
The scale between Unreal world and Karma physical world
By Jijun Wang

This report is basically a response to Marco’s Mass and Gravity test report

(http://digilander.libero.it/windflow/eng/reports.htm). I was attracted by Macro’s
experiments/reports and started to think about these important problems that were
ignored for a long time. There were some issues I got confused from the reports. So
following Marco’s approach, I repeated and did some extra experiments to help me clear
the confused issues. This report summaries what I have learned form Marco’s report and
what I found from my experiments. The ultimate goal is trying to find out the scale used
in Unreal Engine when it interacts with Karma physical engine. Based on this scale, we
can have our own correctly scaled world.

In this report, I attempt to describe the scale used in Unreal Engine in a systematic
and clear way. At first, I would like to copy and print Karma User Guide’s explanation
about “Units and Scaling” here:

“Units and Scaling
There is no built-in system of units in Karma, which is not to say that quantities are
dimensionless. Any system of units may be chosen, either meter-kilogram-seconds, centimeter-
grams-seconds or foot-pound-seconds. However, the programmer is responsible for the
consistency of values and dimensions used.
The range of masses and lengths within which Karma will perform well is limited by the precision
of the underlying floating point implementation: single precision floating point (the default build
option for Karma on all platforms) provides for approximately six significant decimal digits. In
order to support a variety of scales of length and mass, Karma requires the application to supply
default values of mass and length.
For example, if a human is a medium-sized object in your application, with height 1000 units, and
mass 4 units, 1000 is a reasonable value for default length, and 4 a reasonable value for default
mass. Input masses and lengths should not be enormously different to the defaults: about two
orders of magnitude either way is reasonable in single precision. Karma scales all its internal
tolerance and threshold values in accordance with the values you supply, but if you override any
of these defaults, you too need to scale your values appropriately. Time is assumed to be in
seconds, and angles measured in radians. If your time and angle units are different from this
Karma’s defaults will not be appropriate, and you will need to rescale some of the default values
yourself in order to get the best behavior from Karma. (The units for the default parameters to the
world are given in appendix A)
If, for example, you are working in degrees for angular measurement, you will need to scale
Karma’s default angular velocity and acceleration thresholds for auto-disabling by 180/pi. And if
the time system with which you wish to use Karma advances the simulation by 1 unit of time for
1/60s, you should scale all Karma’s thresholds for auto-disabling: velocities by 1/20, and
accelerations by 1/3600."

--Karma User Guide 1.0

From above, we know that time, length, and mass are the three basic unit scales

Unreal Engine needed to input to Karma engine. I will evaluate them one by one. And
then evaluate Force and Torque.

Time scale
Unreal engine claims that it uses second to measure time. So we all think the time

scale is 1. That is:

 1 UU time = 1 second in real life

Unfortunately, we are all misled. Every game has its own time system that is called
GameSpeed. By default, the GameSpeed is set to 1 in UT2003/4. This means that 1
second in the game equals to 1 second in the computer system. We can use command
SLOMO float to set the GameSpeed to any number to fast or slow the game. For
example, SLOMO 2 will fast the game by making 2 second in the game is 1 second in the
computer system. Considering Karma engine was NOT added to Unreal engine from the
beginning, I doubt Karma could be integrated into Unreal so deep that they use totally the
same time system. If they use different time systems, a time scale should exist! If for
default GameSpeed=1, there is a time scale St, then for other GameSpeeds, the time scale
will be St*GameSpeed.

Marco reported that g (acceleration of gravity.) was set by Gravity in
PhysicsVolume. By default, g = 950. No matter what unit scale is used between Unreal
and Karma, with g = 950, we should get the same value from the gravity test experiment
since the setting and testing are all done on Unreal side. In Marco’s testing, he got g =
2*8192/4.582 = 781. I also got similar results. So what’s wrong? We are using the game
time to measure g. If Karma uses different time system, then this will cause the errors.

Let’s assume Karma using the computer time system. We modify the Gravity test
experiment to print out the computer system time1, game time, and Bullet’s location.
Then with these data we can draw the time-location curve and with 2-order data
regression we can measure the acceleration. If Karma utilizes Newton’s law to a falling
object, we should have

S = ½ g (t-t0)2 = ½ g t2 – gt0t + ½ gt0
2 where t0 is the time we begin to observe the

falling activity.

Figure 1 shows the time-location curve measured by computer system time. The 2-
order regression gives us a perfect match (R2=1). This shows that Newton’s law is
working and the measured g = 471.07*2 = 943 is very close to the setting value 950!
Comparing the computer system time and the game time, for my computer system, I got

1.1 game time = 1 second computer time

If the g error between game time and computer time is caused by the time scale,
then we should have 1.12 * ggame = gcomputer. To verify this, let’s calculate:

1.12 * ggame = 771*1.12 = 933 which is close to gcomputer = 943

To further observe the time scale effect, let’s set GameSpeed=2 and do the gravity
testing again. In Figure 2, we got g = 3732 in computer time which is close to 950*22 =

1 StopWatch function was used in the experiment to print out the computer system time. Please note that
there is a known data wrap bug in StopWatch which may print out negative time values when the measured
time is in the order of second. However for the positive values, StopWatch works well. So in all the
experiments, only positive time was used in measurement.

3800. And in game time, we still got g = 771. Now we multiple 771 with the square of
2*1.1, we will get 771* 2.22 = 3732 which is the g measured in computer time.

In Figure 3 and 4, I did two more experiments where g was set to 1900. And I still
got the same result.

Therefore, in summary, in Unreal world and Karma world, different time systems
are used. For a GameSpeed, in my computer system2, we have

1.1* GameSpeed UU time = 1 second

y = 471.07x2 - 153.73x + 13.502
R2 = 1

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2

Series1 Poly. (Series1)

2 The constant 1.1 may change from one computer system to another because of the different capabilities

In computer system time:
gsetting =-950 UU/s2
gobserved = 471.07*2 = 943 UU/s2
GameSpeed = 1.0

In game time:
TotalFallingTimelevel = 4.61 s
gobserved = 2*8192/t2 = 771 UU/s2

Figure 1 Gravity Testing 1

y = 1866.2x2 + 1106.8x + 164.65
R2 = 1

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Series1 Poly. (Series1)

In computer system time:
gsetting =-950 UU/s2
gobserved = 1866.2*2 = 3732 UU/s2
GameSpeed = 2.0
gsetting* GameSpeed2 = -3800

In game time:
TotalFallingTimelevel = 4.61 s
gobserved = 2*8192/t2 = 771 UU/s2

Figure 2 Gravity testing 2 with GamseSpeed=2

y = 932.43x2 + 704.47x + 132.82
R2 = 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1 1.2

Series1 Poly. (Series1)

In computer system time:
gsetting =-1900 UU/s2
gobserved = 932.43*2 = 1865 UU/s2
GameSpeed = 1.0

In game time:
TotalFallingTimelevel = 3.26 second (in
game)
gobserved = 2*8192/t2 = 1541.6 UU/s2

Figure 3 Gravity test 3 with setting g=-1900

y = 3724.5x2 + 4789.5x + 1533.5
R2 = 1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Series1 Poly. (Series1)

In computer system time:
gsetting =-1900 UU/s2
gobserved = 3724.5*2 = 7449 UU/s2
GameSpeed = 2.0
gsetting* GameSpeed2 = -7600 =roughly=
gobserved

In game time:
TotalFallingTimelevel = 3.26 s
gobserved = 2*8192/t2 = 1541.6 UU/s2

Figure 4 Gravity test 4 with setting g=-1900, GameSpeed=2

Length scale
This is the easiest part. In UDN (http://udn.epicgames.com/Two/KarmaReference),

we are told that

50 UU = 1 Karma UU

If we assume meter-kilogram-second system, then we have 50 UU = 1 meter which
is roughly consistent with the Unit rule in UnrealWiki
(http://wiki.beyondunreal.com/wiki/Unreal_Unit) that 52.5 UU = 1 meter. Again,
considering Karma was added after Unreal engine already exist, I think this minor
inconsistence is reasonable3. So I believe

3 It’s also possible that foot-pound-seconds system is used. But considering 50UU=1KUU and
52.5UU=1meter, I believe meter-kilogram-second system is more reasonable. If foot-pound-seconds
system is used, since 16 UU = 1 foot, we should be told 16 UU = 1KUU.

50 UU = 1 meter
The last question we need to answer is that why by default g = 950 UU/s2 = 19 m/s2

(if we hold 50 UU = 1 meter)? From what I learned from Karma User Guide, there is no
default constant g in Karma world (Ok, if we must say there is a default value, then from
the manual’s Appendix A, it’s ZERO). g is supposed to be set by the user (the developer).
In Unreal engine, it’s the parameter Gravity in PhysicsVolume. So there is no sufficient
reason to assume g must be (or close to) 9.8 and use it as reference to deduct the length
scale even this is an obvious common sensor we should hold. Or let me say it in another
way, we needn’t limit ourselves to the number 9.8 and the default value 950. We can just
set it to any number we think it should be if all the other unit scales fit well with the
physical world. If I must explain why it’s 950 not other number, then my guess (usually
this means I’m wrong) is that the value was picked up to have the final whole feeling
to be close to the real world. This may include considering the time scale problem,
considering the air/wind effect (KLinearDamping, KAngularDamping …) etc…

Mass scale
Since F = m a, let’s consider mass and force together. To better understand the mass

effect, I modified Marco’s experiment a little bit. I put the experiment world in a
PhysicsVolume with Gravity = (0,0,0). If no force applies on the object, it should stay in
the air steadily. The experiment result shows that this is true. Now, if we apply a force on
the object, it should fall in the acceleration a = F/m. With the measured a, we can figure
out the scale used in mass and force.

In Figure 5, an object with mass=1.0, kMass=100 was push down by force F=100
and measured in computer system time. The testing result shows that

a = 25.988*2 = 52 UU/s2 = 1.04 m/s2

With the F and m, we can get a = 100 UUforce / 100 UUmass. So we have

1 UUforce / UUmass = 50 UUlength/s2 = 1 m/s2

if we assume

 1 UU mass = 1 Kg

then

 1 UU force = 1 N

To confirm this relationship, I conducted another experiment with F=200. In Figure
6, we can see that the measured a = 103 UU/s2 = 2.06 m/s2 is close to a = F/m = 200/100
= 2 m/s2.

y = 25.988x2 + 39.771x + 15.365
R2 = 1

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Series1 Poly. (Series1)

gsetting = 0 UU/s2

mass = 1.0
kMass = 100.0

DrawScale = 0.6 StaticMesh=brick
F = 100 UU
a = 25.988*2 = 52 UU/s2

Figure 5 Force testing 1 with F = 100 UU

y = 51.685x2 + 90.929x + 39.742
R2 = 1

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Series1 Poly. (Series1)
gsetting = 0 UU/s2

mass = 1.0
kMass = 100.0

DrawScale = 0.6 StaticMesh=brick
F = 200 UU
a = 51.685*2 = 103 UU/s2

Figure 6 Force testing 2 with F = 200 UU

However there is one problem. If Unreal uses mass-length-time system, from F=ma,

we should get 1 UUforce = 1 UUmass * 1 UUlength/s2 = 1/50 UUmass * m/s2. It seems that
Unreal holds 50 UUlength = 1 meter, but for mass and force, it uses a simple 1:1 scale! To
proof this, let’s look at torque.

To find out the scale used in torque, I designed the following experiment shown in
Figure 7. The board and the box were put in a non-gravity physics volume. We apply two
forces on the box, one pushes the box down and one pulls the box to leave the board’s
center (the hinge). To keep the board being steady, we need to apply a dynamic torque to
balance the push force and this torque should change as the box moving on the board.
Once the box totally leaves the board, the applied torque should turn the board over…

In the first attempt, the applied torque is T = F*Distance(box,board) in UU unit.
The board totally can’t balance. Then I changed to T = F*Distance(box,board)/50. Now
the physical world behaved perfect: the box moved on the board as if on a horizon floor
(The board’s rotation angle is showed in Figure 8). So from the experiment, we get

1 UUtorque = 1 Nm

Again, if we assume Unreal use mass-length-time system, we should get 1 UUtorque = 1
UUforce * 1 UUlength = 1/50 UUforce * meter which is inconsistent with our observation. So

I believe Unreal uses 50:1 scale in geometry system and 1:1 scale in dynamic system.
That is:

50 UU length = 1 meter
1 UU mass = 1 Kg
1 UU force = 1 N
1 UU torque = 1 Nm

g = 0F1 pushing

F2 pulling

T = -F1 * d

d

Figure 7 The torque balance experiment design

Time-Rotation Angle

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18

Time (second)

R
ot

at
io

n
An

gl
e

(d
eg

re
e)

Figure 8 Rotation angle in the torque balance experiment

In Unreal engine, we have both ‘mass’ and ‘kMass’ parameters. In UDN, ‘kMass’
is interpreted as mass density. So the volume, which is decided by both shape and draw
scale, might also affect an object’s mass. To find out how ‘mass’ (the unreal parameter),
kMass, drawscale, and staticmesh (shape) affect an object’s mass, a serials of force

testing experiments were conducted for objects with different parameters. The results are
summarized in the following table (see Figure 6,9~13). I get the same conclusion as
Marco’s that in terms of Karma behavior, an object’s mass is totally decided by kMass!

Acceleration (UU/s2) ‘mass’ kMass drawscale staticmesh
103 1 100 0.6 brick
196 1 50 0.6 brick
104 2 100 0.6 brick
197 2 50 0.6 brick
198 1 50 0.3 brick
206 1 50 1 sensor

y = 98.189x2 + 1166.3x + 3462.6
R2 = 1

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Series1 Poly. (Series1)

gsetting = 0 UU/s2

mass = 1.0
kMass = 50.0

DrawScale = 0.6 StaticMesh=brick
F = 200 UU
a = 98.189*2 = 196 UU/s2

Figure 9 Force testing 3 with kMass = 50, mass=1

y = 52.144x2 + 97.916x + 46.713
R2 = 1

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2

Series1 Poly. (Series1)

gsetting = 0 UU/s2

mass = 2.0
kMass = 100.0

DrawScale = 0.6 StaticMesh=brick
F = 200 UU
a = 52.144*2 = 104 UU/s2

Figure 10 Force testing 4 with mass=2, kMass=100

y = 98.296x2 + 253.94x + 164.71
R2 = 1

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Series1 Poly. (Series1)

gsetting = 0 UU/s2

mass = 2.0
kMass = 50.0

DrawScale = 0.6 StaticMesh=brick
F = 200 UU
a = 98.296*2 = 197 UU/s2

Figure 11 Force testing 5 with mass=2, kMass=50

y = 98.861x2 + 89.087x + 20.205
R2 = 1

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2

Series1 Poly. (Series1)

gsetting = 0 UU/s2

mass = 1.0
kMass = 50.0

DrawScale = 0.3 StaticMesh=brick
F = 200 UU
a = 98.861*2 = 198 UU/s2

Figure 12 Force testing 6 with drawScale=0.3

y = 103.08x2 + 553.83x + 782.28
R2 = 1

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Series1 Poly. (Series1)

gsetting = 0 UU/s2

mass = 1.0
kMass = 50.0

DrawScale = 1.0 StaticMesh=sensor
F = 200 UU
a = 103.08*2 = 206 UU/s2

Figure 13 Force testing 7 with another staticmesh (sensor)

Conclusion
In Unreal Engine, the unreal world and the Karma physical world use different time

system. Counting this time scale, we get consistent length scale, 50uu=1m, from both our
observation and the UDN document. On the other hand, unreal uses a simple 1:1 scale in
the dynamic simulation. That is 1 uu mass = 1 Kg, 1 uu force = 1N, and 1 uu torque = 1
Nm. There is no fixed gravity acceleration in unreal. This value is controlled by
PhysicsVolume. By default, it’s set as Gravity=(0,0,-950). The scale used in Unreal is
summarized below:

The world scale:
1.1GameSpeed uu time = 1 second
50 uu = 1 meter
1 uu mass = 1 kg
1 uu force = 1 N
g = 19 m/s2 or anything we set in the game

As an example of applying these scales in unreal world, I did a ‘complex’
experiment. An object with 1 UU mass was put in the default PyhsicsVolume with extra

against gravity force F=9UU. Using Newton’s law, we can predict the falling acceleration
will be:

areal= (mg-F)/m
= (1 UUmass * 950 UUlength/s2 – 9 UUforce) / 1 UUmass
= (1 Kg * 950/50 m/s2 – 9 N) / 1 Kg
= (19 Kg m/s2 – 9 Kg m/s2) / 1 Kg
= 10 m/s2

If we observe the falling activity in computer system time, the acceleration should be

acomputer = areal = 10 m/s2 = 500 UU/s2

If we observe the falling activity in game time, then with the time scale, we will get

agame = areal / TimeScale2 = 10 m/s2 / 1.12= 500 UU/s2 / 1.21 = 413 UU/s2

Figure 14,15 show the measured results. In computer system time, we get a = 492 UU/s2
that is close to the predicted 500 UU/s2. In game time, a = 405 UU/s2. It’s also close to
the calculated value 413 UU/s2.

y = 245.81x2 + 1491.9x + 2268.9
R2 = 1

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Series1 Poly. (Series1)

gsetting = -950 UU/s2

mass = 1.0 UU
kMass = 1.0 UU

DrawScale = 0.6 StaticMesh = brick
F = 9 UU
acomputer = 245.81*2 = 492 UU/s2

Figure 14 The falling testing in computer time with F = -9 N

y = 202.53x2 - 143.48x + 27.021
R2 = 1

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7

Series1 Poly. (Series1)

gsetting = -950 UU/s2

mass = 1.0 UU
kMass = 1.0 UU

DrawScale = 0.6 StaticMesh = brick
F = 9 UU
agame = 202.53*2 = 405 UU/s2

Figure 15 The falling testing in game time with F = -9 N

