
The LZW algorithm http://www.cs.usyd.edu.au/~loki/cs2csys/gif-info/lzw.html

1 di 4 14/05/2007 22.31

[Compression
Wizard]

[Data Compression Reference Center
]

[Indexes]

The LZW algorithm

In this algorithm, the same terms are used as in LZ78, with the following
addendum:

A Root is a single-character string.

Differences to the LZ78 in the principle of encoding

Only code words are output. This means that the dictionary cannot
be empty at the start: it has to contain all the individual characters
(roots) that can occurr in the charstream;
Since all possible one-character strings are already in the
dictionary, each encoding step begins with a one-character prefix,
so the first string searched for in the dictionary has two characters;
The character with which the new prefix starts is the last character
of the previous string (C). This is necessary to enable the decoding
algorihtm to reconstruct the dictionary without the help of explicit
characters in the codestream.

The encoding algorithm

At the start, the dictionary contains all possible roots, and P is
empty;

1.

C := next character in the charstream;2.
Is the string P+C present in the dictionary?

if it is, P := P+C (extend P with C);a.
if not,

output the code word which denotes P to the
codestream;

i.

add the string P+C to the dictionary;ii.
P := C (P now contains only the character C);iii.

b.

are there more characters in the charstream?
if yes, go back to step 2;
if not:

output the code word which denotes P to the
codestream;

i.

END.ii.

c.

Decoding: additional terms

Current code word: the code word currently being
processed. It's signified with cW, and the string it denotes
with string.cW;
Previous code word: the code word that precedes the current

3.

The LZW algorithm http://www.cs.usyd.edu.au/~loki/cs2csys/gif-info/lzw.html

2 di 4 14/05/2007 22.31

code word in the codestream. It's signified with pW, and the
string it denotes with string.pW.

The principle of decoding
At the start of decoding, the dictionary looks the same as at the
start of encoding -- it contains all possible roots.

Let's consider a point in the process of decoding, when the
dictionary contains some longer strings. The algorithm remembers
the previous code word (pW) and then reads the current code word
(cW) from the codestream. It outputs the string.cW, and adds the
string.pW extended with the first character of the string.cW to the
dictionary. This is the character that would have been explicitly
read from the codestream in LZ78. Because of this principle, the
decoding algorithm "lags" one step behind the encoding algorithm
with the adding of new strings to the dictionary.

A special case occurrs if the cW denotes an empty entry in the
dictionary. This can happen because of the explained "lagging"
behind the encoding algorithm. It happens if the encoding
algorithm reads the string that it has just added to the dictionary in
the previous step. During the decoding this string is not yet present
in the dictionary. A string can occurr twice in a row in the
charstream only if its first and last character are equal, because the
next string always starts with the last character of the previous
one. This leads to the following decoding rule: the string.pW is
extended with its own first character and the resulting string is
added to the dictionary and output to the charstream.

The decoding algorithm

At the start the dictionary contains all possible roots;1.
cW := the first code word in the codestream (it denotes a
root);

2.

output the string.cW to the charstream;3.
pW := cW;4.
cW := next code word in the codestream;5.
Is the string.cW present in the dictionary?

if it is,
output the string.cW to the charstream;i.
P := string.pW;ii.
C := the first character of the string.cW;iii.
add the string P+C to the dictionary;iv.

if not,
P := string.pW;i.
C := the first character of the string.pW;ii.
output the string P+C to the charstream and add
it to the dictionary (now it corresponds to the
cW);

iii.

6.

Are there more code words in the codestream?
if yes, go back to step 4;
if not, END.

7.

An example
The encoding process is presented in Table 1.

The LZW algorithm http://www.cs.usyd.edu.au/~loki/cs2csys/gif-info/lzw.html

3 di 4 14/05/2007 22.31

The column Step indicates the number of the encoding step.
Each encoding step is completed when the step 3.b. in the
encoding algorithm is executed.
The column Pos indicates the current position in the input
data.
The column Dictionary shows the string that has been
added to the dictionary and its index number in brackets.
The column Output shows the code word output in the
corresponding encoding step.

Contents of the dictionary at the beginning of encoding:
(1) A
(2) B
(3) C

Charstream to be encoded:
Pos 1 2 3 4 5 6 7 8 9

Char A B B A B A B A C

Table 1: The encoding process
Step Pos Dictionary Output

1. 1 (4) A B (1)
2. 2 (5) B B (2)
3. 3 (6) B A (2)
4. 4 (7) A B A (4)
5. 6 (8) A B A C (7)
6. -- -- (3)

Table 2. explains the decoding process. In each decoding step the
algorithm reads one code word (Code), outputs the corresponding
string (Output) and adds a string to the dictionary (Dictionary).

Table 2: The decoding process
Step Code Output Dictionary

1. (1) A --
2. (2) B (4) A B
3. (2) B (5) B B
4. (4) A B (6) B A
5. (7) A B A (7) A B A
6. (3) C (8) A B A C

Let's analyze the step 4. The previous code word (2) is stored in
pW, and cW is (4). The string.cW is output ("A B"). The
string.pW ("B") is extended with the first character of the
string.cW ("A") and the result ("B A") is added to the dictionary
with the index (6).

We come to the step 5. The content of cW=(4) is copied to pW,
and the new value for cW is read: (7). This entry in the dictionary
is empty. Thus, the string.pW ("A B") is extended with its own

The LZW algorithm http://www.cs.usyd.edu.au/~loki/cs2csys/gif-info/lzw.html

4 di 4 14/05/2007 22.31

first character ("A") and the result ("A B A") is stored in the
dictionary with the index (7). Since cW is (7) as well, this string is
also sent to the output.

Practical characteristics
This method is very popular in practice. Its advantage over the
LZ77-based algorithms is in the speed because there are not that
many string comparisons to perform. Further refinements add
variable code word size (depending on the current dictionary size),
deleting of the old strings in the dictionary etc. For example, these
refinements are used in the GIF image format and in the UNIX
compress utility for general compression.
Another interesting variation is the LZMW algorithm. It forms a
new entry in the dictionary by concatenating the two previous
ones. This enables a faster buildup of longer strings.

The LZW method is patented -- the owner of the patent is the
Unisys company. It allows free use of the method, except for the
producers of commercial software.

HomePage - Basic Facts - Algorithms - Hardware - FAQ - Related Links - Glossary - Hrvatski jezik
Data Compression Reference Center

Maintained and Copyrighted Š 1997 by Compression Team (compresswww@rasip.fer.hr)

