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ABSTRACT 
Conventional discounted cash flow valuation techniques are inappropriate for mining 

companies because operational flexibilities are deemed an essential component of mine values.  
In this article we review the real options literature on the valuation of mines and their embedded 
option to close the mine.  We use a model based on Brennan and Schwartz (1985) to empirically 
value Australian gold mines and mining companies. One difficulty with doing empirical research 
in this area is in obtaining relevant and complete data, given the nature of real assets and the fact 
that investments are typically private in nature. The mine data for this study is supplied by Brook 
Hunt mining and metal industry consultants, UK and covers the period from 1992 to 1995.  The 
primary advantage of this data set is its consistency across different mines that cannot be 
matched by data sets derived from annual reports data. We find that the real options model is a 
useful tool for the description and valuation of operational flexibilities. However, the values of 
the embedded options are very sensitive to estimation errors in the input parameters of the 
model.  While average and median closure option values are economically significant, the option 
values vary over a large range. 
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REAL OPTIONS VALUATION OF AUSTRALIAN GOLD MINES 

AND MINING COMPANIES 

I. INTRODUCTION 

The literature in the area of real options is relatively recent. The foundation of the literature 

comes from financial option pricing theory, which started with pioneering work of Black and 

Scholes (1973), Merton (1973), Cox and Ross (1976) and Cox, Ross and Rubinstein (1979). As 

financial option pricing theory became more widely accepted and understood, real options 

literature began in its own right. 

Despite the widespread usage of discounted cash flows (DCF), various studies have found 

that managers often do not adhere strictly to DCF prescriptions [see Hayes and Abernathy 

(1980), Hayes and Garvin (1982)]. It is only in the last fifteen or so years that academics and 

practitioners are beginning to understand why DCF cannot properly capture the total value of an 

investment.  DCF fails because it cannot accurately take into account the managerial flexibility 

that is embedded in investment opportunities and the interdependencies between them.  In 

particular, according to Dixit and Pindyck (1995), DCF assumes either the investment is 

reversible or it is a now-or-never proposition.  To incorporate the value of their flexibility, 

managers make apparently ad-hoc adjustments to DCF valuations [see McDonald (1999)]. A 

more complete solution, however, is to use the real options framework in valuing investment 

opportunities. 

Trigeorgis and Mason (1987) and Trigeorgis (1996) provided further examples of real 

options. The options to defer, expand, or contract a project are applicable in many investment 

decisions and especially with natural resource projects whose profitability depends on the highly 

volatile price of the underlying commodity.  Exhibit 1 summarizes the different types of generic 

real options as well as the representative papers in the academic literature. 

--------------------------------------- 

Insert Exhibit 1 about here 

--------------------------------------- 

Exhibit 1, while by no means exhaustive, illustrates that theoretical real options literature has 

made significant inroads into the valuation of many different types of real options.  Admittedly, 

valuing investment opportunities as options is mathematically more involved than DCF 
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techniques, but Schwartz (1998) describes the clear and immense advantages.  Real option 

valuation: 

 obviates the need to make assumptions about the trajectory of spot prices  

 does not require the estimation of a risk-adjusted discount rate 

 explicitly allows for managerial flexibility in the form of options in the valuation 

procedure. 

In this paper, we focus on the work of Brennan and Schwartz (1985), one of the most often 

cited papers in the area of real options. It has been credited as the first theoretical paper to 

pioneer the use of options methodology in valuing physical assets.  Within the context of mining 

natural resources, the mine operator has considerable flexibility in its operation, including the 

opening, closing and abandoning of the mine. This flexibility embedded in the value of the mine 

was often neglected or, at best, taken into account unsatisfactorily in valuation with DCF models. 

Brennan and Schwartz (1985) were among the first to capture the value of this flexibility in a 

sound mathematical model.  Their model uses the standard no-arbitrage approach in pricing 

derivatives. The ingenuity lies in their replication of a risk-free bond by combining a futures 

contract for the underlying natural resource with the underlying physical mine asset. Trigeorgis 

(1996) further noted Brennan and Schwartz were the first to use the convenience yield derived 

from futures and spot prices of a commodity to value the options to shut down a mine. Similar to 

the seminal Black and Scholes (1973) paper, a set of Partial Differential Equations (PDE) 

satisfied by the value of the mine were derived and showed, in general, how assets whose cash 

flows depend on highly variable output prices could be valued. The model also shed light on how 

the optimal policy on managing mine investments could be determined. 

 

Although considerable work in conceptual and theoretical real options has been performed, 

there has been relatively little work with an empirical focus, that is, examining how well real 

options theory predicts reality.  One obvious difficulty of this type of research is obtaining 

relevant and complete data, given the nature of real assets and the fact that investments are 

typically private in nature.  Paddock, Siegel and Smith (1988) is one of the earliest and most well 

known theoretical and empirical works on applying real option valuation. The paper focuses on 

U.S. offshore petroleum leases and compares the model prices with government estimates and 

with actual market bid prices.  Another early but important empirical contribution is Quigg 
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(1993), which claimed to be the first to examine the empirical predictions of a real option-pricing 

model using a large sample of market prices, as opposed to Paddock et. al. (1986) who used only 

a limited number of market prices.  Their paper focuses on options in a real estate context and 

incorporates not only the “intrinsic value” of the land, but also the option value to wait, invest 

and build.  Berger, Ofek and Swary (1996) examined the abandonment option of a firm and 

investigated whether the market prices this option at its exit value in the price of equity. Real 

options theory postulates that the abandonment option is valuable1.  If operating income is too 

low, then the firm can abandon its operation and exit the industry for the salvage value.  The 

paper by Moel and Tufano (2002) is an empirical study of mine closings and openings using a 

proprietary database that tracks annual opening and closing decisions of 285 North American 

gold mines over the period from 1988 – 1997.  Their objective was to find the factors that affect 

mine opening and closings and determine how well these fit the theory of real options, as 

predicted by Brennan and Schwartz (1985).  From the empirical evidence, they found 

“statistically significant and economically material” support for real options theory. In 

particular, they found the presence of the strong hysteresis effect described in Brennan and 

Schwartz (1985) – that a mine is more likely to remain open if it was open in the prior period; 

and it is more likely to remain closed if it was closed in the prior period.  Tufano (1998) is not a 

direct empirical test on real options, but its results hold important implications for the presence 

of real options in the gold mining industry. The paper examined the exposure and elasticity of 

North American gold mining firms’ stock prices to changes in the price of gold from 1990-1994. 

Its main finding, and one of the motivations of this paper, is that markets take real optionality 

into account in valuations.  In general, the contribution to real options literature from empirical 

research has been sparse. However, the few formal empirical papers that do exist generally 

support the significance of real options.  It remains for future research to explain empirical 

phenomena and rigorously test the validity of real options theory in the context of the market.   

The remainder of this paper is organized as follows.  The next section describes the real 

options model, the numerical estimation procedure, and the data.  The third section applies the 

model to the valuation of Australian gold mines and the fourth section concludes. 

                                                 
1 The abandonment option is valued analytically by Myers and Majd (1990) who used the 
analogy that the option is an American put option on the value of the firm. 
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II. MODELING THE OPTION TO OPEN, CLOSE AND ABANDON A MINE 

Ownership of a mine with the option to open, close and abandon a mine is analogous to an 

American call option on the gold in the mine.  The price of gold, S, is analogous to the price of 

the underlying asset, and the average extraction cost, denoted by A, is analogous to the option’s 

strike price.  Similar to financial option pricing, the other relevant parameters are the volatility of 

the price of gold, σ, the risk-free interest rate, ρ, and the convenience yield for gold, c.  In this 

model the only stochastic variable is the price of gold. 

Note that it is the total mine value relative to the market price of gold, S, that is analogous to 

the value of an American call option.  The closure option component of the mine value that gives 

the mine owner flexibility is akin to the time value of the option.  Without the closure option, the 

mine owner can only permanently open, close or abandon the mine, but cannot switch between 

these states.  Intuitively, if the price of gold, S, is high enough relative to the average extraction 

cost, A, then the mine operator will exercise the option to open and operate the mine; otherwise, 

the mine remains closed.  If the mine is closed but not abandoned, an annual maintenance cost, 

M, must be paid.  If the mine is abandoned, then no additional expenses are accrued, but no more 

gold can ever be mined.  If the mine is open, the owner extracts an amount of gold equaling the 

fixed mine capacity per period, q.  In other words, q is the (maximum) rate at which one can 

mine.  We denote the total mine reserves by Q.  As in pricing American options, the threshold 

gold price, denoted S*, for which the mine will open or close is not necessarily the level of the 

average extraction cost A.  In other words, it is not necessarily true that the mine will be opened 

if S > A, and closed otherwise.  In addition, one may choose to abandon the mine, in which case 

all maintenance costs cease and the mine becomes worthless.  The threshold for abandonment is 

denoted S0. 

1) The Brennan and Schwartz Model 

In this article, we implement the model of Brennan and Schwartz (1985).  The model will 

first determine the value of a mine with flexibility (i.e., with the closure option).  Valuation is 

achieved by a no arbitrage argument in which a risk-free portfolio is created by taking a position 

in the physical mine and in the futures market.  With some modifications, the same model is also 

used to derive the value of the mine without flexibility.  The value of the closure option is the 

difference between the mine value with flexibility and the mine value without flexibility. 
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The fundamental stochastic variable that drives the mine value is the price of gold, S.  A 

common assumption for commodity prices is that they follow the geometric Brownian motion 

process with drift µ and instantaneous standard deviationσ.  We also consider a futures contract 

with futures price, F, convenience yield, c, and time to maturity τ = T – t, so that 

( ) ( ), cF F S Se ρ ττ −= = .  The futures price then satisfies the stochastic differential equation 

 ( )dF c Fdt Fdzµ ρ σ= − + + . (1) 

1. Partial Differential Equation for the Value of the Opened Mine 

Suppose the value of the open mine is denoted by V.  As discussed previously, V will be a 

function of the price of gold, S, the level of reserves, Q, and the mine operating policy φ.  

Intuitively, φ represents the set of opening/closing/abandoning decisions.  Hence, 

( )φ;,QSVV = 2 and in applying Ito’s Lemma, we obtain: 

 ( )21
2S SS QdV V dS V dS V dQ= + + . (2) 

If the mine is operated at a capacity of q, then reserves will change according to: 

 qdtdQ −= . (3) 

Consider a portfolio that is long a unit of the mine V and short 
S

S

F
V

units of the gold futures 

contract.  The instantaneous dollar return, given dt time has elapsed, for this portfolio is: 

 ( ) dF
F
V

dtASqdV
S

S








−−+ , (4) 

where the first term is the change in value of the opened mine, the second term is the net cash 

inflow from extraction of gold and the third term is the changes in value of the short futures  

                                                 
2 In the original Brennan-Schwartz model, an additional variable is t. This is only relevant if 
extraction cost A and convenience yield c are functions of t. In our model, these variables will be 
modeled as a given constant. 
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contract.  It is not difficult to show that this portfolio is risk-free, and therefore its dollar return is 

ρVdt. One can then show that V satisfies the partial differential equation 

 ( ) ( )2 21 0
2 SS S QS V c SV qV q S A Vσ ρ ρ+ − − + − − = .   (5) 

This is the PDE satisfied by the open mine V.  To further specify V, boundary conditions are 

required.  An obvious boundary condition3 is that when gold reserves are zero, the value of the 

mine is zero, ( ),0 0V S = .  A similar derivation applies to the closed mine.  Suppose the value of 

the closed mine is denoted by W.  Similar to V, W will also be a function of the price of gold, S, 

the level of reserves, Q, and the mine operating policy φ.  Hence, ( )φ;,QSWW =  and in 

applying Ito’s Lemma, we obtain: 

 ( )21
2S SS QdW W dS W dS W dQ= + +  (6) 

Now, by definition the reserves of a closed mine do not decrease as time passes.  Hence,  

dQ = 0.  Consider a portfolio that is long a unit of the mine W and short 
S

S

F
W

 units of the gold 

futures contract.  The instantaneous dollar return given dt time has elapsed for this portfolio is: 

 dF
F
W

MdtdW
S

S








−− , (7) 

where the first term is the change in value of the opened mine, the second term is the 

maintenance cost incurred and the third term is the change in value of the short futures contract.  

Again, this is a risk-free portfolio and the dollar return is Wdtρ .  Thus W satisfies the partial 

differential equation 

 ( )2 21 0
2 SS SS W c SW M Wσ ρ ρ+ − − − = . (8) 

This is the PDE satisfied by the closed mine, W.  To further specify W, boundary conditions are 

required.  An obvious boundary condition is that when reserves are zero, the value of the closed 

mine will also be zero, ( ),0 0W S = .   

                                                 
3 Note V(0,Q) = 0 is an incorrect boundary condition. For an open mine, V(0,Q)<0 is possible. 



 7

2. Value of the Mine 

We have shown that the value of an open or closed mine respectively is determined to satisfy 

the PDEs in (5) and (8) and the two boundary conditions.  To complete the model, further 

boundary conditions are required.  The missing information is the threshold between opening and 

closing the mine.  As described before, a mine will be operated if S is higher than some threshold 

S*; otherwise it will be closed.  With this definition, an additional boundary condition can be 

obtained assuming zero opening and closing costs:   

 ( ) ( )* *, ,V S Q W S Q=   (9) 

Note that if S > S*, the mine should be open because V(S, Q) > W(S, Q).  On the other hand, if  

S < S*, the mine should be closed because W(S, Q) < V(S, Q).   

To incorporate the abandonment option, consider the closed mine value W.  Clearly, W is a 

monotonic function of S: as S decreases, so does W.  It is possible that if S is sufficiently low, W 

< 0.  Intuitively, this means that S is low enough that the firm is better off forgoing the 

possibility of re-opening the mine in the future and no longer incurring the maintenance cost of 

M per period.  If the firm were not able to close down, the mine would have a negative value.  

The value of the mine, denoted by H, satisfies equation (5) when V > W, equation (8) when       

W > V, W > 0, and H = 0, otherwise.  The case H = 0, corresponds to the abandonment of the 

mine.  The boundary conditions are, H = ( ) ( ),0 ,0 0W S V S= = , H = W(S*, Q) = V(S*, Q), and H 

= W(S0, Q) = 0.  Brennan and Schwartz (1985) and Dixit and Pindyck (1994) suggest an 

additional “high contact” or “smooth-pasting” boundary condition: 

 ( ) ( )* *, ,S SW S Q V S Q= . (10) 

Intuitively, this condition ensures the functions W and V join smoothly at S*.  This final boundary 

condition completes the mathematical description of the model.  As Brennan and Schwartz 

(1985) point out, there is no analytical solution to this problem.  The following section develops 

a numerical estimation technique to evaluate the value of the mine. 
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2) Procedure for Numerical Estimation 

The form of the PDEs derived above suggests the simplifying substitution Sz ln= .  To 

estimate the PDE for V and W, an explicit finite difference method will be employed. We find 

the solution:  

( ) ( ){ }1, , 1 , ,1 1
1

1
jzu m d

i j i j i j iV p V p V p V q e A t
tρ+ + −= + + + − ∆

+ ∆
 (11) 

where, 

( )

2 2

2 2 22
u t tp c

zz
σ σρ

 ∆ ∆
= + − − 

∆∆  
 

( )

2

21m tp
z

σ ∆
= −

∆
 

( )

2 2

2 2 22
d t tp c

zz
σ σρ

 ∆ ∆
= − − − 

∆∆  
. 

 

Notice that 1u m dp p p+ + = , so that, as long as ∆t is small enough that pu, pm, and pd > 0, pu, pm 

and pd can be interpreted as the probabilities of z moving up, staying at the same level and 

moving down respectively.  In fact, it is straightforward to show that these are risk-neutral 

probabilities, in the sense that  

u u m m d dp z p z p z+ +  := 
2

ln
2

t t
p

t

SE c t
S

σρ+∆   
= − − ∆  

   
. 

Thus, this method of numerical approximation is equivalent to a trinomial tree framework, and 

1,i jV +  = Present Value of (Weighted Probability of , 1 , , 1, ,i j i j i jV V V+ −  + Profit for mining the 

reserves4).  Similar discrete estimations can be made for W.  With explicit differences, we find 

that  

( )1, , 1 , 1, 1
1

1
u m d

i j i j i j jW p W p W p W M t
tρ+ + −= + + − ∆

+ ∆
 (12) 

                                                 
4 Profit = (Revenue – Cost) × Capacity × Time = (S – A)×q×∆t = (ez – A)×q×∆t 
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where, pu, pm, and pd are as above.  The step size ∆z, a function of ∆t, needs to be specified.  Hull 

(1997 p.376) suggests that setting 3z tσ∆ = ∆  is numerically most efficient within the trinomial 

tree framework. Finally, at each node of the trinomial tree, we calculate max(V,W,0). 

3) Data selection and variable estimation 

The mine data for this study is supplied by Brook Hunt mining and metal industry 

consultants, UK and covers the period from 1992 to 1995.  The primary advantage of the data set 

is its consistency across different mines.  This consistency cannot be matched by data sets 

derived from annual reports data.  To correctly attribute individual mine ownership to the listed 

companies, the Brook Hunt data is supplemented with companies’ annual report data, thereby 

accounting for changes in mine ownership.  After the mine attribution process the data set is 

filtered using the following criteria.  To be included in the data set companies must: 

(a) own or partly own at least one operating gold mine in the sample period 

(b) be classified by the Australian Stock Exchange as a gold mining/exploration company 

(c) be listed for at least 2 years during the sample period 

(d) have a relatively simple structure with the bulk of its activities in the gold sector 

(e) be of sufficient size, that is, have a market capitalization of at least A$100m for at least 

one of the years in operation 

The first four criteria yield 30 companies with a total of 112 company-year data points for which 

the economic significance of the closure option can be determined.  The final criterion, specified 

for statistical significance tests which require market capitalization, return and accounting 

information, remove an additional three companies.  The final data set includes 27 companies 

with 103 company-year and 217 mine-year data points.   

Brook Hunt report three different extraction cost variables.  For this study we use the 

broadest definition for the average extraction cost variable, A, which includes direct costs, 

ongoing capital expenditures, depreciation, indirect costs, and interest.  To calculate the total 

gold reserves for each mine, Q, Brook Hunt reports “proven and probable” reserves of the total 

ore body that contains gold, not actual reserves of gold itself.  Hence, Q is estimated by 

multiplying the quoted ore reserves by the “estimated grade” of the ore, which estimates the 

amount of gold present in the ore body.  To calculate the variable gold mine capacity, q, a similar 

calculation is performed.  The “mill capacity”, quoted as the number of kilo-ton of ore body the 
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mine can process per annum, is multiplied by the estimated grade of the ore reserves in the same 

year.  Note that “mill capacity” and the actual level of ore production are not always equal.  In 

general, mines seem to produce at an output rate greater than the reported capacity.  This is due 

to uneven quality of ore bodies, which enabled some ore bodies to be processed faster than 

others, hence varying the mine output rate from the reported capacity.  In addition, firms can 

choose to slow production and run at a level well below the mine capacity.  Since it is impossible 

to predict a-priori whether the gold mill will be over or under-utilized, the quoted capacity q is 

the best estimate available.  Furthermore, our theoretical model assumes that there is a single 

fixed output rate q for each year. 

In practice, the maintenance cost, M, or the cost incurred when a mine is closed, cannot be 

directly observed.  For its estimation we follow the method devised by Moel and Tufano (2002).  

Conceptually, the known average cash cost, A, includes the fixed cost and variable cost 

component, where fixed cost is defined as the component of cost that cannot be avoided 

regardless of the level of production.  This fixed cost component can be estimated using an OLS 

regression model and it acts as an estimate for M.  Our model has a relatively high R2 of 0.87 and 

the magnitude of the coefficient for the fixed cost component is consistent with the findings of 

Moel and Tufano (2002).  Furthermore, the mine valuation model is very robust to variations in 

the maintenance cost estimate, M.   

The difference between the Treasury bond/bill rate and the convenience yield, ρ−c, must also 

be determined.  Because the Australian Reserve Bank does not have an active gold lending 

market, we use LIBOR and the gold lease rate from the London Central Bank as a proxy ρ−c.  

However, to ensure consistency with the Australian data we use the Australian 10-year Treasury 

bond rate for ρ where it is used as the discounting term in the denominator of the above equation.  

The source for the remaining model variables (S, 2
Sσ , and exchange rates) is Datastream.  

Finally, the Brook Hunt data are all denominated in USD and the mine value with and without 

flexibility and the closure option will be determined in USD.  To perform the significance tests 

on a consistent basis, these values are converted into AUD – the currency in which most of the 

annual report data and market capitalization information are quoted.  The annual average daily 

AUD/USD exchange rate from Datastream is used for this conversion. 
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III. APPLICATION OF THE REAL OPTION MODEL TO AUSTRALIAN GOLD MINES 

To illustrate the effects of applying a real option valuation approach to the valuation of 

Australian gold mines we estimate the characteristics of a hypothetical representative mine in 

Panel A of Exhibit 2 using the 217 mine data points for the 4 years.  In Panel B we estimate the 

value of this representative mine with various valuation techniques.   

-------------------------------------- 

Insert Exhibit 2 about here 

--------------------------------------- 

The simplest valuation method in Panel B uses a discounted cash flow approach under the 

assumption that extraction margins remain constant until the mine is exhausted. The second 

valuation technique, modified DCF, considers that in a risk-neutral world, the gold price in 

future years will not stay constant.  Instead, it will grow at a continuously compounded rate of 

(ρ−c) = 3.3% per annum.  Another way to view this is to recall the theoretical relationship 

between forward and spot price: ( )tcSeF −= ρ .  Thus, the firm can sell its anticipated gold 

production at the forward price, which grows at a rate of (ρ − c) per annum from the current spot 

price.  Using the real option model developed in the previous section leads to higher mine 

valuations than these first two methods.  For the Mine With (Without) Flexibility the value of the 

representative mine is $49.5m ($48.5m).  An alternate approach suggested by Quigg (1993) 

calculates the value of the Mine Without Flexibility by letting σ → 0 in the real option model 

with flexibility.  This approach also finds a mine value without flexibility to be $48.5m.   

The “naïve DCF approach” significantly undervalues the mine even at the low range of 

discount rates.  The “modified DCF approach” results in considerably higher valuations, but the 

valuations are still below the mine values of the real options approach.  The lower valuations are 

due to the inability of the DCF technique to adjust for the volatility of gold prices, the stochastic 

nature of gold price, and the value of the embedded real options.  A further disadvantage of the 

DCF approach is the need to obtain a subjective discount rate, which is not required for the real 

options model.  Note that the alternative ways of calculating the value of the representative Mine 

Without Flexibility are within $0.1m of each other—further evidence that our numerical 

estimation procedure is stable and possibly converging.  The real option model values the closure 

option of the representative mine at $1m.  These results confirm the findings in previous 

literature that DCF valuation techniques can underestimate the theoretically correct mine value.  
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Furthermore, this is preliminary evidence that the closure option is valuable, though at 2.0 to 

2.1% of the theoretical mine value of the representative mine, it does not dominate the total 

valuation of the mine.   

Mine valuation with the real options approach is sensitive to the estimation of the input 

parameters.  Exhibit 3 examines the change in the mine value if the input parameters are varied 

by ± 20% of the base case scenario. 

-------------------------------------- 

Insert Exhibit 3 about here 

-------------------------------------- 

The mine value is most sensitive to changes in the gold price, followed by changes in the 

average extraction cost.  Surprisingly, of all input parameters, the mine value is least sensitive to 

changes in gold price volatility.5  Apart from gaining some insight into how real options 

variables affect mine valuations, there is an important practical issue implied by this analysis.  In 

valuing mine assets, more energy should be focused on estimating the gold price and extraction 

costs than, for example, interest rates or mine capacity.   

1. Sensitivity analysis of the closure option value 

Exhibit 4 shows the directional effect of increasing each of the input parameters on the value 

of the Mine With Flexibility, the Mine Without Flexibility and the closure option.   

---------------------------------------- 

Insert Exhibit 4 about here 

---------------------------------------- 

The interpretation and implications of Exhibit 4 are discussed below for each of the variables. 

It is intuitively clear that increases (decreases) in the gold price and decreases (increases) in 

extraction costs will enhance (reduce) mine valuation.  However, changes in these variables have 

the opposite effect on the value of the closure option (for a mine with positive intrinsic value).  

That is, increases (decreases) in cost will increase (decrease) the closure option value and 

increases (decreases) in gold price decrease (increase) the closure option value.  As the gold 

                                                 
5 A similar sensitivity analysis for the value of the closure option also found gold price and 
average extraction to be the main determinants.  While the variations in the mine value are 
distributed almost symmetrically around the base case, the variations in the value of the closure 
option are heavily skewed to the right.   



 13

price decreases or extraction costs rise, the mine operator is more likely to close or abandon the 

mine to mitigate potential losses.  Hence, closure option value rises even though the overall 

impact on mine valuation is negative.  The percentage increase in the value of a mine with 

flexibility is much greater if the gold price rises from a low base than if it rises from a high base, 

even if the absolute change in value is small.  Similar results are found if average extraction costs 

fall from a high level rather than from a low level.   

Increasing the volatility of gold leads to an increased closure option value, which in turn 

increases the total value of a mine with flexibility.  However, volatility has no effect on the value 

of a mine without flexibility.  Importantly, this result defies conventional DCF valuation logic, 

where increases in uncertainty increase the discount rate, which in turn lowers the valuation.   

An increase in interest rates, ρ, results in a decrease in the present value of the average cost 

of extracting the gold, however the risk-neutral expected return for the gold price is ρ – c, 

implying that the present value of the gold that is mined remains unchanged as ρ changes.  The 

over-all effect is that an increase in ρ leads to an increase in the value of the mine.  An increase 

in the convenience yield, c, causes a decrease in the growth rate of the gold price; hence, the 

value of the mine goes down. 

The variables total gold reserves (Q) and mine capacity (q) behave in a similar way to time to 

expiration in a standard option-pricing framework.  Q/q is the number of years that the mine will 

be productive if it is operated at full capacity.  Clearly, the greater the reserve (Q), the greater the 

mine value (with or without flexibility).  The closure option value will also be greater, due to the 

greater amount of underlying resources on which the closure option is written.  The effect of the 

variable mine capacity q on mine valuation seems counter-intuitive.   We would expect that the 

greater the mine capacity, the greater the value of the option on the gold produced (see 

McDonald and Siegel (1986)).  This unexpected result is an artifact of a part of the structure of 

the model.  Recall that at each stage, the production is either q∆t or 0, with no intermediate 

production choice allowed.6  This restriction means that additional mine capacity can be a 

hindrance instead of an increased level of choice.  Furthermore, increasing mine capacity in the 

current set-up is akin to decreasing time to expiry (Q/q).  Hence, the total valuation of the mine 

                                                 
6 This structure makes the valuation of the model more tractable. Otherwise, an additional 
optimization problem would need to be solved for the optimal production rate in the interval 
(0,q). 
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decreases.  This result should be interpreted with care.  However, Exhibit 3 shows that mine 

value is relatively robust to changes in mine capacity, so the chosen structure should not unduly 

affect the valuation results. 

2. Economic significance of the closure option value 

The value of the closure option can be expressed as an absolute dollar figure (OV) or as a 

percentage of the intrinsic mine value: 

 
(WO)ity Flexibilil Without Value Mine

(OV)ValueOption  ClosureOV Rel. =  (13) 

The greater the absolute dollar value or percentage value, the greater the economic 

significance of the closure option value.  We calculate the dollar value of the closure option for 

each individual mine as well as the relative closure option value as defined in (13).  To determine 

the company-wide value of the various closure options, we attribute to the mines’ owners each 

mine’s closure option value (OV), mine value with flexibility (WITH) and mine value without 

flexibility (WO) and then calculate the absolute and the relative option values.  Hence, the 

absolute measure is the total dollar value of closure options the firm possesses in a particular 

year; while the relative measure is the company’s total closure option value expressed as a 

percentage of the company’s total mine value without flexibility.  In addition, the company’s 

total closure option value can be expressed as a percentage of the company’s adjusted market 

capitalization (AMC) which is the market capitalization adjusted for the percentage of mining 

related assets of the firm.  

1) Closure option value at the Individual Mine Level  

Panel A of Exhibit 5 shows that out of the 217 mines in the total sample, 54 have negative 

intrinsic mine value without flexibility (WO) due to high average extraction costs relative to the 

gold price,7 while two mines have a zero WO value due to near exhaustion of reserves.  The 

values of the closure options range widely, varying from 0% to 988% of the intrinsic value of the 

mine.  The distribution of values, however, is highly positively skewed.  The mean closure 

option value as percentage of WO (WITH) in Panel A is 42% (13%); the median is substantially 

                                                 
7 Although WO < 0, the corresponding WITH value will always be ≥ 0 because a physical mine 
can simply be abandoned.  Recall that WO + OV = WITH.  Thus OV will offset the negative WO 
to ensure WITH ≥ 0. 
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lower at 1.7% (0.2%), indicating that there are a number of very large closure option values 

influencing the mean.   

--------------------------------------- 

Insert Exhibit 5 about here 

---------------------------------------- 

The distribution of the closure option values is bi-modal in nature; for most of the mines the 

closure option value is either a very large or a very small percentage of the intrinsic mine value.  

For example, for over 60% of the mines, the closure option value is less than 2% of the intrinsic 

mine value, while for 20% of the mines the closure option values are more than 5% of intrinsic 

value.  Clearly, using the mean value to illustrate a typical mine can be misleading and thus the 

median, a more robust measure regarding distributional assumptions, should be used. 

An alternative way of examining the economic significance of the closure option value is to 

find the average of the dollar values of the mine without closure option (WO) and the closure 

option value (OV), and express the closure option value as percentage of the mine value.  Panel 

B of Exhibit 5 presents the results of this approach.  For the 215 pooled mine-year data, the mean 

closure option value OV is $3.0m per mine while the mean intrinsic mine value (WO) is $68.8m.  

Hence the mean closure option value is 4.38% of intrinsic mine value.  The descriptive statistics 

also show high positive skewness, with the medians of WO and OV substantially lower than the 

means.  Once again, the median is the more robust measure to examine.   

Finally, the percentage of the median WO mine is shown in the fourth row.  As shown, the 

OV value associated with the median WO is higher than the median OV value, resulting in a 

higher relative closure option value of 2.93%. 

2) Closure Option Value at Company Level 

The approach used in this section is similar to that of the previous section except that we 

examine the companies’ total closure option values as a percentage of the companies’ mine 

values without flexibility and as a percentage of the companies' adjusted market capitalization 

(AMC).  This measure is potentially more interesting than the individual mine level figures as 

companies might strategically mix mines of different characteristics, offsetting some of the 

earlier highly skewed results. 

Panel A of Exhibit 6 shows the OV using dollar averaging.  A similar skewness pattern as at 

the individual mine level emerges.  The mean OV is $6.4m, compared to a median dollar OV of 
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$1.2m.  Panel B of Exhibit 6 reports the relative closure option values as fraction of the mine 

value.  The mean and median relative closure option values are 4.37% and 1.95%, respectively.   

The third column of Exhibit 6 uses AMC in the denominator.  Note that only 103 company-year 

observations are used, as AMC for 9 companies cannot be obtained.  The mean OV on mean 

AMC is 1.64%, while the median OV on median AMC is 0.68%.  The median AMC company has 

a closure option value of 0.11% of its AMC. 

--------------------------------------- 

Insert Exhibit 6 about here 

---------------------------------------- 

The median value of the individual mine’s closure option is 2.4% of the individual mine’s 

value without flexibility.  The average dollar value of the closure option value is $0.4m.  At the 

company level, the median closure option value is almost $1.2m, although expressed as a 

percentage of the mine value it is about 1.9%.  While the percentages are not large, the dollar 

value of the closure option appears to be an economically meaningful figure. 

Our results are generally consistent with past empirical literature, in which embedded real 

options in physical assets or investments are found to be economically significant.  For example, 

Quigg (1993) found the option to delay developing unimproved land parcel adds about 6% of 

intrinsic land value, while Davies (1996) found the option value contributes up to 3% to a 

mineral asset’s gross worth.  Martzoukos and Teplitz-Sembitzky (1992) found the option to defer 

transmission line investments to be quantitatively significant and, Laughton and Jacoby (1991) 

found the option to delay oil development to have significant economic value. 

While one may argue that the significance of the closure option as a percentage of total asset 

value is relatively low, and may even be lost in valuation inaccuracies, one must note that in this 

paper we present only average results.  The averages conceal large variations in the results for 

the individual mines.  In some cases, for example, the closure option value is worth over $50m 

and reaches almost 100% of the mine value with flexibility.  This result highlights the fact that 

one must be cautious in examining the “average” economic significance in real option studies.  

The principal message is that mine managers cannot afford to ignore the presence of real options 

in mine valuations.  The economic significance of the real option can only be ascertained on an 

individual, case-by-case basis. 
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3. Statistical Significance of Real Option Model and Closure Option Values 

To ascertain the statistical significance of the closure option value we specify the following 

panel regressions.  For a gold mining company, its market value will be a function of the gold 

mines it owns and operates where the total mine value (WITH) is the sum of the mine value 

without flexibility (WO) and the value of the closure option (OV).  Since our focus is on a 

company’s gold related assets, adjustments should be made to reflect the fact that market 

capitalization may not be entirely attributed to gold mining activities. To do this, the market 

capitalization is adjusted by the percentage of profits attributable to gold production for each 

year.  Where this figure is not reported (or if the company loses money in a given year), the 

percentage of assets attributable to gold production is used.  Exhibit 7 panel A contains the 

summary statistics of variables in the market capitalization models.   

---------------------------------------- 

Insert Exhibit 7 about here 

--------------------------------------- 

Note that the adjusted market capitalization (AMC) ranges from around $6m to $1,081m, 

with a mean of $421m.  In the regressions that follow, White’s (1980) heteroscedastic-consistent 

covariance is used.  Exhibit 7 panel B contains the correlation matrix of the regression variables.  

Notice that, as expected, WO and WITH are almost perfectly correlated, but the correlation 

between WO (WITH) with OV is only 0.13 (0.18).  At a 5% significance level, the critical value 

is about 0.25, higher than the observed correlations.  This confirms the statement in Exhibit 3 

that the directional effect of input variables on WO and WITH is very similar, but very different 

for WO (or WITH) and OV.  The matrix also shows very high positive correlation between AMC 

and WO and between AMC and WITH (0.8055 and 0.8278 respectively).  Correlation of AMC 

with OV is of marginal significance at 0.2275, but AMC is significantly correlated with EXPL 

with a correlation of 0.4913.  This preliminary evidence supports the real options model of mine 

intrinsic value and option value as a reasonable description of reality.   

Intuitively, mine value should be directly proportional to the total value of the firm.  Since 

the value of the firm accrues to both equity and debt holders, the mine value should therefore be 
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proportional to the adjusted market capitalization.8  Table 8 presents ordinary least square 

regression results for a linear function with the following specifications: 

Panel A Adj. Market Cap = αa + βa (Total Mine Value) 

Panel C Adj. Market Cap = αb + βb (Mine Value without Flexibility)   

      + γb (Closure Option Value) 

Our hypothesis is that βa, βb and γb are significant.  In regression analysis, an important 

assumption is that the model includes all relevant explanatory variables to ensure the estimates 

are unbiased.  Hence, the regression model specified should control for other variables that affect 

market capitalization. A priori, apart from the physical ownership of the mines, another source of 

market value comes from the potential of the firm to find new and profitable mines through its 

exploration activities. This potential can be considered as the growth options that the firm 

possesses.  Exploration Expenses (EXPL) are used to proxy for this growth option in regression 

panels D, E, and F.  Intuitively, the higher the exploration expenses, the greater the value of the 

growth options.  Admittedly, this proxy is far from perfect as not all exploration expenses lead to 

the discovery of profitable mines and the available data are not always consistently reported.  

Nevertheless, the characteristics of the growth option should at least be partly captured by this 

proxy and the highly complex nature of the growth option renders this as the simplest, albeit 

imprecise, approach for the intended purpose: 

Panel F Adj. Market Cap = αc  + βc (Total Mine Value without Flexibility)  

      + γc (Closure Option Value) 

      + δc (Exploration Expenses) 

The data examined include cross-sectional and time-series observations. Panel data 

techniques are used to perform multivariate regressions in order to maximize the sample size and 

statistical power.  Suppose there are i = N firms for t = T years, yit denotes the dependent 

variable and Xit denotes the independent variables.  The models are:      

 1) Pooled Regression:    yit = α + β′Xit + εit.   

This is the usual multivariate regression that pools all data across different firms together and 

assumes a common intercept term.  This model has the maximum sample size and the fewest 

number of variables. 

                                                 
8 In reality, the valuation effect on shareholders and debtholders values are not the same. A 
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2) Fixed-Effect Between-Groups Regression: yi. = α + β′Xi. + εi., 

         where yi. = 
1

1 T

it
t

y
T =

∑ .  

This regression specifies a linear relationship between individual means.  It averages the       

observations to reduce noise in the data, and so focuses on cross-sectional differences. 

3) Fixed-Effect Within-Groups Regression: yit = αi + β′Xit + εit.  

This regression allows a unique intercept for each firm to account for cross-sectional firm       

differences.  Hence, it controls for firm specific effect, while maximizing the sample size       

relative to a between-group regression. 

 

For all three regression specifications in Panels A and C the coefficients of WITH and WO 

are highly significant and positive.  Furthermore, the generally high adjusted R2 obtained when 

either WITH or WO are used as explanatory variables indicate that a firm’s mine value with or 

without flexibility explains much of the variation in the adjusted market capitalization of the 

sample company.  For example, in Panel A in the univariate regression using WITH as the 

explanatory variable, the t-statistic of the coefficient estimate is 14.83 for the pooled regression 

with an adjusted R2 of 69%.  Between-group and within-group regressions display similar 

results.  The univariate regression of AMC against the closure option value variable OV is 

significant at the 5% level for both pooled and between-group regressions, but insignificant for 

within-group regression.  In other words, when each firm is allowed to have a unique intercept 

through time, the OV coefficient is no longer significant.  One explanation might be that part of 

the OV may be captured by the firm specific intercept terms.   

----------------------------------------- 

Insert Exhibit 8 about here 

----------------------------------------- 

In the regression in panel C that controls for changes in WO, OV is significant at the 5% level 

for the pooled regression.  OV is not significant for the between-group regression.  Overall, the 

significance of the coefficient for OV seems to decline in the presence of WO.  As predicted, the 

control variable Exploration Expenses (EXPL) is significant at the 5% level for the univariate 

and all multivariate regression specifications (see Panels D, E, and F).  Finally, in the full 

                                                                                                                                                             
priori, however, this is not expected to cause a directional bias in our significance test results. 
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regression model in Panel F with WO, OV and EXPL as explanatory variables, all coefficients 

with the exception of OV in the “between-group” regression are significant at the 5% level.  It 

should also be noted that this specification results in relatively high adjusted R2 and F-statistics, 

suggesting again that the regression model is able to explain much of the variations in market 

capitalization.  The results presented provide encouraging evidence that the real options model 

developed is significant in explaining the cross-sectional variation in market capitalization.  In 

particular, the company’s closure option value is a significant determinant of market 

capitalization.   

 

IV.  CONCLUSIONS 

We use a real options model based on Brennan and Schwartz (1985) to value Australian Gold 

mines and mining companies.  We find that the real options model is a useful tool for the 

description and valuation of operational flexibilities. However, the value of the embedded 

options is very sensitive to estimation errors in the input parameters of the model.  The median 

value of the closure option is 2.38 percent of the individual mines’ value and 1.95 percent of the 

company’s value without operational flexibility.  The average and median closure option values 

are economically significant; however, the option values vary over a large range.  Thus the 

usefulness of the real options model as numerical valuation tool for some individual mines and 

mining companies may be limited. 
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Exhibit 1:  Summary of Theoretical Literature 

 

Type of Real Option Application in 

Industry 

Theoretical and Industry Specific 

contributions  

Option to Defer Natural Resources; 

mining; land 

development 

McDonald & Siegel (1986), 

Paddock, Siegel and Smith (1988), Quigg 

(1993), Kulatilaka and Trigeorgis (1994), 

Mauer and Ott (1995) 

Time to Build and 

Staged Investment 

Options 

R&D in 

pharmaceutical and 

other  capital 

intensive projects 

Majd and Pindyck (1987), Morck, 

Schwartz and Stangeland (1989), 

Martzoukos and Teplitz-Sembitzky 

(1992), Trigeorgis (1993), Faulkner (1996) 

Schwartz and Moon (1999) 

Option to Alter 

Operating Scale 

(expand, contract) 

All industries McDonald and Siegel (1985), Brennan and 

Schwartz (1985), Pindyck (1988) 

Option to Abandon Airlines, railroads, 

infrastructure 

Myers and Majd (1990), Berger, Ofek and 

Swary (1996) 

Option to Switch 

(inputs or outputs) 

All industries Kulatilaka and Marks (1988), Kulatilaka 

and Trigeorgis (1993), Childs, Ott and 

Triantis (1995) 

Multiple Interaction 

Options 

Most projects Brennan and Schwartz (1985), Trigeorgis 

(1994), Kulatilaka and Trigeorgis (1994) 
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Exhibit 2:  Characteristics and valuations of a Representative Australian Gold Mine 
The representative gold mine consists of the arithmetic averages of the characteristics of the mines included in the data set.  Panel B 

values this representative gold mine with different valuation techniques.  

 

Panel A: Characteristics of the representative mine in the data set.    

Total Reserves (Q): 900,000 Capacity (q): 125,000 

Gold Price (S): $368 Convenience Yield (c): 5.2% 

Average Extraction Cost (A): $338 Risk Free Rate (ρ): 8.5% 

Gold Price Volatility (σ): 9.0% Mine Technology: Open Pit 

Panel B: Valuation of the representative mine using different valuation techniques  

Naïve DCF [zero growth] $20.8m to $16.1m* 

Modified DCF [ρ - c growth] $45.0m to $31.9m* 

Mine with flexibility (real option model) $49.5m 

Mine without flexibility (no closure option) $48.5m 

Mine without flexibility (σ → 0) $48.5m 

Mine without flexibility (Integration) $48.4m 

Option Value $1.0m 

% of Mine Value without flexibility 2.1% 

% of Mine Value with flexibility 2.0% 
    *

Discount rates ranging 8.5% to 20.5%. 
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Exhibit 3:  Sensitivity of the Representative Mine Valuation to Variations in the 

Input Parameters 

The graph displays the value of the mine with flexibility, by varying each input from the base case by ±20% while keeping all other 

inputs constant.  All figures are in $US m. 
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Exhibit 4:  Directional Effect of an Increase in Each Input Parameter 

 

Increase 

 in variable 

Mine with 

flexibility 

Mine without 

flexibility 

Option 

Value 

Cost (A) – – + 

Gold Price (S) + + – 

Volatility (σ) + 0 + 

Interest Rate (r) + + – 

Convenience Yield (c) – – + 

Reserves (Q) + + + 

Capacity (q) + then – + then – + then – 
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Exhibit 5: Descriptive Statistics for the Distribution of the Closure Option Values at 

the Individual Mine Level 

 

Panel A: Relative closure option value    

 OV as percent-

age of WO 

Number of 

Mines 

Percentage 

of Mines 

Positive WO  161 74.2% 

 0% 5 2.3% 

 0-1% 94 43.7% 

 1-2% 11 5.1% 

 2-3% 16 7.4% 

 3-4% 3 1.40% 

 4-5% 1 0.5% 

 5-10% 11 5.1% 

 > 10% 20 9.3% 

Zero WO  2 0.9% 

Negative WO  54 24.9% 

Total  217  

Panel B: Absolute mine and closure option value    

 WO OV OV/WO 

Maximum $1,222,057,884 $53,706,724  

Mean $     68,848,021 $  3,017,243 4.38% 

Median $     17,029,203 $     405,697 2.38% 

Median WO Mine $     17,029,203 $     498,746 2.93% 

Minimum $   - 53,706,724 $                0  

Standard Deviation $   173,740,748 $  7,339,433  
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Exhibit 6:  Descriptive Statistics of Closure Option Value at Company Level 

Closure option value at company level.  The sample size consists of 112 company-years without flexibility (WO), with flexibility 

(WITH) and the closure option value (OV).  For the percentage value figures 3 of the company years are excluded because the mine 

value was close to zero.  103 company-years make up the sample for the closure option value relative to the adjusted market 

capitalization (AMC). 

 

Panel A: Closure option value    

 WITH                

(112 comp.-years) 

WO                      

(112 comp.-years) 

AMC           
(103  comp.-years) 

OV 

Maximum $ 872,285,366 $ 870,975,165 $ 2,081,362,231 $ 51,505,202 

Mean $ 152,854,827 $ 146,456,020 $    420,670,916 $   6,398,808 

Median $   65,295,754 $   61,112,261 $    220,495,420 $   1,191,864 

Minimum $                    - $ -41,560,332 $        5,714,820  - 

Standard Deviation $ 211,909,094 $ 210,072,613 $    450,910,289 $ 10,407,036 

     

Panel B: Relative closure option value    

Closure option 

value as percent of 

               

WITH 

                 

WO 

              

AMC 

 

Mean 4.19% 4.37% 1.64%  

Median 1.83% 1.95% 0.68%  

Standard Deviation 99.55% 437.17% 6.82%  
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Exhibit 7: Summary Statistics of Market Capitalization Regression Variables 

The number of observations for the regression is 103.  The independent variable is Adjusted Market Capitalization (AMC) and the 

abbreviations for the dependent variables follow the previous definition, Mine Value without Flexibility (WO), Closure Option Value 

(OV), Mine Value with Flexibility (WITH), and Exploration Expenses (EXPL). 

 

AMC WO OV WITH EXPL 

Panel A:  Descriptive statistics for regression variables ($millions)  

Mean 420.7 156.8 6.9 163.7 10.5

Std. Deviation 450.9 216.0 10.7 217.6 15.1

Minimum 5.7 −41.6 0 0 0

Maximum 2,081.4 871.0 51.5 872.3 103.1

Skewness 1.7 1.9 2.0 1.9 3.2

Panel B:  Correlation coefficients of regression variables  

AMC 1.0000  

WO 0.8229 1.0000  

OV 0.2275 0.1296 1.0000  

WITH 0.8278 0.9988 0.1778 1.0000 

EXPL 0.4913 0.3541 0.1196 0.3573 1.0000
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Exhibit 8:  Regression Results – Adjusted Market Capitalization as Dependent 

Variable 

(t-statistics in parentheses) 
 WITH WO OV EXPL R2 

  Panel A    
Pooled 1.72    0.69
 (14.83)     

Between 1.90    0.74
 (8.53)     

Within 1.10    0.93
 (8.52)     

  Panel B    
Pooled   9.58  0.05
   (2.35)   

Between   22.69  0.15
   (2.11)   

Within   1.01  0.86
   (0.42)   

  Panel C    
Pooled  1.68 5.18  0.69
  (14.42) (2.20)   

Between  1.82 7.66  0.75
  (7.66) (1.23)   

Within  1.10 2.35  0.93
  (8.50) (1.36)   

  Panel D    
Pooled    14.71 0.24
    (5.67)  

Between    15.95 0.28
    (3.10)  

Within    7.63 0.87
    (3.03)  

  Panel E    
Pooled 1.55   6.71 0.73
 (13.42)   (4.02)  
Between 1.71   6.20 0.78
 (7.39)   (1.95)  

Within 1.03   4.56 0.93
 (8.12)   (2.42)  

  Panel F    
Pooled  1.53 4.48 6.57 0.73
  (13.13) (2.03) (3.95)  

Between  1.69 4.44 5.79 0.78
  (6.98) (0.71) (1.71)  

Within  1.03 3.29 5.13 0.93
 (8.12) (1.94) (2.67) 

 
 


