
1

DISTRIBUTION FAES MEETING
October 2000

ST6 PRESENTATION

DISTRIBUTION FAES MEETING
October 2000

ST6 PRESENTATION

Frederic Gaillard
Application and support engineer

2

ST62 DEVELOPMENT TOOLSST62 DEVELOPMENT TOOLS

1. RIDE

2. MAST6 ASSEMBLER

3. From AST6/LST6 to RIDE

4. RCST6 C COMPILER

5. CEIBO and SOFTEC emulators

3

RIDE ST6
Raisonance IDE

RIDE ST6
Raisonance IDE

! New ST6 toolchain all tools in a single window environment

! Interface for AN assembler, c compiler, linker, debugger and
simulator

! Replaces AST6 / CST6 / LST6 / WGDB6

! AST6 / LST6 files can be processed by RIDE

! Ride is compatible with ST emulators (ST6-HDS2 family),
SOFTEC emulators (DS62x5A) and CEIBO emulator (EB-ST62)

! ST6 starter kits compatibility planned Q2 2000

! Two packages available : AKIT-ST6, RKIT-ST6

4

RIDE ST6
Raisonance IDE

RIDE ST6
Raisonance IDE

! Text editor
" Syntax highlighting
" GREP, INDENT,FIND, 'Search for matching delimiter' functions
" Available in debug session

! Project manager
" MAKE, BUILD
" Tree-structured application

! Tools integrator
" Predefined tools
" Custom tools

5

RIDE ST6
Raisonance IDE

RIDE ST6
Raisonance IDE

! DEBUGGER INTERFACE
" Numerous views available :

Source code
Disassembly code
Symbols
Peripherals
....

" Numerous debug functions :
Breakpoints
Trace
Stimulus for the simulator
......

6

RIDE ST6
Packages content

RIDE ST6
Packages content

! Ride graphical interface
! MA-ST6 assembler
! RL-ST6 linker
! SimICE-ST6 debugger and simulator
! RC-ST6 c compiler

AKIT-ST6 FREE !!!

RKIT-ST6

7

RIDE ST6
Programming tools

RIDE ST6
Programming tools

FULLY INTEGRATED INTO RIDE

ASM

C

ASSEMBLER

C COMPILER

LINKER

object
files

executable
file

HEX

8

ST62 DEVELOPMENT TOOLSST62 DEVELOPMENT TOOLS

1. RIDE

2. MAST6 ASSEMBLER

3. From AST6/LST6 to RIDE

4. RCST6 C COMPILER

5. CEIBO and SOFTEC emulators

9

RIDE ST6
MA-ST6 assembler

RIDE ST6
MA-ST6 assembler

! Translates ST6 assembly mnemonics into machine code

! Source compatible with STMicroelectronics AST6/LST6

! Generates a listing file and a relocatable object file

MA-ST6
source files

AST6 source
files

ASSEMBLER
Object file

Listing file

PRE-
PROCESSOR

10

RIDE ST6
MA-ST6 assembler

RIDE ST6
MA-ST6 assembler

! ASCII File with extension ".ST6"

! Each line has up to 4 fields:

! [LABEL] OPERATION [OPERAND,[OPERAND]] ;[COMMENT]

Start : ldi v,55h ;Init
v-register

11

MA-ST6 ASSEMBLER
Numbers and character constants

MA-ST6 ASSEMBLER
Numbers and character constants

! Default base for numbers is decimal

! Base can be overrided by adding a suffix:
"b" or "B" -> binary (0,1)
"o" or "O" -> octal (0-7)
"h" or "H" -> hexadecimal (0-9,A-F or a-f)

! Hexadecimal numbers must start with a 0 to avoid confusion
with symbol names

! A character constant is an ascii character enclosed in single
quotes

! Its value is the 8-bit ASCII code of the character
Example: 'A' = 65 = 41h

12

MA-ST6 ASSEMBLER
Directives

MA-ST6 ASSEMBLER
Directives

! Used to control the way the assembler will process
instructions

! Several categories of directives:
Symbol definition in data space (DATA)
Symbol definition in program space (DB, DW, ASCII ...)
Symbol assignment (EQU, SET)
Hardware-related directives (SEGMENT, $DATAPAGING,
$PROGPAGING,...)
Linking directives (GLOBAL, EXTERN...)

! NOTES: They can be written in uppercase or lowercase

13

MA-ST6 ASSEMBLER
Segment

MA-ST6 ASSEMBLER
Segment

! DEFINITION

" In order to optimize the code size and the RAM used, MAST6
includes a directive that enables to define part of the memory
(code or data) as segments.

" An ABSOLUTE segment has a precise address.

" A RELOCATABLE segment has no precise address and it will be
placed physically by the linker.

14

MA-ST6 ASSEMBLER
Relocatable segment
MA-ST6 ASSEMBLER
Relocatable segment

! SEGMENT DECLARATION
Syntax: Seg_name SEGMENT Seg_type [PAGE num]

" Seg_type possible values:
CODE segment located in program space
DATA segment located in RAM space
EEPROM segment located in EEPROM space
DATAROM segment located in program space in a 64-byte

window

15

MA-ST6 ASSEMBLER
Relocatable segment
MA-ST6 ASSEMBLER
Relocatable segment

" PAGE num possible values:
CODE and DATAROM (program space) : 0, static, 2, 3, auto
DATA (RAM space): static, 1, 2, auto
EEPROM (EEPROM space) : 1,2, auto

! SEGMENT SELECTION
Syntax: RSEG Seg_name

The current segment remains selected until a new one is found

16

MA-ST6 ASSEMBLER
Relocatable segment
MA-ST6 ASSEMBLER
Relocatable segment

! EXAMPLE

Codseg SEGMENT CODE ; relocatable code segment
data1seg SEGMENT DATA ; relocatable data segment
data2seg SEGMENT DATA ; relocatable data segment

RSEG data1seg ; data1seg segment selection
counter: DSB 1 ; reserve 1 byte in data1seg

RSEG codseg ; codseg segment selection
ldi A, 55h
ld A, X
nop

17

MA-ST6 ASSEMBLER
Absolute segment (1/2)
MA-ST6 ASSEMBLER

Absolute segment (1/2)

! CODE SEGMENT DECLARATION (1/2)
Syntax : CSEG AT address [PAGE num]
PAGE has to be specified if the address is in the banking
area

! EXAMPLE

Codseg SEGMENT CODE ;relocatable segment declaration

CSEG AT 880h ;Absolute code segment declaration
jp Label

RSEG codseg ;codseg segment selection
nop

CSEG ;address in now 882h

18

MA-ST6 ASSEMBLER
Absolute segment

MA-ST6 ASSEMBLER
Absolute segment

! CODE SEGMENT DECLARATION (2/2)
Syntax: Seg_name SEGMENT Seg_type AT address

! CODE SEGMENT SELECTION
Syntax: ASEG Seg_name

ASEG can be used only if the segment was declared with AT

19

! DATA SEGMENT DECLARATION
Syntax: DSEG AT address [PAGE num]
PAGE has to be specified if the address is in the banking
area

! EXAMPLE

DSEG AT 90h ; Data segment starts at 90h

! EEPROM SEGMENT DECLARATION
Syntax: ESEG AT address PAGE num

The use of PAGE is mandatory

MA-ST6 ASSEMBLER
Absolute segment

MA-ST6 ASSEMBLER
Absolute segment

20

MA-ST6 ASSEMBLER
Memory management
MA-ST6 ASSEMBLER
Memory management

! How To Enable Rom And Ram Banking?

! How To Use Rom Windowing ?

! How To Reserve Memory Spaces ?

! How To Initialize Memory Spaces In Program Space ?

! How To Assign Symbols To Addresses, Registers Or Values ?

21

MA-ST6 ASSEMBLER
ROM PAGING

MA-ST6 ASSEMBLER
ROM PAGING

! $PROGPAGING
" Enables the use of Bank switching mode on the code space

! $NOPROGPAGING (DEFAULT)
" Disables Bank switching mode

! #PAGE (expr)
" Enables to get the ROM page number where expr is defined

22

MA-ST6 ASSEMBLER
ROM PAGING

MA-ST6 ASSEMBLER
ROM PAGING

0FFFh

07FFh

0800h

0FF0h

0FEFh

1000h

17FFh

1800h

1FFFh

virtual address

0000h
0000h 0000h

07FFh 07FFh

logical address

static page 1

dynamic page 3

dynamic page 2

dynamic page 0

Interrupt & Reset

64-byte window

23

MA-ST6 ASSEMBLER
ROM WINDOWING

MA-ST6 ASSEMBLER
ROM WINDOWING

! No directive needed to enable Rom windowing mecanism

! #WINDOW (expr)
Used to set DWR value
Determines the 64-byte window number
where expr is located

! #WINOFFSET(expr)
Returns the relative address of expr in the window

24

ROM PAGING & WINDOWING
EXAMPLE

ROM PAGING & WINDOWING
EXAMPLE

$PROGPAGING ; Enable bank switching for ROM

codseg0 SEGMENT CODE PAGE 0 ; codseg0 will be mapped in
page 0

codseg1 SEGMENT CODE PAGE static ; codseg1 will be mapped in
page 1

Table SEGMENT CODE DATAROM ; Table will be located in a 64-
bytes window

RSEG Table ; Select Table
tab: DB 0Dh, 0Eh, 0Fh

RSEG codseg0 ; Select codseg0
SUBR1: ldi DWR, #window(tab) ; Set ROM Window Register

ldi X, #winoffset(tab) ; X= address of first element in
the table

ld A,(X) ; A= 0Dh
ret

RSEG codseg1 ; Select codseg1
ldi PRPR, #page(SUBR1) ; Set PRPR value where SUBR1

is located
call SUBR1

......

25

MA-ST6 ASSEMBLER
DATA PAGING

MA-ST6 ASSEMBLER
DATA PAGING

! $DATAPAGING

! $NODATAPAGING (DEFAULT)

! #PAGE (expr)
" Used to set the DRBR value enables to get the ram or EEPROM

page number where expr is defined

26

MA-ST6 ASSEMBLER
DATA PAGING

MA-ST6 ASSEMBLER
DATA PAGING

000h

03Fh

040h

084h

07Fh

0BFh

0FFh

logical address
DRBR = 01h

000h

03Fh
EEPROM

page 0

Data ROM Window

RAM

page 1

static RAM

page

EEPROM

page 1 RAM

page 2

DRBR = 02h DRBR = 08h DRBR = 10h

27

MA-ST6 ASSEMBLER
DATA PAGING

MA-ST6 ASSEMBLER
DATA PAGING

! EXAMPLE

$DATAPAGING ; Enable bank switching for RAM

codseg SEGMENT CODE
dataseg SEGMENT DATA

RSEG dataseg ; Select dataseg
reg1: DS 1 ; Reserve 1 byte in dataseg
reg2: DS 1 ; Reserve 1 byte in dataseg

RSEG codseg ; Select codseg
ldi DRBR, #page (reg1) ; Set DRBR value where reg1 is located
ldi reg1, 55h
Inc reg2

28

MA-ST6 ASSEMBLER
Symbol definition

MA-ST6 ASSEMBLER
Symbol definition

! RAM SYMBOL DEFINITION
Syntax : Symb_name DATA address

" Associates a RAM address to a symbol,
no physical location is reserved

" If address is in the range 00-3Fh, the definition must be
precedeed by directives:

$DATAPAGING then
$DATAPAGENUMBER(val) where val = 1 or 2 to select the proper
dynamic page (refer to datasheets)

$DATAPAGENUMBER is only used when variables are defined
using DATA

29

MA-ST6 ASSEMBLER
Symbol definition

MA-ST6 ASSEMBLER
Symbol definition

! EEPROM SYMBOL DEFINITION
Syntax : Symb_name EEPROM address

" Associates an EEPROM address to a symbol
no physical location is reserved

" Address is in the range 00-3Fh

" The definition must be precedeed by directive:

$EEPROMPAGENUMBER(val) where val = 0 or 1 to select the
proper dynamic page (refer to datasheets)

30

MA-ST6 ASSEMBLER
Symbol definition

MA-ST6 ASSEMBLER
Symbol definition

! EXAMPLE

X DATA 80h
DWR DATA 0C9h

$DATAPAGENUMBER(1) ; Following symbols are in RAM page 1
; DRBR=08h

Var1 DATA 10h
Var2 DATA 11h

$EEPROMPAGENUMBER(0); Following symbols are in EEPROM page 0
; DRBR=01h

eepresult DATA 05h

31

MA-ST6 ASSEMBLER
Memory reservation

MA-ST6 ASSEMBLER
Memory reservation

! DATA SPACE

Syntax : [label:] DS Number_Bytes

[label:] DSB Number_Bytes

[label:] DSW Number_Words

[label:] DSD Number_Double_Words

RESERVE PHYSICAL LOCATION IN DATA SPACE

32

MA-ST6 ASSEMBLER
Memory reservation

MA-ST6 ASSEMBLER
Memory reservation

! EXAMPLE

DSEG AT 90h

Table1: DS 6 ; Reserve 6 bytes for Table1 90h - 95h
Table2: DSB 6 ; Reserve 6 bytes for Table1 96h - 9Bh
Buffer1: DSW 2 ; Reserve 4 bytes for Table1 9Ch - 9Fh
Buffer2: DSD 1 ; Reserve 4 bytes for Table1 0A0h - 0A3h

CSEG AT 800h
LDI A, Table1 ; Table 1 initialization
LD X, A
LDI A, 0FFh
LD (X), A

33

MA-ST6 ASSEMBLER
Memory initialization
MA-ST6 ASSEMBLER
Memory initialization

! Constant definition in program space

" BYTES
Syntax:[label:] DB exp [,exp] where exp is a 8-bit value

EXAMPLE

CSEG AT 800h

Table1: DB 0, 1, 2, 3, 'Raisonance'

34

MA-ST6 ASSEMBLER
Memory initialization
MA-ST6 ASSEMBLER
Memory initialization

" WORD
Syntax: [label:] DW exp [,exp] where exp is a 16-bit value

EXAMPLE

CSEG AT 830h

Table20: 24h, 25h ; Memory content 30h -> 00
; 31h -> 24
; 32h -> 00
; 33h -> 25

35

MA-ST6 ASSEMBLER
Memory initialization
MA-ST6 ASSEMBLER
Memory initialization

" CHARACTER OR STRING
Syntax: [label:] DB 'exp' [,'exp']

" DEFINE AN ASCII CHARACTER OR A STRING
If double quotes are used, it defines a null terminated string

Message1: DB 'OK‘ = Message1 ASCII "OK"

Message2: DB "YES" = Message2 ASCIIZ"YES"

36

MA-ST6 ASSEMBLER
Symbol assignment

MA-ST6 ASSEMBLER
Symbol assignment

! Directives enable to assign a symbol to a numerical value, register
name or register bit

! EQU
Syntax: Symb EQU exp

Symbol can not be redefined nor changed it must be unique

" EXAMPLE

Timer_tick EQU 5
Var EQU 3
Pointer EQU X
Const EQU Timer_tick*Var

37

MA-ST6 ASSEMBLER
Symbol assignment

MA-ST6 ASSEMBLER
Symbol assignment

! SET
Syntax: Symb SET exp

Symbol can be redefined by another set statement

" EXAMPLE

TMZ SET 7
Count SET 3
Tim SET X
Count SET Count + 6

38

MA-ST6 ASSEMBLER
Linking directives

MA-ST6 ASSEMBLER
Linking directives

! PUBLIC
Syntax: PUBLIC symb [,symb]

" Allow use of the symbol in other files symbol following public
must be declared in the current module

! EXTERN
Syntax: EXTERN Seg_type (symb [, symb...])

" Used to access symbols declared in other files
" Seg_type can be : CODE, DATA and NUMBER

39

MA-ST6 ASSEMBLER
Linking directives

MA-ST6 ASSEMBLER
Linking directives

! EXAMPLE

;File 1
EXTERN CODE (BCD_HEX, HEX_BCD) ; bcd_hex and hex_bcd are
PUBLIC BCD_MULT ; defined in another file

Start:
call BCD_MULT
.....

BCD_MULT: ...
call BCD_HEX

...
call HEX_BCD
ret

40

MA-ST6 ASSEMBLER
Other directives

MA-ST6 ASSEMBLER
Other directives

! INCLUDE directive
Syntax : $INCLUDE (FileName)

" The source of the specified file will be inserted
" The file must be in the current directory or the path must be

specified

! ORG directive
Syntax : ORG expr

" Specify an offset for a CODE or DATA segment

41

MA-ST6 ASSEMBLER
Conditional assembly
MA-ST6 ASSEMBLER
Conditional assembly

! Code is assembled only under certain conditions
" Useful for debugging purposes
" Enhances macro programming

.IF exp1 GTE exp2 true if exp1>= exp2
<expression> exp1 GT exp2 true if exp1> exp2
………. exp1 LTE exp2 true if exp1 <= exp2
………. exp1 LT exp2 true if exp1 < exp2
.ELSE exp1 EQ exp2 true if exp1 = exp2
………. exp1 NE exp2 true if exp1 != exp2
……….
.ENDIF

42

ST62 DEVELOPMENT TOOLSST62 DEVELOPMENT TOOLS

1. RIDE

2. MAST6 ASSEMBLER

3. From AST6/LST6 to RIDE

4. RCST6 C COMPILER

5. CEIBO and SOFTEC emulators

43

From AST6/LST6 to RIDEFrom AST6/LST6 to RIDE

! ST6 MCUs ≤≤≤≤ 4K ROM and 128 bytes RAM

! REMINDER
" Ride is able to process AST6/LST6 files
" All ST6 peripheral control registers are automatically defined in Ride
" No batch file needed using Ride

$INCLUDE.INPUT

EQU/SET.EQU/.SET

CSEG AT.ORG

DATA. DEF

MAST6AST6/ LST6

44

From AST6/LST6 to RIDEFrom AST6/LST6 to RIDE

! ST6 MCUs >>>> 4K ROM and 128 bytes RAM

Relocatable segment with
DATAROM type

.Window, .Windowend

Relocatable segment declaration
and selection

.SECTION n

#WINDOW(label),
#WINOFFSET(label)

.W_ON, label.w, label.d

$DATAPAGING, #PAGE(label).DP_ON, label.p

$PROGPAGING, #PAGE(label). PP_ON, label.p

MAST6AST6/ LST6

45

ST62 DEVELOPMENT TOOLSST62 DEVELOPMENT TOOLS

1. RIDE

2. MAST6 ASSEMBLER

3. From AST6/LST6 to RIDE

4. RCST6 C COMPILER

5. CEIBO and SOFTEC emulators

46

RIDE ST6
RC-ST6 C compiler

RIDE ST6
RC-ST6 C compiler

! Part of the RKIT-ST6 Package

! Fully integrated into RIDE

! Ansi C compiler

! Automatic management of ST6 memory architecture
" ROM banking
" RAM banking
" ROM windowing

! Two memory models: small and large

47

RIDE ST6
Programming tools

RIDE ST6
Programming tools

FULLY INTEGRATED INTO RIDE

ASM

C

ASSEMBLER

C COMPILER

LINKER

object
files

executable
file

HEX

48

RC-ST6
Restrictions to ANSI-C

RC-ST6
Restrictions to ANSI-C

! Small rom size:
" Functions length limited to 2KB

! Small ram size:
" Arithmetic types: only 8-bit and 16-bit are implemented, no

floating
" A variable is limited in size to 64 bytes

! 6 levels of stack:
" Recursivity is forbidden
" Reentrance from a higher level of interrupt is allowed

49

RC-ST6
Extensions to ANSI-C

RC-ST6
Extensions to ANSI-C

! Space qualifiers
code, data, scode, sdata, sfr
" scode and sdata are related to the non banking area
" sfr is related to the space used to address the microcontroller

peripherals

! GENERIC keyword
" Applies to pointer
" The object is either in code or data space

50

RC-ST6
Extensions to ANSI-C

RC-ST6
Extensions to ANSI-C

! AT keyword
Syntax: at address

" Allows the absolute address of a variable or constant to be
specified

! EXAMPLE

at 0x02 data char var0, var1; /* var0 at 0x02, var1 at 0x03 */

space qualifier

51

RC-ST6
Extensions to ANSI-C

RC-ST6
Extensions to ANSI-C

! INTERRUPT keyword
Syntax: interrupt vector_number

" Causes the defined function to be interpreted as an interrupt
routine.

" vector_number must be specified according to the datasheet

! EXAMPLE

void it_timer (void) interrupt 1 /* timer interrupt subroutine is mapped */
{....} /* on interrupt vector 1 */

52

RC-ST6
Extensions to ANSI-C

RC-ST6
Extensions to ANSI-C

! ASM keyword
Syntax: asm {opcode}

" Allows hexadecimal code to be placed at the current address of
the executed code.

" Limited in-line assembly

! EXAMPLE

void main ()
{
asm{0x6D}; /* STOP instruction */
...
}

53

RC-ST6
Memory models

RC-ST6
Memory models

! SMALL model
" For devices with up to 4k Rom and 128 bytes Ram

! LARGE model
" For devices with up to 8k Rom and 192 bytes Ram

! EEPROM
" Access to EEPROM will be managed through dedicated

subroutines

! The model is chosen thanks to a menu in RIDE
(Options/Project/RCST6)

54

RC-ST6
Concept of Module

RC-ST6
Concept of Module

! APPLIES TO THE LARGE MODEL

! WHAT IS A MODULE:

" A module is defined by a couple (DRBR, PRPR)

" Functions and declarations from one source file

" The module identity (DRBR, PRPR) is saved then restores if an
interrupt occurs

55

RC-ST6
Parameters and local variables

RC-ST6
Parameters and local variables

! Stored in a data segment

! Segment is overlayable and relocatable by the linker

56

RC-ST6
Configuration files / librairies

RC-ST6
Configuration files / librairies

! RCST6 is delivered with ANSI C Librairies

#include stdio.h

! Specific ST6 configuration files

#include st6265b.h

57

RC-ST6
Startup file

RC-ST6
Startup file

! Initializes DRBR and/or PRPR Registers if any

! Clear ram space

! Initializes global variables

! Reti from nmi mode

! Jump to the main routine

! File can be edited by the user

58

RC-ST6
Data types

RC-ST6
Data types

! Support of signed and unsigned char (8 bit)

! Support of signed and unsigned int (16 bit)

! Unsigned char are directly mapped on the ST6 architecture
" it is the most efficient data type
" unsigned char type must be preferred anywhere possible
" by default, char are unsigned char

Unsigned char it is the most efficient data type and must be
preferred anywhere possible

59

RC-ST6
Data types : char versus integer

RC-ST6
Data types : char versus integer

! Comparison between generated code for unsigned char, and
unsigned int

int i;
for (i = 0; i < 50; i++} { .. };

ld A, VW12 ; (2)
addi A, 01h ; (2)
ld VW12, A ; (2)
jrnc _LC_155 ; (1)
inc VW11 ; (2)

_LC_155: ;main_LL23 (9)
ld A, VW11 ; (2)
cpi A, 00h ; (2)
jrnz _LC_156 ; (1)
ld A, VW12 ; (2)
cpi A, 032h ; (2)

_LC_156: ;main_LL24 (3)
jrnc _LC_7 ; (1)
jp main_L1 ; (2)

char i;
for (i = 0; i < 50; i++) { ...}

inc VW11 ; (2)
ld A, VW11 ; (2)
cpi A, 032h ; (2)
jrnc _LC_7 ; (1)
jp main_L1 ; (2)

60

RC-ST6
Data types : unsigned versus signed

RC-ST6
Data types : unsigned versus signed

! Signed char requires more code than unsigned char

; if (SignedChar < 50) f();

LDI VW0, 0x32
LD A, _SignedChar
CP A, VW0
JRR 0x7, VW0,main_LL2
JRS 0x7, _SignedChar,main_LL3
JRR 0x7, _SignedChar,main_LL4

main_LL2:
JRS 0x7, _SignedChar,main_LL4

main_LL3:
LD A, _SignedChar
CP A, VW0

main_LL4:

; if (j1 < 50) f();

LD A,VW1
CPI A,0x32
JRNC main_L1
CALL _f
main_L1:

61

RC-ST6
Data in ROM

RC-ST6
Data in ROM

! Automatic support of data in ROM through ST6 windows
mechanism

! Automatic control of Data ROM Window Register is generated
and optimised by the compiler

! const qualified global variables are allocated in ROM and
accessible through the ST6 ROM window mechanism
" constants limited to the window size of 64 bytes

example:

const char str[] = "abcdef";
const char LongTab[100]; /* ERROR */

example:

const char Const;
ldi DWR,#window(_Const)
ld A,#winoffset(_Const)

char Char ; ld _Char, A
Char = Const;

62

RC-ST6
ROM paging management

RC-ST6
ROM paging management

! Optimised automatic mapping of code inside ROM pages

" automatic mapping of function inside ROM pages

" automatic generation of switch code in page 1

" minimise the total number of switch code in page 1

" restriction: functions cannot cross a page boundary

example:

RAM=0x00-0x3F
page1=0x800-0xF9F

63

RC-ST6
Interrupt management

RC-ST6
Interrupt management

! Context is saved and restored

! CONTEXT = A, V, W, X, Y + dedicated RCT6 registers

64

RC-ST6
Future improvements

RC-ST6
Future improvements

! Bit type support

! Specific instructions for bit manipulation

! In-line assembly

! New optimizations

65

ST62 DEVELOPMENT TOOLSST62 DEVELOPMENT TOOLS

1. RIDE

2. MAST6 ASSEMBLER

3. From AST6/LST6 to RIDE

4. RCST6 C COMPILER

5. CEIBO and SOFTEC emulators

66

ST62 EMULATORS
Third parties products
ST62 EMULATORS
Third parties products

! SOFTEC

" Two In-circuit real time emulators:
DS6225A supports ST620x/1x/2x family
DS6265A supports ST625x/6x family

" Serial port connection to PC

" Ride graphical interface

" Contact:
Web : http://www.softec.micro.com
Email : info@softecmicro.com

67

ST62 EMULATORS
Third parties products
ST62 EMULATORS
Third parties products

! CEIBO

" Low cost real time EB-ST62 emulation board

" Support ST620x/1x/2x/18/28/5x/6x thanks to a base board and 3
Peripheral Emulation Boards

" Serial port connection to PC

" RIDE graphical interface

" Contact
Web : http://www.ceibo.com

