This allows the function to know that the data has been received by the host
and the event condition may be cleared. This “guaranteed” delivery of events allows the function to only
send the interrupt information until it has been received by the host rather than having to send the interrupt
data every time the function is polled and until the USB System Software clears the interrupt condition.

167

Universal Serial Bus Specification Revision 1.1

When used in the toggle mode, an interrupt endpoint is initialized to the DATAO PID by any configuration
event on the endpoint and behaves the same as the bulk transactions shown in Figure 8-10.

An interrupt endpoint may also be used to communicate rate feedback information for certain types of
isochronous functions. When used in this mode, the data toggle bits should be changed after each data
packet is sent to the host without regard to the presence or type of handshake packet. This capability is
supported only for interrupt IN endpoints.

8.5.4 Isochronous Transactions

8.6

168

Isochronous (ISO) transactions have a token and data phase, but no handshake phase, as shown in Figure
8-14. The host issues either an IN or an OUT token followed by the data phase in which the endpoint (for
INs) or the host (for OUTSs) transmits data. ISO transactions do not support a handshake phase or retry
capability.

Idle

ouT

[] Host [] Function

See Note Below

Figure 8-14. Isochronous Transaction Format

Note: a device or Host Controller should be able to accept either DATAO or DATAL. A device or Host
Controller should only send DATAO.

ISO transactions do not support toggle sequencing.

Data Toggle Synchronization and Retry

The USB provides a mechanism to guarantee data sequence synchronization between data transmitter and
receiver across multiple transactions. This mechanism provides a means of guaranteeing that the
handshake phase of a transaction was interpreted correctly by both the transmitter and receiver.
Synchronization is achieved via use of the DATAO and DATA1 PIDs and separate data toggle sequence
bits for the data transmitter and receiver. Receiver sequence bits toggle only when the receiver is able to
accept data and receives an error-free data packet with the correct data PID. Transmitter sequence bits
toggle only when the data transmitter receives a valid ACK handshake. The data transmitter and receiver
must have their sequence bits synchronized at the start of a transaction. The synchronization mechanism
used varies with the transaction type. Data toggle synchronization is not supported for ISO transfers.

Universal Serial Bus Specification Revision 1.1

8.6.1 Initialization via SETUP Token

Control transfers use the SETUP token for initializing host and function sequence bits. Figure 8-15 shows
the host issuing a SETUP packet to a function followed by an OUT transaction. The numbers in the circles
represent the transmitter and receiver sequence bits. The function must accept the data and return ACK.
When the function accepts the transaction, it must set its sequence bit so that both the host’s and function’s
sequence bits are equal to one at the end of the SETUP transaction.

Host Device
SETUP

DATAO

Accept
data

Figure 8-15. SETUP Initialization

8.6.2 Successful Data Transactions

Figure 8-16 shows the case where two successful transactions have occurred. For the data transmitter, this
means that it toggles its sequence bit upon receipt of ACK. The receiver toggles its sequence bit only if it
receives a valid data packet and the packet's data PID matches the current value of its sequence bit. The
transmitter only toggles its sequence bit after it receives and ACK to a data packet.

During each transaction, the receiver compares the transmitter sequence bit (encoded in the data packet
PID as either DATAO or DATA1) with its receiver sequence bit. If data cannot be accepted, the receiver
must issue NAK and the sequence bits of both the transmitter and receiver remain unchanged. If data can
be accepted and the receiver’s sequence bit matches the PID sequence bit, then data is accepted and the
sequence bit is toggled. Two-phase transactions in which there is no data packet leave the transmitter and
receiver sequence bits unchanged.

DATAO DATA1
Accept Accept
data data

>
@]
~
>
@]
~

Transfer i Transfer i+ 1

Figure 8-16. Consecutive Transactions

169

8.6.

Universal Serial Bus Specification Revision 1.1

3 Data Corrupted or Not Accepted

If data cannot be accepted or the received data packet is corrupted, the receiver will issue a NAK or
STALL handshake, or timeout, depending on the circumstances, and the receiver will not toggle its
sequence bit. Figure 8-17 shows the case where a transaction is NAKed and then retried. Any non-ACK
handshake or timeout will generate similar retry behavior. The transmitter, having not received an ACK
handshake, will not toggle its sequence bit. As a result, a failed data packet transaction leaves the
transmitter’'s and receiver’'s sequence bits synchronized and untoggled. The transaction will then be retried
and, if successful, will cause both transmitter and receiver sequence bits to toggle.

DATAO DATAO
Reject Accept
data data

NAK ACK

:
"

Transfer / Retry
Transfer i

Figure 8-17. NAKed Transaction with Retry

8.6.4 Corrupted ACK Handshake

170

The transmitter is the last and only agent to know for sure whether a transaction has been successful, due to
its receiving an ACK handshake. A lost or corrupted ACK handshake can lead to a temporary loss of
synchronization between transmitter and receiver as shown in Figure 8-18. Here the transmitter issues a
valid data packet, which is successfully acquired by the receiver; however, the ACK handshake is

corrupted.

DATAO DATAO DATAL

Accept Ignore

data data
Fajlg(iﬁCK ACK ACK
Transfer / Transfer i Transferi+ 1

(retried)

Figure 8-18. Corrupted ACK Handshake with Retry

At the end of transactian there is a temporary loss of coherency between transmitter and receiver, as
evidenced by the mismatch between their respective sequence bits. The receiver has received good data,
but the transmitter does not know whether it has successfully sent data. On the next transaction, the
transmitter will resend the previous data using the previous DATAO PID. The receiver’s sequence bit and
the data PID will not match, so the receiver knows that it has previously accepted this data. Consequently,
it discards the incoming data packet and does not toggle its sequence bit. The receiver then issues ACK,
which causes the transmitter to regard the retried transaction as successful. Receipt of ACK causes the

Universal Serial Bus Specification Revision 1.1

transmitter to toggle its sequence bit. At the beginning of transaefipthe sequence bits have toggled
and are again synchronized.

The data transmitter must guarantee that any retried data packet is identical (same length and content) as
that sent in the original transaction. If the data transmitter is unable, because of problems such as a buffer
underrun condition, to transmit the identical amount of data as was in the original data packet, it must abort
the transaction by generating a bit stuffing violation. This causes a detectable error at the receiver and
guarantees that a partial packet will not be interpreted as a good packet. The transmitter should not try to
force an error at the receiver by sending a known bad CRC. A combination of a bad packet with a “bad”
CRC may be interpreted by the receiver as a good packet.

8.6.5 Low-speed Transactions

The USB supports signaling at two speeds: full-speed signaling at 12.0Mb/s and low-speed signaling at
1.5Mb/s. Hubs disable downstream bus traffic to all ports to which low-speed devices are attached during
full-speed downstream signaling. This is required both for EMI reasons and to prevent any possibility that
a low-speed device might misinterpret downstream a full-speed packet as being addressed to it.

Figure 8-19 shows an IN low-speed transaction in which the host issues a token and handshake and
receives a data packet.

Hub enables low- Hub disables low-
speed port outputs speed port outputs
Preamble
sent at full-speed + Token sent at low-speed +
N
SYNC PID Hub setup SYNC PID ENDP ... EOP
Data packet sent at low-speed
SYNC PID DATA CRC EOP
Hub disables low-
Hub enables low- speed port outputs
Preamble speed port outputs
sent at full-speed * Handshake sent at low-speed +
N
SYNC PID Hub setup SYNC PID EOP

Figure 8-19. Low-speed Transaction

All downstream packets transmitted to low-speed devices require a preamble. The preamble consists of a
SYNC followed by a PRE PID, both sent at full-speed. Hubs must comprehend the PRE PID; all other

USB devices may ignore it and treat it as undefined. After the end of the preamble PID, the host must wait
at least four full-speed bit times during which hubs must complete the process of enabling the repeater
function on ports that are connected to low-speed devices. During this hub setup interval, hubs must drive
their full-speed and low-speed ports to their respective Idle states. Hubs must be ready to repeat low-speed
signaling on low-speed ports before the end of the hub setup interval. Low-speed connectivity rules are
summarized below:

1. Low-speed devices are identified during the connection process and the hub ports to which they are
connected are identified as low-speed.

2. All downstream low-speed packets must be prefaced with a preamble (sent at full-speed), which turns
on the output buffers on low-speed hub ports.

171

Universal Serial Bus Specification Revision 1.1

3. Low-speed hub port output buffers are turned off upon receipt of EOP and are not turned on again
until a preamble PID is detected.

4. Upstream connectivity is not affected by whether a hub port is full- or low-speed.

Low-speed signaling begins with the host issuing SYNC at low-speed, followed by the remainder of the
packet. The end of the packet is identified by an End-of-Packet (EOP), at which time all hubs tear down
connectivity and disable any ports to which low-speed devices are connected. Hubs do not switch ports for
upstream signaling; low-speed ports remain enabled in the upstream direction for both low-speed and full-
speed signaling.

Low-speed and full-speed transactions maintain a high degree of protocol commonality. However, low-
speed signaling does have certain limitations which include:

e Data payload is limited to eight bytes, maximum
e Only interrupt and control types of transfers are supported

e The SOF packet is not received by low-speed devices.

8.7 Error Detection and Recovery

The USB permits reliable end-to-end communication in the presence of errors on the physical signaling
layer. This includes the ability to reliably detect the vast majority of possible errors and to recover from
errors on a transaction-type basis. Control transactions, for example, require a high degree of data
reliability; they support end-to-end data integrity using error detection and retry. Isochronous transactions,
by virtue of their bandwidth and latency requirements, do not permit retries and must tolerate a higher
incidence of uncorrected errors.

8.7.1 Packet Error Categories

The USB employs three error detection mechanisms: bit stuff violations, PID check bits, and CRCs. Bit
stuff violations are defined in Section 7.1.9. PID errors are defined in Section 8.3.1. CRC errors are
defined in Section 8.3.5.

With the exception of the SOF token, any packet that is received corrupted causes the receiver to ignore it
and discard any data or other field information that came with the packet. Table 8-6 lists error detection
mechanisms, the types of packets to which they apply, and the appropriate packet receiver response.

Table 8-6. Packet Error Types

Field Error Action
PID PID Check, Bit Stuff Ignore packet
Address Bit Stuff, Address CRC Ignore token
Frame Number Bit Stuff, Frame Number CRC Ignore Frame Number field
Data Bit Stuff, Data CRC Discard data

8.7

172

.2 Bus Turn-around Timing

Neither the device nor the host will send an indication that a received packet had an error. This absence of
positive acknowledgement is considered to be the indication that there was an error. As a consequence of
this method of error reporting, the host and USB function need to keep track of how much time has elapsed
from when the transmitter completes sending a packet until it begins to receive a response. This time is

Universal Serial Bus Specification Revision 1.1

referred to as the bus turn-around time. The timer starts counting on the SEO-to-'J’ transition of the EOP
strobe and stops counting when the Idle-to-‘K’ SOP transition is detected. Both devices and the host
require turn-around timers. The device bus turn-around time is defined by the worst case round trip delay
plus the maximum device response delay (refer to Section 7.1.18). If a response is not received within this
worst case timeout, then the transmitter considers that the packet transmission has failed. USB devices
timeout no sooner than 16 bit times and no latter than 18 bit times after the end of the previous EOP. If the
host wishes to indicate an error condition via a timeout, it must wait at least 18 bit times before issuing the
next token to ensure that all downstream devices have timed out.

As shown in Figure 8-20, the device uses its bus turn-around timer between token and data or data and
handshake phases. The host uses its timer between data and handshake or token and data phases.

If the host receives a corrupted data packet, it must wait before sending out the next token. This wait
interval guarantees that the host does not attempt to issue a token immediately after a false EOP.

OUT/SETUP Handshake
— —

device waits host waits

— —

host waits device waits

Figure 8-20. Bus Turn-around Timer Usage

8.7.3 False EOPs

False EOPs must be handled in a manner which guarantees that the packet currently in progress completes
before the host or any other device attempts to transmit a new packet. If such an event were to occur, it
would constitute a bus collision and have the ability to corrupt up to two consecutive transactions.

Detection of false EOP relies upon the fact that a packet into which a false EOP has been inserted will
appear as a truncated packet with a CRC failure. (The last 16 bits of the packet will have a very low
probability of appearing to be a correct CRC.)

The host and devices handle false EOP situations differently. When a device sees a corrupted data packet,
it issues no response and waits for the host to send the next token. This scheme guarantees that the device
will not attempt to return a handshake while the host may still be transmitting a data packet. If a false EOP
has occurred, the host data packet will eventually end, and the device will be able to detect the next token.

If a device issues a data packet that gets corrupted with a false EOP, the host will ignore the packet and not
issue the handshake. The device, expecting to see a handshake from the host, will timeout.

If the host receives a corrupted data packet, it assumes that a false EOP may have occurred and waits for 16
bit times to see if there is any subsequent upstream traffic. If no bus transitions are detected within the 16
bit interval and the bus remains in the Idle state, the host may issue the next token. Otherwise, the host
waits for the device to finish sending the remainder of its packet. Waiting 16 bit times guarantees two
conditions:

e The first condition is to make sure that the device has finished sending its packet. This is guaranteed
by a timeout interval (with no bus transitions) greater than the worst case six-bit time bit stuff interval.

e The second condition is that the transmitting device’s bus turn-around timer must be guaranteed to
expire.

Note that the timeout interval is transaction speed sensitive. For full-speed transactions, the host must wait
16 full-speed bit times; for low-speed transactions, it must wait 16 low-speed bit times.

173

Universal Serial Bus Specification Revision 1.1

If the host receives a data packet with a valid CRC, it assumes that the packet is complete and need not
delay in issuing the next token.

8.7.4 Babble and Loss of Activity Recovery

174

The USB must be able to detect and recover from conditions which leave it waiting indefinitely for an EOP
or which leave the bus in something other than the Idle state at the end of a frame.

e Loss of activity (LOA) is characterized by SOP followed by lack of bus activity (bus remains driven to
a ‘J’ or ‘’K’) and no EOP at the end of a frame.

e Babble is characterized by an SOP followed by the presence of bus activity past the end of a frame.

LOA and babble have the potential to either deadlock the bus or force out the beginning of the next frame.
Neither condition is acceptable, and both must be prevented from occurring. As the USB component
responsible for controlling connectivity, hubs are responsible for babble/LOA detection and recovery. All
USB devices that fail to complete their transmission at the end of a frame are prevented from transmitting
past a frame’s end by having the nearest hub disable the port to which the offending device is attached.
Details of the hub babble/LOA recovery mechanism appear in Section 11.8.1.

Universal Serial Bus Specification Revision 1.1

Chapter 9
USB Device Framework

A USB device may be divided into three layers:
e The bottom layer is a bus interface that transmits and receives packets.

 The middle layer handles routing data between the bus interface and various endpoints on the device.
An endpoint is the ultimate consumer or provider of data. It may be thought of as a source or sink for
data.

e The top layer is the functionality provided by the serial bus device; for instance, a mouse or ISDN
interface.

This chapter describes the common attributes and operations of the middle layer of a USB device. These
attributes and operations are used by the function-specific portions of the device to communicate through
the bus interface and ultimately with the host.

9.1 USB Device States

A USB device has several possible states. Some of these states are visible to the USB and the host, while
others are internal to the USB device. This section describes those states.

9.1.1 Visible Device States

This section describes USB device states that are externally visible (see Figure 9-1). Table 9-1 summarizes
the visible device states.

Note: USB devices perform a reset operation in response to reset signaling on the upstream port. When
reset signaling has completed, the USB device is reset.

175

176

Universal Serial Bus Specification Revision 1.1

Attached

Hub Reset
or Hub

Deconfigured Configured

Bus
Inactive

Suspended
Powered

Bus Activity

Inactive
Suspended

Bus Activity

Address
Assigned

Inactive
Suspended

Bus Activity

Device Device
Deconfigured Configured

Bus
Inactive

Configured Suspended

Bus Activity

Figure 9-1. Device State Diagram

Universal Serial Bus Specification Revision 1.1

Table 9-1. Visible Device States

Attached

Powered

Default

Address

q

onfigured S

ispended

State

No

Device is not attached to
the USB. Other attributes
are not significant.

Yes

No

Device is attached to the
USB, but is not powered.
Other attributes are not
significant.

Yes

Yes

No

Device is attached to the
USB and powered, but
has not been reset.

Yes

Yes

Yes

No

Device is attached to the
USB and powered and
has been reset, but has
not been assigned a
unique address. Device
responds at the default
address.

Yes

Yes

Yes

Yes

No

Device is attached to the
USB, powered, has been
reset, and a unique
device address has been
assigned. Device is not
configured.

Yes

Yes

Yes

Yes

Yes

No

Device is attached to the
USB, powered, has been
reset, has a unique
address, is configured,
and is not suspended.
The host may now use
the function provided by
the device.

Yes

Yes

Yes

Device is, at minimum,
attached to the USB and
is powered and has not
seen bus activity for 3 ms.
It may also have a unique
address and be
configured for use.
However, because the
device is suspended, the
host may not use the
device’s function.

177

9.1

9.1

9.1

9.1

9.1

178

Universal Serial Bus Specification Revision 1.1

1.1 Attached

A USB device may be attached or detached from the USB. The state of a USB device when it is detached
from the USB is not defined by this specification. This specification only addresses required operations
and attributes once the device is attached.

.1.2 Powered

USB devices may obtain power from an external source and/or from the USB through the hub to which
they are attached. Externally powered USB devices are termed self-powered. Although self-powered
devices may already be powered before they are attached to the USB, they are not considered to be in the
Powered state until they are attached to the USB @&ud ¥ applied to the device.

A device may support both self-powered and bus-powered configurations. Some device configurations
support either power source. Other device configurations may be available only if the device is self-
powered. Devices report their power source capability through the configuration descriptor. The current
power source is reported as part of a device’s status. Devices may change their power source at any time;
e.g., from self- to bus-powered. If a configuration is capable of supporting both power modes, the power
maximum reported for that configuration is the maximum the device will draw frBns W either mode.

The device must observe this maximum, regardless of its mode. If a configuration supports only one
power mode and the power source of the device changes, the device will lose its current configuration and
address and return to the Powered state. If a device is self-powered and its current configuration requires
more than 100mA, then if the device switches to being bus-powered, it must return to the Address state.
Self-powered hubs that usad¥s to power the Hub Controller are allowed to remain in the Configured

state if local power is lost. Refer to Section 11.14 for details.

A hub port must be powered in order to detect port status changes, including attach and detach. Bus-
powered hubs do not provide any downstream power until they are configured, at which point they will
provide power as allowed by their configuration and power source. A USB device must be able to be
addressed within a specified time period from when power is initially applied (refer to Chapter 7). After an
attachment to a port has been detected, the host may enable the port, which will also reset the device
attached to the port.

.1.3 Default

After the device has been powered, it must not respond to any bus transactions until it has received a reset
from the bus. After receiving a reset, the device is then addressable at the default address.

.1.4 Address

All USB devices use the default address when initially powered or after the device has been reset. Each
USB device is assigned a unique address by the host after attachment or after reset. A USB device
maintains its assigned address while suspended.

A USB device responds to requests on its default pipe whether the device is currently assigned a unique
address or is using the default address.

.1.5 Configured

Before a USB device’s function may be used, the device must be configured. From the device's
perspective, configuration involves writing a non-zero value to the device configuration register.
Configuring a device or changing an alternate setting causes all of the status and configuration values
associated with endpoints in the affected interfaces to be set to their default values. This includes setting
the data toggle of any endpoint using data toggles to the value DATAOQ.

Universal Serial Bus Specification Revision 1.1

9.1.1.6 Suspended

In order to conserve power, USB devices automatically enter the Suspended state when the device has
observed no bus traffic for a specified period (refer to Chapter 7). When suspended, the USB device
maintains any internal status, including its address and configuration.

All devices must suspend if bus activity has not been observed for the length of time specified in

Chapter 7. Attached devices must be prepared to suspend at any time they are powered, whether they have
been assigned a non-default address or are configured. Bus activity may cease due to the host entering a
suspend mode of its own. In addition, a USB device shall also enter the Suspended state when the hub port
it is attached to is disabled. This is referred to as selective suspend.

A USB device exits suspend mode when there is bus activity. A USB device may also request the host to
exit suspend mode or selective suspend by using electrical signaling to indicate remote wakeup. The
ability of a device to signal remote wakeup is optional. If a USB device is capable of remote wakeup
signaling, the device must support the ability of the host to enable and disable this capability. When the
device is reset, remote wakeup signaling must be disabled.

9.1.2 Bus Enumeration

When a USB device is attached to or removed from the USB, the host uses a process known as bus
enumeration to identify and manage the device state changes necessary. When a USB device is attached to
a powered port, the following actions are taken:

1. The hub to which the USB device is now attached informs the host of the event via a reply on its status
change pipe (refer to Section 11.13.3 for more information). At this point, the USB device is in the
Powered state and the port to which it is attached is disabled.

2. The host determines the exact nature of the change by querying the hub.

3. Now that the host knows the port to which the new device has been attached, the host then waits for at
least 100 ms to allow completion of an insertion process and for power at the device to become stable.
The host then issues a port enable and reset command to that port. Refer to Section 7.1.7.1 and Figure
7-19 for sequence of events and timings of connection through device reset.

4. The hub maintains the reset signal to that port for 10 ms (See Section 11.5.1.5). When the reset signal
is released, the port has been enabled. The USB device is now in the Default state and can draw no
more than 100mA from BUS. All of its registers and state have been reset and it answers to the
default address.

5. The host assigns a unique address to the USB device, moving the device to the Address state.

6. Before the USB device receives a unique address, its Default Control Pipe is still accessible via the
default address. The host reads the device descriptor to determine what actual maximum data payload
size this USB device’s default pipe can use.

7. The host reads the configuration information from the device by reading each configuration zero to
n-1, wheren is the number of configurations. This process may take several milliseconds to complete.

8. Based on the configuration information and how the USB device will be used, the host assigns a
configuration value to the device. The device is now in the Configured state and all of the endpoints in
this configuration have taken on their described characteristics. The USB device may now draw the
amount of \BUS power described in its descriptor for the selected configuration. From the device’s
point of view it is now ready for use.

When the USB device is removed, the hub again sends a notification to the host. Detaching a device
disables the port to which it had been attached. Upon receiving the detach notification, the host will update
its local topological information.

179

Universal Serial Bus Specification Revision 1.1

9.2 Generic USB Device Operations
All USB devices support a common set of operations. This section describes those operations.

9.2.1 Dynamic Attachment and Removal

USB devices may be attached and removed at any time. The hub that provides the attachment point or port
is responsible for reporting any change in the state of the port.

The host enables the hub port where the device is attached upon detection of an attachment, which also has
the effect of resetting the device. A reset USB device has the following characteristics:

e Responds to the default USB address
e Is not configured
e Is notinitially suspended.

When a device is removed from a hub port, the hub disables the port where the device was attached and
notifies the host of the removal

9.2.2 Address Assignment

When a USB device is attached, the host is responsible for assigning a unique address to the device. This
is done after the device has been reset by the host and the hub port where the device is attached has been
enabled.

9.2.3 Configuration

A USB device must be configured before its function(s) may be used. The host is responsible for
configuring a USB device. The host typically requests configuration information from the USB device to
determine the device’s capabilities.

As part of the configuration process, the host sets the device configuration and, where necessary, selects
the appropriate alternate settings for the interfaces.

Within a single configuration, a device may support multiple interfaces. An interface is a related set of
endpoints that present a single feature or function of the device to the host. The protocol used to
communicate with this related set of endpoints and the purpose of each endpoint within the interface may
be specified as part of a device class or vendor-specific definition.

In addition, an interface within a configuration may have alternate settings that redefine the number or
characteristics of the associated endpoints. If this is the case, the device shall support the Getinterface()
and Setinterface() requests to report or select the current alternative setting for the specified interface.

Within each configuration, each interface descriptor contains fields that identify the interface number and
the alternate setting. Interfaces are numbered from zero to one less than the number of concurrent
interfaces supported by the configuration. Alternate settings range from zero to one less than the number
of alternate settings for a specific interface. The default setting when a device is initially configured is
alternate setting zero.

In support of adaptive device drivers that are capable of managing a related group of USB devices, the
device and interface descriptors cont@lass SubClassandProtocolfields. These fields are used to

identify the function(s) provided by a USB device and the protocols used to communicate with the

function(s) on the device. A class code is assigned to a group of related devices that has been characterized
as a part of a USB Class Specification. A class of devices may be further subdivided into subclasses and
within a class or subclass a protocol code may define how the Host Software communicates with the

device.

180

Universal Serial Bus Specification Revision 1.1

Note: the assignment of class, subclass and protocol codes must be coordinated but is beyond the scope of
this specification.

9.2.4 Data Transfer

Data may be transferred between a USB device endpoint and the host in one of four ways. Refer to
Chapter 5 for the definition of the four types of transfers. An endpoint number may be used for different
types of data transfers in different alternate settings. However, once an alternate setting is selected
(including the default setting of an interface), a USB device endpoint uses only one data transfer method
until a different alternate setting is selected.

9.2.5 Power Management
Power management on USB devices involves the issues described in the following sections.

9.2.5.1 Power Budgeting

USB bus power is a limited resource. During device enumeration, a host evaluates a device's power
requirements. If the power requirements of a particular configuration exceed the power available to the
device, Host software shall not select that configuration.

USB devices shall limit the power they consume froru¥to one unit load or less until configured.
Suspended devices, whether configured or not, shall limit their bus power consumption as defined in
Chapter 7. Depending on the power capabilities of the port to which the device is attached, a USB device
may be able to draw up to five unit loads froreUg after configuration.

9.2.5.2 Remote Wakeup

Remote wakeup allows a suspended USB device to signal a host that may also be suspended. This notifies
the host that it should resume from its suspended mode, if necessary, and service the external event that
triggered the suspended USB device to signal the host. A USB device reports its ability to support remote
wakeup in a configuration descriptor. If a device supports remote wakeup, it must also allow the capability
to be enabled and disabled using the standard USB requests.

Remote wakeup is accomplished using electrical signaling described in Section 7.1.7.5.

9.2.6 Request Processing

With the exception of SetAddress() requests (see Section 9.4.6), a device may begin processing of a request
as soon as the device returns the ACK following the Setup. The device is expected to “complete”

processing of the request before it allows the Status stage to complete successfully. Some requests initiate
operations that take many milliseconds to complete. For requests such as this, the device class is required
to define a method other than Status stage completion to indicate that the operation has completed. For
example, a reset on a hub port takes at least 10 ms to complete. The SetPortFeature(PORT_RESET) (see
Chapter 11) request “completes” when the reset on the port is initiated. Completion of the reset operation

is signaled when the port’s status change is set to indicate that the port is now enabled. This technique
prevents the host from having to constantly poll for a completion when it is known that the request will

take a relatively long period of time.

9.2.6.1 Request Processing Timing

All devices are expected to handle requests in a timely manner. USB sets an upper limit of 5 seconds as
the upper limit for any command to be processed. This limit is not applicable in all instances. The
limitations are described in the following sections. It should be noted that the limitations given below are
intended to encompass a wide range of implementations. If all devices in a USB system used the

181

Universal Serial Bus Specification Revision 1.1

maximum allotted time for request processing the user experience would suffer. For this reason,
implementations should strive to complete requests in times that are as short as possible.

9.2.6.2 Reset/Resume Recovery Time

After a port is reset or resumed, the USB System Software is expected to provide a “recovery” interval of
10 ms before the device attached to the port is expected to respond to data transfers. The device may
ignore any data transfers during the recovery interval.

After the end of the recovery interval (measured from the end of the reset or the end of the EOP at the end
of the resume signaling) the device must accept data transfers at any time.

9.2.6.3 Set Address Processing

After the reset/resume recovery interval, if a device receives a SetAddress() request, the device must be

able to complete processing of the request and be able to successfully complete the Status stage of the
request within 50 ms. In the case of the SetAddress() request, the Status stage successfully completes when
the devices sends the zero-length Status packet or when the device sees the ACK in response to the Status
stage data packet.

After successful completion of the Status stage, the device is allowed a SetAddress() recovery interval of 2
ms. At the end of this interval, the device must be able to accept Setup packets addressed to the new
address. Also, at the end of the recovery interval the device must not respond to tokens sent to the old
address (unless, of course, the old and new address is the same.)

9.2.6.4 Standard Device Requests

For standard device requests that require no Data stage, a device must be able to complete the request and
be able to successfully complete the Status stage of the request within 50 ms of receipt of the request. This
limitation applies to requests to the device, interface, or endpoint.

For standard device requests that require data stage transfer to the host, the device must be able to return
the first data packet to the host within 500 ms of receipt of the request. For subsequent data packets, if
any, the device must be able to return them within 500 ms of successful completion of the transmission of
the previous packet. The device must then be able to successfully complete the status stage within 50 ms
after returning the last data packet.

For standard device requests that require a data stage transfer to the device, the 5-second limit applies.
This means that the device must be capable of accepting all data packets from the host and successfully
completing the Status stage if the host provides the data at the maximum rate at which the device can
accept it. Delays between packets introduced by the host add to the time allowed for the device to
complete the request.

9.2.6.5 Class-specific Requests

Unless specifically exempted in the class document, all class-specific requests must meet the timing
limitations for standard device requests. If a class document provides an exemption, the exemption may
only be specified on a request-by-request basis.

A class document may require that a device respond more quickly than is specified in this section. Faster
response may be required for standard and class-specific requests.

9.2.7 Request Error

When a request is received by a device that is not defined for the device, is inappropriate for the current
setting of the device, or has values that are not compatible with the request, then a Request Error exists.

182

Universal Serial Bus Specification Revision 1.1

The device deals with the Request Error by returning a STALL PID in response to the next Data stage
transaction or in the Status stage of the message. It is preferred that the STALL PID be returned at the next
Data stage transaction, as this avoids unnecessary bus activity.

9.3 USB Device Requests

All USB devices respond to requests from the host on the device’s Default Control Pipe. These requests
are made using control transfers. The request and the request’'s parameters are sent to the device in the
Setup packet. The host is responsible for establishing the values passed in the fields listed in Table 9-2.
Every Setup packet has eight bytes.

Table 9-2. Format of Setup Data

Offset Field Size Value Description
0 bmRequestType 1 Bitmap Characteristics of request:
D7: Data transfer direction

0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 =_Class
2 =Vendor
3 = Reserved

D4...0: Recipient

0 = Device

1 = Interface
2 = Endpoint
3 = Other

4...31 = Reserved

1 bRequest 1 Value Specific request (refer to Table 9-3)

2 wValue 2 Value Word-sized field that varies according to
request

4 windex 2 Index or Word-sized field that varies according to

Offset request; typically used to pass an index or

offset

6 wLength 2 Count Number of bytes to transfer if there is a
Data stage

9.3.1 bmRequestType

This bitmapped field identifies the characteristics of the specific request. In particular, this field identifies
the direction of data transfer in the second phase of the control transfer. The staf@irection bit is
ignored if thewLengthfield is zero, signifying there is no Data stage.

The USB Specification defines a series of standard requests that all devices must support. These are
enumerated in Table 9-3. In addition, a device class may define additional requests. A device vendor may
also define requests supported by the device.

183

Universal Serial Bus Specification Revision 1.1

Requests may be directed to the device, an interface on the device, or a specific endpoint on a device. This
field also specifies the intended recipient of the request. When an interface or endpoint is specified, the
windexfield identifies the interface or endpoint.

9.3.2 bRequest

This field specifies the particular request. Tiypebits in thebmRequestTypiéeld modify the meaning of
this field. This specification defines values for biequestield only when the bits are reset to zero,
indicating a standard request (refer to Table 9-3).

9.3.3 wValue

The contents of this field vary according to the request. It is used to pass a parameter to the device,
specific to the request.

9.3.4 windex

The contents of this field vary according to the request. Itis used to pass a parameter to the device,
specific to the request.

Thewlndexfield is often used in requests to specify an endpoint or an interface. Figure 9-2 shows the
format ofwindexwhen it is used to specify an endpoint.

D7 D6 D5 D4 D3 D2 D1 DO
Direction Reserved (Reset to zero) Endpoint Number
D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-2. windex Format when Specifying an Endpoint

TheDirection bit is set to zero to indicate the OUT endpoint with the spedfffetpoint Numbeand to
one to indicate the IN endpoint. In the case of a control pipe, the request should lRivectian bit set
to zero but the device may accept either value obihextion bit.

Figure 9-3 shows the format eindexwhen it is used to specify an interface.

D7 D6 D5 D4 D3 D2 D1 DO

Interface Number

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-3. windex Format when Specifying an Interface

9.3.5 wLength

This field specifies the length of the data transferred during the second phase of the control transfer. The
direction of data transfer (host-to-device or device-to-host) is indicated Bjréetion bit of the
bmRequestTypleld. If this field is zero, there is no data transfer phase.

184

Universal Serial Bus Specification Revision 1.1

On an input request, a device must never return more data than is indicatesvbgrigéhvalue; it may
return less. On an output requegtengthwill always indicate the exact amount of data to be sent by the
host. Device behavior is undefined if the host should send more data than is spewifieddth.

9.4 Standard Device Requests

This section describes the standard device requests defined for all USB devices. Table 9-3 outlines the
standard device requests, while Table 9-4 and Table 9-5 give the standard request codes and descriptor
types, respectively.

USB devices must respond to standard device requests, whether the device has been assigned a non-default
address or the device is currently configured.

185

Universal Serial Bus Specification Revision 1.1

Table 9-3. Standard Device Requests

bmRequestType bRequest wValue windex wLength Data
00000000B CLEAR_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint
10000000B GET_CONFIGURATION Zero Zero One Configuration
Value
10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID
Index
10000001B GET_INTERFACE Zero Interface One Alternate
Interface
10000000B GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
10000010B Endpoint Endpoint
Status
00000000B SET_ADDRESS Device Zero Zero None
Address
00000000B SET_CONFIGURATION | Configuration Zero Zero None
Value
00000000B SET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID
Index
00000000B SET_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint
00000001B SET_INTERFACE Alternate Interface Zero None
Setting
10000010B SYNCH_FRAME Zero Endpoint Two Frame Number

186

Universal Serial Bus Specification Revision 1.1

Table 9-4. Standard Request Codes

bRequest Value
GET_STATUS 0
CLEAR_FEATURE 1
Reserved for future use 2
SET_FEATURE 3
Reserved for future use 4
SET_ADDRESS 5
GET_DESCRIPTOR 6
SET_DESCRIPTOR 7
GET_CONFIGURATION 8
SET_CONFIGURATION 9
GET_INTERFACE 10
SET_INTERFACE 11
SYNCH_FRAME 12

Table 9-5. Descriptor Types

Descriptor Types Value
DEVICE 1
CONFIGURATION 2
STRING 3
INTERFACE 4
ENDPOINT 5

Feature selectors are used when enabling or setting features, such as remote wakeup, specific to a device,
interface, or endpoint. The values for the feature selectors are given in Table 9-6.

187

Universal Serial Bus Specification Revision 1.1

Table 9-6. Standard Feature Selectors

Feature Selector Recipient Value
DEVICE_REMOTE_WAKEUP Device 1
ENDPOINT_HALT Endpoint 0

If an unsupported or invalid request is made to a USB device, the device responds by returning STALL in
the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that
the device returns STALL at the earlier of the Data or Status stage. Receipt of an unsupported or invalid
request does NOT cause the optidalt feature on the control pipe to be set. If for any reason, the

device becomes unable to communicate via its Default Control Pipe due to an error condition, the device
must be reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature
This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue windex wLength Data
00000000B CLEAR_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint

Feature selector valueswYaluemust be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device, only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

A ClearFeature() request that references a feature that cannot be cleared, that does not exist, or that
references an interface or endpoint that does not exist will cause the device to respond with a Request
Error.

If wLengthis non-zero, then the device behavior is not specified.

Default state Device behavior when this request is received while the device is in the Default state
is not specified.

Address state This request is valid when the device is in the Address state; references to interfaces
or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

Configured state This request is valid when the device is in the Configured state.

188

Universal Serial Bus Specification Revision 1.1

9.4.2 Get Configuration
This request returns the current device configuration value.

bmRequestType bRequest wValue windex wLength Data
10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

If the returned value is zero, the device is not configured.

If wValue windex orwLengthare not as specified above, then the device behavior is not specified.

Default state Device behavior when this request is received while the device is in the Default state
is not specified.

Address state The value zero shall be returned.
Configured state The non-zerdConfigurationValuef the current configuration shall be returned.

9.4.3 Get Descriptor
This request returns the specified descriptor if the descriptor exists.

bmRequestType bRequest wValue windex wLength Data
10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language ID Length
Descriptor (refer to
Index Section 9.6.5)

ThewValuefield specifies the descriptor type in the high byte and the descriptor index in the low byte

(refer to Table 9-5). Thelndexfield specifies the Language ID for string descriptors or is reset to zero for
other descriptors. Th&lLengthfield specifies the number of bytes to return. If the descriptor is longer

than thewLengthfield, only the initial bytes of the descriptor are returned. If the descriptor is shorter than
thewLengthfield, the device indicates the end of the control transfer by sending a short packet when

further data is requested. A short packet is defined as a packet shorter than the maximum payload size or a
NULL data packet (refer to Chapter 5).

The standard request to a device supports three types of descriptors: DEVICE, CONFIGURATION, and
STRING. A request for a configuration descriptor returns the configuration descriptor, all interface
descriptors, and endpoint descriptors for all of the interfaces in a single request. The first interface
descriptor follows the configuration descriptor. The endpoint descriptors for the first interface follow the
first interface descriptor. If there are additional interfaces, their interface descriptor and endpoint
descriptors follow the first interface’s endpoint descriptors. Class-specific and/or vendor-specific
descriptors follow the standard descriptors they extend or modify.

All devices must provide a device descriptor and at least one configuration descriptor. If a device does not
support a requested descriptor, it responds with a Request Error.

Default state This is a valid request when the device is in the Default state.

Address state This is a valid request when the device is in the Address state.

189

Configured state

Universal Serial Bus Specification Revision 1.1

This is a valid request when the device is in the Configured state.

9.4.4 Get Interface

This request returns the selected alternate setting for the specified interface.

bmRequestType bRequest wValue windex wLength Data
10000001B GET_INTERFACE Zero Interface One Alternate
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to determine the currently selected alternative setting.

If wValueorwLengthare not as specified above, then the device behavior is not specified.

If the interface specified does not exist, then the device responds with a Request Error.

Default state

Address state

Configured state

9.45 Get Status

Device behavior when this request is received while the device is in the Default state
is not specified.

A Request Error response is given by the device.

This is a valid request when the device is in the Configured state.

This request returns status for the specified recipient.

bmRequestType bRequest wValue windex wLength Data
10000000B GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
10000010B Endpoint Endpoint
Status

The Recipientbits of thebmRequestTyplield specify the desired recipient. The data returned is the
current status of the specified recipient.

If wValueorwLengthare not as specified above, owiihndexis non-zero for a device status request, then
the behavior of the device is not specified.

If an interface or an endpoint is specified that does not exist then the device responds with a Request Error.

Default state

Address state

Configured state

190

Device behavior when this request is received while the device is in the Default state
is not specified.

If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

If an interface or endpoint that does not exist is specified, then the device responds
with a Request Error.

Universal Serial Bus Specification Revision 1.1

A GetStatus() request to a device returns the information shown in Figure 9-4.

D7 D6 D5 D4 D3 D2 D1 DO
Reserved (Reset to zero) Remote Self
Wakeup Powered
D15 D14 D13 D12 D11 D10 D9 D8
Reserved (Reset to zero)

Figure 9-4. Information Returned by a GetStatus() Request to a Device

The Self Poweredield indicates whether the device is currently self-powered. If DO is reset to zero, the
device is bus-powered. If DO is set to one, the device is self-poweredselfigoweredield may not be
changed by the SetFeature() or ClearFeature() requests.

The Remote Wakellfield indicates whether the device is currently enabled to request remote wakeup. The
default mode for devices that support remote wakeup is disabled. If D1 is reset to zero, the ability of the
device to signal remote wakeup is disabled. If D1 is set to one, the ability of the device to signal remote
wakeup is enabled. ThHeemotéNakeugfield can be modified by the SetFeature() and ClearFeature()
requests using the DEVICE_REMOTE_WAKEUP feature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shown in Figure 9-5.

D7 D6 D5 D4 D3 D2 D1 DO

Reserved (Reset to zero)

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-5. Information Returned by a GetStatus() Request to a Interface

191

Universal Serial Bus Specification Revision 1.1

A GetStatus() request to an endpoint returns the information shown in Figure 9-6.

D7 D6 D5 D4 D3 D2 D1 DO
Reserved (Reset to zero) Halt
D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-6. Information Returned by a GetStatus() Request to an Endpoint

TheHalt feature is required to be implemented for all interrupt and bulk endpoint types. If the endpoint is
currently halted, then thdalt feature is set to one. Otherwise, Hadt feature is reset to zero. Thialt

feature may optionally be set with the SetFeature(ENDPOINT_HALT) request. When set by the

SetFeature() request, the endpoint exhibits the same stall behavior as if the field had been set by a hardware
condition. If the condition causing a halt has been removed, clearihtathfeature via a
ClearFeature(ENDPOINT_HALT) request results in the endpoint no longer returning a STALL. For
endpoints using data toggle, regardless of whether an endpoint lralttheature set, a
ClearFeature(ENDPOINT_HALT) request always results in the data toggle being reinitialized to DATAO.
TheHalt feature is reset to zero after either a SetConfiguration() or Setinterface() request even if the
requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommended thatHlladt feature be implemented for the Default Control Pipe.
However, devices may set thialt feature of the Default Control Pipe in order to reflect a functional error
condition. If the feature is set to one, the device will return STALL in the Data and Status stages of each
standard request to the pipe except GetStatus(), SetFeature(), and ClearFeature() requests. The device need
not return STALL for class-specific and vendor-specific requests.

9.4.6 Set Address
This request sets the device address for all future device accesses.

bmRequestType bRequest wValue windex wlLength Data
00000000B SET_ADDRESS Device Zero Zero None
Address

ThewValuefield specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In the first stage, the Setup packet is
sent to the device. In the optional second stage, data is transferred between the host and the device. In the
final stage, status is transferred between the host and the device. The direction of data and status transfer
depends on whether the host is sending data to the device or the device is sending data to the host. The
Status stage transfer is always in the opposite direction of the Data stage. If there is no Data stage, the
Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device
does not change its device address until after the Status stage of this request is completed successfully.
Note that this is a difference between this request and all other requests. For all other requests, the
operation indicated must be completed before the Status stage.

If the specified device address is greater than 127 wdndexor wLengthare non-zero, then the behavior
of the device is not specified.

192

Device response to SetAddress() with a value of 0 is undefined.

Default state

Address state

Configured state

Universal Serial Bus Specification Revision 1.1

If the address specified is hon-zero, then the device shall enter the Address state;

otherwise, the device remains in the Default state (this is not an error condition).

If the address specified is zero, then the device shall enter the Default state;
otherwise, the device remains in the Address state but uses the newly-specified

address.

Device behavior when this request is received while the device is in the Configured

state is not specified.

9.4.7 Set Configuration

This request sets the device configuration.

bmRequestType

bRequest

wValue

wlindex

vLength

Data

00000000B

SET_CONFIGURATION

Configuration Value

Zero

Zero

None

The lower byte of thevValuefield specifies the desired configuration. This configuration value must be
zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the

device is placed in its Address state. The upper byte ofWaduefield is reserved.

If windex wLength or the upper byte afValueis non-zero, then the behavior of this request is not

specified.

Default state

Address state

Configured state

Device behavior when this request is received while the device is in the Default state

is not specified.

If the specified configuration value is zero, then the device remains in the Address
state. If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device enters the

Configured state. Otherwise, the device responds with a Request Error.

If the specified configuration value is zero, then the device enters the Address state.

If the specified configuration value matches the configuration value from a

configuration descriptor, then that configuration is selected and the device remains in

the Configured state. Otherwise, the device responds with aRequest Error.

9.4.8 Set Descriptor
This request may be used to update existing descriptors or new descriptors may be added.

bmRequestType bRequest wValue windex wLength Data
00000000B SET_DESCRIPTOR Descriptor Language ID Descriptor Descriptor
Type and (refer to Length
Descriptor | Section 9.6.5)
Index or zero

193

Universal Serial Bus Specification Revision 1.1

ThewValuefield specifies the descriptor type in the high byte and the descriptor index in the low byte
(refer to Table 9-5). Thelndexfield specifies the Language ID for string descriptors or is reset to zero for
other descriptors. Th&lLengthfield specifies the number of bytes to transfer from the host to the device.
If this request is not supported then the device will respond with a Request Error.

Default state Device behavior when this request is received while the device is in the Default state
is not specified.

Address state If supported, this is a valid request when the device is in the Address state.

Configured state If supported, this is a valid request when the device is in the Configured state.

9.4.9 Set Feature

This request is used to set or enable a specific feature.

bmRequestType bRequest wValue windex wLength Data
00000000B SET_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint

Feature selector valueswYaluemust be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device; only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients. A
SetFeature() request that references a feature that cannot be set or that does not exist causes a STALL to be
returned in the Status stage of the request.

If wLengthis non-zero, then the behavior of the device is not specified.

If an endpoint or interface is specified that does not exist, then the device responds with a Request Error.

Default state Device behavior when this request is received while the device is in the Default state
is not specified

Address state If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state This is a valid request when the device is in the Configured state.

194

Universal Serial Bus Specification Revision 1.1

9.4.10 Set Interface
This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue windex wLength Data
00000001B SET_INTERFACE Alternative Interface Zero None
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to select the desired alternate setting. If a device only supports a default setting for the
specified interface, then a STALL may be returned in the Status stage of the request.

If the interface or the alternative setting does not exist, then the device responds with a Request Error. If
wLengthis non-zero, then the behavior of the device is not specified.

Default state Device behavior when this request is received while the device is in the Default state
is not specified

Address state The device shall respond with a Request Error.
Configured state This is a valid request when the device is in the Configured state.

9.4.11 Synch Frame
This request is used to set and then report an endpoint’s synchronization frame.

bmRequestType bRequest wValue windex wLength Data
10000010B SYNCH_FRAME Zero Endpoint Two Frame
Number

When an endpoint supports isochronous transfers, the endpoint may also require per-frame transfers to
vary in size according to a specific pattern. The host and the endpoint must agree on which frame the
repeating pattern begins. The number of the frame in which the pattern began is returned to the host. This
frame number is the one conveyed to the endpoint by the last SOF prior to the first frame of the pattern.
Alternatively, the device may use this request to restart the pattern. In this case, the device would save the
frame number in each SOF and return this value in the Data stage of this transfer and restart the pattern on
each IN of the Data stage.

This value is only used for isochronous data transfers using implicit pattern synchronizativtaluis
non-zero owLengthis not two, then the behavior of the device is not specified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state Device behavior when this request is received while the device is in the Default state
is not specified

Address state The device shall respond with a Request Error.

Configured state This is a valid request when the device is in the Configured state.

195

9.5

9.6

9.6

196

Universal Serial Bus Specification Revision 1.1

Descriptors

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format.
Each descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor
followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configurations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain references to string descriptors that provide displayable information
describing a descriptor in human-readable form. The inclusion of string descriptors is optional. However,
the reference fields within descriptors are mandatory. If a device does not support string descriptors, string
reference fields must be reset to zero to indicate no string descriptor is available.

If a descriptor returns with a value in its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length
field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways.

1. If the class or vendor specific descriptors use the same format as standard descriptors (e.g. start with a
length byte and followed by a type byte), they may be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor(Configuration) request. In this case, the
class or vendor-specific descriptors typically follow a related standard descriptor they modify or
extend.

2. If the class or vendor specifric descriptors are independentof configuration infomrationor use a non-
standard format, a GetDescriptor() request specifying the class or vendor specific descriptor type and
index may be used to retrieve the descriptor from the device. A class or vendor specification will
define the appropriate way to retrieve these descriptors.

Standard USB Descriptor Definitions

The standard descriptors defined in this specification may only be modified or extended by revision of the
Universal Serial Bus Specification.

Note An extension to the USB 1.0 standard endpoint descriptor has been published in Device Class
Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will
do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

.1 Device

A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device’s configurations. A USB device has only one device descriptor.

All USB devices have a Default Control Pipe. The maximum packet size of a device’s Default Control
Pipe is described in the device descriptor. Endpoints specific to a configuration and its interface(s) are
described in the configuration descriptor. A configuration and its interface(s) do not include an endpoint
descriptor for the Default Control Pipe. Other than the maximum packet size, the characteristics of the
Default Control Pipe are defined by this specification and are the same for all USB devices.

ThebNumConfigurationsield identifies the number of configurations the device supports. Table 9-7
shows the standard device descriptor.

Universal Serial Bus Specification Revision 1.1

Table 9-7. Standard Device Descriptor

Offset

Field

Size

Value

Description

bLength

Number

Size of this descriptor in bytes

bDescriptorType

Constant

DEVICE Descriptor Type

bcdUSB

BCD

USB Specification Release Number in
Binary-Coded Decimal (i.e., 2.10 is 210H).
This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

bDeviceClass

Class

Class code (assigned by the USB).

If this field is reset to zero, each interface
within a configuration specifies its own
class information and the various
interfaces operate independently.

If this field is set to a value between 1 and
FEH, the device supports different class
specifications on different interfaces and
the interfaces may not operate
independently. This value identifies the
class definition used for the aggregate
interfaces. (For example, a CD-ROM
device with audio and digital data
interfaces that require transport control to
eject CDs or start them spinning.)

If this field is set to FFH, the device class
is vendor-specific.

bDeviceSubClass

SubClass

Subclass code (assigned by the USB).

These codes are qualified by the value of
the bDeviceClass field.

If the bDeviceClass field is reset to zero,
this field must also be reset to zero.

If the bDeviceClass field is not set to FFH,
all values are reserved for assignment by
the USB.

197

Universal Serial Bus Specification Revision 1.1

Table 9-7. Standard Device Descriptor (Continued)

Offset Field

Size

Value

Description

6 bDeviceProtocol

Protocol

Protocol code (assigned by the USB).
These codes are qualified by the value of
the bDeviceClass and the
bDeviceSubClass fields. If a device
supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use class-specific protocols on a
device basis. However, it may use class-
specific protocols on an interface basis.

If this field is set to FFH, the device uses
a vendor-specific protocol on a device
basis.

7 bMaxPacketSize0

Number

Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid)

8 idVendor

Vendor ID (assigned by the USB)

10 idProduct

Product ID (assigned by the
manufacturer)

12 bcdDevice

BCD

Device release number in binary-coded
decimal

14 iManufacturer

Index

Index of string descriptor describing
manufacturer

15 iProduct

Index

Index of string descriptor describing
product

16 iSerialNumber

Index

Index of string descriptor describing the
device’s serial number

17 bNumConfigurations

Number

Number of possible configurations

198

Universal Serial Bus Specification Revision 1.1

9.6.2 Configuration

The configuration descriptor describes information about a specific device configuration. The descriptor
contains @ConfigurationValudield with a value that, when used as a parameter to the SetConfiguration()
request, causes the device to assume the described configuration.

The descriptor describes the number of interfaces provided by the configuration. Each interface may
operate independently. For example, an ISDN device might be configured with two interfaces, each
providing 64kB/s bi-directional channels that have separate data sources or sinks on the host. Another
configuration might present the ISDN device as a single interface, bonding the two channels into one
128kB/s bi-directional channel.

When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.2).

A USB device has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single
configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be
shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration. If a particular interface
has alternate settings, an alternate may be selected after configuration. Table 9-8 shows the standard
configuration descriptor.

Table 9-8. Standard Configuration Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant | CONFIGURATION Descriptor Type
2 wTotalLength 2 Number Total length of data returned for this

configuration. Includes the combined length
of all descriptors (configuration, interface,
endpoint, and class- or vendor-specific)
returned for this configuration.

4 bNuminterfaces 1 Number Number of interfaces supported by this
configuration

5 bConfigurationValue 1 Number Value to use as an argument to the
SetConfiguration() request to select this
configuration

6 iConfiguration 1 Index Index of string descriptor describing this
configuration

199

200

Universal Serial Bus Specification Revision 1.1

Table 9-8. Standard Configuration Descriptor (Continued)

Offset

Field

Size

Value

Description

bmAttributes

1

Bitmap

Configuration characteristics

D7: Reserved (set to one)
D6: Self-powered

D5: Remote Wakeup

D4...0: Reserved (reset to zero)

D7 is reserved and must be set to one for
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in MaxPower to indicate the amount of
bus power required and sets D6. The actual
power source at runtime may be determined
using the GetStatus(DEVICE) request (see
Section 9.4.5).

If a device configuration supports remote
wakeup, D5 is set to one.

MaxPower

mA

Maximum power consumption of the USB
device from the bus in this specific
configuration when the device is fully
operational. Expressed in 2mA units (i.e., 50
=100mA).

Note: a device configuration reports whether
the configuration is bus-powered or self-
powered. Device status reports whether the
device is currently self-powered. If a device is
disconnected from its external power source,
it updates device status to indicate that it is no
longer self-powered.

A device may not increase its power draw
from the bus, when it loses its external power
source, beyond the amount reported by its
configuration.

If a device can continue to operate when
disconnected from its external power source,
it continues to do so. If the device cannot
continue to operate, it fails operations it can
no longer support. The USB System Software
may determine the cause of the failure by
checking the status and noting the loss of the
device's power source.

Universal Serial Bus Specification Revision 1.1

9.6.3 Interface

This descriptor describes a specific interface within a configuration. A configuration provides one or more
interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within the
configuration. When a configuration supports more than one interface, the endpoints for a particular
interface follow the interface descriptor in the data returned by the GetConfiguration() request. An
interface descriptor is always returned as part of a configuration descriptor. Interface descriptors cannot be
directly accessed with a GetDescriptor() or SetDescriptor() request.

An interface may include alternate settings that allow the endpoints and/or their characteristics to be varied
after the device has been configured. The default setting for an interface is always alternate setting zero.
The Setinterface() request is used to select an alternate setting or to return to the default setting. The
Getlnterface() request returns the selected alternate setting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has alternate settings for one or more of its interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor withbiinéerfaceNumbeandbAlternateSetting

fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor
and its associated endpoint descriptors. The second interface desdvipteraceNumbefield would

also be set to zero, but thAlternateSettindield of the second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor and the
interface identifies a request interface that uses the default pipe attached to endpoint zero. In this case, the
bNumEndpoint§ield shall be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints. Table 9-9 shows the
standard interface descriptor.

201

202

Universal Serial Bus Specification Revision 1.1

Table 9-9. Standard Interface Descriptor

Offset

Field

Size

Value

Description

bLength

Number

Size of this descriptor in bytes

bDescriptorType

Constant

INTERFACE Descriptor Type

binterfaceNumber

Number

Number of interface. Zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

bAlternateSetting

Number

Value used to select alternate setting for
the interface identified in the prior field

bNumEndpoints

Number

Number of endpoints used by this
interface (excluding endpoint zero). If this
value is zero, this interface only uses the
Default Control Pipe.

binterfaceClass

Class

Class code (assigned by the USB).

A value of zero is reserved for future
standardization.

If this field is set to FFH, the interface
class is vendor-specific.

All other values are reserved for
assignment by the USB.

binterfaceSubClass

SubClass

Subclass code (assigned by the USB).
These codes are qualified by the value of
the binterfaceClass field.

If the binterfaceClass field is reset to
zero, this field must also be reset to zero.

If the binterfaceClass field is not set to
FFH, all values are reserved for
assignment by the USB.

Universal Serial Bus Specification Revision 1.1

Table 9-9. Standard Interface Descriptor (Continued)

Offset Field Size Value Description

7 binterfaceProtocol 1 Protocol Protocol code (assigned by the USB).
These codes are qualified by the value of
the binterfaceClass and the
binterfaceSubClass fields. If an interface
supports class-specific requests, this
code identifies the protocols that the
device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use a class-specific protocol on
this interface.

If this field is set to FFH, the device uses
a vendor-specific protocol for this
interface.

8 ilnterface 1 Index Index of string descriptor describing this
interface

9.6.4 Endpoint

Each endpoint used for an interface has its own descriptor. This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptor is
always returned as part of the configuration information returned by a GetDescriptor(Configuration)
request. An endpoint descriptor cannot be directly accessed with a GetDescriptor() or SetDescriptor()
request. There is never an endpoint descriptor for endpoint zero. Table 9-10 shows the standard endpoint

descriptor.
Table 9-10. Standard Endpoint Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant ENDPOINT Descriptor Type
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB

device described by this descriptor. The
address is encoded as follows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero
Bit 7: Direction, ignored for
control endpoints
0 = OUT endpoint
1 = IN endpoint

203

9.6

204

Universal Serial Bus Specification Revision 1.1

Table 9-10. Standard Endpoint Descriptor (Continued)

Offset Field Size Value Description
3 bmAttributes 1 Bitmap This field describes the endpoint’s
attributes when it is configured using the
bConfigurationValue.

Bit 1..0: Transfer Type
00 = Control
01 = Isochronous
10 = Bulk
11 = Interrupt

All other bits are reserved.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.

For isochronous endpoints, this value is
used to reserve the bus time in the
schedule, required for the per-frame data
payloads. The pipe may, on an ongoing
basis, actually use less bandwidth than
that reserved. The device reports, if
necessary, the actual bandwidth used via
its normal, non-USB defined mechanisms.

For interrupt, bulk, and control endpoints,
smaller data payloads may be sent, but
will terminate the transfer and may or may
not require intervention to restart. Refer
to Chapter 5 for more information.

6 binterval 1 Number Interval for polling endpoint for data
transfers. Expressed in milliseconds.

This field is ignored for bulk and control
endpoints. For isochronous endpoints
this field must be set to 1. For interrupt
endpoints, this field may range from 1 to
255.

.5 String

String descriptors are optional. As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNICODE encodings as definetheyUnicode Standard, Worldwide Character
Encoding, Version 1.0, Volumes 1 and’ Be Unicode Consortium, Addison-Wesley Publishing Company,
Reading, Massachusetts. The strings in a USB device may support multiple languages. When requesting a
string descriptor, the requester specifies the desired language using a sixteen-bit language ID (LANGID)
defined by Microsoft for Windows as describedaveloping International Software for Windows 95 and
Windows NTNadine Kano, Microsoft Press, Redmond, Washington. String index zero for all languages
returns a string descriptor that contains an array of two-byte LANGID codes supported by the device.

Table 9-11 shows the LANGID code array. A USB device may omit all string descriptors. USB devices
that omit all string descriptors shall not return an array of LANGID codes.

Universal Serial Bus Specification Revision 1.1

The array of LANGID codes is not NULL-terminated. The size of the array (in bytes) is computed by
subtracting two from the value of the first byte of the descriptor.

Table 9-11. Codes Representing Languages Supported by the Device

Offset Field Size Value Description
0 bLength 1 N+2 Size of this descriptor in bytes
1 bDescriptorType |1 Constant | STRING Descriptor Type
2 WLANGID|0] 2 Number LANGID code zero
N WLANGID[x] 2 Number LANGID code x

The UNICODE string descriptor (shown in Table 9-12) is not NULL-terminated. The string length is
computed by subtracting two from the value of the first byte of the descriptor.

Table 9-12. UNICODE String Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant STRING Descriptor Type
2 bString N Number UNICODE encoded string

9.7 Device Class Definitions

All devices must support the requests and descriptor definitions described in this chapter. Most devices
provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are common to a group of devices. In order to define a class of
devices, the following information must be provided to completely define the appearance and behavior of
the device class.

9.7.1 Descriptors

If the class requires any specific definition of the standard descriptors, the class definition must include
those requirements as part of the class definition. In addition, if the class defines a standard extended set of
descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions
should follow the approach used for standard descriptors; for example, all descriptors should begin with a
length field.

9.7.2 Interface(s) and Endpoint Usage

When a class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with
proprietary features as long as they meet the base definition of the class.

205

Universal Serial Bus Specification Revision 1.1

9.7.3 Requests
All of the requests specific to the class must be defined.

206

Universal Serial Bus Specification Revision 1.1

Chapter 10
USB Host: Hardware and Software

The USB interconnect supports data traffic between a host and a USB device. This chapter describes the
host interfaces necessary to facilitate USB communication between a software client, resident on the host,
and a function implemented on a device. The implementation described in this chapter is not required. This
implementation is provided as an example to illustrate the host system behavior expected by a USB device.
A host system may provide a different host software implementation as long as a USB device experiences
the shame host behavior.

10.1 Overview of the USB Host

10.1.1 Overview
The basic flow and interrelationships of the USB communications model are shown in Figure 10-1

Host Interconnect Device
Client Function
USB System USB Device

}

USB Bus M USB Bus
Interface

Interface

Gl 113 communications flow

Logical communications flow

Figure 10-1. Interlayer Communications Model

The host and the device are divided into the distinct layers depicted in Figure 10-1. Vertical arrows
indicate the actual communication on the host. The corresponding interfaces on the device are
implementation-specific. All communications between the host and device ultimately occur on the
physical USB wire. However, there are logical host-device interfaces between each horizontal layer.
These communications, between client software resident on the host and the function provided by the
device, are typified by a contract based on the needs of the application currently using the device and the
capabilities provided by the device.

This client-function interaction creates the requirements for all of the underlying layers and their interfaces.

207

Universal Serial Bus Specification Revision 1.1

This chapter describes this model from the point of view of the host and its layers. Figure 10-2 describes,
based on the overall view introduced in Chapter 5, the host’s view of its communication with the device.

Host Interconnect
7~
| ——
Client I | . |
I : |
manages interfaces I ° \ I
] N\
Pipe Bundle
| to an interface
1
IRPs Configuration
USB Driver Host
Software
|
. Default Pipe
HC Driver
to Endpoint Zero
USB System
manages pipes

HW-Defined
Host
Controller HC- SIE |: >
Defined .
USB Wire
USB Bus
Interface
| Pipe: Represents connection
abstraction between two horizontal
layers
Optional
Component Interprocess Communication

Figure 10-2. Host Communications

208

Universal Serial Bus Specification Revision 1.1

There is only one host for each USB. The major layers of a host consist of the following:
e USB bus interface

e USB System

e Client.

The USB bus interface handles interactions for the electrical and protocol layers (refer to Chapter 7 and
Chapter 8). From the interconnect point of view, a similar USB bus interface is provided by both the USB
device and the host, as exemplified by the Serial Interface Engine (SIE). On the host, however, the USB
bus interface has additional responsibilities due to the unique role of the host on the USB and is
implemented as the Host Controller. The Host Controller has an integrated root hub providing attachment
points to the USB wire.

The USB System uses the Host Controller to manage data transfers between the host and USB devices.
The interface between the USB System and the Host Controller is dependent on the hardware definition of
the Host Controller. The USB System, in concert with the Host Controller, performs the translation
between the client’s view of data transfers and the USB transactions appearing on the interconnect. This
includes the addition of any USB feature support such as protocol wrappers. The USB System is also
responsible for managing USB resources, such as bandwidth and bus power, so that client access to the
USB is possible.

The USB System has three basic components:
e Host Controller Driver

e USB Driver

e Host Software.

The Host Controller Driver (HCD) exists to more easily map the various Host Controller implementations
into the USB System, such that a client can interact with its device without knowing to which Host
Controller the device is connected. The USB Driver (USBD) provides the basic host interface (USBDI) for
clients to USB devices. The interface between the HCD and the USBD is known as the Host Controller
Driver Interface (HCDI). This interface is never available directly to clients and thus is not defined by the
USB Specification. A particular HCDI is, however, defined by each operating system that supports various
Host Controller implementations.

The USBD provides data transfer mechanisms in the form of I/O Request Packets (IRPs), which consist of
a request to transport data across a specific pipe. In addition to providing data transfer mechanisms, the
USBD is responsible for presenting to its clients an abstraction of a USB device that can be manipulated for
configuration and state management. As part of this abstraction, the USBD owns the default pipe (see
Chapter 5 and Chapter 9) through which all USB devices are accessed for the purposes of standard USB
control. This default pipe represents a logical communication between the USBD and the abstraction of a
USB device as shown in Figure 10-2.

In some operating systems, additional non-USB System Software is available that provides configuration
and loading mechanisms to device drivers. In such operating systems, the device driver shall use the
provided interfaces instead of directly accessing the USBDI mechanisms.

The client layer describes all the software entities that are responsible for directly interacting with USB
devices. When each device is attached to the system, these clients might interact directly with the
peripheral hardware. The shared characteristics of the USB place USB System Software between the client
and its device; that is, a client cannot directly access the device’s hardware.

209

10.

10.

210

Universal Serial Bus Specification Revision 1.1

Overall, the host layers provide the following capabilities:

e Detecting the attachment and removal of USB devices

e Managing USB standard control flow between the host and USB devices
e Managing data flow between the host and USB devices

o Collecting status and activity statistics

o Controlling the electrical interface between the Host Controller and USB devices, including the
provision of a limited amount of power.

The following sections describe these responsibilities and the requirements placed on the USBDI in greater
detail. The actual interfaces used for a specific combination of host platform and operating system are
described in the appropriate operating system environment guide.

All hubs (see Chapter 11) report internal status changes and their port change status via the status change
pipe. This includes a notification of when a USB device is attached to or removed from one of their ports.
A USBD client generically known as the hub driver receives these notifications as owner of the hub’s
Status Change pipe. For device attachments, the hub driver then initiates the device configuration process.
In some systems, this hub driver is a part of the host software provided by the operating system for
managing devices.

1.2 Control Mechanisms

Control information may be passed between the host and a USB device using in-band or out-of-band
signaling. In-band signaling mixes control information with data in a pipe outside the awareness of the
host. Out-of-band signaling places control information in a separate pipe.

There is a message pipe called the default pipe for each attached USB device. This logical association
between a host and a USB device is used for USB standard control flow such as device enumeration and
configuration. The default pipe provides a standard interface to all USB devices. The default pipe may
also be used for device-specific communications, as mediated by the USBD, which owns the default pipes
of all of the USB devices.

A particular USB device may allow the use of additional message pipes to transfer device-specific control
information. These pipes use the same communications protocol as the default pipe, but the information
transferred is specific to the USB device and is not standardized by the USB Specification.

The USBD supports the sharing of the default pipe, which it owns and uses, with its clients. It also
provides access to any other control pipes associated with the device.

1.3 Data Flow

The Host Controller is responsible for transferring streams of data between the host and USB devices.
These data transfers are treated as a continuous stream of bytes. The USB supports four basic types of data
transfers:

e Control transfers

e |sochronous transfers

o Interrupt transfers

o Bulk transfers.

For additional information on transfer types, refer to Chapter 5.

Each device presents one or more interfaces that a client may use to communicate with the device. Each
interface is composed of zero or more pipes that individually transfer data between the client and a
particular endpoint on the device. The USBD establishes interfaces and pipes at the explicit request of the
Host Software. The Host Controller provides service based on parameters provided by the Host Software
when the configuration request is made.

Universal Serial Bus Specification Revision 1.1

A pipe has several characteristics based on the delivery requirements of the data to be transferred.
Examples of these characteristics include the following:

e the rate at which data needs to be transferred

e whether data is provided at a steady rate or sporadically
e how long data may be delayed before delivery

e whether the loss of data being transferred is catastrophic.

A USB device endpoint describes the characteristics required for a specific pipe. Endpoints are described
as part of a USB device’s characterization information. For additional details, refer to Chapter 9.

10.1.4 Collecting Status and Activity Statistics

As a common communicant for all control and data transfers between the host and USB devices, the USB
System and the Host Controller are well-positioned to track status and activity information. Such
information is provided upon request to the Host Software, allowing that software to manage status and
activity information. This specification does not identify any specific information that should be tracked or
require any particular format for reporting activity and status information.

10.1.5 Electrical Interface Considerations

The host provides power to USB devices attached to the root hub. The amount of power provided by a port
is specified in Chapter 7.

10.2 Host Controller Requirements

In all implementations, Host Controllers perform the same basic duties with regard to the USB and its
attached devices. These basic duties are described below.

The Host Controller has requirements from both the host and the USB. The following is a brief overview
of the functionality provided. Each capability is discussed in detail in subsequent sections.

State Handling As a component of the host, the Host Controller reports and manages
its states.
Serializer/Deserializer For data transmitted from the host, the Host Controller converts

protocol and data information from its native format to a bit stream
transmitted on the USB. For data being received into the host, the
reverse operation is performed.

Frame Generation The Host Controller produces SOF tokens at a period of 1ms.

Data Processing The Host Controller processes requests for data transmission to and
from the host.

Protocol Engine The Host Controller supports the protocol specified by the USB.
Transmission Error All Host Controllers exhibit the same behavior when detecting and
Handling reacting to the defined error categories.

Remote Wakeup All host controlers must have the ability to place the bus into the

Suspended state and to respond to bus wakeup events.

Root Hub The root hub provides standard hub function to link the Host
Controller to one or more USB ports.

211

Universal Serial Bus Specification Revision 1.1

Host System Interface Provides a high-speed data path between the Host Controller and host
system.

The following sections present a more detailed discussion of the required capabilities of the Host
Controller.

10.2.1 State Handling

The Host Controller has a series of states that the USB System manages. Additionally, the Host Controller
provides the interface to the following two areas of USB-relevant state:

e State change propagation
e Root hub.

The root hub presents to the hub driver the same standard states as other USB devices. The Host Controller
supports these states and their transitions for the hub. For detailed discussions of USB states, including
their interrelations and transitions, refer to Chapter 9.

The overall state of the Host Controller is inextricably linked with that of the root hub and of the overall
USB. Any Host Controller state changes that are visible to attached devices must be reflected in the
corresponding device state change information such that the resulting Host Controller and device states are
consistent.

USB devices request a wakeup through the use of resume signaling (refer to Chapter 7), devices to return to
their configured state. The Host Controller itself may cause a resume event through the same signaling
method. The Host Controller must notify the rest of the host of a resume event through a mechanism or
mechanisms specific to that system’s implementation.

10.2.2 Serializer/Deserializer

The actual transmission of data across the physical USB takes places as a serial bit stream. A Serial
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization
and deserialization of USB transmissions. On the host, this SIE is part of the Host Controller.

10.2.3 Frame Generation

It is the Host Controller’s responsibility to partition USB time into 1ms quantities called “frames.” Frames
are created by the Host Controller through issuing Start-of-Frame (SOF) tokens at 1.00ms intervals as
shown in Figure 10-3. The SOF token is the first transmission in the frame period. After issuing a SOF
token, the Host Controller is free to transmit other transactions for the remainder of the frame period.
When the Host Controller is in its normal operating state, SOF tokens must be continuously generated at
the 1ms periodic rate, regardless of the other bus activity or lack thereof. If the Host Controller enters a
state where it is not providing power on the bus , it must not generate SOFs. When the Host Controller is
not generating SOFs, it may enter a power-reduced state.

Frame N-1 Frame N Frame N+1

SOF SOF SOF SOF

EOF Interval (Frame N-1) —T EOF Interval (Frame N) —T EOF Interval (Frame N+1) —T

Figure 10-3. Frame Creation

The SOF token holds the highest priority access to the bus. Babble circuitry in hubs electrically isolates
any active transmitters during the End-of-Frame (EOF) interval, providing an idle bus for the SOF
transmission.

212

Universal Serial Bus Specification Revision 1.1

The Host Controller must allow the length of the USB frame to be adjusted by +1 bit time (refer to Section
10.5.3.2.4). The Host Controller maintains the current frame number that may be read by the USB System.

The following apply to the current frame number:

e Used to uniquely identify one frame from another
e Incremented at the end of every frame period

e Valid through the subsequent frame.

The host transmits the lower 11 bits of the current frame number in each SOF token transmission. When
requested from the Host Controller, the current frame number is the frame number in existence at the time
the request was fulfilled. The current frame number as returned by the host (Host Controller or HCD) is at
least 32 bits, although the Host Controller itself is not required to maintain more than 11 bits.

The Host Controller shall cease transmission during the EOF interval. When the EOF interval begins, any
transactions scheduled specifically for the frame that has just passed are retired. If the Host Controller is
executing a transaction at the time the EOF interval is encountered, the Host Controller terminates the
transaction.

10.2.4 Data Processing

The Host Controller is responsible for receiving data from the USB System and sending it to the USB and
for receiving data from the USB and sending it to the USB System. The particular format used for the data
communications between the USB System and the Host Controller is implementation specific, within the
rules for transfer behavior described in Chapter 5.

10.2.5 Protocol Engine

The Host Controller manages the USB protocol level interface. It inserts the appropriate protocol
information for outgoing transmissions. It also strips and interprets, as appropriate, the incoming protocol
information.

10.2.6 Transmission Error Handling

The Host Controller must be capable of detecting the following transmission error conditions, which are
defined from the host’s point of view:

e Timeout conditions after a host-transmitted token or packet. These errors occur when the addressed
endpoint is unresponsive or when the structure of the transmission is so badly damaged that the
targeted endpoint does not recognize it.

e Data errors resulting in missing or invalid transmissions:

— The Host Controller sends or receives a packet shorter than that required for the transmission; for
example, a transmission extending beyond EOF or a lack of resources available to the Host
Controller.

— Aninvalid CRC field on a received data packet.

213

Universal Serial Bus Specification Revision 1.1

e Protocol errors:
— Aninvalid handshake PID, such as a malformed or inappropriate handshake
— Afalse EOP
— A bit stuffing error.

For each bulk, command, and interrupt transaction, the host must maintain an error count tally. Errors
result from the conditions described above, not as a result of an endpoint NAKing a request. This value
reflects the number of times the transaction has encountered a transmission error. If the error count tally
for a given transaction reaches three, the host retires the transfer. When a transfer is retired due to
excessive errors, the last error type will be indicated. Isochronous transactions are attempted only once,
regardless of outcome, and, therefore, no error count is maintained for this type.

10.2.7 Remote Wakeup

If USB System wishes to place the bus in the Suspended state, it commands the Host Controller to stop all
bus traffic, including SOFs. This causes all USB devices to enter the Suspended state. In this state, the
USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host
Controller to respond to bus wakeup signaling to restart the host system.

10.2.8 Root Hub

The root hub provides the connection between the Host Controller and one or more USB ports. The root
hub provides the same functionality as other hubs (See Chapter 11), except that the hardware and software
interface between the root hub and the Host Controller is defined by the specific hardware implementation.

10.2.8.1 Port Resets

Section 7.1.7.3 describes the requirements of a hub to ensure all upstream resume attempts are
overpowered with a long reset downstream. Root hubs may provide an aggregate reset period of at least
50ms. If the reset duration is controlled in hardware and the hardware timer is <50ms, the USB System can
issue several consecutive resets to accumulate a sufficiently long reset to the device.

10.2.9 Host System Interface

The Host Controller provides a high-speed bus-mastering interface to and from main system memory. The
physical transfer between memory and the USB wire is performed automatically by the Host Controller.
When data buffers need to be filled or emptied, the Host Controller informs the USB System.

10.3 Overview of Software Mechanisms

The HCD and the USBD present software interfaces based on different levels of abstraction. They are,
however, expected to operate together in a specified manner to satisfy the overall requirements of the USB
System (see Figure 10-2). The requirements for the USB System are expressed primarily as requirements
for the USBDI. The division of duties between the USBD and the HCD is not defined. However, the one
requirement of the HCDI that must be met is that it supports, in the specified operating system context,
multiple Host Controller implementations.

The HCD provides an abstraction of the Host Controller and an abstraction of the Host Controller’'s view of
data transfer across the USB. The USBD provides an abstraction of the USB device and of the data
transfers between the client of the USBD and the function on the USB device. Overall, the USB System
acts as a facilitator for transmitting data between the client and the function and as a control point for the
USB-specific interfaces of the USB device. As part of facilitating data transfer, the USB System provides
buffer management capabilities and allows the synchronization of the data transmittal to the needs of the
client and the function.

214

Universal Serial Bus Specification Revision 1.1

The specific requirements for the USBDI are described later in this chapter. The exact functions that fulfill
these requirements are described in the relevant operating system environment guide for the HCDI and the
USBDI. The procedures involved in accomplishing data transfers via the USBDI are described in the
following sections.

10.3.1 Device Configuration

Different operating system environments perform device configuration using different software

components and different sequences of events. The USB System does not assume a specific operating
system method. However, there are some basic requirements that must be fulfilled by any USB System
implementation. In some operating systems existing host software provides these requirements. In others,
the USB System provides the capabilities.

The USB System assumes a specialized client of the USBD, called a hub driver, that acts as a
clearinghouse for the addition and removal of devices from a particular hub. Once the hub driver receives
such notifications, it will employ additional host software and other USBD clients, in an operating system
specific manner, to recognize and configure the device. This model, shown in Figure 10-4, is the basis of
the following discussion.

Device
Driver
Host Software
Configuration
Support
Hub
Driver
Optional I
Component
4P Configuration UsSBD
Control
Optional
Configuration
Control
HCD

Figure 10-4. Configuration Interactions
When a device is attached, the hub driver receives a notification from the hub detecting the change. The

hub driver, using the information provided by the hub, requests a device identifier from the USBD. The
USBD in turn sets up the default pipe for that device and returns a device identifier to the hub driver.

215

216

Universal Serial Bus Specification Revision 1.1

The device is now ready to be configured for use. For each device, there are three configurations that must
be complete before that device is ready for use:

1. Device Configuration: This includes setting up all of the device’'s USB parameters and allocating all
USB host resources that are visible to the device. This is accomplished by setting the configuration
value on the device. A limited set of configuration changes, such as alternate settings, is allowed
without totally reconfiguring the device. Once the device is configured, it is, from its point of view,
ready for use.

2. USB Configuration: In order to actually create a USBD pipe ready for use by a client, additional USB
information, not visible to the device, must be specified by the client. This information, known as the
Policy for the pipe, describes how the client will use the pipe. This includes such items as the
maximum amount of data the client will transfer with one IRP, the maximum service interval the client
will use, the client’s natification identification, and so on.

3. Function Configuration: Once configuration types 1 and 2 have been accomplished, the pipe is
completely ready for use from the USB’s point of view. However, additional vendor- or class-specific
setup may be required before the client can actually use the pipe. This configuration is a private matter
between the device and the client and is not standardized by the USBD.

The following paragraphs describe the device and USB configuration requirements.

The responsible configuring software performs the actual device configuration. Depending on the
particular operating system implementation, the software responsible for configuration can include the
following:

e The hub driver
e Other host software
e A device driver.

The configuring software first reads the device descriptor, then