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1 Introduction

Using real options theory to account for the value of future development is now

standard in Þnance among both academics and practitioners. It provides a heuris-

tic, intuitively appealing explanation of the real world�s observed deviations from

neoclassical, Tobin�s Q theory of investment. The most notable of these deviations

are market values that exceed book values, often greatly, and investment thresholds

that may signiÞcantly exceed zero net present value. Real options theory, however,

completely ignores the role of competition. The theory�s conclusion that delaying

investment can result in excess proÞts seems to be at odds with what we know about

competition. Competition drives down proÞt opportunities, a fact known even before

Cournot modeled the effect in 1838.

This paper presents an equilibriummodel integrating the two disparate branches of

the economics literature� real options theory and the theory of competition. Recent

papers, most notably Grenadier (2002), have used the Cournot intuition to argue

that competition erodes real option values and reduces investment delays. These

results are difficult to reconcile, however, with important sectors of the economy.

Option premia are signiÞcantly positive and Þrms delay investment in some highly

competitive industries. Titman (1985) illustrates this with a simple example: empty

lots in city centers. Real estate is a highly competitive industry with many players, yet

owners sometimes choose not to build on property that could certainly be developed

proÞtably. Instead, as Titman argues, the value of a lot derives from the option to

develop, and owners sometimes delay building believing that the lot can be developed

more proÞtably later.

The analysis presented in this paper shows that in a competitive industry Þrms

can actually deviate more from neoclassical behavior than the standard real options

analysis predicts. In particular, Þrms may delay irreversible investment longer, and

invest only at signiÞcantly positive option premia.

Grenadier�s result� that competition erodes option values and pushes Þrms back

to the zero NPV investment rule� is a consequence of the type of industry he models,

one in which the production technology is linear and incremental. In his paper Þrms

may add capacity in arbitrarily small increments without suffering any adjustment

costs. Option values and behavior in the real estate market example, and in many

other industries, differ from Grenadier�s predictions because undertaking investment

often entails opportunity costs, and because Þrms vary in scope and size. We show
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in this paper that in industries in which opportunity costs and heterogeneity are

important real option values are signiÞcant, investment decisions are delayed, and

investment is lumpy.

Since Hotelling�s (1929) seminal paper it has been well understood in economics

that demand side heterogeneity can reduce competition. The whole concept of hori-

zontal product differentiation is predicated on the idea that variations in tastes allow

Þrms to segment the market, compete less, and extract more of the consumer surplus.

Heterogeneity can also provide a natural ordering to agents� actions. We do not all

buy new computers, or cars, at the same time at least in part because those of us

with older, obsolete models are more likely near term buyers than those with newer,

contemporary models.

This paper shows that supply side heterogeneity can reduce competition as well.

When heterogeneity extends to costs or proÞtability it is a wedge that breaks the

idea of �perfect competition,� even when Þrms are perfectly competitive. In the real

estate example considered previously, a large number of Þrms compete vigorously, yet

heterogeneity prevents them from all competing directly over any investment oppor-

tunity. When the owner of the empty lot considers putting up a thirty-story office

tower she is not competing with the owner of the Þfteen-story apartment complex

next door. The opportunity costs to the owner of the Þfteen-story apartment com-

plex, which include walking away from the existing building, effectively preclude her

from competing with the owner of the empty lot. The owner of the Þfteen-story

apartment complex however still possess a valuable option to compete over invest-

ment opportunities in the future. If the city grows there may be demand in the future

for a new sixty-story office tower. If at that time all the empty lots are developed

the owner of the Þfteen-story apartment complex may have low enough opportunity

costs to compete.

We develop a model in which Þrms are heterogeneous, incur opportunity as well as

variable costs to altering capacity, and face aggregate uncertainty regarding demand

for their output, the price of which is determined endogenously and is a function of

Þrms� investment decisions. We Þnd that even with an inÞnite number of competitive

Þrms, option pemia are signiÞcant and Þrms optimally delay irreversible investment,

choosing not to undertake some positive NPV projects.

The Cournot intuition that competition should drive Þrms to invest earlier is com-

pelling, so our result that competition can lead Þrms to delay investment longer is

somewhat surprising. This result derives from the endogenously determined equilib-
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rium price of Þrms� output. We show that the price of Þrms� output is negatively

skewed because aggregate industry capacity responds asymmetrically to changing de-

mand. Firms can add capacity quickly in response to rising demand, but cannot

adjust capacity as quickly to falling demand due to investment irreversibility. As a

result, increasing supply attenuates positive demand shocks, which are only partially

translated into prices, while negative demand shocks are translated into prices more

fully. As Dixit (1999) shows, negative skewness leads Þrms to delay investment. Firms

have a stronger incentive to delay investment when large drops in the price of Þrms�

output are more likely.

Because these large drops in the price of Þrms� output result from Þrms adding

capacity they are, ipso facto, most likely when Þrms choose to develop. In fact, Þrms

always add capacity expecting prices to fall. That is, while capacity added immedi-

ately prior to large price drops might look, ex post, like overbuilding, its development

was in fact ex ante optimal. We analytically construct forward curves for the price

of Þrms� output to explore such implications of negative skewness in greater detail.

We also derive closed form expressions for Þrm value as a function of the price

of Þrms� output and current aggregate industry capacity. This allows us to make

predictions about stock returns. Stock returns are a combination of the returns to

Þrms� ongoing projects and their growth options. Away from historic highs in the

price of Þrms� output, aggregate capacity is unlikely to increase so the return to

Þrms� output exhibits little skew. This translates into positive skew in stock returns

because the option component of Þrm value is convex in the price of Þrm output.

When the price of Þrms� output is high the effect of increasing aggregate capacity

dominates and stock returns exhibit negative skew. This provides a hitherto untested

empirical prediction: skewness in stock returns should vary over the business cycle.

Stock returns should be negatively skewed during expansions, but positively skewed

in recessions.

After reviewing the related literature, the remainder of the paper is organized as

follows. Section 2 introduces the basic model. Section 3 demonstrates the equilibrium

strategy. The section begins by discussing the intuition and the general form of the

strategy before characterizing the strategy explicitly. Section 4 discusses implications

of the analysis, including properties of the equilibrium price process. We also compare

the equilibrium exercise strategy to the standard, partial equilibrium strategy in

detail. Section 5 concludes.
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1.1 Review of Related Literature

Several papers have considered the effects of competitive interactions on real options.

Smets (1991), Grenadier (1996), Garlappi (1999), and Lambrecht and Perraudin

(2002) have considered duopolistic settings; Leahy (1992) and Williams (1993) per-

fect competition; and Grenadier (2002) the intermediate case. In all of these papers

competition leads agents to exercise options earlier than would a strategic monopolist

who accounts for the price impact of her own option exercise strategy.

The essential intuition that equilibrium supply responses to demand shifts result

in a price asymmetry that can lead Þrms to delay investment longer was recognized by

Dixit (1999). Earlier Leahy (1992) noted that a competitive Þrm�s free entry threshold

can resemble a monopolist�s option-value threshold. In both of these papers options

premia are forced to zero by competition, however, and the delay in investment they

consider is not a real options effect.

Irreversible investment in the presence of competition has been studied more ex-

tensively in industries with incremental, linear cost production technology. However

this production technology essentially precludes positive option values or signiÞcant

investment delays. Studies of this type include Leahy (1993), Caballero and Pindyck

(1996), Kogan (2001), and Grenadier (2002).

Several authors have performed empirical tests of real options theory in the pres-

ence of competition. Real options theories are notoriously difficult to test empirically,

however, because testable hypotheses generally require data that are largely unavail-

able. As a result, empirical tests are concentrated in industries where the theory

predicts large deviations from neoclassical behavior, such as natural resource extrac-

tion and the commercial real estate market, both industries in which new investment

entails high adjustment costs. Early tests include Paddock, Siegel and Smith�s (1988)

investigation of the pricing of offshore petroleum leases and Quigg�s (1993) investiga-

tion of commercial real estate pricing. More recently Harchaoui and Lasserre (1999)

have looked at copper mining, while Holland, Ott and Riddiough (2000), and Down-

ing and Wallace (2001) have further investigated commercial real estate markets. The

results of these papers are generally consistent with the predictions of real options

theory: the authors Þnd positive option premia and signiÞcant investment delays.
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2 The Model

In this model the deÞning characteristic of a �Þrm� is ownership of productive capital.

A Þrm�s ongoing assets, or installed �capacity,� costlessly produce a good (or service)

ßow. A Þrm is able to produce a ßow of the good in proportion to its capacity.

This good may then be sold in a competitive market at the instantaneous price Pt

that clears the market. The total instantaneous cash ßow to a site with capacity q,

excluding development costs, is therefore simply q · Pt.
Following the literature we assume that the market clearing price for Þrms� output

satisÞes an inverse demand function of a constant elasticity form,

Pt = Xt ·Q−1/αt , (1)

where Qt is the instantaneous aggregate supply of the good, Xt is a multiplicative

demand shock, and α is the price elasticity of demand.1 This formulation is equivalent

to assuming that prices are set by market clearing and demand is time varying but

has constant elasticity with respect to price. That is, demand is given by

Dt = X
α
t · P−αt , (2)

where Xα
t is stochastic and may be thought of as demand in a world in which the good

has unit price. The multiplicative demand shock is assumed to evolve as a geometric

Brownian motion. That is,

dXt = µXtdt+ σXtdzt (3)

where µ and σ are constant.

At any time a Þrm may increase capacity by developing. Development, which may

be undertaken repeatedly, entails two costs, the investment cost, which is the direct

cost of development, and an opportunity cost.2

1Because projects produce the good in proportion to their capacities, we will use Qt to denote

both the instantaneous aggregate supply of the good and the aggregate capacity to produce the

good.
2While our focus is on the role of competition, allowing for Þrms that incur opportunity as well as

investment costs to increase capacity repeatedly is itself a departure from the standard real options
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The investment is the cash outlay required to undertake the new project. For

example, when a personal computer manufacturer retools a production line for a new

model it incurs costs. Likewise, when the owner of a small tenement in Manhattan

decides to redevelop her property she incurs the direct construction costs of building

a new office tower.

The direct cost of development depends on the scale of the undertaking. Continu-

ing the previous examples, it is more expensive to set up a production line to produce

a million computers a year than it is to set it up to produce a hundred thousand

computers; likewise, it is more expensive to build a sixty-story office tower than it is

to build a thirty-story office tower.

We model the cost of investment as Cobb-Douglas with increasing costs-to-scale,

multiplied by a unit construction cost which may be changing over time.3 That is,

the direct cost of developing capacity q∗ is ct · q∗γ , where γ > 1 and the �construction
cost� process ct is stochastic. We will always use ct as numeraire, in which case the

cost of developing capacity q∗ is simply q∗γ .
Opportunity costs result because the new investment dammages the Þrm�s ongo-

ing business. In the examples above, for instance, undertaking the new project entails

a signiÞcant loss in value of the ongoing assets. When the computer manufacturer

introduces the new model it effectively kills demand for the old model. The man-

ufacturer must consider this lost revenue in her investment decision. The owner of

the Manhattan tenement is in much the same position. Before putting up the office

tower she must Þrst raze the tenement, foregoing future rents.

The opportunity cost to undertaking investment is largely independent of the

literature with important implications for optimal investment choice. Retaining development rights

leads to higher option values, and to Þrms developing sooner but to lower capacities than they would

if they were only able to develop once. For a more detailed discussion of the impact of retaining

development rights see Novy-Marx (2002), available at http://faculty.haas.berkeley.edu/marx/, or

Williams (1997).
3In a world with Þxed capacity the earlier assumption of a geometric Brownian demand is equiv-

alent to assuming a geometric Brownian price process. The joint use of geometric Brownian prices

with a Cobb-Douglas cost of development has recently been criticized in Capozza and Li (2002), on

the grounds that it always results in agents developing either immediately or never. Their argu-

ment is predicated implicitly on the additional assumption, inconsistent with the models they are

critiquing, that development entails no additional costs. Models that have jointly used geometric

Brownian prices and Cobb-Douglas costs have assumed additional adjustment or opportunity costs

to development, and these models implicitly recognize that if adjustment costs go to zero agents

build immediately or never (see, for example, Williams (1991)).
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scale of the undertaking. The computer manufacturer kills demand for the old model

whether it produces a hundred thousand units or a million units of the new model,

and the tenement owner must raze the existing building irregardless of the size of the

new office tower.

The opportunity cost is modeled here as a fractional loss of the value of projects

currently in place. We assume for convenience that the fractional loss from adjustment

is one, i.e., that development entails abandonment of the ongoing project. This

assumption simpliÞes the analysis, but with modiÞcation the analysis presented in

this paper applies to any other choice.4

We assume, for the sake of simplicity, that cash ßows are valued in a risk-neutral

framework, discounted at a constant risk-free rate r.5 Firms are then priced at the

expected value of future revenues, less investment costs, all discounted appropriately

for the time value of money.6

Finally, we would like to capture the fact that in reality Þrms vary greatly in scope

and size. Even Þrms in the same industry differ tremendously. While Boeing and

Airbus both manufacture planes, and presumably face similar investment costs to

developing a new jumbo jet, it is almost inconceivable that Boeing would undertake

such development before Airbus. Boeing, with a large existing business selling 747s,

faces enormous opportunity costs to introducing a new jumbo, while Airbus makes

no jumbos and consequently has low opportunity costs to such an undertaking.

One of the most important ways in which Þrms differ is in the size of their market

shares. In the previous example the size of the Þrms� jumbo jet businesses determined

their opportunity costs. It is along this dimension that we choose to model hetero-

geneity. Because opportunity costs are proportional to the scale of a Þrm�s ongoing

project, this is really an assumption of heterogeneous costs to adjusting capacity.

That is, while Þrms are homogenous in the cost of investing, they differ with respect

to the opportunity cost to undertaking investment. It is precisely this heterogeneity

that limits competition.

We model the initial heterogeneity as a sort of natural variation in Þrm size.

4Assuming that development entails abandonment makes solving a Þxed-point problem that arises

in the course of the analysis particularly simple.
5The risk-neutral assumption is effectively equivalent to exogenously imposing a trivial pricing

kernel on the economy.
6The reader may choose to think of Þrms as risk averse, with the valuation performed under a risk-

neutral measure. The evolution of all processes are of course then also under the same risk-neutral

measure.
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Firm size initially follows Zipf�s law, with Þrms distributed uniformly with respect

to log-capacity between the smallest and largest Þrms in the industry. Firm size,

and consequently Þrm heterogeneity, then evolves endogenously as a result of Þrms�

equilibrium investment decisions.

3 Determination of the Equilibrium Strategy

We would like to value Þrms, and to do so we must determine Þrms� optimal equilib-

rium investment strategy. A Þrms needs to account for the actions of its competitors

when determining its optimal investment strategy. Firms produce a good that they

sell in a competitive market at the market clearing price, which is determined by

supply and demand. While demand is exogenous, supply is endogenous, resulting

from Þrms� investment decisions.7 Firms consequently must invest strategically, ac-

counting for the investment strategy of other Þrms in the industry and the impact of

other Þrms� investment decisions on prices.

3.1 Overview of the Equilibrium Strategy Argument

To demonstrate an equilibrium strategy we must establish two major elements. The

Þrst is to hypothesize a strategy and determine the resulting price process conditional

on all Þrms following the strategy. The second is to show that conditional on the

resultant price process the optimal strategy is the hypothesized strategy.

The fastest way to establish these elements is to simply start by hypothesizing

the equilibrium price process. While starting in this manner would be sufficient to

demonstrate the existence of an equilibrium strategy, it is more informative Þrst to

complete some preliminary work motivating the hypothesized strategy. The argument

used to motivate the strategy will also establish a limited uniqueness of the develop-

ment strategy. In particular, the argument will demonstrate that there is a unique

equilibrium strategy for which the return process for the price of Þrms� output has

some natural stationary properties. The argument yielding this equilibrium exercise

strategy is brießy outlined below.

We start by showing that, for a class of processes for the price of Þrms� output,

7Supply is determined purely by Þrms� investment decisions because in the model Þrms never

idle capacity; as they are small (price takers) and able to produce the good costlessly, they operate

at full capacity.
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Þrms will only build at price maxima. Hypothesizing that the equilibrium price

process is in this class, we decompose the value of an arbitrary project into two parts:

the value of the cash ßows until prices return to the historical maximum, and the

present value of the Þrm on that date. Because Þrms do not develop below the price

maximum the price of Þrms� output has the same evolution as the demand process,

and we use this fact to calculate the Þrst part explicitly. This reduces the valuation

of any Þrm to the valuation of the Þrm at price maxima.

We then decompose the value of the Þrm at a price maximum into two parts: the

value of the cash ßows until the Þrm is ready to increase capacity, and the present

value of the Þrm on that date. Because other Þrms add capacity before the Þrm in

question the price of Þrms� output does not evolve like demand on the interval in

question. Explicit valuation of the two parts requires, therefore, a further investi-

gation of the price process. Using a general property of Þrm value, implied by cash

ßow considerations, we are able to restrict the class of investment strategies that may

be optimal. Assuming that all Þrms follow a strategy in this class we determine the

evolution for the price of Þrms� output. Using this conditional price process we then

complete the decomposition of Þrm value into the value of the cash ßows until the

Þrm is ready to increase capacity, and the present value of the Þrm on that date. The

calculation is complicated, however, by two factors: the equilibrium price process is

not It�o, confounding attempts to directly apply standard solution techniques, and

allowing Þrms to add capacity repeatedly introduces a further complexity for which

the literature provides no guidance. We introduce techniques to solve both these

problems.

We demonstrate the optimal investment strategy for a Þrm that takes, as given,

the conditional evolution of the price of Þrms� output. This strategy is in the class we

assumed to derive the conditional evolution of prices, and is, therefore, an equilibrium

strategy. If all other Þrms follow the strategy then following the same strategy is a

Þrms optimal response.

The following sections develop the argument more thoroughly, and are arranged

as follows. Section 3.3 makes mild assumptions about the equilibrium price process,

which are veriÞed later, and shows that under these assumptions Þrms will only add

capacity when the price of the good they produce is high. Section 3.4 decomposes

the value of an arbitrary Þrm into two parts: the value of cash ßows until the price

of Þrms� output returns to its historical maximum and the value of the cash ßows

after that time. It then further decomposes the value of a Þrm at a maximum in the

9



price of the good it produces into two parts: the value of cash ßows until the Þrms

is ready to add capacity, and the value of the cash ßows after that time. Section 3.5

uses standard techniques and the functional form for Þrm value derived in section

3.4 to demonstrates explicitly Þrms� optimal equilibrium investment strategy. It also

provides a closed form solution for the value of an arbitrary Þrm. To avoid excessive

digression, all proofs of propositions are left for the appendix.

3.2 Preliminaries

The equilibrium concept employed in this paper is Markov perfect. A Markov perfect

equilibrium is one in which both 1) the past only matters through its effect on the

current level of payoff relevant state variables, and 2) the strategies result in a Nash

equilibrium in every proper subgame. For a further discussion of the Markov perfect

equilibrium concept see Fudenberg and Tirole (2000). Because every Markov perfect

equilibrium is Nash the casual reader may choose to interpret equilibrium using that

concept.

3.3 Restricting the Scope of Study

We begin the analysis by noting that under some mild, reasonable assumptions about

the equilibrium evolution of the price of Þrms� output, Þrms will only choose to add

capacity when the price of the good they produce is �high.� In fact, Þrms will only

increase production when the price of their output is at historically high levels. This

Þnding is generally consistent with what we observe in real industries: high output

prices spur investment while low output prices discourage investment.

The intuition underlying this Þnding is quite natural. A Þrm will not choose to

add capacity when the price of its output has dropped because any investment it

considers undertaking at this time could have been undertaken more proÞtably when

prices were higher. Because the Þrm optimally chose not to invest at the earlier, more

proÞtable date it will not invest now that it is less proÞtable. The next proposition

formalizes this concept. The statement of the proposition is simpliÞed by the following

deÞnition. We will call a process Pt �semi-Markov� if the instantaneous evolution of

the process depends only on Pt whenever Pt < P t, where P t denotes the maximum of

the process up to time t. That is, a process is semi-Markov if, away from its maxima,

its instantaneous evolution depends only on its level.
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Proposition 3.1 Suppose the price of Þrms� output is continuous and semi-Markov.

Then a Þrm will only develop at a price maximum.

If no development occurs below maxima in the price of Þrms� output, then the

price of Þrms� output follows a geometric Brownian motion below the price maximum.

While no development occurs aggregate capacity is Þxed. The price response to

changing demand in a Þxed capacity economy is a standard problem. In the absence

of a supply response, demand shocks are translated directly into price shocks. We

have, therefore, the following corollary to Proposition 3.1, under the assumption that

the conditions of the previous proposition hold, which we will verify later.

Corollary 3.1 The price of Þrms� output evolves as a geometric Brownian motion

away from its maxima.

3.4 Firm Value Decomposition

We can think of Þrm value as consisting of two parts: the value of the cash ßows

received up until the time that the price of Þrms� output returns to its historical

maximum, and the value of the cash ßows received after this time. The second part,

the value of the cash ßows received after prices return to their historical maximum,

is the present value of receiving the Þrm at that date. This second part may be

conceptualized in terms of Þnancial instruments. It is a contract for forward delivery of

the whole Þrm on the day the price of Þrms� output returns to its historical maximum,

delivered at a price of zero.

Thinking of Þrm value as consisting of these two parts, we can write the value of

a Þrm as follows. Let V (q, Pt, P t) denote the value of a Þrm with capacity q when

price of Þrms� output is Pt and the all-time price high is P t. Then

V (q, Pt, P t) = E t

∙Z τPt

t

e−rsqPsds+ e
−rτPtW (q, P t)

¸
, (4)

where τP t denotes the stopping time for the Þrst passage of the price process back

to its historical maximum, and W (q, P t) is shorthand for the value of a Þrm with

capacity q when the price of Þrms� output is at its historical maximum, which is P t.

That is, τP t ≡ min{s ≥ t |Ps = P t} and W (q, P t) ≡ V (q, P t, P t). We will refer to

W (q, P ) as the �value-at-max� function.
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The Þrst term in the expectation on the right hand side of the previous equation,

E t

hR τPt
t e−rsqPsds

i
, is the value of the cash ßows received up until the price of Þrms�

output returns to its historical maximum. The second term, E t

£
e−τPts

¤
W (q, P t), is

the present expected value of receiving the Þrm on that date but not receiving any of

the intervening cash ßows, where we have used the fact thatW (q, P t) is nonstochastic

to take it outside the expectation.

Evaluating the right hand side of equation (4) is standard in the literature, at

least under the restriction µ < r. This is a technical issue. While we make no

such restriction here conceptually the valuation is unchanged, and is provided by the

following proposition:

Proposition 3.2 The value of a Þrm with capacity q when the price of Þrms� output

is Pt and the all-time high in the price of Þrms� output is P t is given by

V (q, Pt, P t) =

Ã
πqPt −

µ
Pt

P t

¶β
πqP t

!
+

µ
Pt

P t

¶β
W (q, P t), (5)

where π = 1
r−µ and β =

q
( µ
σ2 − 1

2
)2 + 2r

σ2 − ( µσ2 − 1
2
).

The Þrst term on the right hand side is, again, the value of the cash ßows received

up until the price of Þrms� output returns to its historical maximum; the second term

is the value of receiving the Þrm on that date, but not receiving any of the intervening

cash ßows. Note that Þrm value is expressed in terms of known quantities, except

for W (q, P t), which is unknown. We now turn our attention to the calculation of

W (q, P t), the value of the Þrm at the time the price of Þrms� output returns to its

historical maximum.

3.4.1 Firm Value at a Maximum in the Price of Firms’ Output

We will now decompose the value of the Þrm at a historic high in the price of Þrms�

output in exactly the same way we previously decomposed the value of a Þrm at an

arbitrary price level. At a maximum in the price of Þrms� output the value of the Þrm

consists of two parts: the value of the cash ßows received up until the moment before

the Þrm increases capacity, and the value of all the cash ßows after this time. The

second part, the value of receiving all cash ßows from the moment the Þrm decides

to increase capacity, is the present value of receiving the Þrm at that time. Again, in

terms of Þnancial instruments, the second part is a contract for forward delivery of
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the Þrm on the day the Þrm will be developing new capacity, at a delivery price of

zero.

Thinking of Þrm value at a historic high in output prices as consisting of these

two parts, we can write the value of a Þrm as follows:

W (q, Pt) = E t

∙Z τP∗q

t

e−rsqPs ds+ e
−rτP∗q W

¡
q, P ∗q

¢¸
, (6)

where P ∗q denotes the price level at which the Þrm optimally increases capacity, and

τP ∗q denotes the Þrst passage of the price process to this exercise boundary, τP∗q ≡
min{s ≥ t |Ps = P ∗q }.
At this point we encounter a complication: we do not know how the price of

Þrms� output evolves. Earlier, when we were considering the value of a Þrm as the

value of cash ßows before and after the price of Þrms� output returned to the historical

maximum, we could easily evaluate the two parts. Below the price maximum capacity

was Þxed, so we knew prices evolved, like demand, as a geometric Brownian process.

Knowing the evolution of prices allowed us to calculate values explicitly.

At maxima in the price of Þrms� output, however, aggregate capacity in not Þxed,

so we do not know how the price of Þrms� output evolves. Without knowing this

evolution it is impossible to evaluate equation (6). We must determine the equilibrium

evolution of the price of Þrms� output, therefore, before attempting the evaluation.

3.4.2 The Price of Firms’ Output

At the price maxima aggregate supply responds to positive demand shocks, so prices

do not evolve as does demand. Because of this supply effect we need to consider

changes to supply as well as demand to determine the evolution of prices.

The inverse pricing function relates the price of Þrms� output to supply and de-

mand i.e., relates prices Pt to aggregate industry capacity Qt and the multiplicative

demand shock Xt:

Pt = Xt ·Q−1/αt .

The demand multiple, Xt, and the price elasticity of demand, α, are known, but we

are still left with an underdetermined system: a single equation with two unknowns.
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We need another condition that relates the price at which Þrms can sell their output

to aggregate industry capacity. We are able to derive another condition relating the

price of Þrms� output to industry capacity by considering the following choice.

Suppose the rental rate for office space in downtown Manhattan and downtown

Houston follow the same process, but that rents are twice as high in Manhattan.

Suppose further that, as a result of the complexities involved in constructing a large

building on a small plot of land, the cost of building is convex in the size of develop-

ment. Let us assume, for the sake of simplicity, that the cost of building is quadratic

in size. The choice we need to consider is the following: should one prefer to own

a single twenty-story office tower in Manhattan, or four ten-story office towers in

Houston?

The two sets of properties produce identical current cash ßows. Forty stories

in Houston generate the same rental income as twenty stories in Manhattan, where

rents are twice as high. Because the current cash ßows are the same, the choice is

determined by the value of future development opportunities.

Now suppose that at some future time the owner of the Manhattan property

optimally redevelops the property to forty stories. At that time the owner of the

Houston properties can redevelop all four properties to twenty stories at the same

cost. Because costs are quadratic in size, developing to half the size costs one quarter

as much. Developing four properties each at one quarter the costs results in the same

total cost of development. The situation is also symmetric. An analogous argument

shows that the owner of the Manhattan property can replicate the cash ßows of the

Houston properties exactly, including the cost of new development, at all times.

One should be completely indifferent, therefore, between the Manhattan property

and the Houston properties. Because the owner of one set of properties can exactly

replicate whatever cash ßows the owner of the other set of properties receives, the

two sets of properties must have the same value. The following proposition formalizes

this idea.

Proposition 3.3 Suppose that the evolution of the log-price process only depends on

the ratio of the price to the price maximum, i.e., that the instantaneous return depends

only on P/P . Then the value-at-max function has the following scaling property:

W (q, P ) = qγW (1, q(1−γ)P ). (7)

There was nothing special, however, about our choice of Houston. You can think
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of Houston as New York in the past, when rents were half of what they are today. In

otherwords, we should also be indifferent between holding a single building at today�s

high rents, or multiple smaller buildings at lower rents some years in the past.

This yields a dynamic relation between yesterday�s investment decisions and in-

vestment today, and between today�s investment decision and investment tomorrow.

Consider the example above, but replace the owner in today�s Houston with an owner

in �old New York.� The owner of the twenty-story building in today�s New York op-

timally redevelops her property to forty stories when rents reach twice the level at

which the owner of the ten-story properties in �old New York� optimally redeveloped

to twenty stories. Now the two owners, one in �old New York� and one in New York

today, could actually be the same owner at two different points in time. That is, the

owner who initially developed from ten stories to twenty stories redevelops again to

forty stories, optimally, when rents double. Following the same line of reasoning we

can show that she will optimally redevelop in the future, again to twice the capacity,

when rents double again.

The scaling condition on the value function imposes a general form on the optimal

strategy. In particular, Þrms will develop to a Þxed multiple of existing capacity

whenever the price of their output reaches some Þxed multiple of the price at which

they last undertook development. The following proposition formalizes this concept.

Proposition 3.4 Suppose the price process is continuous and that the evolution of the

log-price of Þrms� output only depends on the ratio of the price to the price maximum,

i.e., that the instantaneous return depends only on P/P . Then a Þrm that owns a

project with existing capacity q will optimally redevelop to capacity q · q∗1 when prices
reach q(γ−1) · P ∗1 , for some q∗1 > 1 and P ∗1 > 0 that are independent of q.

The strategy in Proposition 3.4 entails developing to a Þxed multiple q∗1 times
existing capacity at price multiples of q

∗(γ−1)
1 . Proposition 3.4 also reduces the explicit

characterization of the optimal investment strategy of any Þrm to solving for the

capacity to which a Þrm with existing capacity one optimally develops. A Þrm with

existing capacity one optimally develops to capacity q∗1 when the price level reaches
P ∗1 , which motivates the notation.

8

8In Proposition 3.4 q∗1 is unitless. In an abuse of notation, made for the sake of convenience,
we have also used q∗1 to denote the capacity to which a Þrm with existing capacity one optimally

develops. We will use q∗1 to denote both the unitless development multiple and, when convenient,
�the capacity 1 times the unitless factor q∗1 .� The meaning will always be clear from the context.
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Recall that we were looking for a second equation relating aggregate industry

capacity to the price of Þrms� output. The fact, provided by Proposition 3.4, that

Þrms develop to a Þxed multiple q∗1 times existing capacity at price multiples of q
∗(γ−1)
1 ,

allows us to generate the additional relation we need.

We do not yet know q∗1 explicitly, but we can consider the evolution of aggregate
industry capacity conditional on all Þrms following a strategy of the general form

suggested by Proposition 3.4. That is, we will assume Þrms develop to some Þxed,

arbitrary multiple κ times existing capacity when the price of Þrms� output reaches

κ(γ−1) times the price at which they last increased capacity.
The intuition underlying the aggregate capacity process can be described as fol-

lows. Firms that have added capacity recently are less likely to undertaken near-

term investment than Þrms that have not added capacity recently. Smaller capacity

projects were developed farther in the past, while larger capacity projects were de-

veloped more recently. Because the opportunity costs to developing are lowest to the

Þrm with the smallest ongoing project, this Þrm will be the next to add capacity. At

the time it does so it leap-frogs all other Þrms in the size of existing capacity, be-

coming the largest Þrm in the industry. Because only the low-cost Þrm adds capacity

at new price highs, aggregate capacity is incremental even though the investment of

individual Þrms is lumpy. While aggregate capacity is incremental, it is not smooth:

most of the time aggregate capacity is unchanging, but occasionally bursts in invest-

ment activity cause aggregate capacity to adjust very quickly. The aggregate capacity

process is given explicitly in the following proposition.

Proposition 3.5 Suppose Þrms follow a strategy of developing to a Þxed multiple κ

times existing capacity when the price of Þrms� output reaches κ(γ−1) times the level at
which they previously developed capacity. Further suppose that the initial distribution

of Þrm sizes follows Zipf�s law, and that the prices at which Þrms developed to their

current sizes is consistent with the development rule in Proposition 3.4.9 Then aggre-

gate capacity is related to the price of Þrms� output shock by the following equation:

Qt =

µ
P t

P 0

¶( 1
γ−1

)

Q0.
10 (8)

9That is, we are supposing that the initial distribution of capacities and development prices are

log-uniform: initially distributed ((ξ/κ) · qmax0 , (ξ/κ)(γ−1) · P0) where lnκ ξ is distributed uniformly

on (0,1]. (See appendix.)
10That aggregate capacity evolves in a manner independent of the speciÞc choice of κ is quite
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Proposition 3.5 provides a second equation relating the price of Þrms� output to

capacity and, in conjunction with the inverse pricing equation, allows us to solve for

the evolution of the equilibrium price process. Taking the inverse pricing equation

at a maximum in the price of Þrms� output, and substituting into equation (8), we

can determine explicitly the price of the Þrms� output as a function of the demand

process. The price process is given explicitly in the following proposition.

Proposition 3.6 Suppose that the conditions from Proposition 3.5 hold. Then the

price of Þrms� output is related to the multiplicative demand shock by the following

equation:

lnPt = lnP0 +
α(γ − 1)

1+ α(γ − 1) lnX t − (lnX t − lnXt). (9)

The log-price process follows �attenuated geometric Brownian motion.� Below

historic highs in the price of Þrms� output capacity is Þxed, so the instantaneous

evolution of the price process is the same as the evolution of the multiplicative demand

shock. Below price highs the only term that changes in the right hand side of equation

(9) in response to a demand shock is lnXt, so prices change in exactly the same

way as demand. At historic highs, however, positive demand shocks result in a

supply response that mitigates the effect on prices. Because at these times Xt = Xt

the (lnXt − lnXt) term in equation (9) disappears, and positive demand shocks are

translated into upward movements in the log-price process attenuated by the factor
α(γ−1)
1+α(γ−1) , which is less than one.
Now that we know the price process we are ready to reconsider the decomposition

of Þrm value into the value of cash ßows received up until the time at which the Þrm

is ready to increase capacity and the value of the cash ßows from that time on. Before

doing so, however, we must note an important feature of the price process provided

by equation (9).

The price of Þrms� output satisÞes the conditions of Proposition 3.4: it is con-

tinuous and the distribution of instantaneous returns only depends on the ratio of

remarkable. This independence is particular to our modeling opportunity costs as abandonment

of ongoing assets. If we choose to model opportunity costs as some other fractional loss f of

the value of assets in place, we would need to replace 1
γ−1 in the exponent of equation (8) with

1
γ−1 (1 + lnκ(1 +

1−f
κ )). The rest of the analysis presented in this paper does not depend on the

choice of abandonment, but this choice simpliÞes a Þxed point problem we need to solve in the course

of the analysis.
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the price to the price maximum.11 We derived this process for price of Þrms� output

under these same assumptions. As a corollary of Proposition 3.6 we have, therefore,

the general form of the equilibrium strategy.

Corollary 3.2 For some q∗1 > 1 and P ∗1 > 0 the strategy from Proposition 3.4 of

redeveloping existing capacity q to q ·q∗1 when prices reach q(γ−1) ·P ∗1 is an equilibrium

strategy. If all Þrms follow the strategy, no Þrm has an incentive to deviate.

We would like, of course, an explicit characterization of the strategy. That is, we

would like to calculate the speciÞc q∗1 and P
∗
1 in Proposition 3.4 for the price process

given by equation (9). We will be able to calculate these explicitly, but to do so

actually requires that we Þnish our decomposition of Þrm value at a maximum in the

price of Þrms� output. We return now to this calculation.

3.4.3 Firm Value at a Maximum in the Price of Firms’ Output, Redux

Recall that the value of a Þrm, when the price of Þrms� output is at a historical high,

may be written as the expected value of cash ßows received up until the date of the

next development, plus the present expected value of receiving the Þrm at that date,

but none of the intervening cash ßows. That is, we can write Þrm value as

W (q, Pt) = E t

∙Z τP∗q

t

e−rsqPs ds
¸
+E t

h
e
−rτP∗q

i
W
¡
q, P ∗q

¢
, (10)

where P ∗q denotes the price level at which the Þrm optimally increases capacity and

τP ∗q denotes the Þrst passage of the price process to this exercise boundary, τP∗q ≡
min{s ≥ t |Ps = P ∗q }, and we have used the fact that P ∗q is non-stochastic to take
W
¡
q, P ∗q

¢
out of the expectation.

While we now know the evolution of the price of Þrms� output, calculating the

value of each of the parts is still non-trivial, because the price of Þrms� output is not

an It�o process. This prevents us from directly applying the standard machinery of

continuous time Þnance as we could with the Þrst price decomposition. Nevertheless,

we are able to Þnd closed form solutions for the value of each of the parts.

Calculation of the Þrst term is simpliÞed by thinking of the intermediate cash ßows

to the Þrm as resulting from a portfolio of two perpetual cash ßows, one held long

11The evolution of the log-price process depends on the ratio of price to price maximum in a

simple, binary way. It only depends on whether the ratio is one or less than one.
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and the other held short. Suppose you owned a portfolio that was 1) long a perpetual

cash ßow equal to the revenue generated by a project of Þxed and immutable capacity

q, (i.e., a project of capacity q that may not be expanded) and 2) short a contract

for delivery of these same cash ßows, deliverable at the moment the actual Þrm in

question is ready to increase capacity and at a delivery price of zero. Because the

actual Þrm in question is not going to alter capacity over the time frame in question,

the portfolio described generates the same cash ßows as the Þrm up to the moment

of development. After development the portfolio delivers zero cash ßows, as the long

and short positions cancel. This is precisely the cash ßow we are trying to value.

We can derive an expression for the value of the perpetual cash ßows from a project

of Þxed and immutable capacity q using the following observation: the evolution of

the log-price of Þrms� output is independent of the level of prices. The value of the

perpetual cash ßow on the day that prices Þrst double today�s prices is, therefore,

double the value of the perpetual cash ßow today. Using this fact we can write the

intermediate cash ßow part of the Þrm�s value as

E t

∙Z τP∗q

t

e−rsqPs ds
¸
= E t

∙Z ∞

t

e−rsqPs ds
¸
−E t

h
e
−rτP∗q

i µP ∗q
Pt

¶
E t

∙Z ∞

t

e−rsqPs ds
¸
. (11)

The Þrst term on the right is the value of a project with capacity q that may not be

expanded, the second term is the present value of those same cash ßows starting the

day the actual Þrm in question decides to increase capacity.

We can simplify the previous equation with the following deÞnition. Let Π be the

dollar price of a unit cash ßow, at today�s price, derived from a ßow of the Þrm�s

output. That is, Π ≡ E t

hR∞
t
e−rs Ps

Pt
ds
i
. Using this deÞnition we can rewrite the

previous equation as

E t

∙Z τP∗q

t

e−rsqPs ds
¸
= Π q Pt −E t

h
e
−rτP∗q

i
Π q P ∗q . (12)

We can see from equation (12) that valuing of the Þrm�s cash ßows up until the

time the Þrm increases capacity, i.e., the Þrst term in the price decomposition equation

(equation (10)), reduces to calculating E t

h
e
−rτP∗q

i
, the value of the Arrow-Debreu

security that pays a dollar when the price of Þrms� output Þrst reaches P ∗q , and Π,
the dollar price of a unit cash ßow derived from a ßow of the good.

First we will calculate E t

h
e
−rτP∗q

i
, the value of the Arrow-Debreu security that

pays a dollar when the price of Þrms� output Þrst reaches P ∗q . While we cannot apply
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the standard machinery directly to price E t

h
e
−rτP∗q

i
because the price process is not

It�o we can, with a little Þnesse, bring the power of the standard machinery to bear

on the problem indirectly.

We know, by assumption, that the Þrm is going to increase capacity when the price

of its output Þrst reaches P ∗q . The equilibrium price process derived in Proposition

3.6, equation (9), allows us to relate arbitrary prices for Þrms� output to the level of

the demand process. This provides us with a solution to the problem that the price

process is not It�o. While the fact that prices are not It�o prevents us from using the

standard machinery to price assets that depend on prices, we can apply the standard

machinery to problems that involve pricing assets that depend on demand, which is

It�o. In particular, by determining the demand that will result in prices reaching the

development price threshold P ∗q we can determine E t

h
e
−rτP∗q

i
.

We can determine the demand that will result in prices reaching the development

price threshold P ∗q quite easily, because we know the evolution of the price of Þrms�
output as a function of demand. Inspection of the price�demand relation derived in

Proposition 3.6 yields

PτP∗q = X
( α(γ−1)

1+α(γ−1))
τP∗q

Ã
XτP∗q

XτP∗q

!
Pt. (13)

Using the fact that PτP∗q = P
∗
q , and P

∗
q is a price maximum so XτP∗q = XτP∗q

, we have

XτP∗q =

µ
P ∗q
Pt

¶(1+ 1
α(γ−1))

Xt. (14)

Using this price-demand relation we then have that τP∗q ≡ min{s ≥ t |Ps =
P ∗q } = min{s ≥ t |Xs =

³
P ∗q
Pt

´(1+ 1
α(γ−1))

Xt}. Applying the standard machinery we
then have

E t

h
e
−rτP∗q

i
= E t

h
e
−rτXτP∗q

i
=

Ã
Xt
XτP∗q

!β
=

µ
Pt
P ∗q

¶(1+ 1
α(γ−1))β

. (15)

The second value we need, Π, the dollar price of a unit cash ßow derived from a

ßow of the good, follows directly from the following proposition:
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Proposition 3.7 Suppose Y δt follows �attenuated geometric Brownian motion,� where

1 − δ denotes the degree of attenuation. That is, Y δt = Exp(Xδ
t ), where X

δ
t =

δX t− (X t−Xt), Xt is a drifted Brownian motion, X t is the maximum of the Brown-

ian process up to time t, and 0 ≤ δ ≤ 1.12 Then the dollar price of a unit cash ßow
proportional to the process is given by

πδ = E

∙Z ∞

0

e−rt
Y δt
Y δ0
dt

¸
=

µ
β − 1
β − δ

¶
π, (16)

subject to the parameter restriction µ < r
δ
+ (1− δ)σ2

2
, which ensures πδ is Þnite.

The equilibrium price of Þrms� output follows attenuated geometric Brownian

motion with δ = α(γ−1)
1+α(γ−1) , so as a corollary we have the dollar price of a unit cash

ßow derived from a ßow of Þrms� output, and in equilibrium.

Corollary 3.3 In equilibrium the dollar price of a unit cash ßow derived from a ßow

of the good is given by

Π = π
α(γ−1)

1+α(γ−1)

=
π

1+ 1
(1+α(γ−1))(β−1)

. (17)

We can now express the value of receiving the Þrm�s cash ßows up until the

next time the Þrm increases capacity exactly. Substituting for E t

h
e
−rτP∗q

i
and Π in

equation (12) we have

E t

∙Z τP∗q

t

e−rsqPs ds
¸
= Π q Pt −E t

h
e
−rτP∗q

i
Π q P ∗q

=
π q Pt

1+ 1
(1+α(γ−1))(β−1)

Ã
1−

µ
Pt
P ∗q

¶η−1!
, (18)

where η ≡
³
1+ 1

α(γ−1)
´
β.13 We will sometimes refer to η as the �convexity� of the

value-at-max function.
12We callXδ

t attenuated Brownian motion, as up moves from historical maximum are �attenuated�

by the factor 1−δ. The process has full down moves (deÞcits from the highs). We call Y δt = exp(Xδ
t )

attenuated geometric Brownian motion.
13Again, if adjusting capacity entails the loss of a fraction f of the value of projects in place then

η is not independent of the constrained Þrms� strategy. In particular, η = (1 + λ(κ)/α)β where

λ(κ) = 1
γ−1 (1 + lnκ(1 +

1−f
κ
)).
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Having already calculated E t

h
e
−rτP∗q

i
, valuing the cash ßows from the Þrm start-

ing at the moment prior to the next time the Þrm increases capacity is trivial. Sub-

stituting for E t

h
e
−rτP∗q

i
we have

E t

h
e
−rτP∗q

i
W
¡
q, P ∗q

¢
=

µ
Pt
P ∗q

¶η
W
¡
q, P ∗q

¢
. (19)

Taking the two parts together gives us the value of the Þrm at a maximum in the

price of Þrms� output. Adding the right hand sides of equations (18) and (19) yields

W (q, Pt) = Π q Pt +

µ
Pt
P ∗q

¶η ¡
W
¡
q, P ∗q

¢−Π q P ∗q ¢ , (20)

where Π = π
1+ 1

(1+α(γ−1))(β−1)

and η ≡
³
1+ 1

α(γ−1)
´
β.

The Þrst term on the right hand side of equation (20) is the value of the future

cash ßows to the Þrm�s existing assets, or the Þrm�s �intrinsic value.� The second

term is the value of the Þrms future development opportunities, or the Þrm�s �option

value.�

We still do not have a complete, explicit function for the value of the Þrm. The

value of the Þrm in equation (20) is still given in terms of the unknown value of the

Þrm at some future date. Moreover, this unknown, future Þrm value depends on the

speciÞc redevelopment strategy employed by the Þrm.

We can derive a complete, closed form solution for the Þrm�s value, but doing so

requires that we explicitly determine the Þrm�s optimal investment strategy.

3.5 Explicit Characterization of the Optimal Strategy

At this point determining the details of the optimal strategy, i.e., the calculation of

q∗q and P
∗
q , is a standard problem. Because Proposition 3.4 characterizes any Þrm�s

optimal strategy in terms of the optimal strategy for the Þrm with unit capacity, the

problem reduces to the calculation of q∗1 and P
∗
1 .

We need to maximize the value of the Þrm with unit capacity over the choice

of strategy, which requires that we solve a free-boundary problem. The standard

procedure, value matching and smooth pasting at the time of development, requires

that the following equations are satisÞed:

W 1(1, P ∗1 ) = W
2(q∗1, P

∗
1 )− q∗γ1 (21)
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and

W 1
P (1, P

∗
1 ) = W

2
P (q

∗
1, P

∗
1 ) (22)

where W 1 and W 2 are the value-at-max functions before and after development,

respectively.14

Solving equation (21) and equation (22) requires the functional form of the value-

at-max process, which is provided by inspection of equation (20). While we do not

know the value of (W
¡
q, P ∗q

¢−Π q P ∗q )/P ∗ηq , it is a constant conditional on P ∗q . Letting
aq = (W

¡
q, P ∗q

¢−Π q P ∗q )/P ∗ηq , we have that
W (q, P ) = Π q P + aq P

η. (23)

Using the functional form provided by equation (23), we see that equations (21)

and (22) form a system of two equations with three unknowns: a1, aq, and P
∗
1 (q

∗
1

is a choice variable, not an unknown). The system is underdetermined. We need an

additional constraining equation to fully specify the optimal strategy.

The standard additional constraint is not available to us. The common assumption

in the literature, that a project may be developed one time only, is implicitly an

assumption that aq = 0. This is clearly inappropriate here.

The appropriate constraint is provided by the scaling condition on the value func-

tion, given in Proposition 3.3. Because development rights are retained at exercise,

the scaling condition holds across development boundaries. Using this condition we

have

qγW 1
¡
1, q(1−γ)P ∗

¢
=W 2 (q, P ∗) . (24)

14It is not necessarily obvious that equation (22) is the proper optimality condition. While

it looks like the standard condition, it is really short hand for V 1
P (1, P

∗
1 , P

∗
1 ) + V

1
P
(1, P ∗1 , P ∗1 ) =

V 2
P (q

∗
1 , P

∗
1 , P

∗
1 ) + V

2
P
(q∗1 , P

∗
1 , P

∗
1 ), which is decidedly non-standard. Nevertheless, as stated by Dixit

and Pindyck (1994), �the conditions applicable to free boundary problems are speciÞc to each appli-

cation and must come from economic considerations.� In this application, economic considerations

dictate the form of the value-at-max function. From equation (5) it is clear that the value of the

project is maximized when the value-at-max function is maximized. The fact that (22) is indeed the

proper optimality condition then follows directly from the fact that the convexity of the value-at-

max function prior to development is greater than the convexity of the function after development

(i.e., the left hand side of equation (21) is more convex than the right hand side).
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Again using the functional form for W 1 and W 2 given by equation 23, we have

qγ
³
Π
¡
q(1−γ)P ∗

¢
+ a1

¡
q(1−γ)P ∗

¢η´
= ΠqP ∗ + aqP ∗η. (25)

Solving for aq yields

aq = q
γ+(1−γ)ηa1. (26)

The value matching and smooth pasting equations, (21) and (22), in conjunction

with this additional constraint implied by the scaling condition, allow us to determine

Þrm value and the optimal investment strategy explicitly. The three equations are

sufficient to pin down the three free variables in terms of the choice variable, the

multiple of current capacity to which Þrms develop.

After pinning down the free variables we can substitute them back into the func-

tional form for Þrm value. This allows us to express Þrm value in terms of the multiple

of current capacity to which Þrms develop. The optimal strategy is the value max-

imizing strategy. Maximizing Þrm value over the choice variable yields the optimal

strategy.

This explicit characterization of the optimal strategy, and the closed form solution

for Þrm value, are provided in the following proposition.

Proposition 3.8 The optimal strategy for a Þrm with existing capacity q is to rede-

velop to capacity q · q∗1 when prices reach P ∗q = q(γ−1) · P ∗1 , where

q∗1 = argmaxq

½
(q − 1)η

qη(qγ(η−1)−η − 1)
¾
, (27)

P ∗1 =
η

(η − 1)Π
q∗γ1
q∗1 − 1

, (28)

and η and Π are given by equations (23) and (17), respectively.15

15If adjustment entails the loss of a fraction f 6= 1 of projects in place, then the (q∗1 − 1) in the
denominator of P ∗1 must be replaced by (q

∗
1−f). Also, q∗1 in equation (27) has κ dependency through

η, and the equilibrium strategy, q∗∗1 , is deÞned implicitly as the solution to q
∗
1(κ) = κ. There is also

an implication for the dollar price of a unit cash ßow at a price maximum, Π = (1+ λ∗
(α+λ∗)(β−1) )

−1π,

where here λ∗ = λ(q∗∗1 ).
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The value-at-max function may then be written, for P < P ∗q , as

W (q, P ) = Π q P + Aqγ
µ
P

P ∗q

¶η
(29)

where

A =
q∗γ1

(η − 1)(1− q∗γ+(1−γ)η1 )
,

subject to the parameter restriction µ < (1− α−1
αγ
)r− ( α−1

1+α(γ−1))
σ2

2
, which ensures that

Þrms have Þnite value.

Note that q∗1 may also be thought of as a root of a simple polynomial associated
with the economy.

Proposition 3.9 The capacity q∗1 to which a Þrm will optimally redevelop a project

with existing capacity one is the unique solution greater than one to

(γη − γ − η)x(γη−γ−η+1) − (γη − γ)x(γη−γ−η) + η = 0. (30)

Furthermore, 1+ η−1
γη−γ−η+1 < q

∗
1 < 1+

η
γη−γ−η .

Finally, combining the results of Propositions 3.2 and 3.8 allows us to express the

value of an arbitrary Þrm explicitly.

Proposition 3.10 The value of a Þrm with existing capacity q when the price of the

Þrm�s output is Pt and the historical maximum for prices is P t < P
∗
q is given by

V (q, Pt, P t) = π q Pt +

µ
Pt

P t

¶β Ã
(Π− π) q P t + Aqγ

µ
P t
P ∗q

¶η!
, (31)

where π = 1
r−µ and Π =

π
1+ 1

(1+α(γ−1))(β−1)

, β =
q
( µ
σ2 − 1

2
)2 + 2r

σ2 − ( µσ2 − 1
2
) and η =³

1+ 1
α(γ−1)

´
β, A =

q∗γ1

(η−1)(1−q∗γ+(1−γ)η
1 )

, P ∗q = q(γ−1) η
(η−1)Π

q∗γ1

q∗1−1 , and q
∗
1 is the unique

root of equation (30) between γη−γ
γη−γ−η+1 and

γη−γ
γη−γ−η .

The Þrst term in equation (31), π q Pt, is the value of the cash ßows from the

current project, ignoring supply effects on prices. The second term,
³
Pt
P t

´β
(Π−π) q P t,
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corrects for these supply effects and is negative reßecting the fact that new capacity

puts downward pressure on the price of Þrms� output. The last term,

µ
Pβt P

(η−β)
t

P∗ηq

¶
Aqγ ,

is the option value of the project, which derives from the right to increase capacity

in the future.

4 Implications

The preceding analysis yields several positive implications that we will explore in this

section. These concern 1) properties of the equilibrium price of Þrms� output, 2) the

evolution of Þrm value, i.e., stock returns, 3) equilibrium real option premia, and 4)

Þrms� optimal investment strategy, especially as it compares to the predictions of the

standard, partial equilibrium analysis.

With respect to the price of Þrms� output, the model predicts negative skewness,

resulting from endogenous increases in capacity. Because capacity is added at price

maxima, this skewness is especially pronounced when prices are high. In fact, at

maxima in the price of Þrms� output we always expect prices to drop in the short

term, and for some parameterizations to remain low far into the future. As Þrms

only add capacity when the price of their output is high this means that Þrms always

develop expecting prices to drop.

The skewness in the price of Þrms� output is translated into stock prices, but only

partially. Firm value is convex in the price of the Þrm�s output, and this tends to

skew stock prices positively. When the price of Þrms� output is low output prices

are essentially unskewed, and the effect of convexity dominates. At these times stock

prices are positively skewed. When the price of Þrms� output is high, however, the

effect of the strong negative skewness in the price of Þrms� output dominates. At

these times stock prices are also negatively skewed. That is, in recessions we expect

to see positive skewness in stock returns, while during expansions we expect to see

negative skewness.

The analysis also demonstrats that accounting for the price impact of development

leads Þrms to develop later. That is, in equilibrium Þrms delay capital improvements

longer than the standard, partial equilibrium analysis prescribes. Finally, we show

that competition does not erode option premia. Even after properly accounting for

the impact of competition, future development rights can contribute just as large

a fraction of overall project value as they do in the standard analysis that ignores

competition.
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4.1 The Price of Firms’ Output

The negatively skewed equilibrium return to Þrms� output is itself a major prediction

of the model and provides testable implications. Because we characterize the equilib-

rium price process analytically we can make speciÞc predictions regarding properties

of the skewness. The model predicts the degree of skewness to be a function of both

industry cost structure and industry history. Cross sectionally, we would expect more

pronounced price skewness in industries where the supply elasticity of demand is high,

i.e., prices should be more skewed in industries where the costs of adding capacity are

low. We would expect more pronounced price skewness when the demand for Þrms�

output is elastic. In the time series, we expect to see less price skewness at short

horizons. The model predicts supply to be more responsive when prices are near

historic highs. At lower prices, when Þrms are less likely to add capacity, skewness

should be less pronounced, and return skewness should tend to zero as the horizon

becomes very short. At price maxima, on the other hand, skewness in prices should

be especially pronounced.

Forward prices provide the most convenient method for studying the price process

in greater detail. The forward price is an unbiased estimator of the risk adjusted

future spot price. The closed form expression for the forward price of Þrms� output

is provided in the next proposition. It is somewhat complicated, but studying the

behavior of some of its asymptotic properties proves illuminating.

Proposition 4.1 The equilibrium instantaneous t-ahead forward price of the good

(i.e., the expected future spot price) is given by

Ft0+t = Pt0e
µt

N
 ln

³
P t0
Pt0

´
− (µ+ σ2

2
)t

σ
√
t


+ θN

−ln
³
P t0
Pt0

´
− (µ+ σ2

2
)t

σ
√
t

µP t0
Pt0

¶(1+ 2µ

σ2 )
(32)

+ (1− θ)e−( 1
1+α(γ−1))

³
µ+σ2

2
− 1

1+α(γ−1)
σ2

2

´
t

· N
−ln

³
P t0
Pt0

´
+ (µ+ σ2

2
− σ2

1+α(γ−1))t

σ
√
t

µP t0
Pt0

¶( 1
1+α(γ−1))

 . ¥

where θ = 1
(1+α(γ−1))(1+ 2µ

σ2 )−1
.
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An important special case of equation (32) results from considering forward prices

when the spot is at a maximum, i.e., when Pt0 = P t0 . In this case we have

Fto+t = Pt0e
µt
h
(1+ θ)N

³
−
³µ
σ
+
σ

2

´√
t
´

(33)

+ (1− θ)N
µ∙
µ+

µ
α(γ − 1)− 1
α(γ − 1) + 1

¶
σ2

2

¸ √
t

σ

¶
e

−1
1+α(γ−1)

(µ+( α(γ−1)
1+α(γ−1)

)σ
2

2
)t

¸
.

Figure 1 depicts forward prices for a period of six years, for three different costs-

to-scale of development. In all three cases, prices are at a historical maximum. Note

that prices in the short term are expected to decrease. That is, Þrms develop optimally

expecting prices to drop. As would be expected, prices are expected to rise faster

in the future when the cost to scale of development is higher and supply is thus less

responsive to prices.

1 2 3 4 5 6

0.95
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1.1

Figure 1.   
Equilibrium Forward Prices for Three Costs-to-Scale of Development.
The equilibrium forward price is the unbiased estimator of the future spot price. In all three 
curves the initial spot price is one, which is the historical maximum. Assuming a price elasticity 
of one, the cost-to-scale of development is three for the top curve; for the middle curve it is two; 
and for the bottom curve it is one and a half. Other parameters are µ = 0.05, σ = 0.18. The dashed 
line is the forward price in an economy in which total capacity to produce the good is fixed.
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Figure 1 illustrates one extreme for forward process, the case when current prices

are at the historical maximum. At the other extreme, when the previous maximum

of the price process becomes very large, equation (32) reduces to Pt0e
µt. This results

because no building occurs below the maximum. When prices are low it is virtually

certain that no development will occur for a signiÞcant amount of time and prices are

then essentially drifted geometric Brownian motion.

The intermediate cases are more interesting. Figure 2 demonstrates the impor-

tance of the price to price-high ratio on forward prices. In the Þgure we plot three

possible relations between prices and the historical price high: 1) spot prices at the

high; 2) spot prices one-sixth below the high; and 3) spot prices one-third below the

high. Forward prices are shown at horizons out to two years. In the Þgure the cost-

to-scale of development is quadratic.

Figure 2.   
Equilibrium Forward Prices for Three Ratios of Price to Price Maximum.
The equilibrium forward price is the unbiased estimator of the future spot price. Here the cost to scale 
of development is moderate, γ = 2. In all three curves, the initial spot price is 1, i.e., P0 = 1. In the top 
curve, the spot price is one-third below the historical maximum, P0

max = 1.5. In the middle curve, the 
spot price is one-sixth below the historical maximum, P0

max = 1.2. In the bottom curve, the spot price 
is at the historical maximum, P0

max = 1. Other parameter values are µ = 0.05, σ = 0.18, and α = 1. The 
dashed line is the forward price in an economy in which total capacity to produce the good is fixed.
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The basic shapes of the forward price curves in Figure 2 are quite similar to those
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that we observe in commodity markets. When the price of Þrms� output is at or near

historical highs, and increases in aggregate capacity are likely, the term structure of

forward prices is downward sloping. When near term increases in capacity are unlikely

the forward price curve will be upward sloping. In the parlance of commodity markets,

forward prices may be either �in backwardization,� with prices for future delivery of

the good declining with time-to-delivery, or �in contango,� with prices increasing with

time-to-delivery.

It is also useful to consider some of the other asymptotic properties of the equi-

librium price process. As the costs-to-scale of building becomes high equation (32)

again reduces to Pt0e
µt. That is, when it is too expensive to build the price process

simply becomes drifted geometric Brownian motion.

As the cost of building goes to linear the forward prices go to

N
 ln(P t0Pt0

)− (µ+ σ2

2
)t

σ
√
t

+ σ2
2µ
N

−ln(P t0Pt0
)− (µ+ σ2

2
)t

σ
√
t

µP t0
Pt0

¶(1+ 2µ

σ2 )
Pt0eµt

+

µ
1− σ2

2µ

¶
N

−ln(P t0Pt0
) + (µ− σ2

2
)t

σ
√
t

P t0 . (34)

That is, the process begins at Pt0 . In the short run, prices evolve as a geometric

Brownian motion, if Pt0 < P t0 , but in the long term they reach the steady state

expectation of (1 − σ2

2µ
)P t0 if µ >

σ2

2
, or zero if µ < σ2

2
. When the cost to scale is

linear, P t0 is a reßecting barrier on prices. The factor (1− σ2

2µ
) captures the tension

between the upward drift in the process and the variance. If the upward drift is large

or the volatility is small, then the price process remains close to the barrier. On the

other hand, when the drift is small or the volatility is large then prices, after bouncing

off the barrier, may fall a long way prior to recovering.

Finally, we will consider more generally the long run average growth of the spot

price, obtained by dividing the log of forward prices from equation (32) by t and

letting t become large. Doing so in the interesting case, when µ is not too small, we

Þnd that the average long term rate of expected price growth isµ
1− 1

1+ α(γ − 1)
¶µ

µ− 1

1+ α(γ − 1)
σ2

2

¶
. (35)
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4.2 Stock Returns

Our closed form expression for Þrm value as a function of the price of Þrms� output

and aggregate industry capacity allows us to study the distribution of stock returns.

Stock returns are a combination of the returns to Þrms� ongoing projects and their

growth options. Away from historic highs in the price of Þrms� output, aggregate

capacity is unlikely to increase so the return to Þrms� output exhibits little skew.

This translates into positive skew in stock returns because the option component of

Þrm value is convex in the price of Þrm output. When the price of Þrms� output is

high the effect of increasing aggregate capacity dominates and stock returns exhibit

negative skew. This provides a hitherto untested empirical prediction: skewness in

stock returns should vary over the business cycle. Stock returns should be negatively

skewed during expansions, but positively skewed in recessions.

Proposition 4.2 Away from maxima in the price of Þrms� output stock returns are

positively skewed at sufficiently short horizons. At maxima in the price of Þrms�

output stock returns are negatively skewed at short horizons.

4.3 The Investment Strategy

At this point we can compare the optimal behavior of a Þrm in the equilibrium

economy, where Þrms� development decisions affect aggregate capacity, to the optimal

behavior of a Þrm in an economy in which Þrms� investment decisions somehow do

not affect aggregate capacity, which is implicitly the standard assumption in the

literature.16

The natural and instructive comparison is the case in which the expected long run

average price growth and expected long run average price variances are the same in

both economies.

An econometrician who calibrates a real options model under the assumption,

standard in the literature, that the price of the Þrms� output follows geometric Brown-

ian motion, will be surprised to Þnd Þrms delaying irreversible investment even longer

than his model predicts is optimal. This occurs because, in addition to the delay re-

lated to option effects, the equilibrium return to Þrms� output is actually negatively

16Alternatively, we are comparing optimal behavior in the equilibrium economy to the behavior

of a small, price-taking Þrm in an economy in which no other Þrms have the ability to develop.
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skewed.17 How this leads Þrms to delay investment even longer can be understood in

the following way. Option value derives from the ability to avoid some investments

that would have been mistakes ex post. At the zero NPV threshold an investor may do

two things: invest or delay. The choice to delay roughly reßects the fact that, at the

current price level, the ex post beneÞt to having not invested if the economic environ-

ment takes a turn for the worse exceeds the ex post beneÞt to having invested earlier

if the environment takes a turn for the better. Investment occurs when prices are

just high enough that the loss-avoidance beneÞts to delaying balance the gains from

not delaying. Asymmetric downside risk exceeding upside potential induces Þrms to

delay option exercise longer. The oversized downside risk results in the potential ex

post beneÞts to delaying investment balancing the ex post beneÞt to not delaying

investment at a higher price level. The results of this comparison are summarized in

the next proposition.

Proposition 4.3 In equilibrium a Þrm redevelops a project to the same capacity as

she would in a Þxed capacity economy with the same long run average price growth

and variance. The development occurs later, however, in equilibrium.

4.4 The Value of the Option to Delay Investment

Our analysis also shows that competition leaves option premiums unmitigated. Com-

petition erodes option values, but also erodes the value of the cash ßows from assets

in place. As a result, the premia, or percent of total option value attributable to

future development opportunities, is undiminished relative to an economy in which

prices follow geometric Brownian motion and have the same average long-run price

growth and variance. That is, option premia are unmitigated relative to the partial

equilibrium analysis that ignores competition.

Refer to the Þrst term in the value-at-max function as the �intrinsic value� of

the project, denoted by I(q, P ) = ΠqP , and the second term as the �option value,�

denoted by O(q, P ) = Aqγ(P/P ∗q )
η.

Proposition 4.4 The maximum ratio of option value to intrinsic value is given by

maxP

µ
O(q, P )

I(q, P )

¶
=

(q∗1 − 1)
η(1− q∗(γ+η−γη1 )

. (36)

17By return to Þrms� output we simply mean the log change in prices. There is no sense in which

this is a holding period return to a real asset.
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This is strictly positive, implying that option values remain signiÞcant even when Þrms

account for the impact of competition. Furthermore, for some parameter choices the

ratio exceeds one, and the majority of a project�s value may reside in the option.

We would like to compare the equilibrium economy to a Þxed capacity economy

with the same long run average price growth and long run average price variance.

Noting that the Þxed capacity economy is simply the limit of the equilibrium economy

as the cost to scale of building becomes very large provides an easy way to do so.

Let overscore tildes denote parameters relating to the Þxed capacity economy, and

choose eµ and eσ such that this economy has the same long run average price growth
and variance as the equilibrium economy. Then the maximal ratio of option value to

intrinsic value in the Þxed capacity economy is simply the right hand side of equation

(36) with the η�s replaced by eβ =q( eµeσ2 − 1
2
)2 + 2reσ2 − ( eµeσ2 − 1

2
). Finally, using the fact

that eβ = η, proved in the appendix as part of proposition 4.3, yields the following

corollary.

Corollary 4.1 The maximal ratio of option value to intrinsic value in the equilibrium

economy is the same as in a Þxed capacity economy with the same long run average

price growth and variance.

5 Conclusion

We characterize Þrms� optimal investment strategy explicitly, and derive a closed

form solution for Þrm value. We show that in the strategic equilibrium real option

premia are signiÞcant. As a result Þrms delay investment, choosing optimally not to

undertake some positive NPV projects. In fact, properly accounting for the effects of

competition results in a negatively skewed equilibrium process for the price of Þrms�

output, which leads Þrms to delay investment longer than predicted by the standard

options analysis. Finally, the equilibrium analysis in this paper has implications for

equity markets. The model presented here predicts that Þrm returns should vary over

the business cycle. Firm returns should be negatively skewed during expansions, but

positively skewed in recessions.

These conclusions differ from those in previous studies of competition on option ex-

ercise, which have tended to conclude that competition reduces option premiums and
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leads to earlier investment. Earlier studies have considered the effects of oligopolis-

tic competition and have quite naturally, therefore, compared valuation and optimal

timing of investment to the case of a hypothetical strategic monopolist. While their

conclusions are valid in this context, they should not be used to draw conclusions with

respect to the standard analysis, which ignores competition. The standard analysis

is not a fundamentally better yardstick than the strategic monopolist, but it is the

theory that has informed the intuition which is now widely held, and the fact that

our methodology allows for comparison to the standard analysis is, therefore, a great

advantage.

The results in this paper differ from those in earlier papers because we consider het-

erogeneous Þrms facing opportunity costs to investing. While it has long been known

that demand side heterogeneity can reduce competition, in this paper we demonstrate

that supply side heterogeneity can have the same effect, though for different reasons.

Demand side heterogeneity� variable consumer preferences� allows Þrms to seg-

ment a market, through horizontal product differentiation, and extract more of the

consumer surplus. Supply side heterogeneity� variable opportunity costs� provides

a natural ordering to Þrms� investment decisions, allowing Þrms to act sometimes as

local monopolists and extract more of the consumer surplus. The model predicts a

�life-cycle� to Þrms investment decisions, because Þrms that have invested recently

Þnd it unproÞtable to invest again for some time. This prevents them from competing

over new opportunities, and signiÞcantly limits the role of competition.

A Appendix

Proof of Proposition 3.1

Given any maximum of the price process, the expected value of building at any lower price, to any

capacity, is less than it would have been at the time the maximum was achieved, so Þrms choose

only build at price maxima.

More formally, because of time homogeneity it is sufficient to show that a Þrm that chooses to

develop below the maximum would have prefered to develop at the time the maximum was achieved.

Now suppose an Þrms chooses to build at some price below the price maximum, and consider

the last time she develops prior to price returning to the price maximum. Denote the price level at

which this last development occurs by P0 and the capacity by q.

The Þxed cost of developing below the maximum is at least as great as it would have been at

the maximum because the Þxed costs are non-decreasing in the existing capacity, which could only

have increased with intervening developments. The variable cost to building to q at the maximum

is the same as it is at P0. It is therefore sufficient to show that the value of the project after

34



development is greater at the price maximum then at P0. That is, it is sufficient to show that

V (q, P 0, P 0) ≥ V (q, P0, P 0).

Letting τ∗ ≡ min{t > 0 |Pt = P 0} we have that

V (q, P0, P 0) = E 0

"Z τ∗

0

e−rt q Pt dt |P0 = P 0

#
+E0

h
e−rτ

∗i
V (q, P 0, P 0). (37)

Now V (q, P 0, P 0) is the expected discounted cash ßows of the current development plus some

option value, so is at least as great as the value of the development with no right to further devel-

opment. That is,

V (q, P 0, P 0) ≥ E0

∙Z ∞

0

e−rt q Pt dt |P0 = P 0

¸
. (38)

At this point we will deÞne an alternate process, P
0
t , which starts at P 0 and evolves like the

price process but with an upper reßecting barrier at P 0. That is, below P 0 the process P
0
t evolves

exactly like Pt, but at P 0 the evolution is truncated so that the process can only go down or remain

at P 0. Also, let τh ≡ min{t > 0 |Pt = P 0
t }. Figure A1, below, gives a graphical representation of

the situation as described.

Pt

Pt�

τh

P0

τ*

Time

Pr
ic

e

P0
max

Figure A1. The lower price path is the actual price process, starting at P0 when the price 
maximum is P0

max. The upper path starts at P0
max and evolves like the price process, 

except with a reflecting barrier at P0
max. Because both processes evolve in the same 

manner on the interval from τh to τ* the distribution of τ* is the same for the two paths.
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Now the price process starting at P 0 is clearly greater on average that the price process with

the upper reßecting barrier and starting at the same level, so we have

E 0

∙Z ∞

0

e−rt q Pt dt |P0 = P 0

¸
≥ E0

∙Z ∞

0

e−rt q P
0
t dt |P

0
0 = P 0

¸
. (39)

Because Pt and P
0
t evolve in the same manner in the interval from τh to τ

∗ we have that

³
1−E0

h
e−rτ

∗i´
E0

∙Z ∞

0

e−rt q P
0
t dt |P

0
0 = P 0

¸
= E0

"Z τ∗

0

e−rt q P
0
t dt |P

0
0 = P 0

#
. (40)

Finally, from Þgure A1 we can see that clearly

E0

"Z τ∗

0

e−rt q P
0
t dt |P

0
0 = P 0

#
> E0

"Z τ∗

0

e−rt q Pt dt |P0

#
. (41)

Putting it all together we have

V (q, P 0, P 0) =
³
1−E 0

h
e−rτ

∗i´
V (q, P 0, P 0) +E0

h
e−rτ

∗i
V (q, P 0, P 0)

≥
³
1−E 0

h
e−rτ

∗i´
E0

∙Z ∞

0

e−rt q Pt dt |P0 = P 0

¸
+E0

h
e−rτ

∗i
V (q, P 0, P 0)

≥
³
1−E 0

h
e−rτ

∗i´
E0

∙Z ∞

0

e−rt q P
0
t dt |P

0
0 = P 0

¸
+E0

h
e−rτ

∗i
V (q, P 0, P 0)

= E0

"Z τ∗

0

e−rt q P
0
t dt |P

0
0 = P 0

#
+E0

h
e−rτ

∗i
V (q, P 0, P 0) (42)

> E0

"Z τ∗

0

e−rt q Pt dt |P0

#
+E 0

h
e−rτ

∗i
V (q, P 0, P 0)

= V (q, P0, P 0).

Because a Þrm would always prefer developing to any capacity at the price maximum no devel-

opment occurs below the maxima. ¥

Proof of Proposition 3.2

Lemma. Let Yt be a geometric Brownian motion with any drift, beginning at one. Then the value

of cash ßows proportional to the process and received until the Þrst time the process reaches θ > 1

is given by

E t

∙Z τθ

0

e−rtYtdt
¸
= (1− θ1−β)π. (43)
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Proof of lemma: We need to show that for all µ

E t

∙Z τθ

0

e−rte(µ−σ2

2 )t+σBtdt

¸
=
1− θ1−β

r − µ , (44)

where τθ ≡ min{t > 0 | e(µ− σ2

2 )t+σBt = θ}. That is, the value of a cash ßow proportional to a drifted
geometric Brownian motion and received up until the Þrst passage time of the process to some Þxed

level θ is given by previous equation. In particular, given any Þnite stopping level, the value is Þnite

for all drifts (and even decreasing in the drift when the drift is sufficiently large).

First, we will rewrite the equation in terms of a drifted Brownian motion with unit volatility,

E t

∙Z τθ

0

e−rteσ(Bt+(µσ− σ
2 )t)dt

¸
. (45)

Then changing measure, to demean the Brownian motion, and using the joint density for the value

and the maximum of a standard Brownian, we may write the value as

Z ∞

t=0

Z ln(θ)
σ

m=0

Z m

b=−∞
e−rteσb

Ãr
2

π

2m− b
t
√
t
e
−(2m−b)2

2t

!
e(µσ− σ

2 )b−(µσ− σ
2 )2 t

2 db dmdt.18 (46)

At this point we may proceed in two ways. The Þrst is to restrict our attention to the case

when µ < r, in which case the valuation is simple, and use analytic continuation to argue that the

resulting solution is valid for all µ. The second is to simply proceed with the integration, using a

known result about Bessel functions.

First, arguing by analytic continuation, we have that when µ < r the value of the perpetual

cash ßows is Þnite and known. We may then write

E t

∙Z τθ

0
e−rte(µ−σ2

2 )t+σBt dt

¸
= E t

∙Z ∞

0
e−rte(µ−σ2

2 )t+σBt dt

¸
−E t

"Z ∞

τθ

e−rte(µ−σ2

2 )t+σBt dt

#
. (47)

For the second term on the right we have

E t

∙Z ∞

τθ

e−rte(µ− σ2

2 )t+σBtdt

¸
= E t

£
e−rτθ

¤
θE t

"Z ∞

τθ

e−rt
e(µ− σ2

2 )t+σBt

θ
dt

#
, (48)

which, using the Markov property gives

E t

∙Z ∞

τθ

e−rte(µ− σ2

2 )t+σBtdt

¸
= E t

∙Z ∞

0

e−rte(µ− σ2

2 )t+σBt dt

¸
=

1

r − µ. (49)

using this in conjunction with the fact that E t[e
−rτθ ] = θ−β yields

18That the joint density for the value and the maximum of a standard Brownian is given byp
2/π((2m − b)/t√t)e−((2m−b)2/2t) is a standard result in the probability literature that may be

found in any good text on the subject; see, for example, Durrett (1996).
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E t

∙Z τθ

0

e−rte(µ−σ2

2 )t+σBtdt

¸
=
1− θ1−β

r − µ . (50)

The analytic continuation argument extending the result to all µ is valid because the integral of

an analytic function (the integrand in (46)) is analytic.

Alternatively, we may simply proceed by integrating (46) directly. To do so requires the fact,

from the literature on Bessel functions, that

Z ∞

t=0

e−αt
Ãr

2

π

2m− b
t
√
t
e
−(2m−b)2

2t

!
dt = 2e−

√
2α(2m−b). (51)

Substituting into (46) with α = r + 1
2 (
µ
σ
− σ

2 )
2 we have that the value is given by

2

Z ln(θ)
σ

m=0

e−2
√

2r+(µσ− σ
2 )2 m

µZ m

b=−∞
e((

µ
σ+σ

2 )+
√

2r+(µσ− σ
2 )2) b db

¶
dm

=
2

(µσ +
σ
2 ) +

p
2r + (µσ − σ

2 )
2

Z ln(θ)
σ

m=0

e((
µ
σ+σ

2 )−
√

2r+(µσ− σ
2 )2)m dm

=
2

(µσ +
σ
2 )

2 − ¡2r + (µσ − σ
2 )

2
¢ ³θ 1

σ ((
µ
σ+σ

2 )−
√

2r+(µσ− σ
2 )2) − 1

´
(52)

=
1

µ− r
³
θ

1
σ ((

µ
σ+σ

2 )−
√

2r+(µσ− σ
2 )2) − 1

´
=

1− θ1−β

r − µ . ¥

Proof of the proposition: Intuitively, we think of the project as an asset which generates a stochastic

cash ßow that we will �trade in� for a �new project� when prices return to their historical maximum.

We essentially value the project as a portfolio made by buying a perpetuity that pays a dividend

proportional to the spot price of the good, selling the same perpetuity for forward delivery on the

date price Þrst return to their maximum, and buying a forward delivery contract on the project

with the same delivery date. The last part is just the value of the project at the price maximum

times the value of the Arrow-Debreu security that pays a dollar on the delivery date. The Þrst two

pieces net to identically zero cash ßow after the delivery date, and up until that date, because no

building occurs, prices have the same geometric Brownian evolution as the demand process and may

be priced using the lemma.

More formally, because Þrms value projects based on discounted cash ßows, we may relate the

value function back to the value-at-max function by the following equation:

V (q, Pt, P t) = E t

∙Z τPt

t

e−rsqPsds+ e
−τPtsW (q, P t)

¸
, (53)
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where τP t
denotes the stopping time for the Þrst passage of the price process back to its previous

maximum, P t. That is, τP t
≡ min{s ≥ t |Ps = P t}.

Proposition 3.1 guarantees that no development occurs between Pt and P t, so supply, Qt, is Þxed

on the interval. As a consequence, the price process has the same evolution as the multiplicative

demand shock up to time τP t
. That is, on the interval in question the price process is a geometric

Brownian motion with drift µ and volatility σ. Then using the lemma, that E t[
R τθ

0 e−rtYt dt] =
(1− θ1−β)π, and E t[e

−rτθ ] = θ−β we have

V (q, Pt, P t) = E t

∙Z τPt

t

e−rsqPsds+ e
−τPtsW (q, P t),

¸
= qPt

Ã
1−

µ
P t
Pt

¶1−β!
π +

µ
P t
Pt

¶−β
W (q, P t) (54)

= πqPt +

µ
Pt

P t

¶β ¡
W (q, P t)− πqP t

¢
. ¥

Proof of Proposition 3.3

Cash ßow considerations imply the structure. An owner should be indifferent between holding 1)

one project at a given capacity, price and price-maximum, and 2) more properties developed to lower

capacities when the price and price-maximum are somewhat lower. More formally,

V (βq, Pt, P t) = β
γV (q,β(1−γ)Pt, β

(1−γ)P t). (55)

This is because the instantaneous cash ßows are the same at all times, and either Þrm can replicate

the development decision of the other, at the same cost. Implicitly we are using that the evolution

of ln Pt is the same as the evolution of ln (β
(1−γ)Pt), which follows from the fact that the scaling

leaves the ratio of the price to the price maximum unchanged.19

Substituting the existing capacity for β yields

V (q, Pt, P t) = q
γV (1, q(1−γ)Pt, q

(1−γ)P t). (56)

To price any project it is, therefore, sufficient to price a project developed to unit capacity.

The scaling condition on the value-at-max function is inherited from equation (56). ¥

Proof of Proposition 3.4

The result follows from proposition 3.3, the scaling property of the value function.

Whatever the existing capacity, qi, with redevelopment rights it is certainly optimal for the

unconstrained Þrm to redevelop for sufficiently high prices. Denote the lowest price at which it is

19This argument is made in greater detail in Novy-Marx(2002). The article is available for down-

load at http://faculty.haas.berkeley.edu/marx/.
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optimal to redevelop P ∗qi , and the optimal redevelopment capacity at this price by q
∗
qi
. Then for any

other capacity pj we have

W (qj , P ) =

µ
qj
qi

¶γ
W

Ã
qi,

µ
qj
qi

¶(1−γ)

P

!
(57)

so

q∗qj =
µ
q∗qi
qi

¶
qj . (58)

By symmetry, the ratio q∗qi/qi is independent of qi. Denote this ratio q
∗
1 (the notation is motivated

as follows: the ratio is independent of qi, so let qi = 1 and then we have q
∗
1 = (q

∗
1/1) where on the

left �q∗1� is a unitless ratio and on the right it is a density). Then the previous equation says that
Þrms optimally build to q∗1 times existing capacity.

We also then have

P ∗qj =
µ
qj
qi

¶(γ−1)

P ∗qi . (59)

We then have, in particular, that

P ∗q∗qj
= P ∗q∗1 ·qj =

µ
q∗1 · qj
qj

¶(γ−1)

P ∗qi = q
∗(γ−1)
1 P ∗qj . (60)

That is, an Þrm redevelops at q
∗(γ−1)
1 times the price level of the last development. Letting qi = 1

we also have

P ∗qj = q
(γ−1)
j P ∗1 . (61)

That is, an Þrm develops a property with existing capacity q at a price level that is qγ−1 times as

high as the point at which a Þrm with existing capacity one develops. ¥

Proof of Proposition 3.5

Lemma. Suppose that the initial distribution follows Zipf�s law: for any two capacities in the

initial distribution, the relative likelihood of observing these capacities is inversely proportional to

the capacities,

ν(q1)

ν(q2)
=
c/q1

c/q2
=
q2

q1
for q1, q2 ∈

¡
qmin0 , qmax0

¤
(62)

where qmin0 (respectively, qmax0 ) is the inÞmum (respectively, maximum) of the capacities in the

economy initially, and ν(q) is the probability density that a project picked at random has capacity

q.
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Then the initial distribution of capacities is log-uniform on the range: distributed (ξ/κ) qmax0

where lnκ ξ is distributed uniformly on (0, 1] and κ ≡ qmax0 /qmin0 .

Proof of lemma: It follows directly from the fact that d ln x = dx
x . ¥

Lemma. Suppose that Þrms follow a strategy of building to a Þxed multiple κ times existing

capacity under a development timing rule such that the next development always occurs at the site

of the smallest existing capacity. Then an initial distribution of capacities that follows Zipf�s law is

stationary: at all times the distribution of capacities in log-uniform.

Proof of lemma: That the distribution follows Zipf�s law implies that the probability density

that a project picked at random has capacity q is given by ν0(q) = 1q∈(qmin
0 ,qmax

0 ](c/q), where c =

ln
¡
qmax0 /qmin0

¢
and 1q∈(qmin

0 ,qmax
0 ] is one if q ∈

¡
qmin0 , qmax0

¤
and zero otherwise. When an inÞnitesi-

mal of Þrms have developed the range of capacities goes from
¡
qmin0 , qmax0

¤
to
¡
qmin0 + δq,κ

¡
qmin0 + δq

¢¤
=¡

qmin0 + δq, qmax0 + κδq
¤
. The mass of Þrms in the newly developed region must equal the mass of

Þrms that developed, so for δq small we have that κδq·νt(qmaxt ) is essentially equal to δq·ν0(q
min
0 +δq).

Using qmaxt = κqmin0 + κδq we then have that νt(q
max
t ) = 1

κν0(q
max
t /κ) = 1

κνt(q
min
t ), so new devel-

opment preserves log-normality of the distribution. ¥

Proof of the proposition: The aggregate supply process is the integral of the individual Þrms�

capacities,

Qt =

Z qmax
t

qmin
t

q dνt(q). (63)

From the previous lemma, the development rule imposed on almost all Þrms preserves the log-uniform

distribution of capacities and build-prices. That is, at all times the distribution of capacities and

build prices is
¡
(ξ/κ) · qmaxt , (ξ/κ)(γ−1)P t

¢
, where lnκ ξ is distributed uniformly on (0, 1] and

qmaxt = qmax0 κlnκ(γ−1) (P t/P 0)

= qmax0 (P t/P 0)
ln
κ(γ−1)κ (64)

= qmax0 (P t/P 0)
( 1

(γ−1) ),

so

Qt = q
max
0

µ
P t

P 0

¶( 1
(γ−1)

) Z κ

0

ξd νt(ξ) =

µ
P t

P 0

¶( 1
γ−1 )

Q0. ¥ (65)

Proof of Proposition 3.6

Proof of the proposition: Historic price highs correspond to historic highs in the multiplicative

demand shock, and the inverse demand function is valid everywhere, so we have
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P t = Xt ·Q(−1/α)
t . (66)

Now substituting this result into the result of the previous proposition, Qt =
³
P t

P 0

´( 1
γ−1 )

Q0, we

have that

Qt =

Ã
Xt ·Q(−1/α)

t

P 0

!( 1
γ−1 )

Q0, (67)

which is equivalent to

Qt = c ·X(α−1+γ−1)−1

t , (68)

where c = (Q0/P
(γ−1)−1

0 )(1+ 1
α(γ−1) )−1

. That is, the supply elasticity of the aggregate demand max-

imum (i.e., the multiplicative shock maximum) is constant, and equal to (α−1 + γ − 1)−1. Not

surprisingly, supply is more responsive to demand when the cost to scale of building is low and when

demand is inelastic with respect to prices. If the cost to scale of building is high, or if demand is

elastic with respect to prices, then supply is less responsive to demand.

Finally, substituting into the inverse pricing function, we have

Pt = X
( −1

1+α(γ−1))
t Xt P0 (69)

or

ln Pt = lnP0 −
µ −1
1 + α(γ − 1)

¶
lnXt + lnXt, (70)

which proves the proposition. ¥

Proof of Proposition 3.7

The dollar price of a unit of cash ßow at a price maximum is then given by

πδ = E t

∙Z ∞

0

e−rtY δt dt
¸

(71)

This value is Þnite if and only if µ < r
δ + (1− δ)σ

2

2 , which will be proved later.

Letting τ δθ be the stopping time for the Þrst time Y
δ
t hits θ > 1, we then have

πδ = E t

"Z τδθ

0

e−rtY δt dt

#
+E t

"Z ∞

τδθ

e−rtY δt dt

#

= E t

"Z τδθ

0

e−rtY δt dt

#
+ Y δτδθ

E t

h
e−rτ

δ
θ

i
E t

"Z ∞

τδθ

e−r(t−τδθ ) Y
δ
t

Y δ
τδθ

dt

#
(72)
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= E t

"Z τδθ

0

e−rtY δt dt

#
+ θ ρδ(1, θ) πδ

where ρδ(1, θ) = ρ(1, θ)
1
δ = θ−(β/δ). Rearranging gives

πδ =
E t

hR τδθ
0 e−rtY δt dt

i
1− θ1−(β/δ)

. (73)

In the special case δ = 1 we have, from the lemma in the proof of Proposition 3.2, that

E t

"Z τ1
θ

0

e−rtY 1
t dt

#
=
¡
1− θ1−β¢π. (74)

We will now employ the fact that τ1
θ and τ

δ
θδ have the same distribution. In particular, this

implies τ δθ is distributed the same as τ
1
δ√θ. Now consider θ = 1 + ², where ² ≈ 0 and positive. Then

for all t ≤ τ δθ , Y δt ≈ Y 1
t , and then

E t

"Z τδθ

0

e−rtY δt dt

#
= (1 + o(²))E t

"Z τ1
δ√
θ

0

e−rtY 1
t dt

#
. (75)

Substituting into the right hand side of this equation using the preceeding equation gives

E t

"Z τδθ

0

e−rtY δt dt

#
= (1 + o(²))

µ
1−

³
θ(1/δ)

´1−β¶
π

=

µ
β − 1
δ

¶
²π + o(²2). (76)

Substituting into equation (73) and taking the limit as goes to zero yields

πδ = lim²→0

³
β−1
δ

´
²π + o(²2)

(βδ − 1)²+ o(²2)
=

µ
β − 1
β − δ

¶
π. (77)

This completes the proof, except for the parameter restriction.

The parameter restriction comes from requiring that µ is small enough that piδ < ∞, which is
equivalent to requiring that β > δ. We then have

β > δ ⇔
µ
µ

σ2
− 1
2

¶2

+
2r

σ2
>

µ
δ +

µ
µ

σ2
− 1
2

¶¶2

⇔ 2r

σ2
> δ2 + 2

µ
µ

σ2
− 1
2

¶
δ (78)

⇔ µ <
r

δ
+ (1− δ)σ

2

2
.
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Proof of Proposition 3.8

We will use the functional form for the value-at-max function provided by equation (23), W (q, P ) =

Π q P +aq P
η, in the value matching and smooth pasting conditions, equations (21) and (22). When

existing capacity is one and the redevelopment capacity is q (which is a choice variable) we have,

after rearranging terms,

Π (q − 1)P = (a1 − aq)P ∗η1 + qγ (79)

and

Π (q − 1) = η (a1 − aq)P ∗(η−1)
1 . (80)

Solving these immediately gives

(a1 − aq) = qγ

(η − 1)P ∗η1

(81)

and

P ∗1 =
η

(η − 1)Π
qγ

(q − 1) . (82)

We need one additional constraint to pin down the three variables, and one is implied by the

scaling condition on the value function. Because development rights are retained at exercise the

condition holds across development boundaries. Using this we have that

qγW 1
³
1, q(1−γ)P ∗

´
= W 2 (q, P ∗) . (83)

Again using the functional form for W 1 and W 2 given by equation (23), W (q, P ) = Π q P + aq P
η ,

we have

qγ
³
Π
³
q(1−γ)P ∗

´
+ a1

³
q(1−γ)P ∗

´η´
= ΠqP ∗ + aqP ∗η. (84)

Solving for aq yields

aq = q
γ+(1−γ)ηa1. (85)

In conjunction with the equations for (a1 − aq) and P ∗1 this is sufficient to determine the value
of a project in terms of the choice variable, q. In particular, we have that

a1 =
qγ

(1− qγ+(1−γ)η)(η − 1)P ∗η1

=
Πη

(η − 1)
µ

η

η − 1
¶

(q − 1)η
qη(qγη−γ−η − 1) . (86)
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The optimal strategy is the one that maximizes the value. This occurs at the capacity that maximizes

a1, so

q∗1 = argmaxq

½
(q − 1)η

qη(qγη−γ−η − 1)
¾
. (87)

We then have that

W (q, P ) = qγW (1, q(1−γ)P )

= ΠqP +
¡
a1P

∗η
1

¢
qγ
µ
q(1−γ)P

P ∗1

¶η
. (88)

The price of a unit cash ßow at a price maximum, is computed by substituting for δ in Proposition

3.7. In our problem δ = α(γ−1)
1+α(γ−1) so we have

Π = π( α(γ−1)
1+α(γ−1))

=
π

1 + 1
(1+α(γ−1))(β−1)

. (89)

Substituting δ = α(γ−1)
1+α(γ−1) into the parameter restriction in Proposition 3.7 also yields

µ <

µ
1 +

1

α(γ − 1)
¶
r +

µ
1

1 + α(γ − 1)
¶
σ2

2
. (90)

Finally, this parameter restriction is not sufficient to guarantee that projects have Þnite value.

Requiring that µ is small enough such that they do, i.e., that A < ∞, is always more restrictive,
and equivalent to demanding that γη− γ − η > 0. Rearranging and using the deÞnition of η results
in β > αγ

1+α(γ−1) . Substituting δ =
αγ

1+α(γ−1) yields the Þnal parameter restriction:

µ <

µ
1− α− 1

α(γ − 1)
¶
r −

µ
α− 1

1 + α(γ − 1)
¶
σ2

2
. ¥ (91)

Proof of Proposition 3.9

Let F (x) = (x−1)η

xη(xγη−γ−η−1) . Now q
∗
1 is greater than one, and we know it maximizes F (x), so F

0(q∗1) =
0. Simple algebra shows that F 0(q∗1) = 0 if and only if the polynomial condition from Proposition 3.9
holds, (γη− γ − η)xγη−γ−η+1− (γη− γ)xγη−γ−η + η = 0. Now let f(x) = (γη− γ − η)xγη−γ−η+1−
(γη − γ)xγη−γ−η + η, and note that the restriction on the drift implies that η > 1.

Because f 0(x) = 0 if and only if x = 0 or x = γη−γ
γη−γ−η+1 , which is strictly greater than one,

f(x) can have at most two positive solutions. Since x = 1 is clearly a solution, it can have at most

one other. Since f
³

γη−γ
γη−γ−η+1

´
= −

³
γη−γ

γη−γ−η+1

´γη−γ−η+1

− η < 0, and f(x) is clearly positive for
sufficiently large x, f(x) must have a root greater than γη−γ

γη−γ−η+1 . That is, f(x) has a unique root

greater than one. This is the only value greater than one for which F 0(x) = 0, so it must maximize
F (x).
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Finally, for the upper bound we will compare the behavior here to that of an Þrm that lacks

redevelopment rights making the development decision in the same economy. Lacking redevelop-

ment rights results, mathematically, in solving the free-boundary problem of proposition 3.8 using

the constraint aq = 0 instead of the constraint implied by redevelopment rights, i.e. that implied

by the scaling condition. Doing so, we get that the Þrm lacking redevelopment rights develops to

a capacity x∗1 =
γη−γ

γη−γ−η , where this comes from argmaxx {G(x)} for G(x) = (x−1)η

xγη−γ . Now letting

H(x) = 1
1−xγη−γ−η we have F (x) = G(x)H(x), so F 0(x) = G0(x)H(x) + G(x)H 0(x). But if x > 1

then G(x) > 1, H(x) > 1 and H 0(x) < 1, and if x > x∗1 then G
0(x) < 1. As a consequence, F 0(x) < 0

for all x > x∗1, so q
∗
1 < x

∗
1. ¥

Proof of Proposition 3.10

Follows directly from Propositions 3.2, 3.8 and 3.9.

Proof of Proposition 4.1

Using the relationship between prices and the demand shock we have

lnPt0+t =
α(γ − 1)

1 + α(γ − 1) lnXt0+t − (lnXt0+t − lnXt0+t), (92)

where we have assumed with out loss of generality that Xt0 = 1, but allowed for the possibility that

Xt0 =
P t0

Pt0
> 1.

The forward prices is just the expected future price, so is given by

Ft0+t = E t0

"
Pt0Xt0+t

µ
Xt0

Xt0+t

¶ 1
1+α(γ−1)

#
. (93)

Now Xt0+t is just a drifted Brownian motion, so distributed Exp[µt+σ
√
tχ], where χ is the standard

normal. Using this in conjunction with the joint density for the value and the maximum of a standard

Brownian up to time t, and a change of measure, we have that the t ahead forward price is given by

Z ∞

m=0

Z m

b=−∞
Pt0e

σb

µ
P t0

max(P t0 , Pt0e
σm)

¶ 1
1+α(γ−1)

e(µσ− σ
2 )b−(µσ− σ

2 )2 t
2 · ν(b,m) db dm (94)

where ν(b,m) =
³q

2
π

2m−b
t
√
t
e
−(2m−b)2

2t

´
is the joint density for the value and the maximum of a

standard Brownian. Rearranging the previous equation yields

Pt0e
−(µσ− σ

2 )2 t
2

Z ∞

m=0

µ
P t0

max(P t0 , Pt0e
σm)

¶ 1
1+α(γ−1)

Z m

b=−∞
e(µσ+σ

2 )b · ν(b,m) db dm. (95)

The interior integral, after completing the square in the exponential and simplifying, yields
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e(µσ+σ
2 )2 t

2 e2m(µσ+σ
2 )

Z m

b=−∞

Ãr
2

π

2m− b
t
√
t
e
−(b−(2m+(

µ
σ

+σ
2

)t))2

2t

!
db. (96)

We may do the integration using

2m− b
t
√
t
=
−1√
t

µ
b− (2m+ (µ

σ +
σ
2 )t)

t

¶
−

µ
σ +

σ
2√
t
, (97)

in which case we have

Z m

b=−∞

Ãr
2

π

2m− b
t
√
t
e
−(b−(2m+(

µ
σ

+σ
2

)t))2

2t

!
db

= −
r
2

πt

Z m

b=−∞

µ
b− (2m+ (µσ + σ

2 )t)

t

¶
e
−(b−(2m+(

µ
σ

+σ
2

)t))2

2t db (98)

−2
³µ
σ
+
σ

2

´Z m

b=−∞

1√
2πt

e
−(b−(2m+(

µ
σ

+σ
2

)t))2

2t db.

Completing the integrations yields

=

r
2

πt
e
−(m+(µ

σ
+σ

2
)t)2

2t − 2
³µ
σ
+
σ

2

´
N

Ã
−m− ¡µσ + σ

2

¢
t√

t

!
. (99)

Substituting back into the integral over the maximum, and looking separately at the regions

m < 1
σ ln

³
P t0

Pt0

´
and m > 1

σ ln
³
P t0

Pt0

´
gives forward price as

Pt0e
µt

Z 1
σ ln

µ
Pt0
Pt0

¶
0

e2m(µσ+σ
2 )

Ãr
2

πt
e
−(m+(µ

σ
+σ

2
)t)2

2t

!
dm

−
Z 1

σ ln

µ
Pt0
Pt0

¶
0

e2m(µσ+σ
2 )2

³µ
σ
+
σ

2

´
N

Ã
−m− ¡µσ + σ

2

¢
t√

t

!
dm (100)

+

µ
P t0
Pt0

¶ 1
1+α(γ−1)

Z ∞

1
σ ln

µ
Pt0
Pt0

¶ e(2(µσ+σ
2 )− σ

1+α(γ−1) )m
Ãr

2

πt
e
−(m+(

µ
σ

+σ
2

)t)2

2t

!
dm

−
µ
P t0
Pt0

¶ 1
1+α(γ−1)

Z ∞

1
σ ln

µ
Pt0
Pt0

¶ e(2(µσ+σ
2 )− σ

1+α(γ−1) )m2
³µ
σ
+
σ

2

´
N

Ã
−m− ¡µσ + σ

2

¢
t√

t

!
dm

 .
For the integral over the Þrst region, the Þrst term is just

2

N
 ln

³
P t0

Pt0

´
− (µ+ σ2

2 )t

σ
√
t

−N ³−³µ
σ
+
σ

2

´√
t
´ . (101)
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The second term may be done by parts, and is

"
e2(µσ− σ

2 )mN

Ã
−m− ¡µσ + σ

2

¢
t√

t

!# 1
σ ln

µ
Pt0
Pt0

¶

m=0

+

Z 1
σ ln

µ
Pt0
Pt0

¶
m=0

1√
2πt

e
−(m−(µσ +σ

2 )t)
2

2t dm. (102)

Substituting the previous two equations into the integral over the Þrst region yields

N

 ln
³
P t0

Pt0

´
− (µ+ σ2

2 )t

σ
√
t

 −N
−ln

³
P t0

Pt0

´
− (µ+ σ2

2 )t

σ
√
t

µP t0
Pt0

¶(1+ 2µ

σ2 )
. (103)

For the other region, when m > 1
σ ln

³
P t0

Pt0

´
, the integral is

µ
P t0
Pt0

¶ 1
1+α(γ−1)

Z ∞

1
σ ln

µ
Pt0
Pt0

¶ e(2(µσ+σ
2 )− σ

1+α(γ−1) )m
r
2

πt
e
−(m+(

µ
σ

+σ
2

)t)2

2t dm (104)

+

Z ∞

1
σ ln

µ
Pt0
Pt0

¶ e(2(µσ+σ
2 )− σ

1+α(γ−1))m2
³µ
σ
+
σ

2

´
N

Ã
−m− ¡µσ + σ

2

¢
t√

t

!
dm

 .
The Þrst integral is computed by completing the square in the exponent, and is

2e
−( 1

1+α(γ−1))
³
µ+σ2

2 − 1
1+α(γ−1)

σ2

2

´
t

1−N
 ln

³
P t0

Pt0

´
− (µ+ σ2

2 − σ2

1+α(γ−1) ) t

σ
√
t


 . (105)

The second term in the integral is, again, done by parts,

2
¡
µ
σ +

σ
2

¢
2
¡
µ
σ +

σ
2

¢− σ
1+α(γ−1)

"N Ã−m− ¡µσ + σ
2

¢
t√

t

!
e(2(

µ
σ+σ

2 )− σ
1+α(γ−1))m

#∞
1
σ ln

µ
Pt0
Pt0

¶

+

Z ∞

1
σ ln

µ
Pt0
Pt0

¶ e −σ
1+α(γ−1)

1√
2πt

e
−(m−(µσ +σ

2 )t)
2

2t dm

 . (106)

Substituting the previous two equations into the integral over the second region yields

(1 + θ)N

−ln
³
P t0

Pt0

´
− (µ+ σ2

2 )t

σ
√
t

µP t0
Pt0

¶(1+ 2µ

σ2 )
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+ (1− θ)e−( 1
1+α(γ−1) )

³
µ+σ2

2 − 1
1+α(γ−1)

σ2

2

´
t

(107)

· N

−ln
³
P t0

Pt0

´
+ (µ+ σ2

2 − σ2

1+α(γ−1) )t

σ
√
t

µP t0
Pt0

¶( 1
1+α(γ−1) )

,

where θ = 1
(1+α(γ−1))(1+ 2µ

σ2 )−1
.

Finally, summing over both regions yields

Ft0+t = Pt0e
µt

N
 ln

³
P t0

Pt0

´
− (µ+ σ2

2 )t

σ
√
t


+ θN

−ln
³
P t0

Pt0

´
− (µ+ σ2

2 )t

σ
√
t

µP t0
Pt0

¶(1+ 2µ

σ2 )
(108)

+ (1− θ)e−( 1
1+α(γ−1))

³
µ+σ2

2 − 1
1+α(γ−1)

σ2

2

´
t

· N

−ln
³
P t0

Pt0

´
+ (µ+ σ2

2 − σ2

1+α(γ−1) )t

σ
√
t

µP t0
Pt0

¶( 1
1+α(γ−1))

 . ¥

Proof of Proposition 4.2

We will show the result by perturbation analysis. We will consider the third center moment to

returns as the time internal gets very small, and ignore dominated higher order terms.

Heuristically, away from maxima in the price of Þrms� output log-changes in the output price

are normal at sufficiently short time intervals. As a result, returns to a Þrm, which has a price that

is convex in the price of its output, is also convex. That is, if Þrm value is given by V (P ), where P

is the price of the Þrms� output, then because V is convex so too is ln composed with V composed

with exp. Firm return is given by ln(V (P )) = ln(V (elnP ), so because lnP is normal large upward

moves in ln(V (elnP are more likely than large downward moves.

More formally, we will now consider the skewness in returns up to second order terms in dt and

show that it is positive. If P t > Pt then the probability that prices of Þrms� output returns to the

maximum on the interval from t to t+ dt is given by

P (P t+dt > Pt+dt) = P (Xt+dt > Xt+dt)

= 2 · P (Xt+dt > Xt+dt) (109)

= o

µ
N

µ
Xt −Xt

σ
√
dt

¶¶
.

and can be ignored in the second order expansion for sufficiently small dt. Because the instantaneous

return is essentially normal we will without loss of generality ignore the mean when computing higher
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order centered moments. That is, for convenience we will assume zero drift in demand (it is of course

not zero, but the drift does not effect the higher order centered moments).

By inspection of equation (5), the decomposition of the value of a Þrm into cash ßows until price

of Þrms� output returns to the historical maximum and the value of all cash ßows after that, we have

V (P ) = c1 P + c2 P
β . (110)

where c1, c2 and β are all strictly positive.

Now Þrm returns are given by d lnV (Pt), and d lnV (Pt) = d ln(k V (Pt)) for any constant k. So

let us consider f(x) = 1
1+cx +

c
1+cx

β, for some c that makes f proportional to V . To second order

expansion around 1 we have

f(x) ≈ 1 +
µ
1 + β c

1 + c

¶
x+

µ
β (β − 1) c
1 + c

¶
(x− 1)2

2
. (111)

Using ey ≈ 1 + y + y2

2 we then have, to second order, that

f(ex) ≈ 1 +

µ
1 + β c

1 + c

¶µ
x+

x2

2

¶
+

µ
β (β − 1) c
1 + c

¶
x2

2

= 1 +

µ
1 + β c

1 + c

¶
x+

µ
1 + β c+ β (β − 1) c

1 + c

¶
x2

2
. (112)

Finally, using ln (1 + y) ≈ y − y2

2 we have

ln f(ex) ≈
µ
1 + β c

1 + c

¶
x+

µ
1 + β c+ β (β − 1) c

1 + c

¶
x2

2
−
µ
1 + β c

1 + c

¶2
x2

2

=

µ
1 + β c

1 + c

¶
x+

µ
(1 + β2c)(1 + c)− (1 + βc)2

(1 + c)2

¶
x2

2
(113)

=

µ
1 + β c

1 + c

¶
x+

µ
(β − 1)2c
(1 + c)2

¶
x2

2
.

That is, for small x we have, ignoring terms higher than second order, that ln f(ex) = a x+ b x2

where a and b are both strictly positive. Using d lnPt for x, and the fact that d lnPt is normally

distributed with variance σ2 dt, we have that the third centered moment to stock returns is given by

E
h
(ln f(ex)−E [ln f(ex)])3

i
= E

h¡
a x+ b x2 −E

£
a x+ b x2

¤¢3
i

= E
h¡
a x+ b (x2 − σ2dt)

¢3
i

(114)

= E
£
b3 (x2 − σ2dt)3 + 3 a2x2b(x2 − σ2dt)

¤
= 8 b3σ6dt3 + 18 a2bdt2.
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In the limit as dt gets very small stock returns� third centered moment goes to 18 a2bdt2. This

is strictly positive because a and b are both strictly positive. We have, therefore, that if Pt < P t

then at sufficiently short horizons stock prices are positively skewed.

When Pt = P t the negative skewness in stock returns is inherited directly from the negative

skewness in price of their output. The price of Þrms� output is not It�o, and is negatively skewed

even in the inÞnitesimal when Pt = P t. Because to order dt stock prices are linear in the price of

Þrms�s output, negative skewness in the returns to the the price of Þrms� output at short horizons

(in the order dt term) translates directly to negative skewness in stock returns at short horizons.

Proof of Proposition 4.3

For the redevelopment density, we need to compare the q∗1 from the optimal strategy equation,

equation (27)

q∗1 = argmaxq

½
(q − 1)η

qη(qγ(η−1)−η − 1)
¾
,

to the optimal strategy of a Þrm in the Þxed capacity economy. Using the fact that the Þxed capacity

economy is just the limit of the equilibrium economy as the cost to scale of building gets very large,

and letting overscore tildes denote parameters in the Þxed capacity economy, we have that

�q∗1 = argmaxq

(
(q − 1)β̃

qβ̃(qγ(β̃−1)−β̃ − 1)

)
. (115)

The long run average price growth,
³

α(γ−1)
1+α(γ−1)

´³
µ− 1

1+α(γ−1)
σ2

2

´
, was given in equation (35).

The long run average price variance,
³

α(γ−1)
1+α(γ−1)

´2

σ2, is implied directly from the price process

equation and the fact that a Brownian process with positive drift stays �close� to its maximum.

Using these in the formula for �β we get

�β =

sµ
�µ

�σ2
− 1
2

¶2

+
2r

�σ2
−
µ
�µ

�σ2
− 1
2

¶

=

vuuuut
 α(γ−1)

1+α(γ−1)µ− α(γ−1)
(1+α(γ−1))2 σ2³

α(γ−1)
1+α(γ−1)

´2

σ2

− 1
2


2

+
2r³

α(γ−1)
1+α(γ−1)

´2

σ2

−

 α(γ−1)
1+α(γ−1)µ− α(γ−1)

(1+α(γ−1))2σ
2³

α(γ−1)
1+α(γ−1)

´2

σ2

− 1
2



=

vuuut
³
1 + 1

α(γ−1)

´
µ

σ2
−
³
1 + 1

α(γ−1)

´
2

2

+

µ
1 +

1

α(γ − 1)
¶2

2r

σ2
(116)
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−

³
1 + 1

α(γ−1)

´
µ

σ2
−
µ
1 +

1

α(γ − 1)
¶
1

2


=

µ
1 +

1

α(γ − 1)
¶sµ µ

σ2
− 1
2

¶2

+
2r

σ2
−
µ
µ

σ2
− 1
2

¶
= η.

The fact that �q∗1 = q
∗
1 then follows directly from the fact that �β = η.

For the timing of the redevelopment, we will again use the fact that the Þxed capacity economy

is just the limit of the equilibrium economy as the cost to scale of building gets very large. The

optimal strategy equation, equation (28), in conjunction with �β = η and �q∗1 = q
∗
1 then yields

�P ∗1 =
Π

�π
P ∗1 . (117)

That is, in equilibrium a Þrm redevelops later than it would in a Þxed capacity economy with the

same long run average price growth and the long run average price variance if and only if Π < �π.

Using the formula for the price of a unit cash ßow at a price maximum, and the formula for �π,

we have Π < �π if and only if

(r − µ)
µ
1 +

1

(1 + α(γ − 1))(β − 1)
¶
> r −

µ
α(γ − 1))
1 + α(γ − 1)µ−

α(γ − 1))
(1 + α(γ − 1))2

σ2

2

¶
. (118)

Simplifying and ignoring the strictly positive common denominator, this condition reduces to

r +
α(γ − 1))
1 + α(γ − 1)

σ2

2
> β

µ
µ+

α(γ − 1))
1 + α(γ − 1)

σ2

2

¶
, (119)

or

β <
r + α(γ−1))

1+α(γ−1)
σ2

2

µ+ α(γ−1))
1+α(γ−1)

σ2

2

. (120)

Using the deÞnition of β we then have

µ
µ

σ2
− 1
2

¶2

+
2r

σ2
<

µ µ
σ2
− 1
2

¶
+
r + α(γ−1))

1+α(γ−1)
σ2

2

µ+ α(γ−1))
1+α(γ−1)

σ2

2

2

. (121)

Simplifying and ignoring strictly positive common factors yields

r <

µ
α(γ − 1)

1 + α(γ − 1)
¶µ

µ− 1

1 + α(γ − 1)
σ2

2

¶
. (122)
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This condition, that the discount rate simply exceeds the long run average price growth, is al-

ways satisÞed by assumption. As a result, Π is always less than �π, and we then have that P ∗1 > �P ∗1 . ¥

Proof of Proposition 4.4

The option value is convex in prices, whereas the intrinsic value is linear, and both value components

go to zero with prices. As a result, it must be that the maximum ratio of option value to intrinsic

value occurs at the highest possible price, i.e., at the moment before redevelopment occurs. We then

have

maxp

µ
O(q, P )

I(q, P )

¶
=
O(q, P ∗q )
I(q, P ∗q )

=
Aqγ

qΠP ∗q
. (123)

Substituting for A and P ∗q and simplifying results in

maxP

µ
O(q, P )

I(q, P )

¶
=

(q∗1 − 1)
η(1− q∗(γ+η−γη

1 )
. ¥ (124)
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