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Abstract : Uncertainty on effective stocks or damages is the core of most irreversible 
economic decisions involving natural resources and the environment. Although there 
is an extensive literature dealing with the theoretical aspects of this problem, 
economists still lack an operational decision rule. The matter is that the real option 
theory, now widely used to deal with Markovian uncertainty, i.e. independent 
exogenous repeated chocks affecting the expected return from an irreversible project 
as time goes, is not adequate to analyze problems characterized by Bayesian 
uncertainty, i.e. problems where uncertainty about the effective value of parameters is 
resolved with time by a learning process. This paper is aimed at remedying at these 
shortcomings. The real option theory is first adapted to an explicit Bayesian learning 
process in continuous time. In the context of a simple model of environmental 
preservation, the following question is then addressed: how to define and characterize 
the optimal tradeoff between the “look before you leap” principle on the one hand and 
the precautionary principle on the other hand? 
 
JEL classification : Q30, D81, C61. 
 
Key words : Bayesian learning, Options, Irreversibility, Uncertainty, Environmental 
preservation. 

 
 
 
 
1. INTRODUCTION  
 

Does the state of scientific knowledge justify to take immediate and costly measures to 

protect the environment? Has exploration of a new oilfield provided a sufficient knowledge about 

its quality and extent to invest in extraction? Economists dealing with irreversible decisions in the 

face of uncertainty are concerned with numerous questions of this kind. 

Since the seminal articles by Arrow and Fisher [1974] and Henry [1974] and the 

clarification made by Hanemann [1989], economists generally invoke the “irreversibility effect” to 



 2

explain that the more uncertain we are about future returns from an irreversible project, the more 

the postponement of the project is relevant. This is also known as the intuitive “look before you 

leap” principle: rather than taking a decision immediately, it is better to wait for more information 

and then act according to the information received. The “look before you leap” principle has 

received much attention due to the ability to implement it to irreversible investment choices thanks 

to the real option theory synthesized in the now well known articles and textbook of Pindyck 

[1991], Dixit [1992], and Dixit and Pindyck [1994]. Although the real option theory is originally 

build on a comparison with financial options (see, for instance, the pioneering works of McDonald 

and Siegel [1986] or Brennan and Schwartz [1985]), its relationship with the concept of options 

and the irreversibility effect originally developed and clarified by Arrow Fisher Henry and 

Hanemann (AFHH) has been outlined, among others, by Lund [1991] and Fisher [2000]. 

Our own lecture suggests that some important differences still remain between the two 

approaches. As noted by Ulph and Ulph [1997], assumptions about stochastic variables made in 

the real option theory are not appropriate for a wide range of environmental problems implying 

both irreversibility and uncertainty. The reason for this is that the real option theory focuses on 

problems where independent exogenous and repeated chocks affect the evolution of a key variable 

in the decision of whether to develop or postpone an irreversible project. This approach, thereafter 

called Markovian approach, is relevant to deal with the uncertainty on future prices but it is not 

suitable to deal with the uncertainty about an unknown parameter, the true value of which is 

invariant with time. The latter kind of problems entails the use of Bayesian uncertainty. The matter 

is that, in its primary version, the concept of option introduced by Arrow and Fisher [1974] is 

sufficiently large to be thought of as a problem with either Markovian uncertainty or Bayesian 

uncertainty while the reference to a learning process and Bayesian uncertainty is made more 

explicit in the subsequent literature. Fisher and Hanemann [1985] and Hanemann [1987], for 

instance, explicitly refer to Bayesian uncertainty when focusing on uncertainty about biological 

and engineering parameters or uncertainty as to whether the offshore structures contain oil in 

commercial quantities. 

Furthermore, the “look before you leap” principle often need to be balanced with the 

precautionary principle which emerged in the mid 1980’s as a clause in international treaties such 

as the Conference of Rio on Environment and Development. For instance, Article 15 of the Rio 

declaration states that “where there are threats of serious and irreversible damage, lack of full 

scientific certainty shall not be used as a reason for postponing cost effective measures to prevent 

environmental degradation”. Similar definitions have been enacted in other national or 

international laws (see Gollier [2001]). The question of whether the precautionary principle is 

compatible with the irreversibility effect then arises. Ulph and Ulph [1997] refuted the initial idea 
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of Chilchilnisky and Heal [1993] that the precautionary principle could be systematically 

assimilated with the irreversibility effect. In the more specific context of greenhouse gas 

accumulation due to economic activity, Gollier Jullien and Treich [2000] stressed the role of the 

attitude toward risk to justify the precautionary principle while Kolstad [1996a and b] outlined that 

two contradictory irreversibility effects should be considered since “one may wish to under-emit 

today to avoid potential environmental irreversibilities” on the one hand and “one may wish to 

under-invest in pollution control capital, avoiding investments in sunk capital that turn out to be 

wasted” on the other hand. 

In this framework, the present paper is aimed at providing the reader with a coherent and 

explicit Bayesian approach of the real option theory and to contribute to the debate on the “look 

before you leap” principle versus the precautionary principle. For this purpose, a suitable Bayesian 

process is defined in section 2 in order to model how knowledge about unknown parameters 

evolves in response to an arrival of new information. This is first done in discrete time and then 

extended to continuous time. Section 3 details how to use such a Bayesian stochastic process 

together with the concept and mathematical tools of the real option theory to define an optimal 

decision rule for irreversible projects in the face of uncertainty about an unknown but fixed 

parameter. Two cases are examined: the first one deals with passive learning, where information is 

costless; the second one with active learning, where the receipt of new information requires a 

costly action. More specifically, the case of active learning allows to determine whether the 

precautionary principle or the “look before you leap” principle should prevail in the context of the 

simple Bayesian real option model proposed in the paper, without any reference to the attitude 

toward risk but at the cost of a crucial dependence on initial beliefs. 
 
 
2. MODELING THE EVOLUTION OF KNOWLEDGE  
 

Intuition suggests that in a world where information comes as time goes, it may be of 

interest to delay some project in return for less uncertainty. The real option theory of investment 

under uncertainty, we should rather say under risk, widely confirms this intuition in the context of 

a world submitted to repeated, independent and exogenous chocks that follow some known 

distribution of probability. Unfortunately, it seems somewhat abusive to directly implement the 

models developed by the real option theory in the context of a lack of information about the true 

value of some key parameters in the decision problem. The matter is thus to construct an adequate 

mathematical representation of the learning process when facing uncertainty about an unknown 

but invariant parameter. With this aim in view, we first discuss how important it is to distinguish 

between the concepts of Markovian and Bayesian processes, the latter being more relevant in some 

fields of economics, environmental and resource economics in particular. We then turn to the 
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construction of a stochastic process suitable both for depicting Bayesian learning and 

implementing the real option theory. This is firstly made in a discrete time context and it is 

secondly extended to the more convenient continuous time context. 
 
 
2.1. General considerations 
 

Since the seminal article of Arrow and Fisher [1974], the prospect of an arrival of new 

information is the core of the analysis of irreversible economic decisions. New information takes 

either the form of the observation of exogenous random chocks (described as Markov processes) 

affecting the evolution of some key variables or the form of messages used to revise the beliefs of 

the economic decider. The real option theory typically focuses on the first representation of 

information while the work of AFHH and, more especially, the subsequent literature is merely 

influenced by the second representation. This second representation constitutes the basis for 

modeling the evolution of knowledge about the effective value of an unknown parameter affecting 

the decision of whether to develop an irreversible project or not. It is generally assumed that there 

is a finite set of possible values of the unknown parameter and that there exists an a priori, or 

subjective, discrete probability distribution on this set representing the beliefs on the true value of 

the unknown parameter. Messages arriving with time are used to revise the probability 

distribution. Some basic or intuitive properties of the revision process are expected. 

First of all, uncertainty is reduced in the long term. This means that the probability for 

one of the possible values tends to increase with time while the probability assigned to other 

values tend to decrease. Some authors rule out the eventuality of contradictory messages, which 

allows to represent the evolution of knowledge as an information structure which becomes finest 

as time goes1. As a result, the evolution of probabilities assigned to the different possible values of 

the unknown parameter is monotonous. If the eventuality of contradictory or noisy messages 

arriving at different dates is not ruled out, the evolution of probabilities is not monotonous: it may 

be the case that a probability increases between two dates and then decreases between the last date 

of these two dates and the following date. Kolstad [1996a] for instance takes account of such noisy 

messages. Therefore, the evolution of probabilities may be viewed as a stochastic process with an 

attractor corresponding to a vector made of zeros except one of its components equal to unity. 

Another important property of the evolution of beliefs is that the revision of probabilities may be 

consistent with the probability theory, more especially with Bayes’ theorem. This point has not 

always received attention in the literature dealing with irreversible decision when facing 

uncertainty. The reason for this is that, following Arrow and Fisher [1974], these works are often 

                                                 
1 This is typically the case in Freixas and Laffont [1984] or Kolstad [1996b] who merely follow the primary 
model of Henry [1974]. 
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interested in a two period problem with a perfect acquisition of information at the second period. 

A noticeable exception is the article by Kelly and Kolstadt [1999]. It seems that the description of 

the evolution of knowledge in this article is too complex to construct a decision rule similar to that 

obtained with the real option theory in the case of Markov’ processes. Nonetheless, it has set the 

intuition for our model. 
 
 
2.2. The discrete time approach 
 

We consider a decision problem where the unknown parameter V , the discounted sum of 

expected net benefits generated by an irreversible project for instance, may have two possible 

values, Vsup  and V inf  with VV infsup > . The restriction to two possible scenarii, the optimistic 

scenario corresponding to Vsup  and the pessimistic scenario associated with V inf , is intended to 

simplify the representation of how beliefs change with time. At time t  indeed, the beliefs on the 

true value of V  are described by the probabilities X t  and X t−1  assigned respectively to Vsup  

and V inf . The study of how beliefs evolve thus only requires to describe the evolution of a single 

variable, X t . Similarly, it is assumed that only two kinds of messages, denoted by M a  and 

M b , are received between two consecutive dates. The conditional probabilities of these two 

messages are given by the following matrix: 
 

[ ] [ ]
[ ] [ ] ���

����
�

−
−

≡���
�

���
�

pp

pp

VMVM

VMVM
bb

aa

1

1

PrPr

PrPr
infsup

infsup

 (1) 

 

where [ ]VM jiPr  denotes the probability of receiving a message M i  ( bai   or= ) when the true 

value of V  is V j  ( infsup   or=j ). We assume that, when V  is equal to Vsup , the likelihood of a 

message M a  is higher than the likelihood of a message M b  and conversely when V  is equal to 

V inf , so that 21>p . Therefore, the receipt of a message M a  means that a good news is 

received while messages M b  assimilate to bad news. The symmetry in (1) implies that, when the 

actual scenario is the pessimistic one, the learning process goes as fast as when the actual scenario 

is the optimistic one. 

The learning process consists in revising the probability X t  as a representation of beliefs 

according to the arrival of new messages. This is done by using Bayes’ theorem, which yields the 

probabilities [ ]MV ijPr  that the true value of V  is equal to V j  ( infsup   or=j ) when a 

message M i  ( bai   or= ) is received between t  and the following date tt ∆+ : 
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with 
 

( )( )XpXpA tt −−+≡ 11  (2.b) 

( ) ( )XpXpB tt −+−≡ 11  (2.c) 
 

The first column of the matrix given in (2) is nothing else that the new probabilities X tt ∆+  and 

X tt ∆+−1  that characterize the beliefs at tt ∆+  if a message M a  is received between t  and 

tt ∆+ . Conversely, the second column yields the new probabilities X tt ∆+  and X tt ∆+−1  that 

characterize the beliefs in tt ∆+  if a message M b  is received between t  and tt ∆+ . One 

easily checks that the difference XX ttt −∆+  is positive and increasing with p  if a message M a  

is received between t  and tt ∆+  while it is negative and decreasing with p  if a message M b  is 

received between t  and tt ∆+ : the higher p , the more informative the messages are. 

We are interested in obtaining a more convenient way to represent the evolution of beliefs 

than the description given by matrix (2). With this aim in view, we now turn to the examination of 

how the ratio between X  and X−1  changes. A careful examination of (2) shows that 
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Then, it is worthwhile examining the evolution of the natural logarithm Yt  of the ratio between 

the probabilities assigned to the two possible values of V : 
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We already known that, if the true value of V  is Vsup , then M a  and M b  are respectively 

received with probabilities p  and p−1 . Conversely, if the true value of V  is V inf , then M a  

and M b  are respectively received with probabilities p−1  and p . As a result, we obtain 

Proposition 1. 
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PROPOSITION 1: the variation, on a time interval of length t∆  separating two 
consecutive dates, of the natural logarithm Yt  of the ratio between the probabilities 

X t  and X t−1  is the random variable 
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According to Proposition 1, Yt  is a stochastic process which satisfies all of Markov’s properties. 

A careful examination of the distribution for future values of Yt  yields the results expressed in 

Proposition 2: 
 
 

PROPOSITION 2: since the successive steps Y∆  are independent, the cumulated 

change YYT 0−  between dates 0=t  and Tt =  separated by tTN ∆=  time 

intervals of identical length t∆  is a binomial variable with mean 
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and variance 
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The discrete time stochastic process described in the two previous proposition has some intuitive 

and important features. For instance, from 21>p  it clearly appears that the stochastic process 

Yt  has a positive drift if the true value of V  is Vsup  and a negative drift if the true value of V  is 
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V inf . However, rather than to go further on the study of the discrete time approach, we now 

examine the continuous time approach as a limit case, for infinitesimal time intervals t∆ , of the 

discrete time approach. 
 
 
2.3. The continuous time approach 
 

Continuous time stochastic processes can be derived as the continuous limit of discrete-

time processes. Dixit [1993], for instance, proposes an explanation of how to derive the Wiener 

process as the continuous limit of a random walk. Although quite similar, our problem is more 

complicated. Indeed, the discrete time processes defined in Propositions 1 and 2 differ from a 

standard random walk because of the magnitude and the probability of upward and downward 

moves that are linked to each other via the probability p . The key point is thus to express p  as a 

function of the time interval t∆  so that letting t∆  approach zero yields a known continuous time 

process, namely a Ito process. In order to obtain such a result, we consider the following 

expression of p : 
 

e

ep
t

t

∆

∆

+
=

σ

σ

1
 (5) 

 

By construction, expression (5) lies in the interval [ ]1,0 , which is consistent with the fact that p  

is a probability. Behind expression (5), there is the intuition that if we let the length t∆  of the 

time interval separating two consecutive dates decreases, more messages will be received but these 

messages should be less informative in order not to affect the speed at which knowledge evolves. 

With this intuition in mind note that, ceteris paribus, p  as expressed in (5) tends to 21  as t∆  

goes to zero so that the probabilities of bad news and good news become closer. Moreover, since 

this expression of p  is increasing with respect to σ , this parameter may be thought of as 

indicating the degree of “informativeness” of messages. 

We now assume that the length t∆  of time intervals approaches zero, or equivalently that 

the number tTN ∆=  of time intervals of identical length t∆  separating 0=t  and any finite 

date Tt =  goes to infinity. The binomial distribution of YYT 0−  described in Proposition 2 then 

converges to a normal distribution with mean 
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and variance 
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[ ] VTYYVar T
t

   lim of  valuehewhatever t2
0

0
σ=−

→∆
 (7) 

 

Moreover, according to Proposition 1, the variation rate tY ∆∆  of Yt  on each time interval of 

length t∆  goes to ∞±  as t∆  approaches zero, so that Yt  is not differentiable and dtdY  does 

not exist. Thus, as Proposition 3 states, the continuous limit of Yt  satisfies all the properties 

characterizing a Brownian motion2. 
 
 

PROPOSITION 3: the continuous limit of the discrete time process defined in 

proposition 1 is an Ito process, more precisely a Brownian motion, the evolution of 

which is described by the following differential equation: 
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2
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2

2
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where ωd  is the increment of a Wiener process, [ ] 22σ=Ε dtdY  is the 

instantaneous drift rate and [ ] σ 2=dtdYV  is the instantaneous variance rate. 
 
 

By Ito’s lemma, we directly derive Proposition 4 from Proposition 3: 
 
 

PROPOSITION 4: the probability assigned to the optimistic scenario, X t , follows a 

Ito process, the evolution of which is defined by the differential equation 
 

( ) ( )
( ) ( )��

���
=−+−−
=−+−=

VV    dXXdtXX

VV    dXXdtXXdX
when

when
inf22

sup22

11

11
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In spite of its apparent complexity, the Ito process X t  defined in Proposition 4 has some 

interesting features. Among those, the most important one is undoubtedly that the process admits 

two absorbing point at 0=X  and 1=X . Thus, starting with any initial value X 0  in [ ]1,0 , 

X t  will never go outside this interval, which is consistent with the fact that the process X t  

describes the evolution of a probability. As shown in Figure 1, the instantaneous variance rate 

[ ] ( )XXdtdXV −= 1
222σ  admits a maximum at 21=X , is null for the two absorbing 

                                                 
2 For an introduction to stochastic processes and stochastic calculus see, among others, Harrison [1985] or 
Karatzas ans Shreve [1996]. 
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points 0=X  and 1=X  and has symmetric values for X  and X−1 . Furthermore, when the 

true value of V  is Vsup , the instantaneous drift rate [ ] ( ) dtXXdtdX −=Ε 1
22σ  is positive 

for any ] [1,0∈X  while it takes the negative value [ ] ( )dtXXdtdX −−=Ε 122σ  for any 

] [1,0∈X  when the true value of V  is V inf . We conclude that 1=X  is an attractor when 

VV sup= , in the sense that X t  tends to approach this value with a decreasing variance as time 

goes. Conversely, 0=X  is an attractor when VV inf= . Consequently, the continuous version 

of the process X t  seems to be adequate to describe how the arrival of information improves the 

knowledge on the true value of the V . 

 

Insert Figure 1 

 

The use of the process X t  in the theory of decision, more especially in optimal stopping 

time problems, is simplified by a particular feature of this stochastic process. To see this, imagine 

the following optimal problem. Consider an irreversible project that generates a payoff ( )XG  if 

realized while a flow cost ( )XC  is incurred as long as the project is not realized. The discount 

rate is r . The problem is to determine the optimal trade off between delaying the realization of the 

project to benefit from an expected better knowledge in spite of the flow cost ( )XC  or realizing 

immediately the project. In formal terms, we have to solve the program 
 

( ) ( ) ( )��
���

� +� −Ε= −− XGedteXCMaxXF rtr
t τ

τ
τ

τ 0
00  (8.a) 

 

where Ε0  stands for mathematical expectation conditional on the initial value X 0  of X t  at 

0=t . The first stopping time is 
 

{ }Ω∉≥= XtInf t;0τ  (8.b) 

 

where 
 

[ ] ( ) ( ){ }XGXFX >∈=Ω ;1,0  (8.c) 

 

is the continuation or waiting region. Program (8) is typically solved by dynamic programming3. 

The matter is that, as stressed by Proposition 4, in Program (8) we have to take account of the fact 

that the evolution of X t  is described by two different stochastic processes according to the true 

                                                 
3 Actually, program (8) belongs to the class of optimal stopping time problems. Shiryayev [1978] constitutes 
a good and complete presentation of this specific class of dynamic programming problems. Krylov [1980] 
also contains a shorter introduction. A survey of applications in resources economics is made by Clarke and 
Reed [1990]. 



 11

value of V . It is shown in appendix A that, in the interior of Ω , the value function ( )XF  

satisfies the following Bellman equation: 
 

( ) ( ) ( ) Ω∈∀=−−− XXCXFrFXX XX 01
2

22
2σ

 (9) 

 

The main point to be outlined is that (9) may be directly obtained by assuming that X t  follows an 

unique stochastic process whatever the true value of V , the evolution of which is described by a 

differential equation obtained by deleting the deterministic components of dX  in Proposition 4. 

We thus conclude this section with Proposition 5: 
 
 

PROPOSITION 5: we can work “as if” the evolution of the probability X  assigned to 

the value Vsup  of V  was described by the differential equation 
 

( ) ωσ dXXdX −= 1  

 

whatever the true value of V  is. 
 
 

Proposition 5 means that the modeling of the evolution of knowledge when uncertainty concerns a 

parameter with two possible values can be summed up as the use of the simple purely stochastic 

process (there is no deterministic component) described in the proposition. This process admit 

0=X  and 1=X  as absorbing points so that, starting within [ ]1,0 , the process will never quit 

this interval. The instantaneous variance rate is identical to that shown in Figure 1. Proposition 5 

proves to be useful when studying irreversible decisions under uncertainty with learning. 
 
 
3. ACTING , LEARNING OR ABANDONING ? 
 

With the mathematical preliminaries behind us, we can now turn to the analysis of 

irreversible decisions with the prospect of learning more about some uncertain parameters. In a 

first stage, we examine how to adapt the canonical model of real option as presented in Dixit and 

Pindyck [1994], and derived itself from the model originally developed by McDonald and Siegel 

[1986]. For this purpose, it is assumed that learning is passive in the sense that no specific and 

costly decision has to be made in order to acquire more information. In a second stage, the more 

realistic case of active learning where it is costly to acquire more information is considered. The 

trade off between the “look before you leap” principle and the precautionary principle is more 

specifically discussed in this last case. 
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3.1. The case of passive learning 
 

We first consider the problem of whether to postpone the realization of an irreversible 

project in return for a better knowledge about one of the key parameters involved in the decision 

problem or to immediately concretize the project at the risk that it appears ex post that the true 

value of the initially unknown parameter does not justify the realization of the project. Uncertainty 

is supposed to affect the expected sum of net benefits resulting from the realization of the project 

which amounts to 0sup >V  if the optimistic scenario is the correct one, or 0inf <V  if the 

pessimistic scenario is the correct one. Although it is not restricted to the field of environmental 

and resource economics, this kind of problem is quite similar to the standard problem of 

environmental preservation examined by Arrow and Fisher [1974]: the project considered may be 

the construction of a dam in an area, say a nice valley in mountains, with entertainment as an 

alternative and incompatible use. Irreversibility is then due to the fact that, once the dam is built, it 

is impossible to restore the original wilderness of the area and the resulting amenities for 

entertainment are definitely lost. Uncertainty typically concerns the true money value of these 

amenities rather than the gain from the production of electricity. V  is thus the difference between 

the gain from the production of electricity and the loss of amenities from wilderness. 

The modeling of how beliefs on which one of the pessimistic or the optimistic scenarii is 

the correct one change as time goes, follows the same lines as in the previous section. To make 

things simple, economic agents are assumed to be risk neutral. Accordingly, the net payoff from 

realizing at time t  the project is valued at its expected value: 
 

( )XG t  ( )VXVX tt
infsup 1−+=  

 ( ) VVVX t
infinfsup +−=  (10) 

 

where X t  still denotes the probability assigned to the optimistic scenario at time t . The optimal 

trade off between postponing or immediately realizing the project corresponds to the solution of 

the following optimal stopping problem: 
 

( ) ( )[ ]XGeMaxXF r
τ

τ

τ

−Ε= 00  (11) 

 

where r  is the instantaneous discount rate and Ε0  stands for mathematical expectation 

conditional on the initial value X 0  of the probability assigned to the optimistic scenario at time 

0=t . The maximization in (11) is subject to the equations given in Proposition 4, or equivalently 

in Proposition 5, for the evolution of X t . The optimal stopping time τ  and the associated 

waiting region Ω  are identical to those defined in (8.b) and (8.c). 
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Program (11) is quite similar to one of the first and simplest real option problems, that of 

McDonald and Siegel [1986]. It clearly appears in (10) that the negative net payoff V inf  received 

if the project is realized when the pessimistic scenario is correct acts as the sunk investment cost of 

most real option models of irreversible investment. The presence of the positive coefficient 

VV infsup −  implies that the expected net payoff ( )XG  is linearly increasing with respect to the 

probability X  assigned to the optimistic scenario, which replaces the project gross value of 

irreversible investment problems as the state variable. The only difference in program (11) 

compared with the model of McDonald and Siegel [1986] and most of the models developed in the 

subsequent literature, like those detailed in Dixit and Pindyck [1994], is that the state variable X t  

does not follow a geometric Brownian motion but the new, and unused until the present work to 

our knowledge, diffusion process described in Propositions 4 and 5. 

At any time t , postponement of the project is optimal for, at least, all value of X t  such 

that the net payoff given in (10) is negative. Consequently, Ω  necessarily includes the waiting 

region associated with the net present value criteria, [ ] ( ){ }0;1,0 <∈=Ω XGXVAN  that is 

( )[ ]VVV infsupinf,0 −− . Hence, we can guess that Ω  takes the form [ [X*,0  where 

( )VVVX infsupinf* −−>  is the optimal but unknown upper boundary of Ω . The value 

function ( )XF  and X*  solve the following standard system of equations: 
 
 

( ) ( ) [ [XXXFrFXX XX
*,001

2

22
2

∈∀=−−σ
 (12.a) 

( ) 00 =F  (12.b) 

( ) ( ) VVVXXF infinfsup** −−=  (12.c) 

( ) VVXF X
infsup* −=  (12.d) 

 

Equation (12.a) is identical to the Bellman equation (9) except that there is no flow cost incurred 

when the project is postponed. Equation (12.b) is a constraint associated with the lower boundary 

of Ω , it results from the fact that 0=X  is an absorbing point of the stochastic process X t : 

once the probability assigned to the optimistic scenario reaches the null value, there is no more 

uncertainty so that we are sure a definitive abandonment of the project is optimal. In the 

terminology introduced by Dumas [1991], equation (12.c) is the standard value matching condition 

of optimal stopping problem while equation (12.d) is the smooth pasting condition. Equation 

(12.a) differs from standard Bellman equations characterizing most of real option problems. 

Fortunately, there exists an analytical solution to this Bellman equation, the expression of which is 
 

( ) ( )( ) ( )( )
X

X
XXA

X

X
XXAXF

−
−+

−
−=

1
1

1
1

2

2

1

1

ββ

 (13) 
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where A1  and A2  are two constants to be determined according to the boundary conditions 

associated with the Bellman equation. We see by substitution that (13) satisfies (12.a) provided 

that β 1  and β 2  are given by 
 

0
2

8 2

1 >
+

=
σ

σβ
r

 and 0
2

8 2

2 <
+

−=
σ

σβ
r

 (14) 

 

Since 02 <β , the boundary condition (12.b) requires that 02 =A . Then, we obtain A1  and 

X*  as solutions of the system formed by the value matching condition (12.c) and the smooth 

pasting condition (12.d). After some algebraic manipulations, we obtain the value of X*  given in 

Proposition 6: 
 
 

PROPOSITION 6: It is optimal to postpone the project and learn more about the true 

value of V  as long as the probability assigned to the optimistic scenario is lower 

than the optimal threshold value 
 

( )
( )( ) VVV

V
X inf

1
infsup

1
inf

221

21*
+−−

+
=

β
β

 

 

with 1*0 ≤≤< XX NPV  if 0sup >V  and 0inf <V  and where 

( )VVVX NPV
infsupinf −−=  is the critical probability associated with the net 

present value criteria. The expected value of the project then amounts to 
 

( )
( )( )

( )���

���
�

+−

≤
−

−
=

otherwise

if

VVVX

XX     
X

X
XXA

XF

infinfsup

1

1
*

1
1

β

 

 

where 
 

( )
������ −

−

−+
−=

X

X

XX

X

VV
A

*1

*

*1*2
*212 1

1

infsup

1 ββ
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Figure 2 illustrates Proposition 6 for 20sup =V , 25inf −=V , 5.0=σ  and 03.0=r , it 

outlines the classical analogy with an American financial call option on an asset which is worth 

( )VVX infsup− , with an infinite expiration date and an exercise price equal to V inf− . The value 

function is drawn as a continuous line while the terminal payoff ( ) VVVX infinfsup +−  

corresponds to the dashed line. For these values of the parameters, X*  amounts to 882353.0  

and X NPV  is equal to 555556.0 . 

 

Insert Figure 2 

 

Some results of comparative statics are given in Table 1, they follow on from the fact that β 1  

increases with r , decreases with σ  and from the limits 21lim 10 =→ βr , ∞=∞→ 1lim βr , 

∞=→ 10lim βσ  and 21lim 1 =∞→ βσ . A high instantaneous discount rate r  or a low speed of 

learning σ  lessen the interest of learning more since they reduce the gap between the optimal 

threshold X*  obtained with the real option criteria and the optimal threshold 

( )VVVX NPV
infsupinf −−=  characterizing the net present value criteria. Conversely, a low 

instantaneous discount rate or a high speed of learning strengthen the interest of acquiring more 

information and, at the extreme, justify to postpone the project until there is no more doubt that the 

true value of V  is Vsup , i.e. until X  attains and remains at its higher value 1 which is an 

absorbing point. 

 

Insert Table 1 

 

One of the more striking features of the optimal decision rule detailed in Proposition 6 is 

that abandonment of the project never succeeds postponement. To say it in an other way, 

postponement is only aimed at making it sufficiently sure that the optimistic scenario is the correct 

one to justify the realization of the project. It is not aimed at making it sufficiently sure that the 

pessimistic scenario is the correct one to definitely abandon it. The reason for this result is that 

learning induces no particular costs, which means that no specific effort is required to acquire 

more information. This is designated as passive learning. The case of active learning where 

information is costly is now examined. 
 
 
3.2. The case of active learning 
 

So far, postponement of the project was optimal as long as the probability of the 

optimistic scenario remained below an optimal threshold value. We can guess that the existence of 

learning costs resulting from an active learning process may invalidate such a decision rule. 
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Indeed, intuition suggests that the realization of the project should generate a sufficiently high 

expected net payoff in return for the cost of active learning to justify postponement rather than a 

definitive abandonment of the project with no learning. To make this idea more concrete, we now 

introduce a constant learning flow cost c  incurred as long as the economic decider is engaged in 

the learning process. The flow cost c  results from the need to do scientific observation and 

experiences to evaluate the consequences of the destruction of the natural area. It may also results 

from the need to explore the area in order to learn more about its geological characteristics and the 

corresponding costs and benefits of building and exploiting the dam if we consider the standard 

model of environmental preservation introduced by Arrow and Fisher [1974]. The problem is thus 

now to decide whether to postponed the project and learn more, or to realize the project 

immediately, or to definitely abandon it. Postponement keeps the options to realize or abandon the 

project alive while its realization is definitive due to its irreversibility and its abandonment is 

definitive also due to the absence of any new acquisition of information. The optimal stopping 

problem to be solved may thus be written as 
 

( ) ( )��
���

� +�−= −− XGeecEMaxXF rtr
τ

τ
τ

τ 0
00  (15.a) 

 
with 
 

( ) ( )
��
� +−

=
0

infinfsup VVVX
MaxXG  (15.b) 

 

and subject to the equations given in Proposition 4, or equivalently in Proposition 5, for the 

evolution of X t . The first term in the terminal payoff function (15.b) corresponds to the terminal 

payoff in case of an immediate realization of the project while the second term corresponds to 

abandonment of the project. The optimal stopping time and the continuation or waiting region are 

identical to those defined in (8.b) and (8.c). 

We already know that, like in the case of passive learning, the optimal waiting region Ω  

necessarily includes all the values of X  such that abandonment of the project is preferred to 

immediate realization according to the net present value criteria. Moreover, since it is an absorbing 

point, if 0=X  there is no more expected change in the probability assigned to the optimistic 

scenario and abandonment is preferred to postponement in order to avoid learning costs. We can 

guess that for values sufficiently close to 0=X , abandonment is preferred to postponement also. 

Therefore we conclude that postponement is more interesting for intermediate values of X  than 

for values approaching either zero or unity, that abandonment is optimal for low values of X  and 

that immediate realization is preferred for high values of X . We thus have [ ]XX *,**=Ω  
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where 0** ≥X  is the lower bound of the waiting region behind which abandonment is optimal 

and 1* ≤≤ XX NPV  is the upper bound of the boundary region above which an immediate 

realization of the project is optimal. Then, going along the same lines as in the case of passive 

learning, we find that the value function ( )XF  and the two optimal thresholds for the probability 

assigned to the optimistic scenario solve the Bellman equation 
 

( ) ( ) [ ]XXXcXFrFXX XX
*,**01

2

22
2

∈∀=−−−σ
 (16.a) 

 
subject to the boundary conditions 
 

( ) 0** =XF  (16.b) 

( ) 0** =XF X  (16.c) 

( ) ( ) VVVXXF infinfsup** −−=  (16.d) 

( ) VVXF X
infsup* −=  (16.e) 

 

Conditions (16.b) and (16.c) are respectively the value matching and smooth pasting conditions 

associated with the lower bound X **  of the waiting region; they replace the condition (12.b) in 

the program (12) characterizing the case of passive learning. Conditions (16.d) and (16.e) are 

identical to the value matching and smooth pasting conditions (12.c) and (12.d) associated to the 

upper bound X*  of the waiting region. The general expression of ( )XF  is still given by (13), 

augmented by the term rc  to take account of the existence of learning costs. Substituting this 

expression in conditions (16.b), (16.c), (16.d) and (16.e) yields a system of four equations to be 

solved in X ** , X* , A1  and A2 . Unfortunately, we are unable to find an analytical solution 

and numerical computations are required to solve the problem. Figure 3 illustrates the solution for 

20sup =V , 25inf −=V , 5.0=σ , 03.0=r , and 1.0=c . 

 

Insert Figure 3 

 

The lower bound X **  of the optimal waiting region amounts to 0796468.0  and the optimal 

value 856003.0  of the upper bound X*  of the waiting is slightly lower than the optimal 

threshold value of X  above which an immediate realization of the project is optimal in the case 

of passive learning. In order to get more insights into the comparative statics of the model, we 

proceed with a sensitivity analysis illustrated by Figures 4.a and 4.b. It clearly appears that the 

upper bound X*  reacts to changes in the value of the degree of “informativeness” σ  of 

messages and in the value of the discount rate r  in the same direction as the optimal threshold 

value of the probability in the case of passive learning does. Conversely, the way the lower bound 
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X **  reacts to changes in the values of the same parameters is just opposite. Therefore, the 

optimal waiting region tends to be wider as the discount rate r  decreases or as σ  increases and, 

thus, as messages are more informative. Since the waiting region is the set of values of the 

probability assigned to the optimistic scenario such that postponement is preferred to both an 

immediate realization of the project or a definitive abandonment, it typically indicates the state of 

knowledge for which the “look before you leap” principle prevails. Above the upper bound of the 

waiting region, there are sufficiently strong beliefs that the optimistic scenario is the correct one to 

justify an immediate realization of the project. Conversely, below the lower bound of the waiting 

region, there are sufficiently weak beliefs that the pessimistic scenario is the true one not only to 

abandon the project, but the learning process too. Otherwise stated, below the lower bound of the 

waiting region, the precautionary principle prevails. 

 

Insert Figures 4.a and 4.b 
 

Note that, for values of σ  around 2.0 , the lower bound X **  of the waiting region approaches 

relatively high values (about 35.0 ) and is highly sensitive to changes in the degree of 

“informativeness” of messages. This result confirms the intuition that the conjunction of a costly 

learning process and noisy messages weakens the interest of postponing the project to learn more 

about the unknown parameter. It justifies the application of the precautionary principal in the sense 

that the prospect of acquiring more information should not serve as an argument to postpone the 

irreversible project rather than to abandon it and preserve the environment, if learning costs are 

sufficiently high and if we are sufficiently sure that the real scenario is not the optimistic one but 

the pessimistic one (that is, if the probability X  assigned to the optimistic scenario to represent 

the beliefs on the true value of V  is lower than X ** ). In the context of the simple Bayesian real 

option model developed in this paper, it thus appears that the precautionary principle may follow 

on from the existence of learning costs and crucially depends on initial beliefs. The strong 

dependence on initial beliefs may highlight why different countries adopt different decisions while 

facing an apparently identical irreversible project. For instance, former negative experiences such 

as the so-called “mad cow” disease may explain that the authorities in charge of the health and 

sanitary policy in the European Community are more conservative than their American 

homologues when considering the introduction of Genetically Modified Organisms in agricultural 

practices. 
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4. CONCLUSION  
 

The simple Bayesian real option model developed in this paper constitutes a first step in 

the attempt to unify the real option theory and the Bayesian approach of decision problems 

involving both irreversibility and uncertainty. A reexamination of some former work dealing with 

such decision problems outlines the need for an unified approach. For instance, in their application 

of option valuation to the case of offshore petroleum leases, Paddock Siegel and Smith [1988] 

pointed that “the primary uncertainty surrounding the exploration stage is the quantity of 

hydrocarbons”. However, they assumed that the exploration costs are sunk costs incurred at the 

date of exploration and thus ignored the importance of the time to learn. The article by Pindyck 

[2000] may also be viewed as an example of a real option model dealing with a problem involving 

Bayesian uncertainty but avoiding to do so. Indeed, the author is interested in uncertainty about 

future damages caused by anthropogenic Green House Gases accumulating in the atmosphere but 

prefer to consider that this uncertainty is due to changes in tastes or technology whereas Kolstad 

[1996a] or Kelly and Kolstad [1999], among others, stressed the role of scientific uncertainty 

about the effective value of parameters linking the concentration of Green House Gases and 

money valued damages. Applications of the simple model proposed here to environmental and 

resource economics are numerous and include all problems where economic deciders are uncertain 

about the existence and magnitude of externalities or about the quality and quantity of a natural 

resource. Moreover, the model seems to be adequate to analyze the role of learning costs, noisy 

messages and primary beliefs to justify (a version of) the precautionary principle and discuss the 

conditions that make it more relevant than the traditional “look before you leap” principle 

supported by the real option theory. 
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APPENDIX A: DETERMINATION OF THE BELLMAN EQUATION  

 

Consider a value of X 0  in the interior of Ω . Then, there always exists a time interval 

t∆  such that the probability X t∆  lies in the interior of Ω  also. Thus, we can write 
 

( ) ( ) ( )��
���

� +� −Ε= ∆
∆−

∆
− XFedteXCXF t

tr
t

tr
t

0
00  (A.1) 

 

Following Kamien and Schwartz [1991] or Dixit [1993], by the mean value theorem and the linear 

approximation of the exponential function in the neighborhood of zero, (A.1) also reads 
 

( ) ( ) ( )[ ] ( )trXFtXCXF t ∆+Ε+∆−= ∆ 1000  (A.2) 
 

The numerator in the last term of (A.2) is 
 

( )[ ] ( )[ ] ( ) ( )[ ]XFXXFXXF ttt ∆∆∆ Ε−+Ε=Ε inf
00

sup
000 1  (A.3) 

 

where Εsup
0  (respectively Εinf

0 ) denotes mathematical expectation conditional on the initial value 

X 0  of X  and on the fact that the true value of V  is Vsup  (respectively V inf ). After some 

rearrangements, (A.2) then becomes 
 

( ) ( )[ ]
t

XFXF
X

t

∆
−Ε= ∆ 0

sup
0

00  

 ( ) ( ) ( )[ ] ( ) ( )XFrXC
t

XFXF
X

t
00

0
inf
0

01 −−
∆

−Ε−+ ∆  (A.4) 

 

Ultimately, we are interested in the limit when t∆  goes to zero. Then, Ito’s lemma gives the two 

expected terms in (A.4), the Dynkins of ( )XF  for the two processes described in Proposition 4: 
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 (A.5.a) 
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0
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 (A.5.b) 

 

where F X  and F XX  respectively stand for the first and the second derivatives of F . Substitute 

in (A.4) and simplify to finally obtain the Bellman equation 
 

( ) ( ) ( ) Ω∈∀=−−− XXCXFrFXX XX 0000

22
0

2

01
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σ
 (A.6) 
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Table 1: comparative statics for the 

optimal threshold X*  in the context 

of passive learning 
  
  

rX ∂∂ * : - 

Xr
*lim 0→ : 1 

Xr
*lim ∞→ : X NPV  

  
  

σ∂∂ X* : + 

X*lim 0→σ : X NPV  

X*lim ∞→σ : 1 
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Figure 1: 

[ ] ( )XXdtdXV −= 1
222σ  as a function of X  

for 1=σ  
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Figure 2: 
The value of the project as a function of X  

In the case of passive learning 
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Figure 3: 
The value of the project as a function of X  

In the case of active learning 
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Figure 4.a: 
The upper and lower bound of the waiting region as functions of σ  

(dashed curve: optimal threshold value of X  in the case of passive learning) 
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Figure 4.b: 
The upper and lower bound of the waiting region as functions of r  

(dashed curve: optimal threshold value of X  in the case of passive learning) 
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