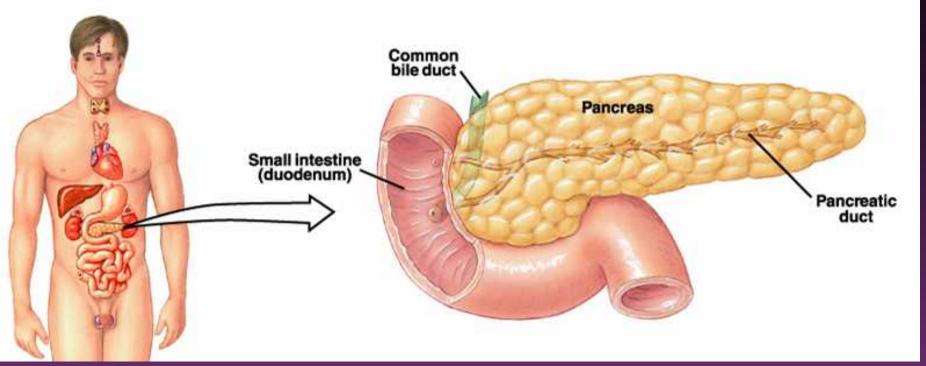
La Nutrizione Artificiale dall'ospedale al domicilio

La Terapia insulinica nel paziente in N.A.



Dr. Salvatore Murru

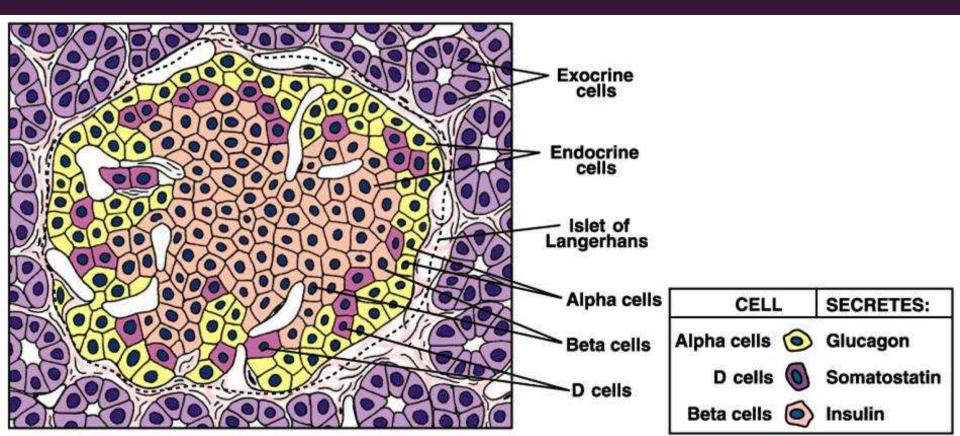
Dirigente medico Terapia Intensiva Osp. Marino Cagliari Delegato SINPE Regione Sardegna

25-26 Marzo 2009

Il pancreas endocrino produce gli ormoni insulina e glucagone che hanno un ruolo fondamentale nel regolare l'omeostasi delle sostanze nutritive sia nel periodo di alimentazione che di digiuno

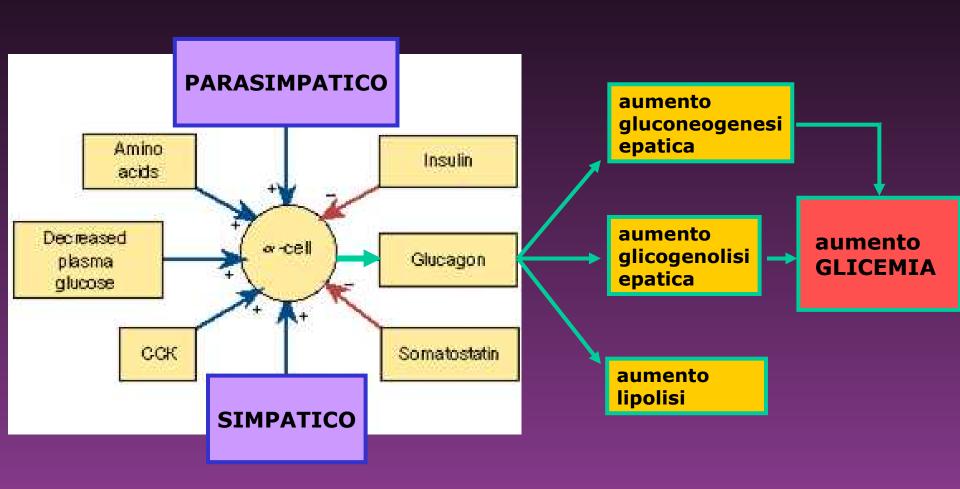
- L'insulina è secreta principalmente in risposta ad un aumento del livello ematico di glucosio
- •Il glucagone è secreto in risposta ad un calo del livello ematico di glucosio

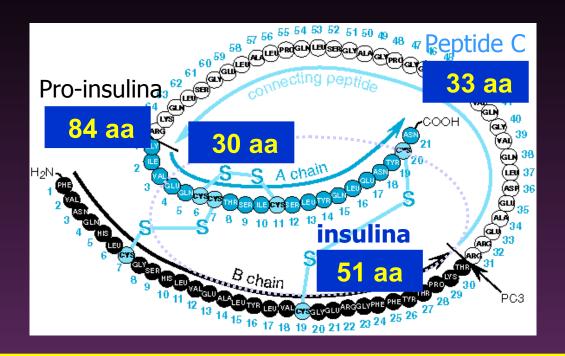
Principali tipi cellulari delle isole di Langerhans e ormoni da esse prodotti


Nome **Ormone prodotto** Percentuale dell'isola Cellule α Glucagone **25**

Cellule β Insulina 60

Cellule δ Somatostatina 10


Cellule F (o PP) Polipeptide pancreatico


Il restante 4% è composto di tessuto connettivo e vasi sanguigni

Controllo della Glicemia – il GLUCAGONE

Ormone peptidico di 29 aa Sintetizzato dalla cellule α

Ormone proteico prodotto dalle cellule ß del pancreas, formato da due catene polipeptidiche: A (21aa) e B (30aa), unite fra loro da ponti disolfuro.

I problemi metabolici del paziente critico (spt. Diabetico) sono legati:

- > alla carenza di insulina
- > alla resistenza alla stessa
- > ad ambedue i fenomeni

Quali sono le conseguenze di una carenza quantitativa o funzionale DELL'INSULINA?

Scoperta nel 1922 da
BANTING e BEST
agisce
sul METABOLISMO DEI CARBOIDRATI
ma anche sul
METABOLISMO DI GRASSI E PROTEINE

Un ruolo importante dell'insulina è quello di favorire l'immagazzinamento delle

SOSTANZE ENERGETICHE IN ECCESSO

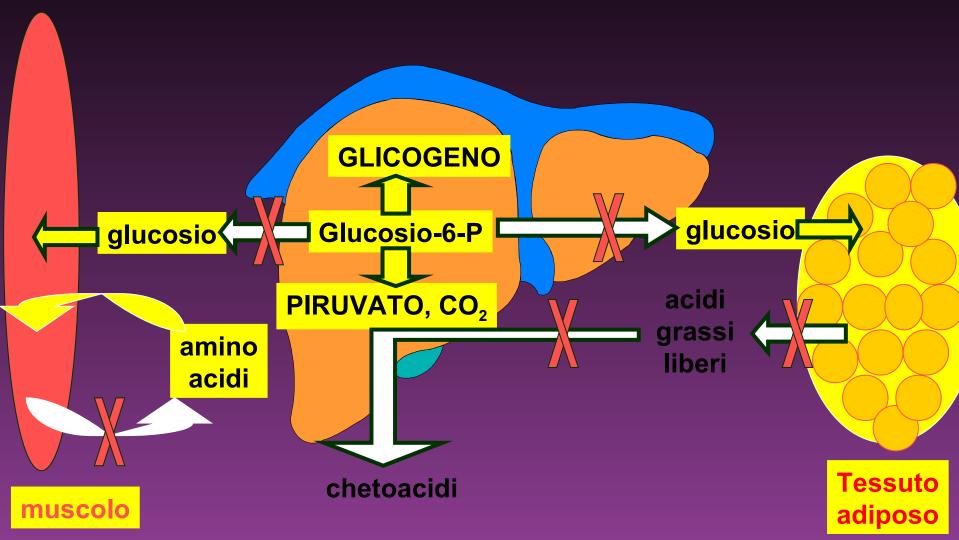
Provvede a immagazzinare

I CARBOIDRATI IN ECCESSO

sotto forma di glicogeno

NEL FEGATO E NEI MUSCOLI

INSULINA Provvede a immagazzinare i GRASSI IN ECCESSO nel tessuto adiposo


ed a trasformare

parte dei carboidrati in eccesso

immagazzinandoli nel tessuto adiposo

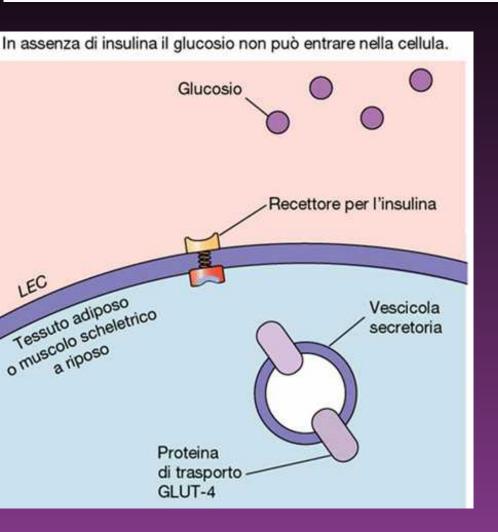
Effetto dell'insulina sul flusso totale dei substrati energetici

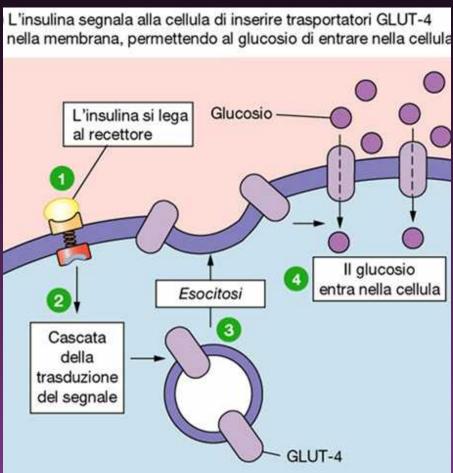
La captazione tissutale di glucosio, acidi grassi e amino acidi determina una diminuzione dei loro livelli plasmatici

 promuove la captazione degli aminoacidi da parte delle cellule e la formazione di proteine

 inibisce la demolizione delle proteine cellulari

 promototrice delle riserve energetiche e del patrimonio proteico


emivita di 6'


 completamente allontanata dal circolo in 10'-15'

 In parte SI FISSA SUI RECETTORI DI MEMBRANA DELLE CELLULE BERSAGLIO

• In parte VIENE DEGRADATA A LIVELLO EPATICO E RENALE DALL'INSULINASI

Azione dell'insulina sui trasportatori del glucosio Glut-4 nei tessuti bersaglio (muscolo e tessuto adiposo, ma non fegato)

All'interno della cellula il glucosio viene immediatamente fosforilato ed utilizzato nei vari processi del

METABOLISMO GLICIDICO

Oltre che al glucosio

la membrana diviene permeabile a

K, Mg, Phos

Immediatamente

dopo un pasto ricco di carboidrati il glucosio nel sangue aumenta

RISPOSTA INSULINICA

PENETRAZIONE DI GLUCOSIO NELLE CELLULE (epatiche, muscolari, adipose ecc.)

IN PARTE VIENE UTILIZZATO E
IN PARTE IMMAGAZZINATO

Negli intervalli fra i pasti

· Carenza INSULINA

LA MEMBRANA DELLA CELLULA MUSCOLARE è poco permeabile al glucosio

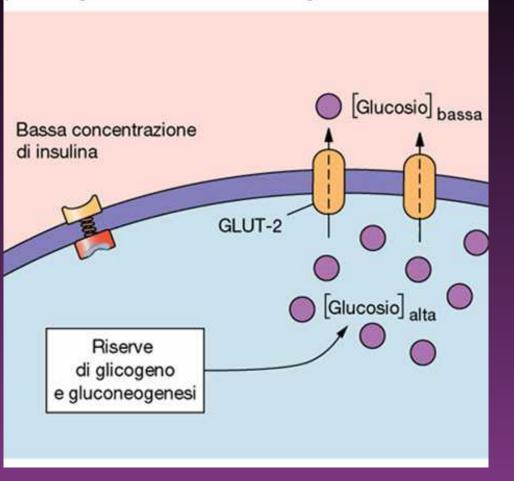
• IL MUSCOLO A RIPOSO utilizza per le ENERGETICHE GLI ACIDI GRASSI

DURANTE LO SFORZO FISICO MODERATO O INTENSO

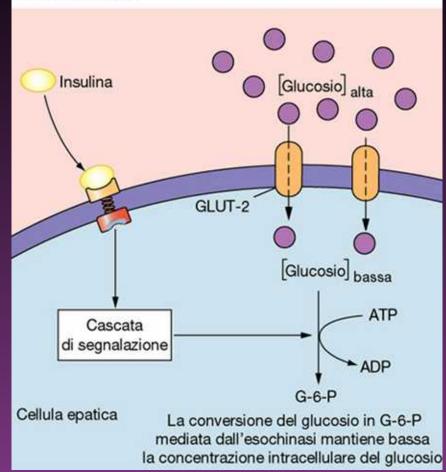
- · la membrana cellulare diviene permeabile al glucosio anche in mancanza di insulina
- il muscolo utilizza il glucosio in due condizioni:
- 1. Nella fase postprandiale
- 1. Durante l'esercizio fisico

• INIBISCE LA MOBILIZZAZIONE DEGLI ACIDI GRASSI DAL TESSUTO ADIPOSO

Il glucosio


che penetra nella cellula muscolare a riposo nel periodo postprandiale non viene, in parte utilizzato per scopi energetici,

MA IMMAGAZZINATO COME GLICOGENO


(2% del glucosio penetrato)

Azione dell'insulina sul fegato

Epatocita. Nello stato post-assimilativo la cellula epatica produce glucosio e lo rilascia nel sangue.

Epatocita. Nello stato assimilativo la cellula epatica assorbe glucosio.

I markers del metabolismo glicidico

· Glicemia

 Variazioni fisologiche (a digiuno 70-110 mg/dl; aumento post-prandiale, generalmente < 140 mg/dl; diminuzione con l'esercizio fisico)

· Glicosuria

- Definizione: presenza di glucosio nelle urine
- Generalmente patologica, si verifica quando viene superata la soglia di riassorbimento renale del glucosio (circa 180 mg/dl)
- Se abbondante determina aumento del volume urinario → poliuria (diuresi > 2500 cc/24h circa)
- Emoglobina glicosilata (HbA1c)
 - Frazione dell'emoglobina capace di legare il glucosio, utilizzata come marker dei valori medi di glicemia nelle ultime settimane

I corpi chetonici

- Gli acidi grassi rappresentano una forma di energia alternativa al glucosio; il glucagone favorisce la beta-ossidazione degli acidi grassi a livello epatico
- produzione di corpi chetonici (aceto-acetato acetone, acido b-idrossibutirico) che vengono liberati nella circolazione sanguigna (chetosi) e eliminati nelle urine (chetonuria)
- La formazione di corpi chetonici si può verificare in 2 tipi di situazioni, totalmente diverse
 - Digiuno prolungato o ipoglicemia
 nelle urine presenza di chetonuria isolata
 - Carenza insulinica profonda nelle urine presenza di glicosuria abbondante + chetonuria

AZIONE DELL'INSULINA:

le azioni dell'insulina sono gobalmente anaboliche. Essa infatti:

- ·attiva la rimozione del glucosio dal circolo;
- ·attiva la sintesi di glicogeno;
- ·attiva la conversione del glucosio in lipidi;
- attiva la conversione degli ac. grassi in lipidi;
- attiva la captazione di a.a. da parte del fegato e del muscolo scheletrico, e la successiva sintesi proteica.

L'attivazione del processo autoimmune nei confronti delle cellule ß pancreatiche può essere studiata attraverso la determinazione nel sangue periferico di alcuni anticorpi specifici.

Anti-citoplasma delle cellule insulari (ICA)

Anti-acido glutammico decarbossilasi (anti-GAD₆₅)

Anti-tirosina fosfatasi (IA2)

anti-insulina (IAA)

Altri esami da richiedere

- Insulinemia: riveste importanza nel valutare la capacità secretoria della beta cellula pancreatica.
- Peptide C: è un affidabile metodo quantitativo per valutare la secrezione pancreatica della beta cellula nei diabetici di tipo 1 e 2.
- Emoglobina glicata o glicosilata (HbA1c): valuta la quantità che si lega al glucosio plasmatico. Si correla con la media glicemica dei 3 mesi precedenti l'esecuzione del test. Tanto maggiore è il livelli della glicata tanto più elevati sono stati i livelli glicemici medi del pz.

la glicemia resta stabile per l'azione ormonale combinata

- Insulinemia facilita la produzione epatica di glucosio e la lipolisi, protegge dalle ipoglicemie
- **><↑** Ormoni controregolatori
 - Glucagone stimola la glicogenolisi epatica iniziale e la gluconeogenesi nell'esercizio prolungato
 - Adrenalina stimola la glicogenolisi muscolare ed epatica e la lipolisi
 - Cortisolo e GH stimolano il fegato a produrre glucosio durante l'attività fisica e se questa si protrae

Insulina: nell'ipercatabolismo

Terapia di controllo del catabolismo:

- Effetto anabolizzante
- Controllo glicemico (iperglicemia aggrava il catabolismo)
- Come somministrarla ?
 in pompa siringa:
 mantenimento glicemia < 150 mg /dl

Van den Berge et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001; 345: 1359-67

Limitazioni della terapia insulinica

- quantità d'insulina stabilita senza conoscere le reali necessità
- iniezione sottocutanea imprecisa
- notevole variabilità nell'assorbimento

- profili glicemici diversi in giorni diversi
- ✓ inevitabili "sbalzi" ipo iperglicemici

la terapia insulinica sostitutiva non è fisiologica

- <u>la somministrazione è periferica</u> sottoinsulinizzazione epatica
 - ⇒ iperproduzione epatica di glucosio
- la somministrazione è sottocutanea
 - "effetto barriera" del tessuto sottocutaneo

 - ⇒ iperinsulinemia tardiva
- la dose è empirica
 - sovra o sottostima rispetto al fabbisogno

Terapia insulinica nel paziente in Nutrizione Artificiale

- L'aggiunta di insulina nella sacca della miscela nutrizionale non permette alcuna variazione nella somministrazione: se si vuole ridurre la dose occorre cambiare sacca.
- L'aggiunta di albumina o Emagel come vettore al fine di evitare l'adesione è controverso

Insulinoterapia

- Nei pz moderatamente catabolici o postchirurgici non complicati:1 U ogni 10 g o più di glucosio
- Nei pz settici o traumatizzati:1 U ogni 4 g di glucosio
- Nei pz gravemente settici:1 U ogni 3-2 g di glucosio

Nutrizione Artificiale nel paziente diabetico

pazienti ospedalizzati

- ☐ diabete mellito: 10%
- ☐ diabete di tipo 2 : 85%
- L' insulino-resistenza influenza :
- ☐ il metabolismo glucidico
- ☐ il metabolismo lipidico
- ☐ 1'emostasi
- ☐ il metabolismo idroelettrolitico e proteico, compromettendo la massa alipidica (o massa magra) dell'organismo

TERAPIA NUTRIZIONALE ARTIFICIALE nel diabetico

- pz. diabetico con indicazione alla NA:
 - iniziare NA quando la glicemia < 200 mg/dL
 - raggiungere valori di glicemia < 150 mg/
 - in assenza di chetonuria, disidratazione ed iperosmolarità
- □ glicemia > 250 mg/dL, influenza negativamente la risposta immunitaria e le capacità battericide cellulari (in NP, ad esempio, il rischio di sepsi del catetere venoso centrale aumenta di 5 volte nel paziente diabetico), aumenta il rischio di infezioni.

TERAPIA NUTRIZIONALE ARTIFICIALE nel diabetico

- ☐ di 1° scelta : NE
- diete formula patologia- specifiche (elevato contenuto lipidico, costituito prevalentemente da acidi grassi monoinsaturi) in sostituzione delle diete standard con fibre a bassa viscosità onde evitare l'ostruzione del catetere.
- ☐ I carboidrati utilizzati in NE sono i polisaccaridi, con un apporto limitato, dal 6 al 15% circa, di fruttosio.
- ☐ Le fibre vegetali sono polisaccaridi della soia o idrolisati di guar, trattati per ridurne la viscosità, alla dose di 15 g per 1000 Kcal.

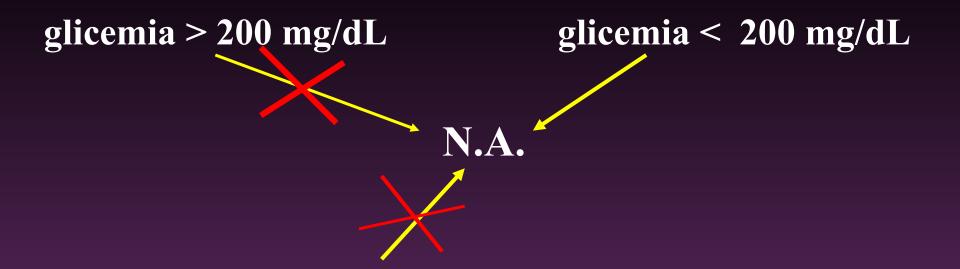
TERAPIA NUTRIZIONALE ARTIFICIALE nel diabetico

se necessaria NP: garantire almeno 100-150 g di glucosio pro die;	
Controllo glicemico: Insulina pronta endovena con pompa a siringa (soprattutto nel paziente critico)	
aumentare l'apporto di glucosio di 50 g/die in rapporto al compengicemico	SO
stabilizzatosi l'equilibrio glicometabolico: insulina ad azione intermedia sottocute	

Finney SJ, Zekveld C, Elia A, Evans TW: Glucose control and mortality in critically patients. JAMA 2003; 290: 2041-7.

- ipoglicemia: glicemia < 80 mg/dL

- aggressivo: glicemia 80-110 mg/dL


- accettabile: glicemia 111-144 mg/dL

- intermedio: glicemia 145-180 mg/dL

- mediocre: glicemia 181-200 mg/dL

- iperglicemia: glicemia > 200 mg/dL

Nutrizione Enterale e Trattamento Insulinico

Chetonuria

Complicanze: - Disidratazione

- Iperosmolarità

Nutrizione Enterale e Trattamento Insulinico

- Dieta Formula patologia specifica
- NE ciclica 12 ore notturna: NPH + Regolare
- •Intermittente (quantità totale di miscela in porzioni uguali 3-4 vv/die/30-30 min : schema insulinico tradizionale (dosi calcolate controllando la glicemia prima dell'inizio della NE e due ore dopo il termine).
- NE continua: Glargine in una unica somm. (La dose iniziale di insulina può essere calcolata considerando la media dell'insulina praticata ev nei due, tre giorni precedenti).

Nutrizione Parenterale e Trattamento Insulinico: INDUZIONE

Glucosio: 150-200 g/die (overfeeding)

Diabetici / anamnesticamente negativi; glicemia >120 mg/dL, (due valori glicemici consecutivi)

0,1 unità di insulina / grammo di glucosio infuso o

0,15 unità se le glicemie ≥ 150 mg/dL.

Obesi affetti da diabete tipo 2:

0,2 unità di insulina /grammo di glucosio

Diabetici di tipo 1, magri:

0,5 unità / grammo di glucosio Aggiustamenti:insulina regolare 0,05 unità per ogni grammo di glucosio (glicemie > 144 mg/dL),

Adeguamento Insulinico Intensivo

Glicemia mg/dL	111-144	145-200	201-250	251-300	301-350	324-400	> 400
Bolo insulina R ev o analogo rapido sc	no	2 U	4 U	6 U	8 U	10 U	Int. med. Spec.
Infusione insulina R	2U/h	2U/h	2U/h	4U/h	4U/h	4U/h	Int. med. Spec

Adeguamento Insulinico Intensivo

Glicemia mg/dL	Infusione Insulina utilizzata									
	1-3 U/h	4 U/h	7-9 U/h	10-12 U/ h	13-19 U/ h	> 16 U/h				
81-110 mg/dL	Riduci di 1 U/h	Riduci di 2 U/h	Riduci di 3 U/h	Riduci di 5 U/h	Riduci di 7 U/h	Riduci di 8 U/h				
111-144 mg/dL	=======================================	====	====	=====	=====	====				
145-220 mg/dL	Aumenta di 1 U/h	Aumenta di 2 U/h	Aumenta di 2 U/h	Aumenta di 3 U/h	Aumenta di 3 U/h	Int.med. spec.				
221-300 mg/dL	Aumenta di 3 U/h	Aumenta di 3 U/h	Aumenta di 5 U/h	Aumenta di 5 U/h	Aumenta di 5 U/h	Int.med. spec.				
301-400 mg/dL	Aumenta di 5 U/h	Aumenta di 5 U/h	Aumenta di 8 U/h	Aumenta di 8 U/h	Aumenta di 8 U/h	Int.med. spec.				

