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We analyse the entry decisions of competing firms in a two—player stochas-

tic real option game, when rivals can exert different but correlated uncertain

profitabilities from operating. In the presence of entry costs, decision thresh-

olds exhibit hysteresis, the range of which is decreasing in the correlation

between competing firms. The expected time of each firm being active in

the market and the probability of both rivals entering in finite time are ex-

plicitly calculated. The former (latter) is found to decrease (increase) with

the volatility of relative firm profitabilities implying that market leadership is

shorter—lived the more uncertain the industry environment. In an application

of the model to the aircraft industry, we find that Boeing’s optimal response

to Airbus’ launch of the A3XX super carrier is to accommodate entry and

supplement its current product line, as opposed to the riskier alternative of

committing to the development of a corresponding super jumbo.

JEL. Nos.: D81, L13, G13, G31. Keywords: Real options, Intertem-

poral optimal exchange, Two—player stochastic game, Expected active times

and probabilities



1 Introduction

When a firm has the opportunity to invest under conditions of uncertainty

and irreversibility (partial or complete) there is an option value of delay.

By analogy to financial options, it might be optimal to delay exercising the

option, (proceeding with the investment), even when it would be profitable

to do so now, due to the hope of gaining a higher payoff in the future as

uncertainty is resolved.

This insight, first applied to the analysis of natural resource extraction

by Brennan and Schwartz (1985), improves upon traditional investment ap-

praisal approaches (decision trees or NPV-based criteria) by allowing the

value of delay and the importance of flexibility to be incorporated into the

assessment.1 Subsequently, a substantial number of papers have explored this

idea. Among others, McDonald and Siegel (1985), (1986) and Dixit (1989)

price option values associated with entry and exit from a productive capacity

while Pindyck (1988) values the operating flexibility that arises from capac-

ity utilisation. Paddock, Siegel and Smith (1988) concentrate on valuing

offshore petroleum leases and Pindyck (1993) values projects where different

sources of cost uncertainty are involved. Majd and Pindyck (1987) value

projects with a substantial time—to—build element while Dixit and Pindyck

(1994) provide a survey of the literature as a whole.

However, real investment opportunities, unlike financial options, are rarely

held by a single firm in isolation. Most investment projects (in one form

or another) are open to competing firms in the same industry or line of

business, subject of course to the core competencies of each firm. In some

extreme cases, competing firms will be equally capable of undertaking the

same project or investing in a new market. In such cases, the timing of the

investment becomes a key strategic consideration which has to be optimised

by taking into account the competitor’s optimal responses.

In this paper we aim to elucidate the factors driving strategic entry deci-

sions by competing firms. We do so by considering optimal entry strategies in

a two—firm, infinite—horizon stochastic game. In a market that can only ac-

1The reconciliation of traditional investment appraisal techniques and real option valu-

ation paradigms is an area of active research. For some recent results, see Teisberg (1995)

and Kasanen and Trigeorgis (1995).
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commodate one active firm, the idle rival has the option to claim the market

by sinking an unrecoverable investment cost. Its optimal exercise decision

has to incorporate the possibility that in the future, the rival firm could re-

claim the market again by exercising a corresponding entry option, if optimal

to do so.

What complicates the problem is that we allow competing firms to have

different operating capabilities. Namely the operating profitabilities that

the rival firms can exert from operating the market are assumed to follow

different (but possibly correlated) diffusion processes. Each firm’s optimal

entry strategy, by incorporating its rival’s optimal response, will ultimately

depend on the parameters of both diffusions. To our knowledge, the task of

solving a two—state—variable strategic game has not be undertaken before in

the real options literature. We are able to do so by, first transforming the

game into an one—agent optimisation problem and secondly, by exploiting

the homogeneity of the setting, to reduce its dimensionality.

We find that the presence of fixed entry costs produces hysteresis in the

entry decisions of competing firms in the spirit of Dixit (1989).2 In our setting

this means that if the conditions that urged one firm to exercise and claim

the market from its active rival completely reverse, we should not expect

to see an immediate corresponding exercise strategy from the other firm.

Market conditions have to change further until the rival firm finds it optimal

to exercise its entry option. This hysteresis effect is found to be positively

related to investment entry costs and uncertainty, but negatively related to

the correlation of rival firms operations. As fixed costs are eliminated from

the model, hysteresis disappears, and optimal exercise strategies of are shown

to collapse to a simple, yet intuitive, current yield or profitability criterion.

We also calculate explicitly the expected and median time that each firm

will spend as active in the market, as well as the probability that both com-

peting firms will become active within a finite time horizon and we explore

their dependence on uncertainty and investment costs. Interestingly, higher

volatility in the market is shown to imply lower expected active times for each

competing firm. The probability that both rivals will become active in a finite

horizon strictly increases with volatility, implying that the more uncertain

2Hysteresis is defined as the delay in an effect reversing itself when the underlying cause

is reversed.
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the market environment, the more short—lived is market leadership. Highly

volatile industries (e.g. biochemical, pharmaceutical) seem to conform to

the model’s predictions. Using market data, we then apply the model to the

aircraft manufacturing industry. Our interest in this market originates from

the fact that it is mainly a two—firm industry, with long periods of market

domination by one of the rivals, large irreversible investment decisions, high

profitability uncertainty and direct strategic competition. Moreover, this in-

dustry is currently undergoing major changes after the decision of one firm

to capture the market segment for the very large aircrafts by making a huge

investment. Our application in section 5 assesses the optimal rival reaction.

Turning to the relation of the paper to some recent literature on the

theme, optimal real option exercise policies under duopolistic strategic com-

petition has been the focus of work by Smets (1991), Grenadier (1997) and

Lambrecht and Perraudin (1996). Unlike their work, we allow each com-

peting firm’s decision to be subject to a firm—specific stochastic variable, as

well as its competitor’s, thus making the game two—dimensional and more

difficult to tackle. Like Lambrecht and Perraudin (1996) who deal with the

biochemical industry, our model can be applied in a real business market.

Finally, our paper also draws from the seminal papers by McDonald and

Siegel (1986) and Dixit (1989), both of which are in a single—firm context.

The rest of the paper is organised as follows: Section 2 describes the basic

two—firm stochastic game and extensively presents the concepts that allow it

to be transformed to an one—agent, one—variable optimisation problem much

easier to tackle. Section 3 solves the problem in order to determine the

equilibrium optimal strategies of rivals, while section 4 presents probability

calculations and examines the sensitivity of the results to key model param-

eters. Section 5 applies the model to the aircraft manufacturing industry

while the last section concludes.

2 The model

2.1 The basic setting

We study amarket which is only big enough for one firm (a natural monopoly)

and two competing firms, i and j, that can potentially monopolise it sequen-
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tially. Each firm has its own production technology and thus can command

a different operating profitability from being the active firm in the market.

Let Sit, Sjt stand for the net operating profitability flow that each firm can

command in the market at time t, and assume that

dSit

Sit

= (µi − δi) dt + σidZit

dSjt

Sjt

=
(
µj − δj

)
dt+ σjdZjt (1)

where µi,j, δi,j and σi,j > 0 are constants. The future operating profitabil-

ity of each firm is uncertain and exposed to exogenous shocks, specified as

the increments of standard Brownian motions dZit, dZjt. These shocks can

either be firm—specific (e.g. an improvement in enterpreneurial skills, a cost—

reducing innovation in one firm’s production technology) or industry—wide

(e.g. an unexpected shift in market demand or a change in customers’ tastes

etc.). To reflect the possibility of common and firm—specific economic factors

driving the profitability of competing firms, we allow Si, Sj to be exposed to

correlated Brownian motions, i.e. dZitdZjt = ρdt where ρ is the increment

correlation coefficient, assumed constant. Firms i, j, if idle, can enter the

market by investing a fixed cost of Ki, Kj respectively.

In the absence of any considerations like severe entry barriers, we should

expect competition to drive the most “efficient” of the two rivals to dominate

and operate the market. We do not address operating efficiency of competing

firms per se here, but we assume that the net operating profitabilities defined

in (1) essentially represent the ability of each firm to operate the market

efficiently. Thus if, for example, firm i is currently idle but Si is higher than

Sj, we would expect the underlying economic forces to shift the market from

j to i once the latter decides to commit resources, at least in the long—run.

In our simple economy, this shift can occur instantaneously.

Because of the uncertainty in future operating profitabilities in (1), no

matter which firm is in the market currently, both firms have a chance of

being the market “monopolist” for some non—overlapping period of time in

the future, depending on their operating parameters, namely (µ, δ, σ,K).

The major aims of this paper are: (a) to quantify these periods of time, as

well as the probability of becoming active, for each rival firm as a function

of its parameters, and (b) to study the entry decisions of rivals in this simple
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two—player game and define optimal strategies.

2.2 Solution technique

In the presence of uncertainty (Equation (1)) and sunk costs (Ki, Kj), it

has been stressed in the real options literature that there is an option value

of delay. Each firm in our model, when idle, has the option to sink an

investment cost and claim the market from its rival. The exercise strategy

of a firm would specify the optimal stopping time for sinking this investment

cost and claim the benefits from operating. What complicates the problem

is that one firm’s exercise strategy should take into account that its rival

can claim the market back by subsequently exercising its own entry option.

In our two—player game, firms’ exercise strategies have to be simultaneously

determined as part of an optimal equilibrium behaviour.

However, our problem of finding equilibria in our two—firm game can be

converted to a much simpler one, thanks to a result in Slade (1994). Slade

(1994) specifies the conditions under which a general N—player game where

agents act strategically is observationally identical to a central planner’s op-

timisation problem. Her intuition is as follows: As in a perfectly competitive

industry with a large (possibly infinite) number of agents, each pursuing

selfish objectives, the market behaves as if an agent was maximising an ob-

jective function (social welfare), an N—player game with strategic agents can

be transformed into a “fictitious” objective function, whose maxima are Nash

equilibria of the game.3 ,4

In our context, assume the existence of a fictitious central planner who,

at any point in time, can instantaneously delegate the market to the most

profitable of the two firms. Obviously, the central planner will want firm i

(firm j) to be active in the market when Si is high (low) and/or Sj is low

(high). However, every time the planner decides to change the active firm

in the market, switching costs Ki→j ≡ Kj or Kj→i ≡ Ki (depending on

the direction of the “switch”) are incurred. The central planner is risk neu-

3Slade strengthens her argument by showing that Nash equilibria of the game that are

not maxima of the function are generically unstable.
4See also Baldursson (1998), who applies Slade’s (1994) result in his study of irreversible

investment under uncertainty in oligopoly.
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tral and wishes to maximise her expected present value of profits from the

market, net of switching costs. By specifying the rules for optimal switch-

ing between firms, our planner essentially defines the exercise strategies of

competing firms. The planner’s optimisation problem is one of stochastic dy-

namic programming and we will develop the solution using the option pricing

analogy.

Without loss of generality, let firm j be currently the active firm in the

market and define Fj→i (Si, Sj) as the planner’s option to cease firm j op-

erating, and to activate firm i in the market. Over the range of states

�j ≡ {Si, Sj : j active} the asset of the switching opportunity must be will-

ingly held. The return of this asset comprises of (a) the expected capital

gain,
E[dFj→i(Si,Sj)]

dt
, as the value of Fj→i (Si, Sj) changes with Si, Sj plus (b)

a dividend, Sj, the flow of operating profit from firm j which is currently

active. The total return must then equal the normal return, i.e.

E [dFj→i (Si, Sj)] + Sjdt = rFj→i (Si, Sj) dt

where r is the riskless interest rate, assumed constant

By applying Ito’s lemma to calculate the expectation and in the light of

(1), this asset equilibrium condition becomes a second—order partial differ-

ential equation that Fj→i (Si, Sj) must satisfy

1

2

(
σ2
iS

2
i

∂2Fj→i (Si, Sj)

∂S2
i

+ 2ρσiσjSiSj

∂2Fj→i (Si, Sj)

∂Si∂Sj

+ σ2
jS

2
j

Fj→i (Si, Sj)

∂S2
j

)

+(r − δi)Si

∂Fj→i (Si, Sj)

∂Si

+ (r − δj)Sj

∂Fj→i (Si, Sj)

∂Sj

− rFj→i (Si, Sj) + Sj = 0

(2)

Correspondingly, over the range of states �i where it is optimal for firm i

to be active in the market, the planner’s option to exchange firm i with firm

j in the market, Fi→j (Si, Sj), will satisfy

1

2

(
σ2
iS

2
i

∂2Fi→j (Si, Sj)

∂S2
i

+ 2ρσiσjSiSj

∂2Fi→j (Si, Sj)

∂Si∂Sj

+ σ2
jS

2
j

Fi→j (Si, Sj)

∂S2
j

)
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+(r − δi)Si

∂Fi→j (Si, Sj)

∂Si

+ (r − δj)Sj

∂Fi→j (Si, Sj)

∂Sj

− rFi→j (Si, Sj) + Si = 0

(3)

2.3 Reducing the problem’s dimensionality

Identifying the boundaries between regions �i, �j essentially determines the

optimal switching policy for our central planner. However, the theory of

partial differential equations has little to say about such “free boundary”

problems in general. Fortunately, in the present setting, the natural homo-

geneity of the problem allows us to reduce it to one dimension. The intuition,

which is due to McDonald and Siegel (1986), is that in the current setting,

our central planner is not concerned about the absolute magnitudes of Si,

Sj. For determining the optimal switching policy, the planner only needs

to be concerned about some measure of the relative magnitudes of the two

firms’ profitabilities. A properly defined measure will allow reduction of the

dimensionality of the problem.

Letting P ≡ Si

Sj
stand for the relative net operating profitability of com-

peting firms and in the region �j, write

Fj→i (Si, Sj) = Sjfj→i

(
Si

Sj

)
= Sjfj→i (P ) (4)

where fj→i is now the function to be determined. It is easy to see that a

relationship like (4) can be sustained: if Si, Sj both double in value, the

boundary that determines optimal �j → �i switching will not change, thus

the switching option Fj→i should be homogenous of degree 1 in (Si, Sj).

Apply successive differentiation to (4) and substitution into (2) we get

1

2
ν2P 2f ′′

j→i(P ) + (δj − δi)Pf
′

j→i(P )− δjfj→i(P ) + 1 = 0 (5)

where ν2 ≡ σ2
i − 2ρσiσj + σ2

j (see Appendix).

Equation (5) is an ordinary differential equation for the unknown function

fj→i(P ) of the scalar independent variable P . It has to be solved subject to

the boundary condition

lim
P→0+

fj→i(P ) =
1

δj
(6)
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which essentially says that when P tends to zero (Si ↓ and/or Sj ↑), our
planner will never want to exchange active firm j for i and thus her switching

option fj→i should be worthless. Thus her expected present value will be

equal to the present value of firm j operating perpetually.5

Solving (5) subject to (6) yields

fj→i(P ) = AP a +
1

δj
(7)

where A is a constant to be determined, and a is the positive root of the

characteristic quadratic function.6

Following similar steps for region �i, equation (3) reduces to

1

2
ν2P 2f ′′

i→j(P ) + (δj − δi)Pf
′

i→j(P )− δjfi→j(P ) + P = 0 (8)

subject to

lim
P→+∞

fi→j(P ) =
P

δi
(9)

Boundary condition (9) says that with firm i active, as P gets extremely

high (Si ↑ and/or Sj ↓), the switching option fi→j will be worthless and the

planner will be receiving Si perpetually (see footnote 5). The solution of (8)

subject to (9) is of the form

fi→j(P ) = BP b +
P

δi
(10)

with B constant and b as in footnote 6.

Finally, for future reference in the paper and before proceeding to the

solution of the planner’s problem, one can show that the relative profitability

variable P will follow

dPt

Pt

=

(
ξ +

1

2
ν2
)
dt + νdW̃t (11)

5Note that Sj has been factored out of Fj→i in the definition of fj→i in (4), thus the

right—hand side of boundary condition (6) should be read as
Sj

δj
.

6The characteristic quadratic function 1

2
ν2x(x−1)+(δj−δi)x−δj = 0 has roots a > 1

and b < 0 given by

a, b =
1

2
−

δj − δi

ν2
±

√(
δj − δi

ν2
−

1

2

)2

+
2δj
ν2
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where ν as before, ξ ≡ µi−µj + δj − δi− 1
2

(
σ2
i − σ2

j

)
and a standard Wiener

process

W̃t =
1

ν
(σiZit − σjZjt)

3 Solving for the optimal switching policy

Once the planner problem is reduced to one dimension, optimal policies can

be determined. These optimal switching policies, j → i and i → j, are

determined in the form of two time independent values of the state variable

P , one an upper P and one a lower threshold P , such that

�i =
{
Si, Sj : P ≥ P

}
If j active, switch to i

�j = {Si, Sj : P ≤ P} If i active, switch to j

P > 1 > P (12)

Of course the values of P, P have to be determined endogenously through

optimality conditions that apply at the thresholds. The separation of switch-

ing thresholds in (12) is similar to the entry/exit model of Dixit (1989). To

understand this in our setting, suppose firm j is currently active and P = 1

(both firms equally profitable). Our central planner would seem indiffer-

ent to which firm operates the market and could decide to activate firm i

and cease j from operating. However, since the switching decision entails a

fixed cost (Kj→i in this case), our planner will optimally delay this decision

until P = P > 1 is reached, i.e. until the option fj→i is sufficiently “in—

the—money”. In other words, firm i does not find it optimal to commit the

investment cost until its profitability is sufficiently higher than j’s, so that

a substantial active time period can be expected. Correspondingly, when

i is active, the planner will optimally wait until P gets sufficiently below

unity, so as to be optimal to sink Ki→j and delegate the market to firm j.

This separation of thresholds for optimal j → i and i → j exchange is the

manifestation of hysteresis (see Dixit (1989)).
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3.1 Hysteresis solution in four equations

The optimal policy is determined by two value—matching

AP
a
+

1

δj
+Kj→i = BP

b
+
P

δi

(13)

AP a +
1

δj
−Ki→j = BP b +

P

δi

and two high—order contact or smooth—pasting conditions7

AaP
a

= BbP
b
+
P

δi
(14)

AaP a = BbP b +
P

δi

that apply at the optimal boundaries, P ,P , which we want to determine.

Equation (13) states what happens when the optimal boundaries are

reached. When P gets sufficiently high (at the optimal level P to be de-

termined, where Si � Sj), our central planner exercises the (call) option

to activate firm i (AP
a
) by ceasing firm j and incurring the switching cost

(Kj→i). In return, she gets an active firm i and the (put) option to reactivate

firm j (BP
b
) if profitability conditions change in the future. At P (Si � Sj)

this put option is exercised, and firm’s i value and the switching cost Ki→j

are exchanged for the value of firm j and the (call) option on firm i. Equation

(14) states that for P ,P to be the optimal switching policy thresholds, not

only the values in (13) but also their first derivatives must meet smoothly.

The intuition is that if a kink arose at P ,P , perturbations in the supposedly

optimal policy would make the planner better off and thus the thresholds

would not be optimal.8

Equations (13)—(14) constitute a system that uniquely determines A, B,

P and P , thus completing the solution. The equations are non—linear in P

7See Dumas (1991) for a rigorous treatment of these conditions and Merton (1973,

p.171, n.60) for a discussion in the option pricing problem. Dumas and Luciano (1991)

also discuss these in another two sided transaction cost control problem.
8Note that the smooth—pasting conditions have been made homogenous by multiplying

through with P , P .
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and P and thus can only be evaluated numerically. In the next subsection

we show that this system can be reduced to one, easily evaluated equation

that determines the whole system and can summarise the optimal policy in

one parameter.

3.2 Hysteresis solution in one equation

For reducing the system, it will be convenient to set

X =
1

δj
+Kj→i

X =
1

δj
−Ki→j

as the costs associated with the upper and lower switching thresholds and

write the system (13)—(14) in matrix form with
(
A,B,X,X

)
as a function

of
(
P ,P

)
AP

a
+X = BP

b
+ P

δi

AP a +X = BP b + P

δi

AaP
a

= BbP
b
+ P

δi

AaP a = BbP b + P

δi

⇐⇒


1 0 P

a −P b

0 1 P a −P b

0 0 aP
a −bP b

0 0 aP a −bP b



X

X

A

B

 =
1

δi


P

P

P

P



Inverting the matrix to recover the vector
(
A,B,X,X

)
, the matrix product is

most easily evaluated as a function of the fraction γ ≡ P

P
(a time independent

ratio of the lower to the upper switching thresholds)
X

X

A

B

 =
P

abδi(γb − γa)


ab(γb − γa)− bγb + aγa − (a− b)γ

ab(γb+1 − γa+1) + bγa+1 − aγb+1 + (a− b)γa+b

bδai (γb
−γ)

P
a

aδai (γ
a
−γ)

P
b


(15)

Define the variable π ≡ X

X
(the ratio of switching costs). This variable can

be expressed as a function of γ by dividing the first two lines of the matrices

in (15)

π (γ) =
ab(γb+1 − γa+1) + bγa+1 − aγb+1 + (a− b)γa+b

ab(γb − γa)− bγb + aγa − (a− b)γ
(16)
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This is the one equation that determines the entire hysteresis system. It

would be preferable to determine γ (π) (the ratio of thresholds as a function

of the switching cost ratio) as oppose to π (γ) but a numerical solution for

the inverse is easy to obtain for any particular values. This polynomial π (γ)

is monotonic and increasing in γ and therefore there is a unique π for every

γ and vice versa. For every choice of π, once the optimal γ is numerically

retrieved from (16), the thresholds and option constants can be recovered by

substituting in the following equations[
P

P

]
= ab(γb − γa)

[
X

ab(γb−γa)−bγb+aγa−(a−b)γ
X

ab(γb−γa)+bγa−aγb+(a−b)γa+b−1

]
[
A

B

]
= P

abδi(γb−γa)

[
bδai (γb

−γ)
P

a

aδai (γ
a
−γ)

P
b

] (17)

The above completes the solution by specifying the optimal switching

policy for our fictitious central planner. The optimal thresholds at which

our planner decides to exchange j for i (P ) and i for j (P ) are essentially

the relative optimal exercise strategies of our two competing firms. In the

next section we examine some of the properties of the optimal exercise policies

analytically. Moreover, some interesting calculations concerning the expected

active time of each rival, and the probability that one of them will be the

active firm in the market are presented.

4 Results

4.1 The effects of uncertainty and investment costs

For any P in the hysteresis range
(
P , P

)
, the market continues with the

status quo (active firm remains the same) and that sunk costs are crucial for

this inertia zone to arise.9 We thus first turn to examine the effect of such

costs.

9In this inertia zone
(
P, P

)
, which firm will actually be active is history—dependent. It

depends on which of the thresholds P, P has been reached last.
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It is easy to see that

lim
Ki→j=Kj→i→0

π (γ) = 1 ⇔ γ = 1

the optimal exercise thresholds collapse to a common value P̂ and hysteresis

disappears. Using l’Hopital’s rule we can evaluate this value to be

P̂ =
ab

ab− (a+ b) + 1
=
δ2

δ1
⇔ δ1S1 = δ2S2 (18)

where the second equality comes from the definition of P .

Although not obvious at the outset, this result is not surprising. It means

that in the absence of fixed costs, the exercise strategy for a firm is to enter

whenever it has a higher profit flow than its competitor. In other words, our

fictitious planner would activate an idle firm whenever the opportunity cost

of keeping it inactive exceeds the profitability yield of the firm currently in

the market.

Moreover, for any positive level of uncertainty, if Ki→j → 0, we have
dP

dKi→j
→ ∞ and dP

dKi→j
→ −∞. In other words, in the presence of uncertainty,

hysteresis emerges very rapidly even for small sunk costs. Similarly when

Kj→i → 0. This is visually confirmed by figure 1 which plots the optimal

exercise thresholds as a function of sunk costs for symmetric rivals (µi = µj,

δi = δj, σi = σj, Kj→i = Ki→j). In accordance with intuition, firms are more

reluctant to enter (hysteresis increases) in the presence of higher investment

costs K.

Next, turn to the effect of uncertainty. If σi, σj → 0, equation (13)

becomes

P = δiX

P = δiX

and the effect of hysteresis is only due to the sunk investment costs. It is

easy to verify that for σi, σj > 0

P > δiX

P < δiX

i.e. the zone of inaction widens with uncertainty. However even for economi-

cally identical competing firms (µi = µj, δi = δj, σi = σj = σ, Kj→i = Ki→j)

13



the effect of uncertainty on the optimal thresholds is not symmetric. For any

level of correlation, it can be shown that

dγ

dσ
< 0 ⇔ dP

dσ
< 0 <

dP

dσ

the upper threshold is more sensitive to volatility than the lower threshold.

Figure 2 plots the exercise thresholds as a function of volatility for sym-

metric rival firms (δi = δj, σi = σj, Kj→i = Ki→j). The more volatile the

profitabilities of competing firms, the higher the distance between the optimal

exercise thresholds
(
P, P

)
. The correlation of changes in rival’s profitabilities

also has an effect which is also apparent in figure 2. P (P ) is monotonically

decreasing (increasing) in ρ. For ρ = 1, the relative profitability of rivals P

is deterministic (ν = 0) and the active firm in the market will be determined

by the initial “yield” criterion in (18) for all time (see also figure 3).

4.2 Calculating the probability of being the active rival

Once one of the two competing firms becomes active in our model, it knows

that it will operate the market only until its rival finds it optimal to claim

the market back. This might well be a finite period of time. What the active

firm would like to know is how long this period of time will be, at least in

expectation. Moreover, for fixed time horizons, what is the probability that

a firm will be active in the market by time t?

To answer these questions, assume that firm j is currently active and the

relative profitability variable is at P0 ∈
(
P ,P

)
. Define the stopping time Tj

Tj = inf
{
t ≥ 0 : Pt ≥ P

}
as the first time that P reaches P starting from P0. Since the future evolution

of P is unknown, time Tj is essentially a random variable measuring the

time firm j will be active. Using equation (1.11) in Harrison (1985) and

an application of a simple change in variables, the cumulative distribution

function of the first passage time Tj can be written as:

Pr [Tj ≤ t] = Φ

− ln
(

P
P0

)
+ ξt

ν
√
t

+

(
P

P0

) 2ξ

ν2

Φ

− ln
(

P
P0

)
− ξt

ν
√
t

 (19)
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where ξ, ν as in (11) and Φ(.) is the standard normal cumulative distribution

function. To provide a measure of the average time firm j will be active,

one might consider the expected value of Tj. Unfortunately, for the case in

which ξ < 0, the expectation is undefined. Essentially, if the volatility of

the relative profitability measure P is large enough, P may never be reached

and the expectation is infinite, i.e. firm j may remain active for ever. To

overcome this limitation, we choose to measure the average active time of

firm j by the median of Tj. The median active time for firm j, Mj, that

divides the probability in two is the solution to the non—linear equation:

Φ

− ln
(

P
P0

)
+ θMj

ν
√
Mj

+

(
P

P0

) 2θ

ν2

Φ

− ln
(

P
P0

)
− θMj

ν
√
Mj

 =
1

2
(20)

Figure 4 shows that the median active time of the incumbent firm j increases

with the rival’s investment cost. Notice however the effect of the volatility of

the relative profitability, ν. The median active time Mj decreases with the

volatility of the relative profitability of rivals, ν, i.e. the more volatile the

industry’s profitability, the less the period of time the incumbent firm can

maintain its monopolistic position.

This might seem counterintuitive when viewed in conjecture with the fact

that by definition dν
dσi

= dν
dσj

> 0, and dP

dσi
= dP

dσj
< 0 < dP

dσi
= dP

dσj
, the zone of

hysteresis increases with rivals’ volatilities. The intuition is that an increase

in volatility has a two opposing effects. First, as σi, σj increase, the zone of

hysteresis becomes wider (see figure 2), making it less likely that a change

in the active firm will occur. On the other hand, such an increase makes

the relative profitability process P in (11) more volatile (since ν increases),

increasing the probability that more extreme values of P will be realised

ceteris paribus. It is this second effect that dominates, implying that the more

volatile the market environments, the more short—lived market leadership by

a firm will be.

Once it loses the market to its rival, an incumbent firm would like to

be able to calculate the probability of regaining the market back. In other

words, firm j, if initially active, would like to know what is the probability

that by time T , the relative profitability measure reaches P after having

15



reached P before. Towards that end, define

mP
t ≡ max

u∈[0,t]
Pu

as the running maximum of the relative profitability process P up to time

t. With P0 ∈
(
P, P

)
, we are interested in calculating Pr

[
Pt ≤ P ,mP

t ≥ P
]
,

the probability that firm j becomes active again after a finite period of firm

i operating the market. It can be shown that

Pr
[
Pt ≤ P,mP

t ≥ P
]
= exp

[
2θ

ν4
ln

(
P

P0

)]
Φ

 ln
(
P

P

)− ln
(

P
P0

)
− θt

ν2
√
t


(21)

(see for example Musiela and Rutkowski (1997, Corollary B.3.1)). Obviously,

this probability increases the further in time we look. For symmetric firms,

it decreases with the investment entry costs (figure 5) but it increases with

the volatility of firms’ relative profitability ν (figure 6). In figure 5, notice

that as Kj→i = Ki→j → 0, the probability in (21) converges to a straight line

at 50%10, since in this case the thresholds collapse to the unique value P̂ in

(18). Moreover, in figure 6, an increase in ν has again the dual effect discussed

above. The ratio of entry thresholds, γ ≡ P

P
, decreases, thus enhancing the

gap between P and P . Moreover, since the volatility of P increases, it is

more probable that more extreme values will be realised. The second effect

dominates to bring the probability in equation (21) up.

5 Aircraft industry application

In this section we apply the model’s main results to an industry that conforms

very closely to our setting: the aircraft manufacturing industry which has

long been dominated by two major competing firms, Boeing Co. and Airbus

Industrie. Stonier and Triantis (1999) characterise the industry as a direct

duopoly, report profitability and order volume uncertainty, large irreversible

investments (an average of $5-$10 billion development costs per aircraft type),

10This is true because the initial value of the relative profitability variable is set at

P0 = P+P

2
as in all figures.
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highly differentiated product lines and intense competition where strategic

issues are of great importance.11

On June 23, 2000, the Airbus Industrie’s supervisory board authorised

the launching of the A3XX project, which has been under consideration since

1990. This $13-billion project ($6.125 billion in present value terms, see table

1) entails the construction of the biggest passenger carrier aircraft (550 to

990 passengers), which should guarantee market leadership for the Airbus

consortium in the Very Large Aircraft (hereafter VLA) market segment.12

For the last 30 years, the VLA market had been dominated by the flagship

of the Boeing fleet, the 747-400, until 2000 when Airbus made an enormous

irreversible investment in order to capture the market.

The economics of the A3XX project have been extensively reported and

reviewed by the popular press in the last 3 years (Kane and Esty (2001) report

a long list of articles, analysts’ reports and anecdotal evidence concerning the

characteristics and the main uncertainties of the project). However, what

has been an issue of increased speculation, is what would be the possible

reactions of Boeing Co. in the fear of losing its monopolistic position in the

VLA market.

Two likely responses have received much attention in the industry: one

is for Boeing to develop a stretched, 520—seat version of the 747 (the 747X).

The second is to commit to the construction of its own super jumbo jet to

compete head on with the A3XX. In what follows we simulate the model

numerically in an effort to assess the two alternatives.

We estimate the model inputs using the monthly returns of the two com-

panies, from July 2000 (the announcement of the A3XX project) until Jan-

uary 2002. Market data are drawn from Datastream, while some estimates

from Kane and Esty (2001) are also used. We estimate Airbus’ equity volatil-

ity at σj = 0.16 and its systematic risk at βj = 0.84, which implies a required

rate of return of approximately µj = 11%.13 The correlation of returns of

11For more on the aircraft manufacturing industry, see the excellent case study by Kane

and Esty (2001). Interested readers can also refer to Hallerstrom and Melgaard (1998),

Jordan (1992) and Stonier (1997).
12The VLA market refers to aircrafts with the capacity of seating more than 400 pas-

sengers or carrying more than 80 tons of freight.
13The risk—fre rate and the risk premium are assumed at 6%.
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the two firms is ρ = 0.34 in our sample period.

For Boeing, we use two set of input parameters, representing the two

alternative strategic actions. In the “safer” alternative, the stretch version of

the 747, the investment cost will be substantially lower. Analysts estimate it

at $4 billion (see Dresdner Kleinwort Benson Research report (2000)). Since

this alternative will not increase the riskiness of the firm substantially, we

use the historically estimated β = 0.98 for Boeing, which implies µi = 11.9%.

The volatility of Boeing’s returns is σi = 0.15 in our sample. For the “risky”

alternative of building a super jumbo, we use a volatility of 0.30 and a

required return of 13% (an implied beta of 1.17). We do not see any reason

why the investment cost of this alternative should be different from that of

Airbus thus the same investment cost is used. Table 2 summarises the inputs

of our numerical example.

Using the inputs of table 2, the optimal thresholds for Boeing entry in

the VLA are P = 1.78 and P = 2.61 for the “stretch” and “super jumbo”

alternatives respectively. Boeing’s expected operating profitability in the

VLA market should exceed more than twice that of Airbus, for the building

of a corresponding super jumbo to be optimal. This seems very unlikely

even under the most optimistic scenarios concerning the demand in the VLA

market. Since it takes a substantial period of time to construct such an

aircraft14, and with Airbus already locking in key customers with delivery

orders, Boeing can at best expect to share the market with Airbus if a similar

super jumbo is launched.

To further assess the relative attractiveness of the two alternatives, we

estimate the probability that Airbus will maintain leadership of the VLA

market segment under the two proposed reactions of Boeing using equation

(19). Figure 7 shows that the “stretch” alternative decreases the probability

of Airbus’ leadership sharply. Both rivals have a 50% probability of being the

market leader after T = 11.18 years under this alternative. This increases to

T = 18.76 years under the more risky alternative of building a super jumbo

jet.

The above seem to imply that among the two mutually—exclusive alter-

natives considered, Boeing might be better off waiting to build the 520—seat

14Delivery of the first A3XX from Airbus is expected to be in 2006.
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version of 747 instead of waiting for the riskier super jumbo. Of course the in-

put parameters used in our model could be questioned. Moreover, some of the

assumptions in the model might seem inappropriate. For example, Stonier

(1997) reports that profitability in the aircraft manufacturing industry ex-

hibits cyclicality, in sheer contrast with our assumption in (1). However,

if the focus is on empirical applications, the discussion above can highlight

that, at a minimum, the model’s intuition could carry over to real business

industries, probably at the expense of analytic tractability.

6 Conclusions

When firms are directly competing for the same market but can exert differ-

ent and uncertain future profits from operations, investment timing becomes

a strategic decision variable which can be optimised conjecturing the rival’s

optimal response. We solve a stochastic real option game under the assump-

tion that only one firm can be active at any point in time, but its idle rival

has the option to reclaim the market whenever optimal to do so. This is only

possible because the homogeneity of the problem in the two state variables

allows reduction of its dimensionality to one.

In the absence of fixed entry costs, optimal entry strategies are shown

to conform to a simple criterion: invest if your opportunity cost of remain-

ing idle exceeds your rival’s operating yield, i.e. the firm with the highest

current yield (opportunity cost) operates the market. When fixed costs are

introduced, the optimal rival investment thresholds are shown to be sepa-

rated in the two state variable space, producing a hysteresis range, and the

active firm in the market is history—dependent. Optimal entry strategies are

then determined by a simple, easily invertable, non—linear equation which

uniquely describes the hysteresis system.

The range of hysteresis in entry thresholds is increasing in the investment

costs but decreasing in the correlation between rivals. The effect of volatility

however is dual : on one hand, volatility widens the gap of hysteresis driving

the optimal entry times of rivals further apart. On the other hand though,

the higher the volatility, the more probable big changes in the firms’ prof-

itabilities will be realised in a shorter period of time. It is this second effect
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that dominates, thus making more volatile markets proner to more fierce

competition and more changes in market leadership.
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A Appendix

A.1 Derivation of ODE in (5)

Successive differentiation of (4) yields

∂Fj→i(Si, Sj)

∂Si

= f ′

j→i(P )

∂Fj→i(Si, Sj)

∂Sj

= fj→i(P )− Pf ′

j→i(P )

∂2Fj→i(Si, Sj)

∂S2
i

=
1

Sj

f ′′

j→i(P )

∂2Fj→i(Si, Sj)

∂S2
j

=
1

Sj

P 2f ′′

j→i(P )

∂2Fj→i(Si, Sj)

∂Si∂Sj

= − 1

Sj

Pf ′′

j→i(P )

Substituting the above in equation (2) and simplifying yields

1

2

[
σ2
iS

2
i

1

Sj

− 2ρσiσjSiSj

1

Sj

P + σ2
jS

2
j

1

Sj

P 2

]
f ′′

j→i(P ) + (r − δi)Sif
′

j→i(P )

+(r − δj)Sj

(
fj→i(P )− Pf ′

j→i(P )
)− rSjfj→i(P ) + Sj = 0

Divide through with Sj and collect terms to get equation (5) in the text.
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Figure 1: For symmetric rival firms, the figure plots the investment thresholds

P , P , as a function of the investment costs K for negative (dashed line) and

positive (solid line) correlation ρ between firms. The gap between thresh-

olds increases with costs but decreases with the correlation coefficient. The

horizontal dotted line corresponds to the common threshold in the absence

of fixed costs. Even for small fixed costs, hysteresis arises very rapidly. The

rest of the parameters are δi = δj = 0.09 and σi = σj = 0.20.
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Figure 2: For symmetric rival firms, the figure plots the investment thresh-

olds P , P , as a function of the firms’ profitability volatility σ for negative

(dashed line) and positive (solid line) correlation ρ between firms. The gap

between thresholds increases with the volatility of each rival’s profitability,

but decreases with the correlation coefficient. In the absence of uncertainty,

the gap between thresholds is only due to fixed investment costs. The rest

of the parameters are δi = δj = 0.09 and Ki→j = Kj→i = 1.
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Figure 3: For symmetric rival firms, the figure plots the investment thresholds

P , P , as a function of the correlation between the operating profitability of

rivals ρ for high (solid line) and low (dashed line) fixed investment costs.

The gap between thresholds decreases with the correlation between rivals

but it increases with the investment costs. If competing firms are perfectly

positively correlated (ρ = 1), the model degenerates since there is essentially

one potential firm. The rest of the parameters are δi = δj = 0.09 and

σi = σj = 0.20.
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Figure 4: For symmetric rival firms, the figure plots the median time firm

j will be active in the market (if active at t = 0) in equation (20) as a

function of the fixed investment cost K for different values of the relative

profitability volatility ν. The median time a firm will remain active in the

market is increasing in its rival’s entry cost. However as σi, σj increase, and

the volatility ν of the relative profitability variable increases, the probability

that the switching threshold P will be reached increases, thus bringing the

median active time for firm j down. The effect of the entry costs is more

pronounce the lower is the uncertainty in the relative profitability P . The

rest of the parameters are δi = δj = 0.09, ρ = −0.5, σi = σj = 0.20 (ν high),

σi = σj = 0.15 (ν medium), σi = σj = 0.10 (ν low) and P0 =
P+P

2
.
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Figure 5: For symmetric rival firms and P0 = P+P

2
, the figure plots the

probability that the active firm in the market will change twice until time t,

as a function of time in years. The probability is very small but it increases

rapidly the further in the future we look. The higher the investment costs

that rivals have to incur to enter, the lower this probability. In the absence

of entry costs, P0 = P̂ in (18) and the probability in the figure collapses to a

straight line at the 50% level. The rest of the parameters are δi = δj = 0.09,

ρ = −0.5 and σi = σj = 0.20.
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Figure 6: For symmetric rival firms and P0 = P+P

2
, the figure plots the

probability that the active firm in the market will change twice until time

t, as a function of time in years. The probability is very small but it in-

creases rapidly the further in the future we look. The higher the volatility

ν of the relative profitability of rivals, P , the more probable the switching

thresholds will be reached in less time, bringing the probability of two active

firm changes up. The rest of the parameters are δi = δj = 0.09, ρ = −0.5,

σi = σj = 0.40 (ν high), σi = σj = 0.30 (ν medium), σi = σj = 0.20 (ν low),

Ki→j = Kj→i = 1.
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Figure 7: The figure plots the probability that Airbus Industrie will remain

the leader in the VLA segment of the aircraft manufacturing industry as a

function of time under the two possible reactions from its rival, Boeing Co:

building a super jumbo or 747X, a stretch version of its existing model. The

probability is shown to decrease very rapidly within the next 20 years under

the second scenario. Each rival has a probability of leading the market of

50% (dotted line) after T = 18.76 and T = 11.18 years under each alternative

scenario respectively.
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Investment 2001 2002 2003 2004 2005 2006 2007 2008 Total

R&D Expenses 1, 100 2, 200 2, 200 2, 200 1, 320 880 660 440 11, 000

Capital Expenses 0 250 350 350 50 0 0 0 1, 000

Working Capital 0 150 300 300 200 50 0 0 1, 000

Total 1, 100 2, 600 2, 850 2, 850 1, 570 930 660 440 13, 000

PV on 2000 6, 125

Table 1: Airbus 3XX Expenditure by Year (in million dollars). Source:

Dresdner Kleinwort Benson, Aerospace and Defense Report.

I����� A	���� I������	� B��	�� C�.

Super jumbo Stretch 747

Growth rate µ 11.0% 13.0% 11.9%

Volatility σ 0.160 0.300 0.150

Cost of delay δ 0.090 0.050 0.050

Investment cost K 6.125 6.125 4.000

Correlation ρ 0.340

Table 2: Parameter inputs for the numerical application to the aircraft man-

ufacturing industry.
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