
AST6/LST6
ASSEMBLER & LINKER

FOR THE ST6 FAMILY

User Guide

Release 1.0

May 1997

1

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUP-
PORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF STMicroelectronics. As used
herein:

1. Life support devices or systems are those which (a)
are intended for surgical implant into the body, or (b)
support or sustain life, and whose failure to perform,
when properly used in accordance with instructions for
use provided with the product, can be reasonably ex-
pected to result in significant injury to the user.

2. A critical component is any component of a life sup-
port device or system whose failure to perform can rea-
sonably be expected to cause the failure of the life
support device or system, or to affect its safety or effec-
tiveness.

2

3/86

Table of Contents

1 INTRODUCTION . 7

1.1 What is assembler language? . 7

1.2 Programming Strategies . 8

1.2.1 Using Modular Source Files . 8

1.2.2 Using Paged Program Space . 8

1.2.3 Using a Single Source File . 9

1.3 Debugging Executable files . 9

1.4 Loading Executable Files into ST6 Microcontrollers 9

1.5 ST6 Memory Structure . 10

1.6 Installing AST6/LST6 . 11

2 GLOSSARY OF TERMS . 12
3 AST6 AND LST6 SOURCE AND GENERATED FILES 16

3.1 Source Files . 16

3.1.1 Labels . 16

3.1.2 Mnemonics . 17

3.1.3 Operands . 17

3.1.3.1 Numbers . 17
3.1.3.2 String and Character Constants . 18
3.1.3.3 Program Counter Reference . 18
3.1.3.4 Expressions . 18

3.1.4 Comments . 19

3.2 Generated Files . 20

3.2.1 Executable and Data Space Symbol Files . 20

3.2.2 Listing Files . 20

3.2.3 Including a Map Section . 21

3.2.4 Linker Memory Maps . 22

3.2.5 Cross Reference Tables . 23

3.2.6 Symbol Table Files . 24

3.2.7 Error Reports . 25

4 WORKING WITH THE PROGRAM SPACE . 26

4.1 Paged Program Memory . 26

4.2 Developing Programs for the Paged Area . 27

4.2.1 Accessing Paged Program Space . 29

4/86

Table of Contents

4.3 Using Absolute Objects . 30

4.4 ROM Masking . 30

5 WORKING WITH THE DATA SPACE . 31

5.1 Example Data Space Definitions File . 33

5.2 Paged Data Space . 35

5.2.1 Writing to Data Pages . 35

5.2.2 Accessing Data Pages . 35

5.3 Using the Data ROM Window . 36

5.4 Accessing Data Within the Data ROM Window 37

5.4.1 Using <label>.D and <label>.W . 37

5.5 Example Data ROM Window Application . 39

6 IMPORTING AND EXPORTING LABELS . 45
7 DEVELOPING MACROS . 47

7.1 Nesting Macros . 47

7.2 Macro Parameters . 48

7.3 Concatenating Symbols During Macro Expansion 49

8 USING CONDITIONAL ASSEMBLY . 50
9 APPLICATION DEVELOPMENT CHECKLIST . 51
10 RUNNING AST6 . 52

10.1Example . 53

10.2Warning Levels . 54

10.3AST6 Errors and Warnings . 54

11 RUNNING LST6 . 55

11.1Using Parameter Files . 56

11.2Examples . 56

11.3Errors and Warnings . 57

11.4Command Line Errors . 57

11.5LST6 Error Messages . 58

12 DIRECTIVES . 59

5/86

Table of Contents

12.1Directive Summary . 59

12.2Directive Descriptions . 61

12.2.1ASCII, ASCIZ - Write Character String . 61

12.2.2BLOCK - Reserve a Block of Memory . 61

12.2.3BYTE - Generate Bytes of Object Code . 61

12.2.4COMMENT - Set Comment Tabs . 62

12.2.5DEF - Define Data Space Location Characteristics 62

12.2.6DISPLAY - Display a String . 63

12.2.7DP_ON - Enable Data Space paging . 63
12.2.8EJECT - Insert Listing Page Eject . 64

12.2.9ELSE - Begin Alternative Assembled Code 64

12.2.10END - Define End of Source File . 64

12.2.11ENDC - End Conditionally Assembled Code 65

12.2.12ENDM - End a Macro Definition . 65

12.2.13EQU - Assign a Value to the Label . 66

12.2.14ERROR - Generate Error Message . 66
12.2.15EXTERN - Define Symbols as External . 66

12.2.16GLOBAL - Define Symbols as Global . 67

12.2.17IFC - Begin Conditionally Assembled Code 67

12.2.18INPUT - Read Source Statements from File 68

12.2.19LABEL.D - Access Data in Data ROM Window 68

12.2.20LABEL.P - Initialise Program ROM Page Register 69

12.2.21LABEL.W - Initialise Data ROM Window Register 70
12.2.22LINESIZE - Change Listing Characters Per Line 71

12.2.23LIST - Start/Stop Listing . 72

12.2.24MACRO - Begin Macro Definition . 72

12.2.25MEXIT - End Macro Expansion . 73

12.2.26NOTRANSMIT - Don’t Transmit Data Space Symbols to LST6 . . 73

12.2.27ORG - Set Program Origin . 74

12.2.28PAGE_D - Specify Page Number for .DEF 74
12.2.29PL - Change Listing Lines Per Page . 75

12.2.30PP_ON - Enable Program Space paging 75

12.2.31ROMSIZE - Set ROM Size for ROM Masking 75

12.2.32SECTION - Begin Code Section . 76

12.2.33SET - Assign a Value to the Label . 77

12.2.34TITLE - Set Listing Page Header Title . 77

12.2.35TRANSMIT - Transmit Data Space Symbols to LST6 77

6/86

Table of Contents

12.2.36VERS - Define Target ST6 . 78

12.2.37W_ON - Enable Data ROM Windows . 78

12.2.38WARNING - Generate Warning Message 79

12.2.39WINDOW, WINDOWEND - Define Data Block in Program Space 79

12.2.40WORD - Generate Words of Object Code 80

AST6/LST6 - Introduction

7/86

1 INTRODUCTION

AST6 is a macro-assembler that translates files that are written in assembler lan-
guage into either executable files or object files. Executable files are files that are
loaded into ST6 microcontrollers and can then be executed. Object files are interme-
diate files that you link together, forming a single executable file, using the LST6 link-
er. Whether you use AST6 to create an executable file, or create object files using
AST6 then use LST6 to link them depends on your programming strategy, this is dis-
cussed later in this introduction.

AST6 and LST6 support the whole range of ST6 microcontrollers.

1.1 What is assembler language?

Assembler language is a symbolic code in which you develop applications. Symbolic
code is made up of mnemonics and operands. Mnemonics are commands that have
meaningful names, for example the ADD mnemonic adds two values together. Oper-
ands express complementary information to commands, such as addresses and val-
ues. You can also use meaningful names in operands. For example, a calendar ap-
plication could use the symbolic name DATE for the current date. Using symbolic
mnemonics and operands simplifies the application development process by letting
you use meaningful names in your application. Files containing symbolic code are
called source files.

Assembler programs are made up of the following elements:

• Machine instructions, or opcodes.

• Assembler Directives.

Machine instructions are codes that can be executed by the microcontroller without
translation. Refer to the Databook for a full description of the machine instructions
that are available for the ST6 microcontroller you are using.

Assembler directives control the assembly process. They can be used, for example,
to define macros, or specify where in the microcontroller’s memory, executable code
and data are stored. The AST6 and LST6 directives are listed in “DIRECTIVES” on
page 59.

The source files in which you develop your application, and thus enter directives and
machine instructions, have the extension .ASM . You can write them using any ASCII
text editor.

3

AST6/LST6 - Introduction

8/86

1.2 Programming Strategies

Before you start developing an ST6 application, you must decide:

• Whether you want to develop your program in either modular source files or a sin-
gle source file.

• Whether or not you will use the paginated program space feature. This feature is
described “Paged Program Memory” on page 26.

The choice you make determines the process you perform to generate the final, exe-
cutable file.

1.2.1 Using Modular Source Files

Using modular source files means developing your program in a number of modules.
Each module is held in one source file. The advantages of developing your program
in modular source files are:

• Small programs are easier to debug, understand and maintain than large pro-
grams.

• You can test the output of a module in relation to the process it performs on the
inputs.

• You can reuse modules in other programs.

1.2.2 Using Paged Program Space

The decision as to whether you use the paged program space is simple: if the final ex-
ecutable file will require more than 4 Kbytes of memory when loaded into the ST6,
you must use the paged program space feature. Otherwise, you do not have to use
this feature.

If you develop your program in modular source files, or if you use the paged program
space feature, you must carry out the following steps in order to generate an execut-
able file:

1 Assemble each of the source files that make up the program individually, using
AST6. Assembled modular source files are called relocatable object files, and
have the extension .OBJ . The word relocatable is used because the exact location
that the generated object code will have in the ST6 memory is unknown. To gen-
erate these you must run AST6 with the -O option (see “Running AST6” on
page 52).

2 Link the assembled object files into a single, executable file, using LST6. Execut-
able files have the extension .HEX. The default file name generated by LST6 is
ST6.HEX. You can change this using the -O option when you run LST6.

3

AST6/LST6 - Introduction

9/86

1.2.3 Using a Single Source File

If you are developing a small program, that does not exceed 4 Kbytes, the advantag-
es of working with modular source files may not apply and you do not have to use the
paged program space feature. In this case, it is simpler to develop your application in
one module, since you can generate an executable file using AST6, without having to
go through the linkage phase using LST6. The file generated by AST6 from a single-
source file is called an absolute object, since you specify the exact location of the ex-
ecutable file in the ST6 memory using the .ORG directive (see “ORG - Set Program
Origin” on page 74).

1.3 Debugging Executable files

Once you have generated your executable files, you can test and debug them using
either the Windows-based ST6 program debugger, WGDB6, or the DOS-based ST6
program debugger, ST6NDB. Both debuggers simulate the behaviour of your pro-
gram when it is loaded into an ST6 microcontroller using either ST6 Simulator or the
ST6 HDS Emulator.

The ST6 Simulator is a program that simulates the execution of ST6 programs. It in-
cludes Wave Form Editor, that enables the simulation of ST6 pin input and output.

The ST6 HDS Emulator is a hardware system that enables real-time execution of ST6
applications.

Note that if you want to use either of the debuggers, you must generate .DSD and
.SYM files during the assembly and link phases. “AST6 and LST6 Source and Gen-
erated Files” on page 16 describes all the files that are involved in the assembly and
link processes.

1.4 Loading Executable Files into ST6 Microcontrollers

Once your program is ready, you can load it into ST6 microcontrollers using the
EPROM programmer.

3

AST6/LST6 - Introduction

10/86

The following diagram summarises the assembly and link processes.

1.5 ST6 Memory Structure

The ST6 memory is divided into two principal components, the program space and
the data space.

The program space is an area of ROM memory in which the instructions to be exe-
cuted, the data required for immediate addressing mode instructions, and the user-
defined vectors are stored. It is addressed using the 12-bit Program Counter register.
ST6 microcontrollers that have more than 4 Kbyte ROM feature a paginated program
space. In paginated ST6 program spaces, the area between real addresses 0 and
7FFh is paginated. The area between addresses 800h and FFFh on page 1 is static.

Assembler
Source File

AST6
Assembler

File

WGDB6/ST6NDB

Debugger

ST6 Simulator
ST6 Emulator

ST6

Microcontroller

Listing
File

AST6
Assembler

Object
File

LST6
Linker

File (.HEX)
ExecutableListing

File

MAP
File

Process Using One Source File

(.ASM)

Executable

(.HEX)

Process Using Modular
Source Files

Assembler
Source File

(.ASM)

Assembler
Source File

(.ASM)

Assembler
Source File

(.ASM)

(.OBJ)

Object
File

(.OBJ)

Object
File

(.OBJ)

(.LIS)

(.LIS)
(.MAP)

(-L)
(-O)(-O) (-O)

AST6
Assembler

AST6
Assembler

(-L) (-M)

The letters in
parentheses indicate
the option needed
to generate each
file type.

Symbol

File
(.SYM)

(-S)

Data Space
Symbol File

(.DSD)

3

AST6/LST6 - Introduction

11/86

When referencing a page, the page is selected using the Program ROM Page Regis-
ter (PRPR).

If you use program space pagination, you must structure your application according-
ly, refer to “Working with the Program Space” on page 26 for further details.

Source code that is stored in the program space can be divided into sections. Sec-
tions are identified by a number, from 0 to 32. Each section starts at address 0 for the
current module. Sections enable you to write source code in any order, but specify
the order in which they are linked into the final assembled code. During the link edit
phase, sections are allocated to pages. By default, LST6 allocates sections to pages
by matching section numbers to page numbers, thus section 0 is allocated to page 0,
section 1 is allocated to page 1, and so on. The default size of a section is 2 Kbytes,
however you can modify this, as well as define which section is stored in each page,
using the -P option when you run LST6. You can allocate any number of sections,
from any source file, to a page in the program memory, provided their total size does
not exceed that of the page, which is 2 Kbytes.

The data space is an area of RAM memory that stores all the data required by the
program. It also stores the standard ST6 registers. ST6 microcontrollers that have
more than 64 byte RAM feature a paginated data space. In paginated ST6 data spac-
es, the area between addresses 0 and 3Fh is paginated into 64-byte RAM and EEP-
ROM pages. When referencing data in a paged area, the page is selected using the
Data RAM/EEPROM Bank Register (DRBR).

To provide you with additional data space, ST62 and ST63 family chips let you store
read-only data, such as look up tables and constants in the program space. The area
of program space used for storing data space information is called a Data ROM Win-
dow.

1.6 Installing AST6/LST6

To install the AST6/LST6 software, put the diskette marked ST6-SOFTWARE
TOOLS into your floppy drive and copy its contents to your hard disk.

3

AST6/LST6 - Glossary of Terms

12/86

2 GLOSSARY OF TERMS

absolute object file . An object file whose location in memory is defined in the source
code using the .ORG directive. Absolute objects are can only be generated from pro-
grams that are coded in one source file.

addressing mode . In order to decrease the size of instructions, and thus the space
they take in the program memory and the time needed to execute them, instructions
have different addressing modes, based on the minimum addressing informationre-
quired for each instruction.

assembler language . A symbolic code in which you develop applications, and that is
translated into object or executable files using an assembler.

AST6 . The ST6 family macro-assembler that translates files that are written in as-
sembler language into either executable files or object files.

conditional assembly . The use of conditions in source files, according to which the
subsequent lines of code are or are not assembled. Conditional assembly can be
used to generate different program versions or executable files for different ST6 mi-
crocontrollers from the same source file.

cross reference table file (.X) . A file that lists the symbols used in a program, and
specifies the numbers of the lines that define or reference each symbol.

Data RAM/EEPROM Bank registerr (DRBR) . A register that selects the data page
to be accessed by the subsequent instruction(s).

Data ROM Window . An area in the data space through which you can access read-
only data, such as look up tables and constants, that is stored in blocks of up to 64
Kbytes in the program space.

Data ROM Window Register (DRWR) . A register that, together with an instruction
address, specifies the block of data in the program space to be accessed via the Data
ROM Window.

data space . An area of RAM memory that stores all the data required by the pro-
gram. and the standard ST6 registers.

data space symbol file (.dsd) . Files that list the symbols in the data space. They are
required by the ST6 debuggers.

directives . Commands that control the assembly process. They can be used, for ex-
ample, to define macros, or specify where in the microcontroller’s memory, executa-
ble code and data are stored.

3

AST6/LST6 - Glossary of Terms

13/86

dynamic pages . Virtual pages in the paged area of the program space. They are rep-
etitions of the same area of ROM whose real address is 0 to 7FFh. Each dynamic
page has a virtual address to distinguish it from the others.

emulator . A hardware device that simulates ST6 microcontrollers, enabling real-time
execution of ST6 applications.

entry point . The address from which an executable file is written to ROM.

error report file (.err) . A file to which error and warning messages that are generated
during assembly and linkage are optionally written.

executable file (.hex) . A file that is ready to be loaded to a microcontroller and exe-
cuted. ST6 executable file are in the Inter-HEX format.

expression . A constant or symbol, or any combination of the two, separated by an
arithmetic operator.

external label . Labels that are external to a module are those that are defined in an-
other module.

global symbol . Symbols that are defined in one source module, but that can be used
by others.

label . A meaningful name that you can use to specify a memory location or symbol.

linker memory map file (.map) . Linker memory map files list the start, end and size
of all the sections in the application and the start locations and sizes of the relocatable
objects.

listing file (.lis) . An ASCII text file that shows the lines of generated object code to-
gether with the source code they were generated from.

LST6. The ST6 family linker, that links relocatable objects (assembled source file
modules) into a single, executable file that can be loaded into the ST6 memory.

machine instructions . Codes that can be executed by the microcontroller without
translation. Machine instructions are also called opcodes.

macro . A sequence of assembler instructions and directives that can be inserted into
the source program in place of the macro name. Macros enable you to simplify code
and reduce code development time by reusing frequently-used functions.

macro-assembler . An assembler that includes macro generation capabilities.

map section . A section that can be included at the end of a listing file of an absolute
object, that lists the name, type and size of each section.

3

AST6/LST6 - Glossary of Terms

14/86

mnemonic . An instruction, that is converted into machine code by the assembler.
Mnemonics have meaningful names, for example the ADD mnemonic adds two val-
ues together.

object file (.obj) . An intermediate file that you link together, forming a single execut-
able file, using the LST6 linker (relocatable object).

opcode . See Machine Instructions.

operand . The part of an instruction line that specifies complementary information for
the instruction, such as contents and symbols. Operands may contain:

• Numbers

• String and character constants

• Program Counter References

• Expressions

paging . A feature in which an area of both the data space and the program space is
duplicated into ‘pages’. Pages are not physical areas of memory, they are repetitions
of the same area that are distinguished using virtual addresses. Paging is a way of in-
creasing the size of the data and program spaces to beyond that of their addressable
area.

Program counter . A 12-bit register that points to the address of the instruction cur-
rently being executed in the program space.

Program ROM Page Register (PRPR) . A register that indicates the program space
page to be accessed.

program space . The area of ROM memory in an ST6 microcontroller in which pro-
grams are stored.

relocatable object . The separately-assembled source files that make up a program.
The word relocatable is used because the exact location that the generated object
code will have in the ST6 memory is unknown.

ROM Masking . A process that involves manually filling all reserved and unused are-
as of ROM with a predefined value. ROM masking is recommended, since it improves
the reliability of your program when it is executed in the microcontroller.

sections . Divisions of code enabling you to write source code in any order, but spec-
ify the order in which they are linked into the final assembled code. During the link edit
phase, sections are allocated to pages. By default, LST6 allocates sections to pages
by matching section numbers to page numbers, thus section 0 is allocated to page 0,
section 1 is allocated to page 1, and so on.

3

AST6/LST6 - Glossary of Terms

15/86

source file (.asm) . ASCII text file, in which you write program code. Source files are
made up of lines, each of which is terminated by a new line characters. Each line may
contain Labels, Mnemonics, Operands and Comments.

static area . The real addressable area of ROM. It includes two static pages:

• Page 1, which is the second page within the overlaid area.

• Page 32, which located in the area between addresses 0FF0h and 0FFFh, and is
thus not in the paginated area.

symbol table file (.sym) . A file that lists the value and type of each symbol in an as-
sembled program. They are required by emulators.

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

16/86

3 AST6 AND LST6 SOURCE AND GENERATED FILES

This section describes the format of source files that AST6 can assemble, and the
output files that AST6 and LST6 generate either automatically or when an option is
selected.

3.1 Source Files

AST6 source files have the extension .asm . .asm files are made up of lines, each of
which is terminated by a new line characters.

Source files have the following format:

Each line may contain up to four types of information:

• Labels, which let you specify a memory location or symbol using a meaningful
name.

• Mnemonics, which are instructions that are converted into machine code.

• Operands, which specify complementary information for an instruction, such as
contents and symbols.

• Comments

These types of information must be entered in the above order. Each type of informa-
tion must be separated by one or more spaces. The total width of a line can not ex-
ceed 400 characters. The following paragraphs describe these types of information.

3.1.1 Labels

Labels let you specify a memory location or symbol using a meaningful name. When
a label is defined, it takes the current value of the address counter.

Labels must start in column one. A label may contain up to eight of any of the follow-
ing characters:

DCO .set 0 ;initialise data space location counter

.macro rmb symb

symb .def DCO

DCO .setDCO+1

.endm

rmbvar1

Operands

Mnemonics

Labels

Comments

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

17/86

• Upper case letters (A - Z)

• Lower case letters (a - z)

• Digits (0 - 9)

• Dollar sign ($)

• Underscore (_)

The first character of a label must be a letter or an underscore. Labels are case sen-
sitive.

3.1.2 Mnemonics

Mnemonics must be separated from the preceding label (if there is one) by a space or
a tab. Mnemonics specify the action to be performed by the assembler. Mnemonics
can be the name of a machine instruction, an assembler directive code or a macro
call. If a mnemonic is omitted from a line, the program counter is assigned to the label
(if present).

3.1.3 Operands

Operands must be separated from mnemonics by one or more spaces. If more than
one operand is used, the operands must be separated by commas. Operands may in-
clude:

• Numbers

• String and character constants

• Program Counter References

• Expressions

The following paragraphs describe these.

3.1.3.1 Numbers

The default radix for numbers is decimal. You can use numbers in other formats by
following the number with the appropriate letter:

In hexadecimal, the decimal digits 10 - 15 are represented by upper or lowercase let-
ters from A to F. Hexadecimal numbers that start with a letter must be preceded by
the number 0. All numbers are defined as 16-bit signed values.

For example, the decimal value 45 is represented by 01000101b in binary, 55o in oc-
tal, and 2dh in hexadecimal.

This letter: Indicates this radix:

b or B Binary

o or O Octal

h or H Hexadecimal

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

18/86

3.1.3.2 String and Character Constants

String constants are strings of ASCII characters enclosed by double quotes. For ex-
ample: “This is an ASCII string”. Character constants are single ASCII character en-
closed by single quotes. For example ‘T’ .

3.1.3.3 Program Counter Reference

You can use the $ sign to identify the current value of the program counter (PC) in
program space operands.

3.1.3.4 Expressions

Expressions in operands may contain numbers, labels or PC-relative references,
separated by operators. Expressions are evaluated from left to right during assembly.
Operators are evaluated according to their precedence, meaning that some opera-
tors are evaluated before others. Expressions within parentheses are evaluated first.

It is recommend that you use expressions containing program space symbols in jp/
call instructions and variants of PC-relative instructions, such as jrr and jrs.

For example:

ldi value, const1

call subroutine1

subroutine1 ld A, value

jrz out

dec A

jp subroutine1

out ret

Such expressions are restricted to the following syntax:

expression = symbol

expression = symbol+constant_expression

expression = symbol-constant_expression

where constant_expression contains absolute references only.

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

19/86

The following table lists the available operators and their precedence.

*Right shift and left shift shift the contents of the operand n places to the right or left
respectively. For example:

sav_a .def 08h

ldi sav_a, 0FFh

ldi A, sav_a >> 2 ; A=02h

ldi A, sav_a << 2 ; A=20h

3.1.4 Comments

Comments are preceded by a semicolon. AST6 ignores all characters that follow a
semicolon. Note that you can use semicolons in string and character constants.

Operator
on
operand

Meaning

Priority (the
lowest value
has highest
priority)

Example

+

-

~

*

/

%

>> n
<< n

+

-

&

^

I

unary plus

negation

(2’s complement)

Bit inversion

(1’s complement)

multiplication

division

modulo

right shift*

left shift*

addition

subtraction

bitwise and

bitwise exclusive or

bitwise inclusive or

1

1

1

2

2

2

2

2

3

3

4

5

6

+137

-137

~00111111 = 1100000

38*3 = 114

114/3 = 38

38h%3 = 2

038h+0FFh = 37h

0FFh-038h = 0C7h

00001111&11111111 = 00001111

00001111^11111111 = 11110000

01001001I00010010 = 01011011

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

20/86

3.2 Generated Files

This section describes the files that are generated by AST6 and LST6.

3.2.1 Executable and Data Space Symbol Files

Executable (HEX) and data space symbol (DSD) files are automatically generated by
AST6 if you run it without the -O option, or by LST6 if you use relocatable objects.

HEX files are in the INTEL-HEX format.

Below is an example line of a HEX file:

The checksum is calculated by starting at 0, then subtracting each byte from the pre-
vious result. Thus the total - the checksum = 0. For example:

00-02-08-A0-00-D4-4D-35=00

DSD files list the symbols in the data space. They are required by the ST6 debuggers.

3.2.2 Listing Files

Listing files show the lines of generated object code together with the source code
they were generated from. To output a listing file, run AST6 with the -L option.

If you generate relocatable objects, you can update the listing files during the linking
process by running LST6 with the -I option. Listing files are named <prog>.lis , where
<prog> is the name of the assembled file.

Examples

To generate a listing file for absolute objects (single-source file programs):

AST6 -L myprog Generates the files myprog.lis, myprog.hex and myprog.dsd.

To generate a listing file for relocatable objects (modular file programs or programs
that use program space paging):

AST6 -L -O myprog1 Generates the files myprog1.lis and myprog1.obj.

:0208A000D44D35
Checksum
Second byte of data
First byte of data

Line type:
00 = data
01 = last line
First address of the line

Number of bytes in the line

Start of line indicator

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

21/86

AST6 -L -O myprog2 Generates the files myprog2.lis and myprog2.obj.

Then:

LST6 -I -O myprog myprog1 myprog2 Updates the files myprog1.lis and
myprog2.lis, and generates myprog.hex and myprog.dsd.

The following diagram shows an example AST6 listing file and describes what the
various columns mean.

3.2.3 Including a Map Section

If you are using absolute objects (single-source file programs), you can include a map
section at the end of listing files. If you are using relocatable objects, you can gener-
ate a separate map file using LST6 (see “Linker Memory Maps” on page 22).

22 P00 0000 5F10 S00 0000 22 add a,var1

23 23 .section1

24 P01 0800 BF20 S01 0000 24 and a,var2

25 P01 0802 DF30 S01 0002 25 sub a,var3

26 26

27 27 .section2

28 P02 1000 3F40 S02 0000 28 cp a,var4

29 P02 1002 0D1000 S02 0002 29 clr var1

30 30

31 31 mac_ ex1 var1

Source line

Source line number

Listing line number

Current page type
and number

Absolute section

Binary code

Current section

Relative section

address

address

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

22/86

The following diagram shows an example map section:

The type column indicates the section type, this can be text for program space
section or data for data space section.

To generate mapping information, run AST6 with the -M option as well as the -L op-
tion. For example:

AST6 -L -M myprog Generates the files myprog.lis, myprog.hex and myprog.dsd.

3.2.4 Linker Memory Maps

If you are using relocatable objects (modular file programs or programs that use pro-
gram space paging), you can generate separate linker memory map files. Linker
memory map files list the start, end and size of all the sections in the application and
the start locations and sizes of the relocatable objects. Link process errors and warn-
ings are also reported in linker memory maps.

** SPACE ‘PAGE_0’ SECTION MAP **

| name | type | size |

|-----------------|--------|----------|

| PG0_0 | TEXT | 182 |

|_________________|________|__________|

Tue May 06 10:54:52 1997 file dummys.lis page 19

** SPACE ‘PAGE_1’ SECTION MAP **

| name | type | size |

|-----------------|--------|----------|

| PG1_0 | TEXT | 158 |

|_________________|________|__________|

Tue May 06 10:54:52 1997 file dummys.lis page 20

** SPACE ‘PAGE_32’ SECTION MAP **

| name | type | size |

|-----------------|--------|----------|

| PG32_0 | TEXT | 10 |

|_________________|________|__________|

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

23/86

Below is an example line of a linker memory map:

The type column in linker memory maps indicates the section type, this can be P for
program space section or Wfor Data ROM Window section.

To generate a linker memory map, run LST6 with the -M option. The mapping file is
named ST6.MAP by default. You can specify your own name by including the -O op-
tion when running LST6. In this case the file is named <prog> .MAP, where <prog> is
the name of the assembled file. For example, the command:

LST6 -M -O myprog myprog1 myprog2

generates the files myprog.map, myprog.hex and myprog.dsd.

3.2.5 Cross Reference Tables

If you are using absolute objects (single-source file programs), you can generate
cross-reference tables. These list, for each symbol, the numbers of the lines that de-
fine or reference that symbol. The line number that defines the symbol is followed by
an asterisk (*). To generate a cross-reference table, run AST6 with the -X option.

*** ST6 Linkage Editor: ‘dummys’ object file Map ***

PROGRAM SECTIONS:

number start end size

------ ----- --- ----

0 0000 07FF 0182

1 0800 0F9F 014F

32 0FF0 0FFF 0010

WINDOW SECTIONS:

number start end size

------ ----- --- ----

0 0182 018A 0009

MODULE dummys.obj:

section type start size

------- ---- ----- ----

0 P 0000 0182

1 P 0800 014F

32 P 0FF0 0010

0 W 0182 0009

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

24/86

Cross reference tables are named <prog>.X, where <prog> is the name of the as-
sembled file. For example, the command:

AST6 -X myprog

Generates the file myprog.X

3.2.6 Symbol Table Files

Symbol table files list the value and type of each symbol in the assembled code. You
must generate a symbol table file if you want to test your program using an emulator.
Below is an example line of a symbol table file:

If you are using absolute objects (single-source file programs), to generate a symbol
table file, run AST6 with the -S option. AST6 symbol table files are named
<prog>.sym , where <prog> is the name of the assembled file. For example, the com-
mand:

AST6 myprog -S

Generates the file myprog.sym

If you are usingrelocatable objects (modular file programs or programs that use pro-
gram space paging), to generate a symbol table file, run LST6 with the -S option. The
symbol table file is named ST6.SYM by default. You can specify your own name by
including the -O option when running LST6. In this case the file is named
<prog>.SYM, where <prog> is the name of the assembled file. For example, the com-
mand:

LST6 -S -O myprog myprog1 myprog2

generates the files myprog.map, myprog.hex and myprog.dsd.

If you run AST6 with the -O option (to generate a relocatable object), symbol table file generation
is disabled, since in this case the program space symbols are defined in the link edit process.

3.2.7 Error Reports

By default, AST6 error and warning messages are displayed on your screen, and
written to the listing file if you run AST6 with the -L option. You can choose to record
error and warning messages in an error file, by running AST6 with the -E option. Error

porta : EQU 00ff6h P

Symbol Type
P = program space symbol
C = constant
Full 16-bit symbol address

Symbol name

3

AST6/LST6 - AST6 and LST6 Source and Generated Files

25/86

files are named <prog>.err , where <prog> is the name of the assembled file. For ex-
ample, the command:

AST6 -E myprog

Generates the file myprog.err

LST6 writes errors to the file stdout .

AST6/LST6 - Working with the Program Space

26/86

4 WORKING WITH THE PROGRAM SPACE

The program space is an area of ROM memory in which the instructions to be exe-
cuted, the data required for immediate addressing mode instructions, and the user-
defined vectors are stored. It is addressed using the 12-bit Program Counter register.
The following diagram shows the ST6 program space structure.

4.1 Paged Program Memory

ST6 microcontrollers that have more than 4 Kbytes of ROM feature a paginated pro-
gram space.

This means that the ROM consists of a static area and up to 30 dynamic pages. Dy-
namic pages are virtual, they are repetitions of the same area of ROM whose real ad-
dress is 0 to 7FFh. Each dynamic page has a virtual address to distinguish it from the
others. Virtual address are allocated in relation to the page number, as shown in the
table below.

The static area is the real addressable area of ROM. It includes two static pages:

• Page 1, which is the second page within the overlaid area.

• Page 32, which located in the area between addresses 0FF0h and 0FFFh, and is
thus not in the overlaid area. Page 32 stores the interrupt and reset vectors.

It is better to think of pages 1 and 32 as areas of static ROM, although they are ad-
dressed as if they were pages.

ROM

ROM

0000h

07FFh
0800h

0FF0h

0FFFh
Interrupt and

Reset Vectors

Paged
Area

AST6/LST6 - Working with the Program Space

27/86

To reference a page, the required page is selected using the Program ROM Page
Register (PRPR).

You can perform jumps from the static area to any of the dynamic pages. You cannot,
however jump directly from one dynamic page to another without first jumping to the
static area. The following table shows the paged memory characteristics:

The use of pages 0 and 2 to 31 are optional.

4.2 Developing Programs for the Paged Area

Source code that uses paged memory must be divided into sections. Each section is
a block of code that can be allocated to a page during the link phase. Each section
starts at address 0 for the current module. Developing programs in sections has the
advantage that sections enable you to write source code in any order, but specify the
order in which they are linked into the final assembled code. You can allocate any
number of sections, from any source file, to a page in the program memory, provided
their total size does not exceed that of the page, which is 2 Kbytes.

By default, LST6 allocates sections to pages by matching section numbers to page
numbers, thus section 0 is allocated to page 0, section 1 is allocated to page 1, and
so on. If you define more than once section with the same number, the sections are
mapped to their appropriate pages contiguously, in the order in which their holding
modules are listed when AST6 is executed.

The default size of a section is 2 Kbytes, however you can modify this, as well as de-
fine which section is stored in which page, using the -P option when you run LST6.

Allocating sections to pages using the -P option can be useful in two cases:

• For locating parts of the program, such as interrupt vectors, during the debugging
phase.

• For limiting the memory space taken by final executable code and ensuring it is
not written to any reserved areas of memory.

Page No. Virtual Address Real Address Can jump to

0 0000 to 07FF 0000 to 07FF Page 1

1 0800 to 0FEF 0800 to 0FEF All pages

2 1000 to 17FF 0000 to 07FF Page 1

3 1800 to 1FFF 0000 to 07FF Page 1

n = 4 to 31 [n*800]-[(9n*80)+7FF] 0000 to 07FF Page 1

32 0FF0 to 0FFF 0FF0 to 0FFF All pages

AST6/LST6 - Working with the Program Space

28/86

The -P option has the following format: -P<n>:<start>-<end>, where <n> is the sec-
tion number, <start> is the start address and <end> is the end address. For example,
to map section 1 to the area 400h to 7FFh you enter P1:400-7FF when you execute
LST6.

You divide the module into sections using the .SECTION directive. The following dia-
gram shows how LST6 allocates sections to pages when the -P option is not used:

You must assemble source files that use paged memory as relocatable objects, by
executing AST6 with the -O option (see “Running AST6” on page 52).

Note : To be able to use this feature, you must include the PP_ON directive in your
code before assembling it.

Section 0

Section 4

Section 2

module0

Block of
code A

Block of
code B

Block of
code C

Section 3

Section 0

module1

Block of
code D

Block of
code E

Section 0

Section 4

Section 2

module2

Block of
code G

Block of
code H

Block of
code I

AST6 module0

Page 0 Page 1 Page 4Page 3Page 2

Block of
code A

Block of
code G

Block of
code E

Block of
code C

Block of
code I

Block of
code D

Block of
code H

Block of
code B

These modules:

Assembled as follows:

Are mapped as follows:

AST6 module1
AST6 module2

AST6/LST6 - Working with the Program Space

29/86

4.2.1 Accessing Paged Program Space

The Program ROM Page Register (PRPR) selects the page to be accessed. To sim-
plify the use of the PRPR, you can use the <label>.P notation to load the location of
the specified label to the PRPR. Thus, when jumping from one dynamic page to an-
other, a jump is first made to page 1, where the <label>.P notation is used to load the
target page. The jump is then made to the target. The following example shows how
to program a jump from section 4 to section 5 (that are mapped to different pages dur-
ing link editing):

.pp_on

PRPR .def 0cah ; define PRPR

.section 4

; ...

jp prs1 ;Jump to PRPR setter in page 1

caller nop

.section 1

...

prs1 ldi PRPR,target.p ;set the page holding the label

”target” in PRPR

jp target ;jump to the label ”target”

return jp caller ; return to calling section

;

.section 5

; ...

target nop ;Start the process

; ...

jp return ;return to page 1

4.3 Using Absolute Objects

You can generate absolute objects if your program is made up of one module only
and you are not using a paged program memory. To assemble an absolute object,
you must execute AST6 without the -O option (see “Running AST6” on page 52).

When developing absolute object applications, you use the .ORG directive to specify
the location of object code in the ST6 memory (see “ORG - Set Program Origin” on
page 74). .ORG specifies the starting address or the subsequent code.

AST6/LST6 - Working with the Program Space

30/86

4.4 ROM Masking

ROM masking means manually filling all reserved and unused areas of ROM with a
predefined value. ROM masking is recommended, since it improves the reliability of
your program when it is executed in the microcontroller. To implement ROM masking,
you must execute LST6, or AST6 if LST6 is not being used, with the -D option. By de-
fault, reserved and unused areas are filled with the value FFh. You can change this
by specifying the value you want to use after the -D option (see the examples below).
To enable AST6 or LST6 to perform ROM masking, you must provide the following in-
formation:

• The target ST6 type, by including the .VERS directive in your source file. See
“VERS - Define Target ST6” on page 78.

• The size of the ROM in the target ST6, by including the .ROMSIZE directive in
your source file. See “ROMSIZE - Set ROM Size for ROM Masking” on page 75.

Examples

The following command fills reserved and unused areas with the value 04h (the NOP
instruction):

ast6 -d04 myprog

The following commands fill reserved and unused areas with the value FFh:

ast6 -O myprog

lst6 -d myprog

The following commands generate the file myprog.hex from myprog1.obj and
myprog2.obj, and fill reserved and unused areas with the value 04h:

ast6 -O myprog1

ast6 -O myprog2

lst6 -d04 -O myprog myprog1 myprog2

AST6/LST6 - Working with The Data Space

31/86

5 WORKING WITH THE DATA SPACE

The data space is an area of RAM memory that stores all the data required by the
program. It also stores the accumulator, indirect registers, short direct registers I/O
port registers, the peripheral data and control registers, the Data ROM Window reg-
ister and the Data ROM Window (see the Databook for the ST6 microprocessor you
are using for further details of its memory configuration). The following diagram
shows the structure of the data space:

You must define the characteristics of each byte that you want to use in the data
space using the .DEF directive (see “DEF - Define Data Space Location Characteris-
tics” on page 62). This includes the standard registers listed above. .DEF enables
you to associate a label with an address and define the following characteristics:

• Read and write access.

• Its value.

• whether it is referenced in the .DSD file, which is referenced by the ST6 hardware
emulator.

Therefore, all data space definition sections will always include the following lines de-
fining the accumulator (A) and the Index registers (X, Y, V and W):

a .def 0ffh, 0ffh, 0ffh

x .def 80h, 0ffh, 0ffh

RAM/EEPROM
Paged Area

000h

03Fh
040h

070h
080h

081h
082h
083h
084h
0C0h

0FFh

Data ROM

Window

X Register
Y Register
V Register

W Register

RAM

DRWR

DRBR

Accumulator

PRPR

AST6/LST6 - Working with The Data Space

32/86

y .def 81h, 0ffh, 0ffh

w .def 82h, 0ffh, 0ffh

v .def 83h, 0ffh, 0ffh

You cannot export data space symbol definitions, and thus share them with all the
source modules that make up a program, using the .GLOBAL directive. You should
therefore place all .DEF definitions in a separate file, that is included at the beginning
of each source module using the .INPUT directive (see “INPUT - Read Source State-
ments from File” on page 68). An example of such a file is given in “Example Data
Space Definitions File” on page 33.

Note that such multiple definition will cause a problem during the link edit phase:
LST6 will find as many definitions of the same addresses as there are modules, and
thus generate the appropriate error message. This problem can be overcome by pre-
venting the multiple transmission of the definitions to LST6 using the .NOTRANSMIT
and .TRANSMIT directives (see “TRANSMIT - Transmit Data Space Symbols to
LST6” on page 77). You must, however allow the transmission of the definitions file
for one module, so that its details are stored in the .DSD file.

The following example shows how to include a file named defs.h in the beginning of
the source modules that make up an application:

;module 1

.INPUT ”defs.h”

;...

;module 2

.NOTRANSMIT

.INPUT ”defs.h”

.TRANSMIT

;...

;defs.h

.pp_on

a .def ffh

;...

An alternative approach is to create a macro for defining data space definitions. For
example:

DCO .set 0 ;initialise data space location

;counter

AST6/LST6 - Working with The Data Space

33/86

.macro rmb symb

symb .def DCO

DCO .set DCO+1

.endm

rmb var1

rmb var2

5.1 Example Data Space Definitions File

The following example data definitions file defines the data space for an ST626x mi-
crocontroller.

; **************************************

; * REGISTER/VARIABLE DECLARATION*

; **************************************

x .def 080h,0ffh,0ffh,m

y .def 081h,0ffh,0ffh,m

v .def 082h,0ffh,0ffh,m

w .def 083h,0ffh,0ffh,m

a .def 0ffh,0ffh,0ffh,m

IOR .def 0c8h,0ffh,0ffh ; Interrupt Option Register

DRWR .def 0c9h,0ffh,0ffh ; DATA ROM Window Register

; **************

; * PORT A *

; **************

DRA .def 0c0h,0ffh,0ffh ; Data Register A

DDRA .def 0c4h,0ffh,0ffh ; Data Direction Register A

OPRA .def 0cch,0ffh,0ffh ; Option register A

; **************

; * PORT B *

; **************

DRB .def 0c1h,0ffh,0ffh ; Data Register B

DDRB .def 0c5h,0ffh,0ffh ; Data Direction Register B

OPRB .def 0cdh,0ffh,0ffh ; Option register B

; **************

; * PORT C *

; **************

AST6/LST6 - Working with The Data Space

34/86

DRC .def 0c2h,0ffh,0ffh ; Data Register C

DDRC .def 0c6h,0ffh,0ffh ; Data Direction Register C

OPRC .def 0ceh,0ffh,0ffh ; Option register C

; **************

; * A/D CONVER *

; **************

ADCR .def 0d1h,0ffh,0ffh ; Control register

ADR .def 0d0h,0ffh,0ffh ; DATA register (result of conversion)

; **************

; * TIMER *

; **************

;TSCR1.def 0d4h,0ffh,0ffh ; TIMER STATUS control register

;TCR1 .def 0d3h,0ffh,0ffh ; TIMER COUNTER register

;PSC1 .def 0d2h,0ffh,0ffh ; TIMER PRESCALER register

; *********************

; * AUTO RELOAD TIMER *

; *********************

ARMC .def 0d5h,0ffh,0ffh ; AR MODE control register

ARSC0 .def 0d6h,0ffh,0ffh ; AR STATUS control register 0

ARSC1 .def 0d7h,0ffh,0ffh ; AR STATUS control register 1

ARLR .def 0d8h,0ffh,0ffh ; AR LOAD register

ARRC .def 0d9h,0ffh,0ffh ; AR RELOAD/CAPTURE register

ARCP .def 0dah,0ffh,0ffh ; AR COMPARE register

WDR .def 0d8h ;watchdog register

psc .def 0d2h,m

tcr .def 0d3h,m

tscr .def 0d4h,m

tmz .equ 7

eti .equ 6

tout .equ 5

dout .equ 4

psi .equ 3

AST6/LST6 - Working with The Data Space

35/86

5.2 Paged Data Space

ST6 microcontrollers that have more than 64 bytes of RAM feature an optional paged
data space. Thus, if your application requires more than 64 bytes of RAM, you can
implement data space paging. In paged ST6 data spaces, the area between address-
es 0 and 3Fh is paged into 64-byte RAM and EEPROM pages. When referencing a
page, the required page is selected using the Data RAM/EEPROM Bank Register
(DRBR).

To implement data space paging you must include the directive .DP_ON (see
“DP_ON - Enable Data Space paging” on page 6312.2.7) in your source module.

5.2.1 Writing to Data Pages

The .PAGE_D directive defines the page to which subsequent data is written (see
“PAGE_D - Specify Page Number for .DEF” on page 74). The data following a
.PAGE_D directive is written to the page number specified by the directive. For exam-
ple:

.DP_ON

PAGE_D 0

v1 .def 0

v2 .def 1

;...

.PAGE_D 1

count .def 0

colour .def 1

;...

5.2.2 Accessing Data Pages

The page of data to be accessed is defined using the Data RAM/EEPROM Bank Reg-
ister (DRBR). To avoid having to set DRBR each time you want to reference a data
page, you can use the <label>.P notation, that sets DRBR to the data page holding
the specified label.

The DRBR register selects the data page to be accessed according to the bit number
(0 to 7) that holds a 1. The DRBR is implemented in different ways, depending on the
ST6 you are using (see the Databook for the ST6 microprocessor you are using for
further details).

The following example shows the use of <label>.p in selecting the data space page to
be accessed.

AST6/LST6 - Working with The Data Space

36/86

.DP_ON

RAMSW .def 0e8h

a .def 0ffh

.PAGE_D 2

xx .def 0

yy .def 1

; ...

.PAGE_D 1

ldi RAMSW,xx.p ;select data page

containing xx

ld a,xx

; ...

5.3 Using the Data ROM Window

To provide you with additional data space, ST62 and ST63 family microprocessors let
you store read-only data, such as look up tables and constants, in areas of up to 64
bytes in the program space. Although it is physically located in the program space,
the address of this area is 40h to 7Fh in the data space. This area is called the Data
ROM Window.

To implement the Data ROM Window, you must include the .W_ON directive in the
beginning of your source files. You can allocate any number of blocks of data to a
continuous area of up to 64 bytes in the ROM. You can create as many 64-Kbyte
blocks of data as you like within the ROM.

If you are generating relocatable object code, blocks of data to be stored in the Data
ROM Window can be delimited using the .WINDOW and .WINDOWEND directives
(see “WINDOW, WINDOWEND - Define Data Block in Program Space” on page 79).
In this case, LST6 automatically defines the defined blocks of data as accessible via
the Data ROM Window, in the order in which the modules are listed when LST6 is ex-
ecuted. It allocates blocks of data to spaces left free in the ROM after the program
sections have been allocated. It does not necessarily use all the 64 bytes available for
the Data ROM Window. An example of such an application is given in “Example Data
ROM Window Application” on page 39.

If you developing an absolute object you cannot delimit the window using .WINDOW
and .WINDOWEND directives. In this case, you define the boundary of the block of

AST6/LST6 - Working with The Data Space

37/86

data to be accessed using the Data ROM Window using the .BLOCK directive (see
the example on page 39).

5.4 Accessing Data Within the Data ROM Window

The location of the block of data in the ROM to be accessed by the Data ROM Win-
dow is specified by the Data ROM Window Register (DRWR) and the address oper-
and of the instruction accessing its contents.

Bits 5 to 0 of the DRWR define the start address of the block to be accessed via the
Data ROM Window. Bits 5 to 0 of the address operand define the offset of the ad-
dress to be accessed from the beginning of the block pointed to by DRWR. If the
block of data to be accessed is within a ROM page, the PRPR must be used to spec-
ify the page holding the block, in the same that it is used to access any area of pagi-
nated ROM.

The following diagram shows how Data ROM Window addressing works.

5.4.1 Using <label>.D and <label>.W

To simplify the task of referencing data in the ROM via a Data ROM Window, AST6
includes two specific notations: <label>.D and <label>.W.

<label>.W enables you to set the DRWR to the block of data in ROM holding the
specified label (see “LABEL.W - Initialise Data ROM Window Register” on page 70).

7 6 5 4 3 2 1 0

5 4 3 2 1 0

1 0

1 0 0 1 1 0 0 1

1 0 1 0 0 0

0 1 1 0 0 11 0 1 0 0 0

Data ROM Window Register Data space address in
instruction (40h - 7Fh)

Example:

DRWR =28h Instruction Address = 19h

ROM address = A19h

AST6/LST6 - Working with The Data Space

38/86

<label>.D enables you to set the offset to the specified label from the beginning of the
block of data in ROM pointed to by the DRWR (see “LABEL.D - Access Data in Data
ROM Window” on page 68). This is then used in the instruction address.

The following example shows how to access a constant, labelled CST1, that is held in
a Data ROM Window:

LDI DRWR, CST1.W ;Set the DRWR to the block of

;data holding CST1

LDI X, CST1.D ;Set the X register to the

;address of CST1

LDI A, 40h ;Load the value 40h into the

;accumulator

ADDI A, X ;Add the value held in CST1 to

;the accumulator contents (40h)

Some more complete examples of how to use the Data ROM Window are given be-
low.

Examples:

Using WINDOW and WINDOWEND to define a window and label to reference data
within that window:

.PP_ON ;Must be executed for LST6

.W_ON ;Enables the use of windows

a .def 0ffh

x .def 80h

DRWR .def 0cah ;Define Data ROM Window register

.WINDOW

cst2 .byte 22h

string2 .ascii ”ABCDEF”

; ...

.WINDOWEND

.section 2

ldi DRWR,cst2.W ;Select block holding cst2 and

;string 2

ld a,cst2.D ;put the address of cst2 into a

ldi x,string2.D ;put address of string2 into a

AST6/LST6 - Working with The Data Space

39/86

In a single-module source :

.PP_ON

.W_ON ;enables the use of windows

a .def 0ffh

x .def 80h

DRWR .def 0cah ;Define Data ROM Window register

.section2

; ...

.block 64-$%64 ;Define 64-byte boundary

cst1 .byte 0ceh

string1 .ascii ”abcdef”

; ...

.section 0

ldi DRW,cst1.W ;select block holding cst1 and

;string 1

ld a,cst2.D ;put the address of cst2 into a

ldi x,string2.D ;put address of string2 into a

5.5 Example Data ROM Window Application

This example creates look-up tables in the ROM using the Data ROM Window. There
are four 64-byte data tables, that are cascaded in order to provide a 256 byte non-lin-
ear correction table. For clarity, the table is applied to a linear 8-bit value, obtained
from the ST6 on-chip analog-to-digital (a/d) converter. The example can easily be
adapted for a wide range of applications, such as temperature sensing and control,
frequency sensitivity correction, pattern generation and binary to bcd conversion.

To implement a 256-byte correction table, the two MSBs of the a/d result are used to
reference one of the four 64-byte data tables. The remaining 6 LSBs of the result
specify the offset from the beginning of the appropriate table.

AST6/LST6 - Working with The Data Space

40/86

;----- ST6 Table Look-up with Data ROM window

.title “tables.st6”

.vers “ST6215”

.romsize 2

.PP_ON ;enable linker

.W_ON ;enable rom data window

;********************

;standard definitions

;********************

.input “c:\st6\input\std_def.st6” ;st6 standard def file

;**********************

;local definitions here

;**********************

tablemask .equ 11000000b ;mask for table number

offsetmask .equ 00111111b ;mask for offset value

rdw_start .equ 040h ;start of data-rom-window

watchtime .equ 0ffh ;watchdog timeout period

storeacc .def 084h,0ffh,0ffh ;store accumulator during INT

result .def 085h,0f fh,0ffh,m ;non-linear result storage

;**************

;init ialisation

;**************

.section 1

restart:

reti ;ends reset condition

;enables nmi

ldi dwdr,#watchtime ;reload watchdog

clr a ;clear the accumulator

set ior4,ior ;enable interrupts

;configure port c

ldi drpc,#10h

ldi orpc,#10h

ldi ddrpc,#00h ;pc4 is analog

;configure a/d

set pds,adcr ;power up the a/d

AST6/LST6 - Working with The Data Space

41/86

nop ;allow a/d to settle

ldi adcr,#0b0h ;enable a/d interrupt

;start conversion

;**************

;main code here

;**************

loop: ldi dwdr,#watchtime

jp loop ;continue

;***********

;subroutines

;***********

;**************************

;interrupt service routines

;**************************

ad_int: ldi dwdr,#watchtime

ld storeacc,a ;save accumulator

ld a,adr ;get a/d result

ld y,a ;make another copy of a/d

;result

andi a,#tablemask ;mask off lower six bits

;acc. now contains table

;number

testtab0: cpi a,#00000000b ;table zero?

jrnz testtab1

ldi rdw,table0.w ;point to table zero

jp offset

testtab1: cpi a,#01000000b ;table one?

jrnz testtab2

ldi rdw,table1.w ;point to table one

jp offset

testtab2: cpi a,#10000000b ;table two?

jrnz testtab3

ldi rdw,table2.w ;point to table two

jp offset

testtab3: ldi rdw,table3.w ;point to table three

AST6/LST6 - Working with The Data Space

42/86

offset: ;rdw now points to the

;correct table

ld a,y ;re-load a/d result

andi a,#offsetmask ;mask off top bits

addi a,#rdw_start ;add in rdw start address

ld x,a

;x now points to the correct value (in the correct table!)

ld a,(x)

ld result,a

;”result” now contains the non-linear value corresponding to the linear

;result obtained from the temperature measurement

ldi adcr,#0b0h ;start new conversion

ld a,storeacc ;recover accumulator

reti

;********************************

; timer interrupt service routine

;********************************

tim_int: reti

pbc_int: reti

pa_int: reti

nmi_int: reti

;**************

; DATA TABLES *

;**************

.window

table0:

.byte 00h,00h,00h,00h,01h,01h,01h,01h

.byte 02h,02h,02h,02h,03h,03h,03h,03h

.byte 04h,04h,04h,04h,05h,05h,05h,05h

.byte 06h,06h,06h,06h,07h,07h,07h,07h

.byte 08h,08h,08h,08h,09h,09h,09h,09h

.byte 0ah,0ah,0ah,0ah,0bh,0bh,0bh,0bh

.byte 0ch,0ch,0ch,0ch,0dh,0dh,0dh,0dh

.byte 0eh,0eh,0eh,0eh,0fh,0fh,0fh,0fh

.windowend

AST6/LST6 - Working with The Data Space

43/86

.window

table1:

.byte 10h,10h,10h,11h,11h,11h,12h,12h

.byte 12h,13h,13h,13h,14h,14h,14h,15h

.byte 15h,15h,16h,16h,16h,17h,17h,17h

.byte 18h,18h,18h,19h,19h,19h,1ah,1ah

.byte 1ah,1bh,1bh,1bh,1ch,1ch,1ch,1dh

.byte 1dh,1dh,1eh,1eh,1eh,1fh,1fh,1fh

.byte 20h,20h,20h,21h,21h,21h,22h,22h

.byte 22h,23h,23h,23h,24h,24h,24h,24h

.windowend

.window

table2:

.byte 25h,25h,26h,26h,27h,27h,28h,28h

.byte 29h,29h,2ah,2ah,2bh,2bh,2ch,2ch

.byte 2dh,2dh,2eh,2eh,2fh,2fh,30h,30h

.byte 31h,31h,32h,32h,33h,33h,34h,34h

.byte 35h,35h,36h,36h,37h,37h,38h,38h

.byte 39h,39h,3ah,3ah,3bh,3bh,3ch,3ch

.byte 3dh,3dh,3eh,3eh,3fh,3fh,40h,41h

.byte 42h,43h,44h,45h,46h,47h,48h,49h

.windowend

.window

table3:

.byte 4ah,4bh,4ch,4dh,4eh,4fh,50h,52h

.byte 54h,56h,58h,5ah,5ch,5eh,60h,62h

.byte 64h,66h,68h,6ah,6ch,6eh,70h,72h

.byte 75h,78h,7bh,7eh,81h,84h,87h,8ah

.byte 8dh,90h,93h,96h,99h,9ch,9fh,0a2h

.byte 0a6h,0aah,0aeh,0b2h,0b6h,0bah,0beh,0c2h

.byte 0c6h,0cah,0ceh,0d2h,0d6h,0dah,0deh,0e2h

.byte 0e6h,0eah,0eeh,0f2h,0f6h,0fah,0feh,0ffh

.windowend

;*******

;vectors

AST6/LST6 - Working with The Data Space

44/86

;*******

.section 32 ;section 0FF0h...

jp ad_int ;a/d interrupt vector

jp tim_int ;timer interrupt vector

jp pbc_int ;ports b&c interrupt vector

jp pa_int ;port a interrupt vector

nop ;4 reserved bytes

nop

nop

nop

jp nmi_int ;nmi interrupt vector

jp restart ;reset vector

.end

AST6/LST6 - Importing and Exporting Labels

45/86

6 IMPORTING AND EXPORTING LABELS

Global symbols are those that are defined in one source module, but that can be used
by others. LST6 allows you to use two types of global symbol: labels that are defined
in program sections and labels that are defined in Data ROM WIndows. You cannot
use labels that are defined in the data space using the .DEF directive as global labels.
Such labels should be defined in a separate file, that is included at the beginning of
each source module using the .INPUT directive (see “Working with the Program
Space” on page 26 for further datails on how to do this).

To specify a symbol that is defined by the current module, but will be referenced by
other modules, use the .GLOBAL directive (see “GLOBAL - Define Symbols as Glo-
bal” on page 67). A symbol must be defined as global before it is defined.

To specify a symbol that is referenced by the current module, but is defined by anoth-
er module, use the .EXTERN directive (see “EXTERN - Define Symbols as External”
on page 66). The following example shows how to import and export program section
labels:

;module 1

PP_ON

.global label, cste

.section 1

...

label:

...

.block 64-$%64

cste:

;module 2

.PP_ON

.W_ON

a .def 0ffh

DRWR .def 0cah

.extern label, cste

.section 0

...

nop jp label

AST6/LST6 - Importing and Exporting Labels

46/86

...

.byte ldi DRWR, cste.w

ld a,cste.d

Note: Program Counter-relative jumps cannot be made to an external label.
LST6 checks that label is located in program page 1 (the static page), or in the same page as
that in which it is referenced. If not, it will return an error message.

The following example shows how to import and export Data ROM Window labels:

;module 1

.PP_ON

.W_ON

.global wc1, wc2

.window

wc1 .byte 11h

wc2 .ascii “ABCDEF”

...

.windowend

;module 2

.PP_ON

.W_ON

a .def 0ffh

x .def 80h

DRWR .def 0cah

.extern wc1, wc2

.section 3

ldi DRWR,wc1.W

ld a,wc1.D

ld x,wc2.d

...

Note: The <label>.D notation is used in module 2 becausewc1 and wc2 are external and are
thus assumed as being program section symbols.

AST6/LST6 - Developing Macros

47/86

7 DEVELOPING MACROS

Macros are sequences of assembler instructions and directives that can be inserted
into the source program in place of the macro name. Macros enable you to simplify
code and reduce code development time by reusing frequently-used functions.

You define the beginning and end of a macro using the MACRO and ENDM direc-
tives. For example, the following macro moves the contents of the cell pointed to by
X one the next address, so that X points to the same data but at another address:

.MACRO Move1 ;Start of Move1 macro definition

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

Once you have defined a macro, you call it by including the macro name as you would
any other mnemonic. For example, to call the above macro:

Move1

The macro is expanded in each place where its name is entered.

7.1 Nesting Macros

You can use two types of macro nesting: expansion nesting and definition nesting.
Expansion nesting means calling, and thus expanding one macro from another mac-
ro. Definition nesting means defining and calling one macro from within the body of
another macro.

An example of expansion nesting would be:

.MACRO Move2

Move1 ;Calls the macro Move1

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

In this case the body of macro Move1 is expanded within the body of macro Move2.

An example of definition nesting would be:

.MACRO Move2

.MACRO Move1 ;Start of Move1 macro definition

AST6/LST6 - Developing Macros

48/86

ld A, (X)

inc X

ld (X), A

.ENDM ;End of Move1 definition

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

7.2 Macro Parameters

Macro parameters let you fill in values when you call a macro. They let you develop
generic macros whose use can vary within the context of where it is expanded.

The parameters to be included with a macro are listed after the macro name, in the
.MACRO directive. Multiple parameters must be separated by commas. For example,
the following line creates the macro Move1 with the parameters Par1 and Par2:

.MACRO Move1 Par1,Par2

AST6 lets you use three types of macro parameter: normal parameters, numeric pa-
rameters and label parameters.

Normal parameters are substituted by a string of characters when the macro is ex-
panded. For example, a normal parameter could hold a label to which the macro
makes a jump.

Numeric parameters enable you to use symbols to specify numeric values. The pa-
rameter name must be a defined symbol. Numeric parameters are preceded by a
backslash (\).

Label parameters automatically define label names when macro is expanded. If you
specify a label directly within a macro, for example, for a loop within the macro body,
if the same macro is called successively, the second call will generate a double-de-
fined label error. Using a label parameter overcomes this problem. Label parameters
are preceded by a question mark (?).

The following example demonstrates the use of these three types of parameter:

.macro zero start, \number, ?label

ldi x, start

ldi v, number

clr a

AST6/LST6 - Developing Macros

49/86

label ld (x), a

inc x

dec v

jrnz label

.endm

This macro sets the number of bytes specified by \number to 0, from the start ad-
dress specified by start . ?label is replaced by the label specified when the macro
is called. For example, the line:

zero flagx, 5, here

Sets the 5 bytes starting at address flagx to 0, and uses the label here .

You can omit the label name when you call a macro. In this case AST6 generates its
own names each time it expands the macro. The names generated are L01$, L02$,
L03$ and so on.

7.3 Concatenating Symbols During Macro Expansion

AST6 enables you to concatenate two symbols during macro expansion. To concate-
nate two symbols, place the ’ operator between the two symbols you want to concate-
nate. You would concatenate two symbols, for example, to assign different symbols
to a label when calling the same macro twice:

The following example demonstrates the use of the concatenation operator:

.macro zero start, \number, ?lab

ldi x, start

ldi v, number

clr a

sta’lab ld (x), a

inc x

dec v

jrnz sta’lab

.endm

The line:

zero flagx, 5, here

results in the label stahere being generated.

AST6/LST6 - Using Conditional Assembly

50/86

8 USING CONDITIONAL ASSEMBLY

AST6 lets you specify conditions, according to which the subsequent lines of code
are or are not assembled. Conditional assembly can be used to generate different
program versions or executable files for different ST6 microcontrollers from the same
source file. Three directives enable you to program conditional assembly: IFC, ELSE
and ENDC. They have the following format:

.IFC <condition> <argument1>...[<argumentn>]

... ;Code to assemble if condition is true

.ELSE

... ;Code to assemble if condition is true

.ENDC

where:

<condition> is one of the following conditions:

<argument1>...[<argumentn>] are symbols or expressions to be subjected to
the condition.

.ENDC identifies the end of the conditional assembler block.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

Condition Meaning

EQ If the following symbol = 0

NE If the following symbol != 0

GT If the following symbol >0

LT If the following symbol <0

LE If the following symbol <=0

GE If the following symbol >=0

DF If the following symbol is defined.

NDF If the following symbol is not defined

AST6/LST6 - Application Development Checklist

51/86

9 APPLICATION DEVELOPMENT CHECKLIST

The following chart summarises the directives and options you must use in relation to
the structure of your application, and the tasks you must carry out during the applica-
tion development process.

In all programs...

Define data space characteristics using the .DEF directive.

Use the .DP_ON and .PAGE_D directives if using a paged data space.

Use the .W_ON and .WINDOW, .ENDWINDOW directives and LABEL.W,
LABEL.D notations if using Data ROM Windows.

Use .VERS “ST62/63xx” and .ROMSIZE 2/4/8/16 and run AST6 with the -D
option for ROM masking

in programs with one module...

and without paging...

Use the .ORG directive to locate the object file.

Use .ORG 0FF0h to map the exception vectors.

and with paging...

Include PP_ON at the beginning of the source file.

Use the .SECTION directive to locate the object file.

Map the exception vectors using .SECTION 32.

in programs with more than one module...

Include PP_ON at the beginning of each source file.

Use .SECTION and .WINDOW directives.

Use the -P option when running LST6 to allocate sections to precise
addresses.

Map the exception vectors using .SECTION 32.

Use the -O option when running AST6.

Use LST6.

AST6/LST6 - Running AST6

52/86

10 RUNNING AST6

To run AST6, enter the following command on the operating system command line.

AST6 [-<option1>...-<optionn>] <file1>[<file2>... <filen>]

Where:

option is any of the following options:

Option: Meaning:

C Only write generated code to the listing file if the conditional direc-
tives are true. For example, the code:

ldi sav_a, 0FFh

.ifc eq sav_a

ldi sav_a, 55h

.else

clr sav_a

.endc

Generates the following lines in the listing if the -C option is used:

ldi sav_a, 0FFh

clr sav_a

If you omit this option, both generated and ignored lines of code are
written to the listing file.

L Creates a listing file named: <file>.lis (see “Listing Files” on
page 20).

X Create a cross reference table in <file>.x (see “Cross Refer-
ence Tables” on page 23).

M Appends mapping information at the end of the listing files

S Create a printable symbol table file in <file>.sym (see “Symbol
Table Files” on page 24).

O Use this option if your application includes more than one source
file. Creates an object file in <file>.obj . Note that in this case
the source files must be linked using LST6.

E Create an error file in <file>.err (see “Error Reports” on
page 24).

AST6/LST6 - Running AST6

53/86

<file1>[<file2>... <filen>] is the name of the source (.asm) files to be as-
sembled.

10.1 Example

The command:

AST6 -L -S prog

Assembles prog.asm , generating prog.hex and creating a listing in prog.lis , a sym-
bol table file in prog.sym and creating a file prog.dsd for the debugger.

To generate the correct files for the WGDB6 debugger, you must use either of the fol-
lowing options:

ast6 -L -O

and

lst6 -I -M -S -O

or

ast6 -L -S -M

10.2 Warning Levels

The following table lists the levels of warning that can be returned after AST6 has
been executed:

D[<pattern>] Create the ROM mask (see “ROM Masking” on page 30). By de-
fault, unused and reserved ROM areas are filled with FFh. To use
another value, enter a value in <pattern>.

This option can be used without the directive .PP_ON. If you use
option O, this option is turned off.

F Include the full path name to the source file in error messages dis-
played on screen or stored in the .err file.

For example, the message:

” warning example.asm 53: (91) r/w access not ...”

with -F option becomes:

”warning c:\st62\kit624x\example.asm 53: (91) r/w

access ”

W<level> Changes the warning level that is traced. Enter the level you want
to trace in <level> according to the table in “Warning Levels” on
page 53.

AST6/LST6 - Running AST6

54/86

10.3 AST6 Errors and Warnings

The following table lists the warnings that can be returned by AST6:

This level: Means this:

0 No errors encountered.

1 Warning(s) were encountered. These are either printed on
screen or written to a .ERR file if the -E option was chosen.
These are listed below.

2 Error(s) were encountered. These are either printed on screen
or written to a .ERR file if the -E option was chosen. These are
listed below.

3 There was an error on the command line.

4 System error(s) were encountered. These are related to the
computer you are using, and not the assembly process.

Level Description

0 Minimum length assumed.

1 Symbol already imported.

1 Symbol already exported.

1 Symbol declared external but unused.

1 Both symbols have the same definition.

2 R/W access control not done on data-space operand.

AST6/LST6 - Running LST6

55/86

11 RUNNING LST6

Note: When you run LST6, it creates up to 8 temporary files. On DOS systems, you may have
to increase the default number of open files (refer to the configuration command descriptions in
your MS-DOS documentation for further information).

To run LST6, enter the following command from the operating system command line.

LST6 [-<option1>...-<optionn>] <file1>[<file2>... <filen>]

Where:

option is any of the following options:

Option Meaning

F<Pattern> Create the ROM mask (see “ROM Masking” on page 30). By
default, unused and reserved ROM areas are filled with FFh.
To use another value, enter a value in <pattern>. Note that
this only works on programs that use the .WINDOW and
.WINDOWEND directives. For other programs, use the -D op-
tion.

P<n>:<start>-
<end>

Map the contents of program section <n> to the virtual ad-
dresses in the range <start>--<end>. See “Developing Pro-
grams for the Paged Area” on page 27 for further details.

E<name> Assigns the entry point of the executable file to the global
symbol specified in <name>. If this option is omitted, the entry
point of the executable file is assigned to the start address of
the program section <O>. The entry point value is specified in
the last record of the .HEX output file.

J Include each input module name before its local symbols in
the symbol (.SYM) file. A pseudo-symbol is created:

<module name> EQU <order>

where module name is the file name, and order is the order
in which the module was linked.

S Creates a printable symbol table file in <file>.sym (see
“Symbol Table Files” on page 24).

O <name> Generate output files with the name specified in <name>. If
this option is omitted the default name “ST6” is given.

M Generate linker memory map. See “Linker Memory Maps” on
page 22 for further details.

T[<list>] Trace references to, and definitions of, the symbols listed in
<list>. If <list> is omitted, all the global symbols are traced.

AST6/LST6 - Running LST6

56/86

<file1>[<file2>... <filen>] is the name of the source (.obj) files to be as-
sembled.

11.1 Using Parameter Files

Instead of re-entering the file names and options you want each time you run LST6,
you can enter them in any type of ASCII text file, then call the file using the @ char-
acter. You can alos use text files to prevent the LST6 command exceeding the com-
mand line limit of 128 characters in DOS.

For example, to execute the command:

LST6 -S -0 myprog m1 m2 m3

You could enter:

LST6 @ params.txt

Where params.txt contains:

-S -0 myprog m1 m2 m3

11.2 Examples

The command:

LST6 -S -0 myprog m1 m2 m3

Links the modules m1.obj , m2.obj and m3.obj , generating the files: myprog.HEX ,
myprog.DSD and myprog.SYM .

The command:

LST6 -P0:000-3FF -P10:400-7FF

V Displays link progress information messages, such as which
object modules are loaded, and their sizes.

D<pattern> Create the ROM mask (see “ROM Masking” on page 30). By
default, unused and reserved ROM areas are filled with FFh.
To use another value, enter a value in <pattern>. Note that if
your program uses the .WINDOW and .WINDOWEND direc-
tives, you should use the -F option.

If D is entered and the O option is omitted, the section num-
bers as defined by the .ROMSIZE and .VERS directives are
used.

I Updates the AST6 assembler listing files with the information
that was modified during the link edit process.

AST6/LST6 - Running LST6

57/86

Places section 10 in program page 0, at offset 400h.

11.3 Errors and Warnings

All LST6 messages are output to the file stderr under Windows or stdout under
DOS.

The following table lists the codes that are returned after LST6 has been executed:

11.4 Command Line Errors

The following table lists the error messages that can be returned after LST6 has been
executed:

This status: Means this:

0 No errors encountered.

1 Warning(s) were encountered. These are listed below.

2 Error(s) were encountered. These are listed below.

3 There was an error on the command line. These are listed
below.

4 System error(s) were encountered. These are related to the
computer you are using, and not the assembly process.

Error message Meaning

bad option <x> <X> is not a valid command line option.

bad argument <xx> Incorrect argument <xx> following a valid
option.

no input file No input file was specified on the command
line.

can’t open <file> The file specified by <file> does not exist or
read permission is denied.

conflicting start/end definitions <n> and
<p>

The P option was used, and the sections <n>
and <p> have overlapping start-end
definitions. See “Developing Programs for the
Paged Area” on page 27for further details.

start/end definitions for section <n> not
bounded on 2 k

A program section exceeds a 2-Kbyte page.

entry point <symbol> not in program
space

An entry point was assigned to a symbol that
does not exist in the program space.

AST6/LST6 - Running LST6

58/86

11.5 LST6 Error Messages

The following table lists the error messages that are written to the file stdout under
DOS.
Error message: Meaning:

undefined symbol <symbol> The symbol <symbol> is referenced as being
external by a module, but is not defined. See
“Importing and Exporting Labels” on page 45.

multidefined symbol <symbol> An imported or exported symbol name was
repeated. See“Importing and Exporting Labels” on
page 45.

section <n> overflow Each program page is limited to 2048 bytes. While
merging the contents of input files the maximum
size was exceeded for section number <n>. See
“Developing Programs for the Paged Area” on
page 27 for further details.

not enough space in any used page to
map window <n>

There was not enough space left in the program
page for the specified window number.“Using the
Data ROM Window” on page 36for further details.

relocation overflow inside program
section <n>, offset 0xHHH, <file>

The value of the external symbol, referenced at the
specified offset, was too large to fit onto one byte or
3 hexadecimal digits.

type conflict relocating program section
[window] <n>

An external reference was made to symbol
definition that is not in the same type of section
(program or window) in the referencing and
referenced modules.

illegal jump inside section <n> A jump was made to a label that was neither in the
current dynamic page nor in the static page.

invalid type of relocation in program
section [window]

The versions of LST6 and AST6 that were used are
incompatible. Check the version numbers.

reserved symbol <symbol> already
defined

You tried to redefine the listed symbol, which is
reserved.

bad magic number <file> The listed file is not compatible with LST6. I don’t
know why it says magic number either.

memory allocation error <address> Insufficient memory available to link a large
module. You must divide it into smaller modules.

<file> bad object file format Unexpected construct found in the listed file.

<file> premature end of file The listed file cannot be read by LST6.

internal error (<comment>) Either an invalid input file was used or an LST6 bug
was encountered.

AST6/LST6 - DIRECTIVES

59/86

12 DIRECTIVES

This section describes the AST6/LST6 directives.

12.1 Directive Summary

The following table summarises the AST6 and LST6 directives.
Group Action Directive

Program Space Data
Definition

Reserve a Block of Memory [<label>] .BLOCK <expression>

Generate Words of Object Code [<label>] .WORD
<expression>[,<expression>]

Generate Bytes of Object Code [<label>] .BYTE
<expression>[,<expression>]

Write Character String [<label>] .ASCII ”<string>”

[<label>] .ASCIZ ”<string>”

Define ROM Size for ROM
Masking.

.ROMSIZE <size>

Begin ROM Code Section. .SECTION <number>

Data Space Data
Definition

Define Data Space Location
Characteristics

[<label>] .DEF <address> ,[<R-
mask>],[<Wmask>],[<value>][,<
M|m>]

Data ROM Window
directives

Enable Data ROM Windows .W_ON

Define Beginning of Data Block in
Program Space

.WINDOW

Define End of Data Block in
Program Space

.WINDOWEND

Initialise Data ROM Window
Register

<label>.W

Access Data ROM Window Data <label>.D

Symbol Definition Assign a Value to the Label [<label>] .EQU <expression>

Linker Directives Define Symbols as Global .GLOBAL
<symbol1>[,<symbol2>]...[,<sym
boln>]

Transmit Data Space Symbols to
the Linker

.TRANSMIT

Don’t Transmit Data Space
Symbols to the Linker

.NOTRANSMIT

Define Symbols as External .EXTERN
<symbol1>[,<symbol2>]...[,<sym
boln>]

AST6/LST6 - DIRECTIVES

60/86

Initialise Program ROM Page
Register

<label>.P

Hardware-related
directives

Enable Program Space paging .PP_ON

Enable Data Space paging .DP_ON

Specify Page Number for .DEF .PAGE_D <number>

Specify target ST6. .VERS “<ST6>”

Miscellenaous
directives

Display a String .DISPLAY ”string”

Define End of Source File .END

Read Source Statements from
File

.INPUT ”filename”

Set Program Origin .ORG <expression>

Generate Error Message .ERROR ”string”

Generate Warning Message . WARNING ”string”

Listing directives Insert Listing Page Eject .EJECT

Start/Stop Listing .LIST 0 or 1

Change Listing Lines Per Page .PL <expression>

Change Listing Characters Per
Line

.LINESIZE <expression>

Set Listing Page Header Title .TITLE ”string”

Insert Comment .COMMENT <nn>

Conditional
assembly directives

Begin Conditionally Assembled
Code

.IFC <cond>
<argument1>...[<argumentn>]

Begin Alternative Assembled
Code

.ELSE

End Conditionally Assembled
Code

.ENDC

Macro directives Begin Macro Definition [<label>] .MACRO macro_name
[<par1>,...,<parN>]

End a Macro Definition [label] .ENDM

End Macro Expansion [label].MEXIT

AST6/LST6 - DIRECTIVES

61/86

12.2 Directive Descriptions

The following paragraphs describe the AST6 and LST6 directives.

12.2.1 ASCII, ASCIZ - Write Character String

Syntax

[<label>] .ASCII ”<string>”

[<label>] .ASCIZ ”<string>”

Description

Writes a character string to the program space. .ASCIZ is the same as .ASCII, except
that it adds a NULL character to the end of the string.

Example

KDMESS .ASCIZ ”1-Key Display”

12.2.2 BLOCK - Reserve a Block of Memory

Syntax

[<label>] .BLOCK <expression>

Description

Reserves a block of memory in the program space. <expression> indicates the
block dimensions. If label is included, the first address of the first memory location
is assigned to it. All expressions used in the symbol must have been previously de-
fined.

Example

To reserve a block of ROM memory to be accessed via the Data ROM Window, that
starts at the beginning of a 64 Kbyte block and does not exceed 64 bytes:

.block 64-$%64

12.2.3 BYTE - Generate Bytes of Object Code

Syntax

[<label>] .BYTE <expression>[,<expression>]

Description

Generates successive bytes of object code in the program space, that contain the
<expression> value in binary. The value of each expression is truncated to the first
8 bits.

AST6/LST6 - DIRECTIVES

62/86

Example

To generate a byte holding the value 0ceh (11001110).

.byte 0ceh

12.2.4 COMMENT - Set Comment Tabs

Syntax

.COMMENT <nn>

Description

Sets tabs in the comments that are printed in the listing. The tabs are set at the col-
umn number specified by the argument NN.

NN must be a positive decimal integer within either 256 or the value specified in
.LINESIZE directive.

Example

To set a tab in column 50.

.comment 50

12.2.5 DEF - Define Data Space Location Characteristics

Syntax

[<label>] .DEF <address> ,[<R-mask>],[<W-mask>],[<value>][,<M|m>]

Description

Defines the characteristics of the specified location in the data space. This directive
provides you with a useful tool for structuring the ST6 data space. If <label> is in-
cluded, its value can be used in any place in the source file where a data symbol
name can be used. You must define the characteristics of each byte that you want to
use in the data space using this directive, even the standard registers. All the param-
eter values can be entered in any number base. Identifiers used in expressions and
data addresses must be predefined.

<R-mask> specifies which bits can be read. If it is omitted, all the bits can be read.
Each bit in <R-mask> that is set to 1 enables read access for the corresponding bit in
the data space. For example, an <R-mask> value of 0FFh (11111111b) specifies
that all the bits at the specified address can be read. 00Fh (00001111b) specifies that
only bits 0-3 can be read.

AST6/LST6 - DIRECTIVES

63/86

<W-mask> specifies which bits can be written. If it is omitted, all the bits can be writ-
ten. Each bit in <W-mask> that is set to 1 enables write access for the corresponding
bit in the data space.

<M|m> places a marker in the .DSD file for this symbol, so that it can be viewed on
screen during program simulation or emulation.

If a hardware register contains a mixed type of bits (Read/Write and Read-only/Write-
only), R-mask and W-mask are defined according to the following convention:

• If a non-zero bit exists in the mask, the corresponding location is assumed to be
accessible for read or write by a Load (LD) instruction.

• Rights are checked at bit level on bit test/set instructions.

• An immediate load (LDI) to a location will be checked against a “1” to a bit
declared as non-accessible for write.

Example

To define a byte called val1 at address 000h that is write-only:

val1 .DEF 000h,0ffh,0

12.2.6 DISPLAY - Display a String

Syntax

.DISPLAY ”string”

Description

Displays the specified string on screen during the assembly process.

12.2.7 DP_ON - Enable Data Space paging

Syntax

.DP_ON

Description

Enables data space paging (in the data space address range 0-3Fh). See “Paged
Data Space” on page 35.

This directive enables you to use the.PAGE_D directive and the notation label.d

(with a label defined in data space).

AST6/LST6 - DIRECTIVES

64/86

12.2.8 EJECT - Insert Listing Page Eject

Syntax

.EJECT

Description

Inserts a new page eject into the listing file. The form feed character (^L) is sent to the
printer and a new header is printed.

12.2.9 ELSE - Begin Alternative Assembled Code

Syntax

.ELSE

Description

Provides an alternative block of code to assemble if the IFC condition is not true. See
also the IFC and ENDC directives.

See “Using Conditional Assembly” on page 50 for full details about conditional as-
sembly.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

12.2.10 END - Define End of Source File

Syntax

.END

Description

Defines the end of the source file. All lines after this directive are ignored by the as-
sembler.

Note: This directive is not mandatory.

AST6/LST6 - DIRECTIVES

65/86

12.2.11 ENDC - End Conditionally Assembled Code

Syntax

.ENDC

Description

Defines the end conditionally assembled code. See also the IFC and ELSE direc-
tives.

See “Using Conditional Assembly” on page 50 for full details about conditional as-
sembly.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

12.2.12 ENDM - End a Macro Definition

Syntax

[label] .ENDM

Definition

Indicates the end of a macro definition. For full details about macros, see “Developing
Macros” on page 47.

Example

.MACRO Move

ld A, (X)

inc X

ld (X), A

.ENDM; Defines end of macro definition

AST6/LST6 - DIRECTIVES

66/86

12.2.13 EQU - Assign a Value to the Label

Syntax

[<label>] .EQU <expression>

Description

Assigns the value of the expression to the label. You cannot assign a value to the
same label more than once using the .EQU directive. The symbols in the expression
must be predefined. Note that you cannot define global symbols using this directive.

Example

To define the symbol Charge to a constant value (800):

Charge .EQU 800

12.2.14 ERROR - Generate Error Message

Syntax

.ERROR ”string”

Description

Generates the message ” string ” in the error file or the standard error output. See
“Error Reports” on page 24 for further details.

12.2.15 EXTERN - Define Symbols as External

Syntax

.EXTERN <symbol1>[,<symbol2>]...[,<symboln>]

Description

To use this directive you must use the -O option on the command line when running
AST6.

Defines the listed symbols as external. External symbols are not defined in the cur-
rent module, but they are defined in another. See “Importing and Exporting Labels” on
page 45 for further details.

Symbol names can not exceed 8 characters. This directive must be executed before
the symbol is referenced.

Example

To use the symbol Charge, that was defined in another module, in the current mod-
ule:

.EXTERN Charge

AST6/LST6 - DIRECTIVES

67/86

12.2.16 GLOBAL - Define Symbols as Global

Syntax

.GLOBAL <symbol1>[,<symbol2>],...,[,<symboln>]

Description

To use this directive you must use the -O option on the command line when running
AST6.

Defines a symbol as global, thus it can be used by other modules. Symbol names
must not exceed 8 characters. This directive must be executed before the symbol is
defined. Symbols that were defined using the .SET, .DEF or .EQU directives cannot
be defined as global. See “Importing and Exporting Labels” on page 45 for further de-
tails.

Example

To enable the symbol Charge to be used in another module:

.GLOBAL Charge

12.2.17 IFC - Begin Conditionally Assembled Code

Syntax

.IFC <condition> <argument1>...[<argumentn>]

where:

<condition> is one of the following conditions:

<argument1>...[<argumentn>] are symbols or expressions to be subjected to
the condition.

Condition Meaning

EQ If the following symbol = 0

NE If the following symbol != 0

GT If the following symbol >0

LT If the following symbol <0

LE If the following symbol <=0

GE If the following symbol >=0

DF If the following symbol is defined.

NDF If the following symbol is not defined

AST6/LST6 - DIRECTIVES

68/86

See “Using Conditional Assembly” on page 50 for full details about conditional as-
sembly.

Example

HTYPE .SET 0

.IFC EQ HTYPE

NOP ;assemble if HTYPE == 0

.ELSE

JP $

.ENDC

12.2.18 INPUT - Read Source Statements from File

Syntax

.INPUT ”filename”

Description

Reads the source statement(s) from the specified file. When the assembler reaches
the end of the file, it returns to the calling source file. .INPUT directives can be nested.
See “Working with The Data Space” on page 31 for a full example of how to use this
command.

Example

To include a file named defs.h in the beginning of a source module:

;module 1

.INPUT ”defs.h”

12.2.19 LABEL.D - Access Data in Data ROM Window

Syntax

<label>.D

Description

You can only use this notation after the .W_ONdirective has been executed.

<label>.D lets you set the offset to the specified label from the beginning of the block
of data in ROM pointed to by the DRWR.

AST6/LST6 - DIRECTIVES

69/86

Example

.PP_ON

.W_ON ;Enable the use of windows

a .def 0ffh

x .def 80h

DRWR .def 0cah ;Define Data ROM Window register

.section2

; ...

.block 64-$%64 ;Define 64-byte boundary

cst1 .byte 0ceh

string1 .ascii ”abcdef”

; ...

.section 0

ldi DRWR,cst1.W ;select window holding cst1 and

string 1

ld a,cst1.D ;read cst1

ldi x,string.D ;point to address of string

Note: The arithmetic operations listed in “Expressions” on page 18 apply to <label>.D.

12.2.20 LABEL.P - Initialise Program ROM Page Register

Syntax

<label>.P

Description

The Program ROM Page Register (PRPR) selects the program space page to be ac-
cessed. The <label>.P notation enables you to load the location of the specified label
to the PRPR. Thus, when jumping from one dynamic page to another, a jump is first
made to page 1 (the static page), where the <label>.P notation is used to load the tar-
get page. The jump is then made to the target. For further details see “Accessing
Paged Program Space” on page 29.

Note: If the specified label is in another module, the directive.EXTERN LABELmust be included
before the use of label.p

AST6/LST6 - DIRECTIVES

70/86

Example

To jump from section 4 to section 5 (that are mapped to different pages during link ed-
iting) via page 1:

.pp_on

PRPR .def 0cah ; define PRPR

.section 4

; ...

jp prs1 ;Jump to PRPR setter in page 1

.section 1

...

prs11 ldi PRPR,target.p ;set the page holding

the label ”target” in PRPR

jp target ;jump to the label ”target”

;

.section 5

; ...

target nop ;Start the process

12.2.21 LABEL.W - Initialise Data ROM Window Register

Syntax

<label>.W

Description

You can only use this notation in files that include the .W_ONdirective.

The <label>.W notation sets the Data ROM Window Register (DRWR) to the block of
data in the program space holding the specified label. <label>.W works on lables that
are in the program space and in .WINDOW/.WINDOWEND blocks.

You can then reference data in the Data ROM window using its label, or <label>.D.
See “Using the Data ROM Window” on page 36 for further details on the Data ROM
Window.

Example

.WINDOW

cst2 .byte 22h

AST6/LST6 - DIRECTIVES

71/86

string2 .ascii ”ABCDEF”

; ...

.WINDOWEND

.section 2

ldi DRWR,cst2.W ; select block holding cst2 and

string 2

ld a,cst2 ; read cst2

ldi x,string2.D ; point to the address of

string2

12.2.22 LINESIZE - Change Listing Characters Per Line

Syntax

.LINESIZE <expression>

Description

Changes the number of characters per line of the output listing to the value of ex-

pression . The default value is 131, the minimum value is 79.

Example

To set the output listing to 90 characters:

.LINESIZE 90

AST6/LST6 - DIRECTIVES

72/86

12.2.23 LIST - Start/Stop Listing

Syntax

.LIST 0 or 1

Description

.LIST 1 generates the listing file contents up to the point that .LIST 0 is reached.

Example

.LIST 1

...; these lines are written to the output listing

.LIST0

...; these lines are not written to the output listing

12.2.24 MACRO - Begin Macro Definition

Syntax

[<label>] .MACRO macro_name [<par1>,...,<parN>]

Definition

IMacros are sequences of assembler instructions and directives that can be inserted
into the source program in place of the macro name.

macro_name is the name of the macro. Once a macro is defined, it is expanded in
each place where its name is entered.

par1 ... parN are macro parameters, which let you fill in values when you call the
macro. They let you develop generic macros whose use can vary within the context of
where it is expanded.

The MACRO directive defines the beginning of a macro definition. For full details
about macros, see “Developing Macros” on page 47.

Example

The following macro moves the contents of the cell pointed to by X one space further,
so that X points to the same data but at another address:

.MACRO Move1 ;Start of Move1 macro definition

ld A, (X)

inc X

ld (X), A

.ENDM ;End of macro definition

AST6/LST6 - DIRECTIVES

73/86

12.2.25 MEXIT - End Macro Expansion

Syntax

[label] .MEXIT

Definition

IEnds macro expansion before its end is reached. This directive is normally used in a
conditional assembly block (see “Using Conditional Assembly” on page 50).

Example

type .set 0 ;Set type to 0

.MACRO Move1 type ; Defines start of macro Move1

... ;(macro lines that are always

;expanded)

.IFC EQ type

.MEXIT ;End expansion if type == 0

.ENDC

... ;(macro lines that are expanded

;if type <>0)

.ENDM ; End of macro definition

12.2.26 NOTRANSMIT - Don’t Transmit Data Space Symbols to LST6

Syntax

.NOTRANSMIT

Description

To use this directive you must use the -O option when running AST6.

TRANSMIT transmits data space symbols to LST6 so that they are common to all
modules. Notransmit turns off data space symbol transmission to LST6. These direc-
tives aim to prevent the same symbol from being defined twice in the .DSD file that is
produced by LST6. This problem only occurs when if the program is split into several
modules. The symbols defined in the data space by the .DEF directive must only be
transmitted once to LST6.

Define all the common data space symbols in one module without using the TRANS-
MIT and NOTRANSMIT directives, and use these directives when you define data
space symbols in other modules.

Example

Module 1.asm

AST6/LST6 - DIRECTIVES

74/86

.input ”ST6STD.ASM” ;Common data space symbol

;definition file

Module 2.asm

.notransmit

.input ”ST6STD.ASM” ;

.transmit

12.2.27 ORG - Set Program Origin

Syntax

.ORG <expression>

Description

Sets the program origin for subsequent code to the address defined in <expres-

sion> . All symbols which appear in <expression> must have been previously de-
fined. This directive can only be used when AST6 is called to produce an absolute ob-
ject (without the -O option).

.ORG only applies to program space sections.

Example

To locate the subsequent code in the memory area starting at address 200h.

.ORG 200h

12.2.28 PAGE_D - Specify Page Number for .DEF

Syntax

.PAGE_D <number>

Description

Specifies the data memory page number to which subsequent data definitions using
the .DEF directive apply (in the data space address range 0-3F). The page number
must be in the range 0 - 255.

Example

To place v1 and v2 in data page 0:

.DP_ON

PAGE_D 0

v1 .def 0

v2 .def 1

AST6/LST6 - DIRECTIVES

75/86

12.2.29 PL - Change Listing Lines Per Page

Syntax

.PL <expression>

Description

Changes the number of lines per page on the output listing to the value of expres-

sion . The default value is 63 and the minimum value is 10. The first six and last six
lines of a listing are empty.

Example

To set the number of lines in a listing page to 70:

.PL 70

12.2.30 PP_ON - Enable Program Space paging

Syntax

.PP_ON

Description

Enables program space paging. This directive enables use of the .SECTION directive
and the notation <label>.P.

You must include this directive at the beginning of source files for ST62 and ST63 se-
ries devices whose program space exceeds 4k bytes. If you do not use this directive,
you can only use the first 4 bytes in the program space.

12.2.31 ROMSIZE - Set ROM Size for ROM Masking

Syntax

.ROMSIZE n

Description

You must run AST6 with the -D option to be able to use this directive.

This directive sets the size of the ROM for ROM masking.

n defines the size of the microcontroller ROM, which must be one of the values 2, 4,
8 or 16.

Example

.ROMSIZE 2

AST6/LST6 - DIRECTIVES

76/86

12.2.32 SECTION - Begin Code Section

Syntax

.SECTION <number>

Description

Specifies the section number in which the subsequent code is placed. <number>

specifies the section number, in the range 0-32.

You can only use this directive after the .PP_ONdirective. Since the paged memory
area (0 to 7FFh) is structured into overlayed pages, each page has a virtual address
to distinguish it from the others. Virtual address are allocated in relation to the page
number, as shown in the following table:

During the link edit phase, sections are allocated to pages according to their num-
bers, thus section 0 is allocated to page 0, section 1 is allocated to page 1, and so on.
You can allocate any number of sections, from any source module, to a page in the
program memory, provided their total size does not exceed that of the page.

For further details about the use of sections and paged program space, see “Paged
Program Memory” on page 26.

When LST6 is not used, the assembler implements three default sections: sections 0,
1 and 32.

Example

Module 1

.PP_ON

.SECTION 1

lab1 ldi a,3

.SECTION 2

WAIT

.SECTION 1

Page No. Virtual Address Real Address

0 0000 to 07FF 0000 to 07FF

1 0800 to 0FEF 0800 to 0FEF

2 1000 to 17FF 0000 to 07FF

3 1800 to 1FFF 0000 to 07FF

n = 4 to 31 [n*800]-[(9n*80)+7FF] 0000 to 07FF

32 0FF0 to 0FFF 0FF0 to 0FFF

AST6/LST6 - DIRECTIVES

77/86

NOP

Module 2

.SECTION 1

STOP

12.2.33 SET - Assign a Value to the Label

Syntax

[<label>] .SET <expression>

Description

Assigns the value of the expression to the label. You can reassign values to label us-
ing the .SET command. The symbols in the expression must be predefined.

Example

To define the symbol Charge to the value 800:

Charge .SET 800

12.2.34 TITLE - Set Listing Page Header Title

Syntax

.TITLE ”string”

Description

Sets the title that is printed on output listing page headers.

12.2.35 TRANSMIT - Transmit Data Space Symbols to LST6

Syntax

.TRANSMIT

Description

To use this directive you must use the -O option when running AST6.

TRANSMIT transmits data space symbols to LST6 so that they are common to all
modules. Notransmit turns off data space symbol transmission to LST6. These direc-
tives aim to prevent the same symbol from being defined twice in the .DSD file that is
produced by LST6. This problem only occurs if the program is split into several mod-
ules. The symbols defined in the data space by the .DEF directive must only be trans-
mitted once to LST6.

AST6/LST6 - DIRECTIVES

78/86

Define all the common data space symbols in one module without using the TRANS-
MIT and NOTRANSMIT directives, and use these directives when you define data
space symbols in other modules.

Example

Module 1.asm

.input ”ST6STD.ASM” ; common data space symbol

definition

Module 2.asm

.notransmit

.input ”ST6STD.ASM” ;

.transmit

12.2.36 VERS - Define Target ST6

Syntax

.VERS ”<string>”

Description

Defines the ST6 type that the executable file will be loaded into. You must use this di-
rective at the beginning of all source files. You specify the microcontroller name in
<string> . If the microcontroller name includes a letter, omti the letter from the
name, for example, for an ST62E25 enter ST6225.

Example

.VERS ”ST6210”

12.2.37 W_ON - Enable Data ROM Windows

Syntax

.W_ON

Description

You must use this directive at the beginning of the source file if you want to use the
Data ROM window (see “Using the Data ROM Window” on page 36 for further details
on the Data ROM Window).

AST6/LST6 - DIRECTIVES

79/86

12.2.38 WARNING - Generate Warning Message

Syntax

. WARNING ”string”

Description

Generates the message ” string ” in the error file or the standard error output. See
“Error Reports” on page 24 for further details.

12.2.39 WINDOW, WINDOWEND - Define Data Block in Program Space

Syntax

.WINDOW

.WINDOWEND

Description

WINDOW defines the beginning of a block of data, stored in the program space, that
can be accessed via the Data ROM window. WINDOWEND defines the end of the
block of data.

You can only use these directives in source modules for relocatable objects (thus,
use the -O option on the command line when running AST6).

If you are developing a source file to create an absolute object, you must define the
boundary of the block of data using the .block directive.

These directives can only be used after the .W_ON directive (see “W_ON - Enable
Data ROM Windows” on page 78). The directives you can use in with the Data ROM
Window are: .BYTE, .WORD, .ASCII, .ASCIZ and .BLOCK.

For full details about Data ROM windows see “Using the Data ROM Window” on
page 36. An example application that uses the .WINDOW and .WINDOWEND direc-
tives is provided in “Example Data Space Definitions File” on page 33.

Example

.PP_ON; must be executed if the linker is used

.W_ON; enables the use of windows

a .def 0ffh

x .def 80h

DRW .def 0cah; Define Data ROM Window register

AST6/LST6 - DIRECTIVES

80/86

.WINDOW; Subsequent code is allocated to the window

cst2 .byte 22h

string2 .ascii ”ABCDEF”

; ...

.WINDOWEND; End of code allocated to the window

12.2.40 WORD - Generate Words of Object Code

Syntax

[<label>] .WORD <expression>[,<expression>]

Description

Generates successive 2-byte words of object code in the program space, that contain
the <expression> value in binary. Words are stored in reverse order, thus the LSB
has the lower address.

Example

val1 .WORD 0A0FFh

Index

81/86

Symbols

$ symbol, see Program Counter
.ASM files.....15, 16 to 19
.DSD files12, 20, 32, 63, 73, 77
.ERR files13, 25, 52
.HEX files13, 20
.LIS files.........13, 20, 52, 56
.MAP files.....13, 22, 56
.OBJ files.........14, 52
.SYM files.....9, 15, 24, 52, 55
.X files12, 23, 52

A

absolute object
and .ORG directive..........74
and Data ROM Windows36
cross reference tables23
definition.........12
generating listings for20
map section in listing21
symbol files.........24
when to use30

access control62, 63
accumulator31
addressing mode, definition..........12
arithmetic operators19
ASCII directive61
ASCIZ directive61
assembler language.......7, 12
assigning label values66
AST6

definition.........12
errors54
installing11
options..........52
running52
warnings.........54

B

BLOCK directive37, 61
BYTE directive61

C

character constants18
checksum..............20
COMMENT directive.........62
comments19
conditional assembly .. 12, 50, 64, 65, 68, 73
control registers31
cross reference table12, 23, 52

D

Data RAM/EEPROM Bank register.. 12, 35
Data ROM Window36 to 38

accessing data in37, 68, 70
and .BLOCK..........61
defining block for79
definition12
delimiting..............36
enabling78
example application39
implementing............36

Data ROM Window Register . 12, 37, 68, 70
data space31 to 38

access control62, 63
data definitions74
definition12
example definitions file33
paged35
paging.........63
structuring62
symbol definitions, sharing 32
symbol file....... 12, 20, 32, 45, 63, 73, 77
symbol transmission45, 73, 77

DEF directive31, 62
directives..........59 to 80

.ASCII61

.ASCIZ...........61

.BLOCK37, 61

.BYTE61

.COMMENT.........62

.DEF31, 62

.DISPLAY63

.DP_ON.........35, 51, 63

Index

82/86

.EJECT64

.ELSE64

.END64

.ENDC65

.ENDM47, 65

.EQU66

.ERROR66

.EXTERN45, 66

.GLOBAL.....45, 67

.IFC68

.INPUT..........32, 68

.LINESIZE71

.LIST72

.MACRO.........47, 72

.MEXIT73

.NOTRANSMIT32, 73

.ORG.....51, 74

.PAGE_D35, 51, 74

.PL..........75

.PP_ON51, 75

.ROMSIZE51, 75

.SECTION..........28, 51

.SET77

.TITLE..........77

.TRANSMIT32, 77

.VERS..........51, 78

.W_ON..........51, 78

.WARNING79

.WINDOW36, 51, 79

.WINDOWEND..........36, 51

.WORD.........80
definition.........12

DISPLAY directive63
DP_ON directive35, 51, 63
DRBR, see Data RAM/EEPROM Bank

Register
DRWR, see Data ROM Window Register
dynamic pages..........13, 26

E

EJECT directive64
ELSE directive64
emulator13
END directive64
ENDC directive65
ENDM directive...........47, 65
entry point......13, 55
EPROM programmer..........9
EQU directive..............66
ERROR directive66
error messages...........25, 66
error report file13, 25, 52
example Data ROM Window application39
example data space definitions file 33
executable files13, 20
exporting labels45
expressions13, 18
EXTERN directive45, 66
external labels......13, 66

F

files
absolute object12, 30, 36, 74
cross reference table 12, 23, 52
data space symbol12, 20, 32, 45, 63, 73,

77
error report13, 25, 52
example data space definitions 33
executable13, 20
linker memory map13, 22, 56
listing13, 20, 52, 56, 64, 72
LST6 parameter56
object14, 52
relocatable object 8, 14, 20, 36, 79
source.........8, 16 to 19, 64
source file15
specifying names55
symbol table..........9, 15, 24, 52, 55

Index

83/86

G

GLOBAL directive.....45, 67
global symbols13, 45, 67

H

hexadecimal numbers17

I

I/O registers31
IFC directive68
importing labels..........45
indirect registers31
INPUT directive..........32, 68

L

label
assigning values to..........66, 77
definition.........13
description16
exporting45
external.........13
importing45
using with .BLOCK..........61

label.D notation37, 51, 68
label.P notation29, 35, 69
label.W notation37, 51, 70
LINESIZE directive71
linker memory map file13, 22, 56
LIST directive72
listing file13, 20, 52, 56, 64, 72
LST6

definition.........13
error messages.......57
installing11
option errors57
options..........55
parameter files56
running55
statuses57
warning messages57

M

machine instructions7, 13
macro.......47 to 49

definition13
ENDM directive.....65
MACRO directive72
MEXIT directive73
nesting...........47
parameters48
symbols, concatenating49

MACRO directive..........47, 72
map section13, 21
mapping information52
MEXIT directive73
mnemonic14, 17
modular source files.....8

N

notations
label.D37, 51, 68
label.P29, 35, 69
label.W37, 51, 70

NOTRANSMIT directive32, 73

O

object file
absolute12, 30, 36, 74
definition14
generating.........52
relocatable8, 14, 20, 36, 79

opcodes14
operands14, 17 to 19
operators..........19
ORG directive51, 74

Index

84/86

P

PAGE_D directive35, 51, 74
paged data space35
paged program space...........8, 26
paging

allocating sections to pages76
and sections27
definition.........14
implementing program space75
label.P..........69

PC, see Program Counter
peripheral data registers31
PL directive75
PP_ON directive51, 75
Program Counter10
Program Counter register14, 18
Program ROM Page Register14, 27, 29, 37,

69
program space26 to 30

characteristics of paged27
definition.........14
generating bytes of code in61
jumping within paged29
paged.....8
paging..........26, 69, 75, 76
writing words to.......80

PRPR, see Program ROM Page Register

R

radix17
RAM, see data space
read access62
read-only data36
real addresses.....76
registers

control..........31
Data RAM/EEPROM Bank 12, 35
Data ROM Window12, 37, 68, 70
I/O..........31
indirect..........31
peripheral31
Program Counter...........10, 14, 18

Program ROM Page . 14, 27, 29, 37, 69
short direct...........31

relocatable object
and Data ROM Windows36, 79
definition14
introduction to8
linker memory maps22
listing files20
map files21
symbol table file.........24

ROM masking 14, 30, 53, 55, 56, 75
ROM, see program space
ROMSIZE directive51, 75
running AST652
running LST655

S

SECTION directive.........28, 51
sections

addresses76
advantages27
allocating code to76
allocating manually28, 55, 57
allocation to pages27
default size27
definition14
introduction to11
jumping between29
size22
type22, 23

SET directive..........77
sharing symbols.....66, 67
short direct registers31
source files16 to 19

defining the end of64
definition15
generating relocatable objects from52
importing68
modular8
path in error messages53
single9

static area15, 26, 58, 69
static page15, 26, 58, 69
string constants18

Index

85/86

symbol file table9, 15, 24, 52, 55
symbolic code7

T

TITLE directive..........77
TRANSMIT directive32, 77

V

VERS directive..........51, 78
virtual address.....26
virtual addresses76

W

W_ON directive..........51, 78
WARNING directive79
warning level53
warning messages25, 79
Wave Form Editor9
WINDOW directive36, 51, 79
WINDOWEND directive..........36, 51
WORD directive80
write access.........63

86/86

AST6/LST6

NOTES:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express writ ten approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

4

