
On Optimal Piggyback Merging Policies for Video-On-Demand Systems

Charu Aggarwal”, Joel VVolf~ and Philip S. Yu~

* Massachusetts Institute of Technology, Cambridge, Massachusetts

f IBM T.J. Watson Research Center, Yorktown Heights, New York

charu at mit ,edu, jlw at wat son.ibm.tom, psyu at watson. ibm.com

Abstract A critical issue in the performance

of a video-on-demand system is the 1/0 bandwidth re-

quired in order to satisfy client requests. A number of

techniques have been proposed in order to reduce these

bandwidth requirements. In this paper we concentrate

on one such technique, known as adaptive piggyback-

ing. We develop and analyze piggyback merging poli-

cies which are optimal over large classes of reasonable

methods.

1 Introduction

In a video-on-demand (VOD) system, subscribers can

choose both the movie they wish to view and the time

at which they wish to view it. Such systems are becom-

ing fe~ible because of recent technological advances,

and will presumably become popular in the consumer

market. The quality of service can be characterized in

terms of the latency time of a customer request, defined

as the length of time between the arrival of the request

and the initiation of service. The latency of a request ia

influenced by a number of factors, which we shall outline

in this section.

A VOD system may be modeled as a client-server

architecture. The clients essentially consist of the cus-

Permission to make digital/hard copy of part or all of this work
for personal or classroom usa is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is givan that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on
servers,, or to redistribute to lists, requires prior specific
permission andlor a fee.

SIGMETRICS ’96 5/96 PA, USA
01996 ACM 0-89791 -793 -6/9610005 ... $3.50

tomers, who access the videos stored on disks in the

server. (For the purposes of this paper we shall con-

sider only videos stored on disk. Less frequently ac-

cessed videos may reside on tertiary storage. The most

frequently accessed videos may possibly be stored in

memory.) Whenever there is a request for a particu-

lar video, it is accessed from the disks in the storage

server, transmitted to the central processor, and then

routed to the client. Thus an 1/0 stream needs to be

scheduled. Since 1/0 bandwidth is costly, such streams

are key resources in a VOD system, and need to be

managed carefully.

One simple way of reducing the bandwidth require-

ments ia known aa hatching. In batching, we intention-

ally delay the initiation of requests by some amount of

time, called a batching internal, so that subsequent re-

quests for the same video arriving during the current

battilng interval may be serviced using a single 1/0

stream. This trades off reduced 1/() stream require-

ments for increased latency, of course, so large batching

intervals would seem to be incompatible with the notion

of a VOD system. More work on batching maybe found

in [1, 2, 4].

A second technique to reduce the 1/0 bandwidth

requirements is called bridging. In this technique, we

use memory in the central processor as a buffer. If some

fixed number of frames behind a particular video stream

is buffered, then any subsequent request for that video

within the corresponding time interval can be read from

buffer rather than from dksk. This technique has the

disadvantage that a considerable amount of buffer space

may be required in order to build bridges large enough

to yield substantial savings in bandwidth. More details

on the bridging technique may be found in [6, 8].

Recently an elegant technique called adaptive piggy-

200

hzcking was proposed by Golubchik, Lui, and Muntz [5].

This approach assumes the capability of altering the dis-

play rates of videos while they are in progress. (It has

been established that small differences in the display

rates, for example those which deviate at most 570 from

the normal display rate, are not perceived by the viewer.

So from thecustomer’s perspective this notion appears

feasible. Wecomment a bit about technic.al feasibility

later in the paper.) Suppose two streams are displaying

the same video a small number of frames apart. The

idea is to display the leading stream at a slower rate,

and the trailing stream at a faster rate. Then, assum-

ing this interval is sufficiently small, the faster stream

will eventually catch up with the slower stream. At that

point the streams can be piggybacked, or merged. That

is, they can be played thereafter at a single speed, and

one stream can be dropped. In a sense adaptive piggy-

backing is similar in spirit to batching, but it avoids the

extra latency which is inherent in the batc~lng interval.

In this paper we will concentrate on adaptive pig-

gybacking. The issue, of course, is to find piggybacking

policies for whkh there are maximum savings in band-

width. Three basic types of piggybacking policies were

discussed in the seminal paper [5]. In approximate or-

der of worst to best performance, these include the sim-

ple meTging policy, the odd-even policy, and the greedy

policy. The first two of these can be characterized as

elementary in the sense that they involve at most a sin-

gle change of speed for each video stream. (The greedy

algorithm ia not elementary.) We should note that by

its nature the odd-even policy can have at most 50%

improvement in the number of streams saved, because

it pairs off subsequent streams.

The contribution of the current paper is twofold.

First, we develop a generalization and optimal variant

of the simple merging policy which appears to perform

better (both empirically as well as analytically) than the

version presented in [5]. Second, we propose an entirely

new policy, called the snapshot algorithm, which will

be seen to be optimal over a large class of reasonable

piggybacking policies.

Ultimately, our revised simple merging algorithm,

which is still elementary, will be seen to have perfor-

mance nearly equal to that of greedy, the best overall

algorithm of [5]. Our snapshot algorithm, which is not

elementary, appears to have better performance than

any known adaptive piggybacking algorithm.

This paper is organized as follows. In Section 2 we

shall develop the generalized simple merging policy. We

then focus on the optimal variant, and show its proper-

ties. Section 3 describes the snapshot algorithm, which

is based on dynamic programming. We show that this

policy is optimal over a large class of piggybackkg poli-

cies. Experimental results are presented in Section 4,

and a conclusion is presented in Section 5.

2 Generalized Simple Merging

Policy

We shall begin by describing a slightly generalized ver-

sion of the simple merging policy developed in [5]. Con-

sider a single video whose length, in frames, is given by

L. Initially we will not consider special features such as

pause-resume, fast-forward or rewind. Assume there are

two possible display speeds (in frames/second) at which

the display may take place - a slow speed denoted by

Sm~n, and a fast speed denoted by S~a=. (A third, nor-

mal speed is also considered in [5]. We prefer to assume

that the normal and slow speeds are identical, giving

customers the most for their money. Less charitable au-

thors might adopt the maxim originally attributed to

P.T. Barnum: “This way to the egress.” In other words,

they would employ the fast speed in normal situations,

simultaneously shortening the videos and encouraging

customers to watch more of them. However, this and

other minor changes in assumptions to the original al-

gorithms presented in [5] are not critical. The reader

can easily modify the algorithms and analysis as appro-

priate.) Define the maximum catchup window size Wm,

measured in frames, as the latest position in the video at

which a slow stream can be overtaken by a fast stream

starting at the beginning of the video by the time the

video completes at frame L. Given the difference in

speed, this can be computed aa

sWm= ‘“”;
– Smin. L

(1)
mas

We define the generalized simple merging policy in

terms of a parameter W also measured in frames, called

the window size. (We require that O s W < Wm.)

201

TIME

Figure 1: Generalized Simple Merging Policy

Specifically, a new arrival is designated to be a fast

stream if a slow stream exists within W frames of it.

Otherwise, the stream is designated to be a slow stream.

If a fast stream merges with a slow stream, the fast

stream ia dropped, and the slow stream proceeds. Fig-

ure 1 illustrates the algorithm, the x-axis representing

(increasing) time and the y-axis representing the posi-

tion of the video in frames. (The window size and length

L of the video are also shown.) Note that there is al-

ways a single slow stream associated with each distinct

window. On the other hand there can be any number

of fast streams, including O.

Pseudocode for the generalized simple merging pol-

icy is as follows:

Algorithm Generalized Simple Merging Policy (VV)

Case: Arrival of stream i

If no stream withh W is moving at S~~~

Set Speed = S~a~

Else

Set Speed = S~az

Case: Merge of stTeams i and j

Drop stream i
Set Speed = Smin

Now in [5] the window size W used is exactly equal

to the maximum catchup window size. That is, they

set W = Wm. We plan, instead, to optimize W as

a function of the forecasted arrival rate. Assume, for

simplicity, that requests for the video arrive according to

a simple Poisson process with rate ~. (This assumption

will not, of course, be perfectly accurate.)

The tradeoffs for different size values of W are as

follows:

(1)

(2)

When the window size is big, a larger number of

fast streams can be merged into one slow stream.

But they tend to be merged at later stages, with

less benefit.

When the window size is small, merges tend to oc-

cur at earlier stages. But there are fewer of them.

In order to quantify the savings due to piggyback-

ing, recall that whenever a slow stream is merged with a

fast stream, both streams combine into one slow stream.

In effect, we assume that the fast stream exists only un-

til that time. Thus we will charge a fast stream only

the number frames needed to reach the merge point.

We first proceed to build a model which expresses

the expected number of frames for a randomly chosen

display stream as a function of the window size W.

Consider a new video stream arrival, which may be ei-

ther fast with probability Pfa,t or slow with probabil-

ity P.zm = 1- Pjaat. The expected number E[F] of

frames read by a randomly chosen display stream is the

weighted average of the expected number 17[#’j4.t] of

frames if the stream is fast and the expected number

lJIF$lOW] of frames if the stream is slow. In other words,

E[F] = Pf.*t “ E[Ff.$t] + Pslow “ -EIF.lW]. (2)

By our frame charging assumption we have that F,lW

is deterministically equal to L, and hence E[F$ 10W] = L

aa well. It is only slightly more complicated to calcu-

late the number of frames charged when the stream is

fast. Suppose the nearest slow stream beyond it is p

frames ahead, The number of frames required by this

fast stream to catch up with the slow stream is given by

P “ sm..
@’fast = sma= _ s “

man

(3)

Note that the algorithm is designed in such a way to

ensure that p ~ W. Since the arrival rate is uniform

it follows by symmetry that p is uniformly distributed

between zero and W. Thus

w/2 . sm.=.EIFfastl= S*42– Sman“ (4)

It now remains to calculate the probability that a ran-

domly chosen stream will be fast. Note that all streams

which are within W frames of a slow stream (or, equiv-

alently, arrive within W/Smin time units of a slow

stream) are fast. Hence for each slow stream, the ex-

pected number of fast streams following it consecutively

equal to J . W/Smin. Consequently, the fraction of fast

streams in the system is approximately equal to

AW/Smi.
Pjast = Jw/smi~ + 1 “ (5)

Substituting the above values in Equation 2, we obtain

the following relationship:

J?[F]= ‘w . ‘s”- Smin
AW + Smin 2(S~aZ – Smin) + AW + Smi.

. L.

(6)

We now minimize this equation subject to the con-

straint that a new fast stream must always be able to

catch up with a slow stream if the slow stream is at most

W frames ahead the fast one. This constraint amounts

to:

smazw“ S*.. – Smi. s‘“ (7)

Ignoring the constraint for the time being, we set

r.iE[F] = ~

W“
(8)

On expanding the resulting equation for W and simpli-

fying, we obtain:

Solving the above quadratic for W (and ignoring the

negative root), we obtain:

s’ {()s 2+2min LSmin (Sm.. – Swain)w“=–?+ -q-- .
~$’maz

(lo)

The second derivative is positive, and an easy check

shows that this value of W* automatically satisfies con-

straint 7. Consequently, W* is the optimal window size.

‘“[----------------m:-----------------

$ “o~;m
InterarrivalTime (Sewnds)

Figure 2: Optimal and Maximum Catchup Window

Sizes

Figure 2 shows the relative values of Wm and W“

as a function of interarrival time (the reciprocal of J).

(These are normalized as a percentage of the total num-

ber of frames in the video.) These numbers were eval-

uated for a two hour video with Smin = 28.5 and

sma== 31.5. Notice that the optimal window size is al-

ways smaller than the maximum catchup window size,

sometimes considerably so. However, W* asymptoti-

cally approaches Wm as the interarrival time increases.

We briefly discuss the modifications required to the

generalized simple merging policy to handle special cus-

tomer features such as pause, resume, fast-forward and

rewind. One must be able to accommodate the addition

of new streams at arbitrary positions within the video,

and similarly the elimination of existing streams from

arbitrary positions. To handle the addition of a new

stream, notice that currently playing streams can be

partitioned at any point in time into groups of two dif-

ferent types. The first group will consist of a slow stream

followed by one or more consecutive fast streams which

will ultimately merge with the slow one. The seconcl

group consists of solitary slow streams. If a new video

arrives at a position between the first and last members

of a group of the first kind, it should be assigned a fast

speed and eventually merged with the slow stream. A

new video arriving outside the range of a group of the

first kind should be assigned a fast speed if it is behind

203

a slow stream at position less than W, and a slow speed

other wise. To handle the elimination of an exist ing slow

stream, do nothing if the stream trailing it is also slow

(or nonexistent). If the stream trailing it is fast, change

its speed to slow. Nothing need be done to handle the

elimination of an existing fast stream. Remember, of

course, that many customers may be piggybacked onto

a single stream, so the removal of one such customer

does not necessarily imply that the stream itself will be

dropped. The policy just described remains elementary

in the sense that streams will change speeds at most

once. We have developed an approximation algorithm

to compute the optimal window size for such a scenario,

but details are complicated and we omit them in the

current paper.

3 The Snapshot Algorithm

Consider again a single video consisting of L frames.

Suppose that at a fixed point T in time there are a

total of n streams of this video playing. Denote the po-

sitions of these streams, measured in terms of frames,

by fl, f“, respectively. Without loss of generality we

can assume that .fl z ... z $.. Ignore for the time

being any other requests for this video which may ap-

pear later, and the manner in which the streams reached

their current positions. Also assume that there are no

pauses, resumes, fast-forwards or rewinds. This scenario

is entirely deterministic, and it is therefore meaning-

ful to attempt to find the precise piggybacking strategy

which minimizes the total number of frames required

from time T onward. We begin the section by solving

this optimization problem via a dynamic programming

algorithm.

As before, the two speeds are denoted by Smaz and

S~;m. We can assume in an optimal solution that the

stream farthest along (in this case the one initially cor-

responding to ~1) proceeds at speed S~~~, while the

stream least farthest along (corresponding initially to

~~) proceeds at speed S~.~: It is never more profitable

not to do so. For the same reason, of course, we always

merge two streams which coalesce. While we will cer-

tainly have to account for the costs correctly, pretend

for the moment that merges can occur at any point,

including possibly past the length L of the video. We

can then envision each potentially optimal piggybacking

policy as a binary tree. The leaf nodes correspond to

the original streams, while interior nodes correspond to

merges. The root node corresponds to the final merge

of all the n original streams. Left arcs correspond to

the fast speed, and right arcs correspond to the slow

speed. Past the root node there exists only one stream,

which can proceed at either speed. We don’t explicitly

consider this as part of the bkry tree, but assume the

speed is Smin as before. Some of the merges close to the

root node may never actually take place. This depends

on whether or not they would occur past position L.

Looked at in this light there is a one-to-one corre-

spondence between the set of binary trees with n leaf

nodes and all potentially optimal piggybacking policies

for n streams.

Figure 3 shows the 5 possible binary trees for a sce-

nario in which there are n = 4 original streams. Here we

have reversed the roles of the x- and y-axes from that of

Figure 1, in order to draw the bhmry trees in something

like standard orientation. Thus the x-axis corresponds

to position and the y-axis to time. (We actually show

a little more structure, namely the relative positions of

the initial streams, the two speeds, and so on. The area

of the histogram underneath each binary tree illustrates

the cost, in frames, of implementing that particular pig-

gybacking strategy, assuming the final merge at the root

occurs before L. Note that the root always occurs at the

same position, and the cost remaining is the difference

between that position and L. This is a constant, and

like the remaining single stream is not illustrated. Being

a constant, this term is also irrelevant to the optimiza-

tion problem. If L occurs before the final merge, the

actual cost would correspond to integrating the curve

up to L.)

We note in passing that the odd-even policy de-

scribed in [5] pairs up successive streams which start

no more than a fixed window size apart, by playing one

at S~i. and the other at Sma= until they merge. The

greed~ policy developed in [5] iterates this process re-

cursively with successive merged pairs. Thus, roughly

speaking, the greedy policy results in binary trees of the

form shown in (d) of the figure.

We recall that the number of binary trees with n

leaf nodes (streams) is given by the (n – l)st Catalan

204

A

A
D

n

/7’7’7

A

Figure 3: Typical Binary Tree Alternatives and Costs

number

()

1 2n–2
b(n–l)=z

n—1 “

See [3] for details. The Catalan number

(11)

b(n) can be

approximated via Stirling’s approximation as

(12)

So the Catalan numbers grow very rapidly, and search-

ing all binary trees for any reasonable value of n will be

impractical. Fortunately, there is a better way:

Let i and j denote two streams between 1 and n,

with z s j. Let P(i, j) denote the hypothetical position

in frames at which streams i and j would merge in an

optimal policy for the case in which only the arrivals

i, ---13“ occur. This value may possibly be greater than

L, and is also the position at which streams i and j

would merge if they were the on/y streams. The point is

that P(i, j) is well-defined because this optimal policy

would involve stream i moving at the maximum speed

and stream j moving at the minimum speed. So we

obtain

?nin . (fj - fz)s
P(i, j) = fj + smaz _ s (13)

mtn

via our standard analysis if i < j, and

P(i, i) = fi. (14)

205

This value can thus be computed for each relevant pair

z and j, and is independent of all other streams. Now

let C(i, j) denote the cost of an optimal policy in which

only the arrivals i, ..., j occur. Denote the corresponding

binary tree by T(i, j). It is easy to see that

C(i, i) = L – J’i (15)1

for each i. In order to compute G’(z, j) for i < j we ob

serve that the principal of optimality holds here: For the

optimal policy there will exist a stream k with i < k < j

such that the left subtree will contain the leaf nodes

corresponding to streams i, ..., k and the right subt ree

will contain the leaf nodes corresponding to streams

k+l ,..., j. Furthermore, both the left and right sub.

trees themselves will be optimal. That is, they will be

T(i, k) and T(k + 1, j), respectively. Such a binary tree

has cost C(i, k) + C(k + 1, j) – nMIZ(L – P(i, j), O), the

last term indicating the (potential) savings of the final

merge at position P(i, j). Thus the optimal policy in

which only arrivals i, j occur has a left subtree with

leaf nodes corresponding to i, k* and a right subtree

with leaf nodes correspondbg to k* + 1, j, where

k*= argmi~<~<j{C(i, k)+ C(k+l, j)–(L–P(i, j))+}.

(16)

The overall optimal cost C(l, n) and its correspond-

ing piggybacking Policy can therefore be. calculated in a

bottom up fashion by dynamic programming: Starting

with the initial trees T(z, i) and costs C(i, i), compute

all trees T(i, i + 1) and costs C(i, i + 1), then all trees

‘T(i, i + 2) and costs C?(i, i + 2), and so on. Ultimately,

we compute the optimal tree 7(1, n) and its optima~

cost C(l, n).

Pseudocode for the dynamic programming algo-

rithm is as follows:

Algorithm Dynamic Programming

Fori=l tondo

Initialize P(i, i), C(i, i) and 7(;, i) via Equations 14

and 15

End

Form= lton–ldo

Fori=lton–mdo

Compute P(i, i + m), C(i, i + m) and 7(i, i + m)
via Equations 13 and 16

End
End

It remains to compute the computational complex-

ity:

Theorem 3.1 The dynamic programming algorithm

finds the optimal merging policy and requiFes O(n3) it-

erations, wheTe n is the number of streams to be mepged.

Proof After initialization there are O(n) iterations of

the outer loop and O(n) iterations of the inner loop.

The calculation of the positions, costs and trees requires

O(n) comparisons.

We comment that the dynamic program algorithm

presented has analogues in the problem of optimal poly-

gon triangulation via the natural correspondence be-

tween binary trees and convex polygons [3, 7]. This,

in turn, has led to algorithms for parse trees and the

like.

We now incorporate the deterministic dynamic pro-

gramming technique discussed above into a practical

window-based piggybacking policy known as the snap-

shot algorithm. Assume at first that there are no pauses,

resumes, fast-forwards or rewinds. The algorithm is

based on the idea of taking snapshots of the positions

of the streams at fixed time intervals, say of 1 units

each. We will call these the snapshot intervals. The first

stream arriving within a snapshot interval is assigned a

speed of S~in. All other arriving streams within this

same snapshot interval are assigned a speed of S~az.

Suppose there are n such streams, with stream 1 be-

ing slow and streams 2, n being fast. This mimics

the original and generalized simple merging policy de-

scribed in [5] and the previous section. Notice that all

n streams will lie within a window, measured in frames,

of length W = 1 QSm=z. We shall refer to W as the

snapshot window size. We will choose I in a way that

ensures that the snapshot window size is less than or

equal to the maximum catchup window size Wm. By

the end of the snapshot interval some of our initial n

streams may have merged. We shall use our dynamic

programming algorithm in order to modify the speeds

of all the remaining streams that were initiated in the

interval. We do not affect the speeds of streams from

previous snapshot intervals.

Actually, many variants of this snapshot algorithm

are possible. One could, for example, solve the overall

dynamic programming problem for all currently play-

ing streams, not just the ones within the most recent

snapshot interval. This approach would appear to be

too costly, given the complexity of the dynamic pro-

gramming algorithm. Of course, the effectiveness of

the algorithm itself will cause the number of surviving

streams to be significantly reduced relative to the num-

ber of original customer requests. Conversely, the ratio

of surviving streams relative to original requests should

decrease throughout the lifetime of the video. Thus it

is more important to perform the dynamic program-

ming algorithm for earlier rather than later streams

anyway. A second apparently reasonable algorithmic

variant might group streams together according to their

arrival snapshot interval, and resolve the dynamic pro-

gramming problem for each such group at the end of

every snapshot interval during its lifetime. These group-

ings would appear plausible in the sense that the last

stream from one snapshot interval and the first stream

from the next snapshot interval are naturally moving

away from each other anyway. But a little thought will

show that all subsequent solutions to the dynamic pro-

gramming problem will be identical to the original one.

Thus the snapshot algorithm we have presented appears

to represent the best tradeoff among various reasonable

alternatives.

Pseudocode for the snapshot algorithm is as follows:

Algorithm Snapshot Policy (W)

Compute snapshot interval 1

Start interval counter
Case: Arrival of stTeam i

If first stream is within interval

Set Speed = S~~.

Else

Set Speed = S~a~

Case: End of interval counteT

Solve dynamic programming problem on remaining

new streams

Reset interval counter

Case: Merge of streams i and j

If within initial interval follow generalized simple
merging rules

Else follow dynamic programming rules

The dynamic programming policy is optimal for

streams which survive past the snapshot interval. Be-

cause it employs a generalized simple merging policy to

206

deal with non-deterministic arrivals until the end of that

interval it may not be quite optimal during that region

of time. But if the snapshot interval is small relative

to the total time of the video (or, equivalently, if W is

small relative to L), then we may ignore this effect. In

other words, no window-based policy will outperform

the snapshot algorithm under these conditions. As we

shall see, the snapshot algorithm gives the best experi-

mental results of any of the tested piggyback policies as

well.

We should point out that we do not have an ana-

lytic method for deriving the optimal snapshot window

si~e. So we have adopted the optimal window size of the

generalized simple merging policy instead. Fortunately,

we will show experimentally that the performance of the

snapshot algorithm is fairly insensitive to the choice of

window size.

Special customer features such as pause, resume,

fast-forward and rewind can be accommodated in the con-

text of a snapshot algorithm. However, they involve

complicated heuristics, and we omit details.

4 Experimental Results

In this section we discuss the empirical results of sim-

ulations in which we compare the various piggybacking

policies. No batching or bridging was considered in any

of these experiments, in order to isolate the benefits of

piggybacking policies from any other effects. In all our

experiments we assumed a fast speed of S~~Z = 31.5

tlames per second and a slow speed of S’nain = 28.5

frames per second. All simulations were performed as-

suming Poisson arrivals with a parameter of X Each

graph discussed in this section shows the percentage of

frames saved as a result of piggybacking.

Figure 4 shows the performance of the original sim-

ple merging and greedy policies of [5] and our new op-

timal simple merging policy. Here we fix the length

of the video to be 2 hours, and vary the interarrival

time y = l/A between 15 and 500 seconds. As we see,

employing the optimal rather than maximum catchup

window size can have a large effect on the performance

of the generalized simple merging policies, at least when

the interarrival time is small (or equivalently, when the

arrival rate is large). Furthermore, the optimal simple

so

h’\ x .-x Original Simple Merging POIICY

70 O@lmalSimple Merging Policy—

o--o Greedy POIICY
%
:s0 -
t
g

P
5
$50 -

x.x.
Lg ~..

-x.
c

! -

-%.
-%.40

%.

30 -

200 d
50 ltk) 150 200 2SCI 300 3W 400 450 $00

Iflterarnval Time m Secords

Figure 4: Comparisons for Varying Interarrival Rates

merging policy now appears to be nearly competitive

with the more elaborate greedy policy. Recall that the

former algorithm is elementary, while the latter is not.

For high interarrival times all three algorithms have es-

sentially equal performance. As one would expect, the

performance of each algorithm decreases as a function

of increasing interarrival time.

Figure 5 shows the performance of the generalized

simple merging policy aa a function of window size W.

Here we tix the length of the video to be 2 hours, and the

interarrival time to be 30 seconds. The optimal window

size W* is also shown, and matches the best perfor-

mance of the generalized simple merging policy. Differ-

ing from the optimal window size by too much in either

direction causes the performance to degrade. Note that

our optimal window size is computed in terms of the

arrival rate J, which is by necessity a forecast. Fortu-

nately the figure shows relatively stable performance for

values of W close to optimal, so errors in forecasts will

probably not have major negative effects on the optimal

policy.

Figure 6 shows the performance of the original ancl

optimal simple merging policies and the snapshot algo-

rithm as a function of video length. Here we fix ths

interarrival time to be 30 seconds. Notice that optimal

simple merging policy always outperforms the original

policy, and the improvement grows ss a function of the

video length. In fact, the performance of the original

207

l\80 Q x.-x Ongmal Simple Mergny Policy

}

I
40

I

Optimal Window Size

30I ,
0 0.5 1 1.5 2 2,5

Window We in Frame+ x 104

Figure 5: Generalized Simple Merging Performance for

Varyin~ Window Si~es

so-
-- a-----x

-.+(--

S5. -- M---
.x---.

~.”

80 - ,x
.

.’
x“

.

!7’ ~’”’~ 70 -x

$’65 - x—x $napahot Algwithm
8
Pmjo.
f

. Optimal Simple Merging Policy

~ 55 - 0--o Original Simple Merging Policy

50-
~-.-.-0-------Q- ---- *--- -e

-e----~--”----
45 .~’

50 100 150 200 250
Video Length m Minutes

Figure6: Comparisons at Varying Video Lengths

l\
\
e

\
\

70
‘Q

o--o Greedy Policy

\
X
~ 60 - ‘h Snapshot Algotithm
u

.
\

\.E
6,

.F
~ 50-
d x-x. ‘-x. ‘m
g %. ‘Q,
S %.
g 40 - %. ‘a

%. ‘e.
~ %.% .&

‘K:x

30- ‘?$
‘&.=ti

=?$..%

20 -?- %
o 50 lW 150 200 250 300 350 400 450 500

lnteramval lime In Saconds

Figure 7: Comparisons for Varying Interarrival Times

simple merging policy is relatively flat. The snapshot

algorithm outperforms both of the other policies, and

the improvement relative to the optimal simple merg-

ing policy remains more or less constant.

Figure 7 shows the performance of the original sim-

ple merging and greedy policies of [5] and the snapshot

algorithm. Again we fix the length of the video to be 2

hours, and vary the interarrival time 7 between 15 and

500 seconds. Notice that snapshot does clearly better

than the greedy algorithm, and this difference is even

more pronounced for higher interarrival times.

Figure 8 shows the performance of the snapshot al-

gorithm as a function of window size W, which we nor-

malize as a fraction of the maximum catchup window

size. Again we iix the length of the video to be 2 hours,

and the interarrival time to be 30 seconds. Recall that

this is important because we do not have a method to

determine the optimal value of W for snapshot. Fortu-

nately, the curve is quite flat in the range we are con-

cerned about.

5 Conclusions

Based on the original idea of Golubchik, Lui and Muntz,

we have in this paper devised and analyzed two piggy-

backing algcwithms for VOD systems. The first is a gen-

eralized version of their simple merging policy, for which

208

0.65

0.8 -

0.75 -

!!

0.7 -

g 0.s5 -

“; 0.6 -

ii

iii’

0.55 -

ii
0.5 -

% 0.45 -

0.4 -

0.s5: 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WIKIOWSize aa Fractionof Catchuo Wincbw Size

Figure 8: Snapshot Performance for Various Window

Sizes

we find the optimal window size. The second is a snap-

shot algorithm based on dynamic programming. The

snapshot algorithm apparently outperforms all existing

policies, while the performance of the optimal simple

merging policy is nearly equal to that of the best previ-

ously known policy.

Some concern has been raised regarding the ease

of implementation of on-the-fly piggybacking schemes,

given current MPEG standards. That is, it may be dif-

ficult to create a fast version of a video in real time from

a slow version. (There certainly exists equipment today

which can vary speeds of videos off-line.) We believe

that the notion of piggybacking is very appealing, how-

ever, especially as an alternative and/or companion to

batchhg. Piggybacking results in improvements similar

to those of batching, and yet does not require additional

latency for customers. Thus piggybacking would seem

to be more in the spirit of VOD. In any case, there is an

alternative to on-the-fly piggybacking. As noted in [5],

one could pre-store on disk fsst speed initial segments

of the most popular videos. Since most of the good ef-

fects of piggybacking will occur early in video showing,

it should be possible to derive most of the benefits, at

the cost of a small amount of additional disk space.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

C. Aggarwal, J. Wolf and P. Yu, “On Optimal

Batching Policies for Video-on-Demand Servers”,

IEEE Multimedia Computing and Systems Confer-

ence, Hiroshima, Japan, 1996.

D. Anderson, “Metascheduling for Continuous Me-

dia”, ACM Bansactions on Computer Sgstems,

vol. 11, No. 3, 1993, pp. 226-252.

T. Cormen, C. Leiserson and R. Rivest, h!roduc-

tion to A/go~ithms, McGraw Hill, 1986.

A. Dan, D. Sitaram and P. Shahabuddin, “Sched-

uling Policies for an On-Demand Video Server

with Batchingn, ACM Multimedia Conference, San

Francisco, CA, 1994, pp. 15-24.

L. Golubchik, J. Lui and R. Muntz, “Reducing 1/0

Demand in Video-on-Demand Storage Servers”,

ACM Sigmettics Conference, Ottawa, Canada,

1995, pp. 25-36.

M. Kamath, D. Towsley D., and Rarnamritham,,

“Buffer Management for Continuous Mdla Shar-

ing in Multi-Me&a Database Systems !l’eclmicai

Report 94-11, University of Massachusetts, 1994.

D. SIeator, R. Tarjan and W. Thurston, “Rotation

Distance, Trkngulations and Hyperbolic Geome-

try”, JACM, 1986, pp. 122-135.

P. Yu, J. Wolf and H. Shachnai, “Design and

Analysis of A Look-Ahead Scheduling Scheme to,

Support Pause-Resume for Video-on-Demand Ap-

plications”, ACM Multimedia Systems Journal,,

vol. 3, No. 4, 1995, pp. 137-150.

209

