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Abstract :Uncertainty on effective stocks or damages istbee of most irreversible
economic decisions involving natural resources #relenvironment. Although there
is an extensive literature dealing with the themat aspects of this problem,
economists still lack an operational decision rulée matter is that the real option
theory, now widely used to deal with Markovian uneénty, i.e. independent
exogenous repeated chocks affecting the expectednrérom an irreversible project
as time goes, is not adequate to analyze problefmracterized by Bayesian
uncertainty, i.e. problems where uncertainty altbeteffective value of parameters is
resolved with time by a learning process. This paigeaimed at remedying at these
shortcomings. The real option theory is first adapto an explicit Bayesian learning
process in continuous time. In the context of a gienmodel of environmental
preservation, the following question is then addezs how to define and characterize
the optimal tradeoff between the “look before y@ap” principle on the one hand and
the precautionary principle on the other hand?
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1. INTRODUCTION

Does the state of scientific knowledge justify tiké immediate and costly measures to
protect the environment? Has exploration of a nelfietd provided a sufficient knowledge about
its quality and extent to invest in extraction? Bomists dealing with irreversible decisions in the
face of uncertainty are concerned with numerousstjaas of this kind.

Since the seminal articles by Arrow and Fisher [4PpAnd Henry [1974] and the

clarification made by Hanemann [1989], economistaayally invoke the “irreversibility effect” to



explain that the more uncertain we are about fureterns from an irreversible project, the more
the postponement of the project is relevant. TBigliso known as the intuitive “look before you
leap” principle: rather than taking a decision inaliegely, it is better to wait for more information
and then act according to the information receivétie “look before you leap” principle has
received much attention due to the ability to implent it to irreversible investment choices thanks
to the real option theory synthesized in the nowlvi@own articles and textbook of Pindyck
[1991], Dixit [1992], and Dixit and Pindyck [1994Although the real option theory is originally
build on a comparison with financial options (séa, instance, the pioneering works of McDonald
and Siegel [1986] or Brennan and Schwartz [1988$) relationship with the concept of options
and the irreversibility effect originally developeaind clarified by Arrow Fisher Henry and
Hanemann (AFHH) has been outlined, among otherd,und [1991] and Fisher [2000].

Our own lecture suggests that some important déffiees still remain between the two
approaches. As noted by Ulph and Ulph [1997], agsiions about stochastic variables made in
the real option theory are not appropriate for alevrange of environmental problems implying
both irreversibility and uncertainty. The reasom this is that the real option theory focuses on
problems where independent exogenous and repehtasks affect the evolution of a key variable
in the decision of whether to develop or postponéreeversible project. This approach, thereafter
called Markovian approach, is relevant to deal witle uncertainty on future prices but it is not
suitable to deal with the uncertainty about an umkn parameter, the true value of which is
invariant with time. The latter kind of problemstails the use of Bayesian uncertainty. The matter
is that, in its primary version, the concept of ot introduced by Arrow and Fisher [1974] is
sufficiently large to be thought of as a problemtlweither Markovian uncertainty or Bayesian
uncertainty while the reference to a learning psxa@nd Bayesian uncertainty is made more
explicit in the subsequent literature. Fisher andnemann [1985] and Hanemann [1987], for
instance, explicitly refer to Bayesian uncertaintjien focusing on uncertainty about biological
and engineering parameters or uncertainty as tothdrethe offshore structures contain oil in
commercial quantities.

Furthermore, the “look before you leap” principldéten need to be balanced with the
precautionary principle which emerged in the midB0% as a clause in international treaties such
as the Conference of Rio on Environment and Dewvelept. For instance, Article 15 of the Rio
declaration states that “where there are threatsesious and irreversible damage, lack of full
scientific certainty shall not be used as a reafmpostponing cost effective measures to prevent
environmental degradation”. Similar definitions leavween enacted in other national or
international laws (see Gollier [2001]). The questiof whether the precautionary principle is

compatible with the irreversibility effect then aes. Ulph and Ulph [1997] refuted the initial idea



of Chilchilnisky and Heal [1993] that the precautary principle could be systematically

assimilated with the irreversibility effect. In thenore specific context of greenhouse gas
accumulation due to economic activity, Gollier Jesfi and Treich [2000] stressed the role of the
attitude toward risk to justify the precautionargnziple while Kolstad [1996a and b] outlined that

two contradictory irreversibility effects should lwensidered since “one may wish to under-emit
today to avoid potential environmental irreversiigls” on the one hand and “one may wish to
under-invest in pollution control capital, avoidimgvestments in sunk capital that turn out to be
wasted” on the other hand.

In this framework, the present paper is aimed awvjing the reader with a coherent and
explicit Bayesian approach of the real option theand to contribute to the debate on the “look
before you leap” principle versus the precautionaiiynciple. For this purpose, a suitable Bayesian
process is defined in section 2 in order to modelvhknowledge about unknown parameters
evolves in response to an arrival of new informatid his is first done in discrete time and then
extended to continuous time. Section 3 details Howuse such a Bayesian stochastic process
together with the concept and mathematical toolshef real option theory to define an optimal
decision rule for irreversible projects in the faocé uncertainty about an unknown but fixed
parameter. Two cases are examined: the first oagsdeith passive learning, where information is
costless; the second one with active learning, whibie receipt of new information requires a
costly action. More specifically, the case of aetilearning allows to determine whether the
precautionary principle or the “look before you garinciple should prevail in the context of the
simple Bayesian real option model proposed in tlapgr, without any reference to the attitude

toward risk but at the cost of a crucial dependeoeénitial beliefs.

2. MODELING THE EVOLUTION OF KNOWLEDGE

Intuition suggests that in a world where informatiocomes as time goes, it may be of
interest to delay some project in return for lesgertainty. The real option theory of investment
under uncertainty, we should rather say under nigklely confirms this intuition in the context of
a world submitted to repeated, independent and emogs chocks that follow some known
distribution of probability. Unfortunately, it seestsomewhat abusive to directly implement the
models developed by the real option theory in thatext of a lack of information about the true
value of some key parameters in the decision pnobl€he matter is thus to construct an adequate
mathematical representation of the learning proseisen facing uncertainty about an unknown
but invariant parameter. With this aim in view, Viiest discuss how important it is to distinguish
between the concepts of Markovian and Bayesiangsses, the latter being more relevant in some

fields of economics, environmental and resourcenegaics in particular. We then turn to the



construction of a stochastic process suitable béth depicting Bayesian learning and
implementing the real option theory. This is figstinade in a discrete time context and it is

secondly extended to the more convenient contindious context.

2.1. General considerations

Since the seminal article of Arrow and Fisher [1}7he prospect of an arrival of new
information is the core of the analysis of irreviste economic decisions. New information takes
either the form of the observation of exogenousd@n chocks (described as Markov processes)
affecting the evolution of some key variables oe florm of messages used to revise the beliefs of
the economic decider. The real option theory typicdocuses on the first representation of
information while the work of AFHH and, more espaity, the subsequent literature is merely
influenced by the second representation. This secmpresentation constitutes the basis for
modeling the evolution of knowledge about the efee value of an unknown parameter affecting
the decision of whether to develop an irreversipteject or not. It is generally assumed that there
is a finite set of possible values of the unknowargmeter and that there exists arpriori, or
subjective, discrete probability distribution origlset representing the beliefs on the true valfie o
the unknown parameter. Messages arriving with tigiee used to revise the probability
distribution. Some basic or intuitive propertiestbé revision process are expected.

First of all, uncertainty is reduced in the longre This means that the probability for
one of the possible values tends to increase wittetwhile the probability assigned to other
values tend to decrease. Some authors rule ouéveatuality of contradictory messages, which
allows to represent the evolution of knowledge asirformation structure which becomes finest
as time goe's As a result, the evolution of probabilities agségl to the different possible values of
the unknown parameter is monotonous. If the evditjuaf contradictory or noisy messages
arriving at different dates is not ruled out, theotution of probabilities is not monotonous: it may
be the case that a probability increases betweendates and then decreases between the last date
of these two dates and the following date. Kolsta896a] for instance takes account of such noisy
messages. Therefore, the evolution of probabilities/ be viewed as a stochastic process with an
attractor corresponding to a vector made of zenosept one of its components equal to unity.
Another important property of the evolution of ke is that the revision of probabilities may be
consistent with the probability theory, more esjpdlgi with Bayes’ theorem. This point has not
always received attention in the literature dealingth irreversible decision when facing

uncertainty. The reason for this is that, followidgrow and Fisher [1974], these works are often

! This is typically the case in Freixas and Laffdf®84] or Kolstad [1996b] who merely follow the pmary
model of Henry [1974].



interested in a two period problem with a perfectaisition of information at the second period.
A noticeable exception is the article by Kelly aKdlstadt [1999]. It seems that the description of
the evolution of knowledge in this article is toormplex to construct a decision rule similar to that
obtained with the real option theory in the caseMdrkov’ processes. Nonetheless, it has set the

intuition for our model.

2.2. The discrete time approach

We consider a decision problem where the unknowrameterV , the discounted sum of
expected net benefits generated by an irrevergibtgect for instance, may have two possible
values,VV**? and V"™ with \/'P>\/™ . The restriction to two possible scenarii, the iopstic
scenario corresponding %¢°"" and the pessimistic scenario associated with | is intended to
simplify the representation of how beliefs changghwiime. At time t indeed, the beliefs on the
true value ofV are described by the probabilitie, and1— X, assigned respectively tg P
andVV™ . The study of how beliefs evolve thus only reqsite describe the evolution of a single
variable, X, . Similarly, it is assumed that only two kinds ofessages, denoted bl ® and
MP®, are received between two consecutive dates. Tirlitional probabilities of these two

messages are given by the following matrix:

[Pr[lvla/vs”"] Pr{Ma/V‘”f]]{ P 1- pj "

PI{Mb/Vsup] PI{Mb/Vinf] - 1-p p

where PI‘[M i/Vj] denotes the probability of receiving a messdgé (i = aorb) when the true
value of V is \/! ( j = suporinf ). We assume that, whedl is equal to\/S**, the likelihood of a
messagelM 2 is higher than the likelihood of a messa(;»@b and conversely whel is equal to
v™  so that p >ZI/2. Therefore, the receipt of a messaf#® means that a good news is
received while messagdy| b assimilate to bad news. The symmetry in (1) implies,thdien the
actual scenario is the pessimistic one, the learning processagdast as when the actual scenario
is the optimistic one.

The learning process consists in revising the probabiity as a representation of beliefs
according to the arrival of new messages. This is donagiyg Bayes’ theorem, which yields the
probabilities Pl{vj/l\/li] that the true value oV is equal to\/! (] =suporint) when a

messageM ' (i = aorb) is received betweeh and the following date + At :



px.  (L-p)x
(Pf[vs”p/ M| Pilv=/m b]] A °

inf a inf b = o
PI{V /M ] PI‘{V /M ] (1_ p)(]_— xt) p(l— Xt)
A B
with
A= px,s (- p)-x) e
B=(1-p)X.+ p(L-X) o

The first column of the matrix given in (2) is notlgrelse that the new probabilitieX ., and
1- X that characterize the beliefs &t+ At if a messageM ? is received betweed and
t + At. Conversely, the second column yields the new probabilidgs, and 1— X, that
characterize the beliefs it + At if a messageM b js received betweert and t +At. One
easily checks that the differencg ., — X is positive and increasing witlp if a messageM 2
is received betweeh andt + At while it is negative and decreasing witp if a messageM  is
received betweet andt + At : the higher p, the more informative the messages are.

We are interested in obtaining a more convenient way to représeevolution of beliefs
than the description given by matrix (2). With this aimuview, we now turn to the examination of

how the ratio betweenX and1l— X changes. A careful examination of (2) shows that

p Xt

_r if M?® isreceived
Xiat  _ 1-pl-X, 3)
1- X ]'__pA if MP isreceived

p 1-X;

Then, it is worthwhile examining the evolution of the natl logarithmY, of the ratio between

the probabilities assigned to the two possible value¥ of

AY:In[ K j—ln[ X J (4)
1= X 1-X;

We already known that, if the true value ™ is \/S*?, then M2 and MP® are respectively

received with probabilitiesp and1— p. Conversely, if the true value of is Vinf ,then M 2
and M°® are respectively received with probabilitids— p and p. As a result, we obtain

Proposition 1.



ProOPOSITION]: the variation, on a time interval of lengtf\t separating two
consecutive dates, of the natural logarithyfy of the ratio between the probabilities

X: and1— X, is the random variable

In[lij with probability p
AY = P whenV =\/5P
- |n(ij with probability 1— p
1-p
or
In[lij with probability 1— p
AY = P whenV =y
- In(i] with probability p
1-p

According to Proposition 1Y, is a stochastic process which satisfies all of Markov'sperties.
A careful examination of the distribution for future vals of Y, yields the results expressed in

Proposition 2:

PROPOSITION2: since the successive stefsY are independent, the cumulated
changeYr —Y, between datet =0 and t =T separated byN =T /At time

intervals of identical lengthAt is a binomial variable with mean

T In(L](Zp ~1) whenV =y

At \1-
E[YT _YO] = T :)J

——In| —/—|(2p-1) whenV =y™

o (1_pj( p-1) whenV =v

and variance

T 2
Var[YT —Yo] = A—t(ln %J 4p(1— p) whatevethevalueof V

-p

The discrete time stochastic process described in the two peepiaposition has some intuitive
and important features. For instance, from> ]/ 2 it clearly appears that the stochastic process

Y, has a positive drift if the true value &f is \/°** and a negative drift if the true value M is



v™ . However, rather than to go further on the study of thiecrete time approach, we now
examine the continuous time approach as a limit case, foritegimal time intervalsAAt, of the

discrete time approach.

2.3. The continuous time approach

Continuous time stochastic processes can be derived as thieumurd limit of discrete-
time processes. Dixit [1993], for instance, proposes anaggtion of how to derive the Wiener
process as the continuous limit of a random walk. Althoggite similar, our problem is more
complicated. Indeed, the discrete time processes defined in $ttiops 1 and 2 differ from a
standard random walk because of the magnitude and the prdpalfilupward and downward
moves that are linked to each other via the probabifity The key point is thus to expre§d as a
function of the time intervalAt so that lettingAt approach zero yields a known continuous time
process, namely a Ito process. In order to obtain such altrese consider the following

expression ofp :

e

e ©

By construction, expression (5) lies in the inter\[él , 1] , which is consistent with the fact thgd
is a probability. Behind expression (5), there is the iitui that if we let the lengthAt of the
time interval separating two consecutive dates decreases, moragesssill be received but these
messages should be less informative in order not to afifrecspeed at which knowledge evolves.
With this intuition in mind note thateteris paribus p as expressed in (5) tends 1;62 as \/A_t
goes to zero so that the probabilities of bad news and gewds become closer. Moreover, since
this expression of P is increasing with respect t@r, this parameter may be thought of as
indicating the degree of “informativeness” of messages.

We now assume that the lengfht of time intervals approaches zero, or equivalently that
the numberN =T /At of time intervals of identical lengti\t separatingt = 0 and any finite
datet =T goes to infinity. The binomial distribution o'+ —Y, described in Proposition 2 then

converges to a normal distribution with mean

2
T whenV =\/%P
lim Ely:=vo|=1 2, ®)
a-0 —T% when V =y™

and variance



lim Var[YT - YO] =T g? whatever hevalueof V (7

At-0
Moreover, according to Proposition 1, the variatiate AY/At of Y; on each time interval of
length At goes tox oo as At approaches zero, so thyt is not differentiable anch/dt does
not exist. Thus, as Proposition 3 states, the eaus limit of Y, satisfies all the properties

characterizing a Brownian motién

PrROPOSITION 3: the continuous limit of the discrete time process defined i
proposition 1 is an Ito process, more precisely a Brownmotion, the evolution of

which is described by the following differential equation:

2
9_dt+0 dw whenV =\

dy={ 2,
—% dt+o0 dw whenV =y™

where de is the increment of a Wiener procesE[dY]/dt =g?/2 is the

instantaneous drift rate any [dY]/ dt = g is the instantaneous variance rate.
By Ito’s lemma, we directly derive Proposition ofn Proposition 3:

PrROPOSITIONA: the probability assigned to the optimistic scemariX; , follows a

Ito process, the evolution of which is defined by tifferential equation

o> X (1- X) dt+ 0 X(L- X) dw whenV =y

dX = |
-o?x2(1- X)dt+0 X(1- X) dw whenV =y

In spite of its apparent complexity, the Ito prose¥; defined in Proposition 4 has some
interesting features. Among those, the most imptrtane is undoubtedly that the process admits
two absorbing point atX =0 and X =1. Thus, starting with any initial valuex o in [O ,1],

X will never go outside this interval, which is castent with the fact that the procesX
describes the evolution of a probability. As shownFigure 1, the instantaneous variance rate
V[dX]/dt =g° )(2(1— X)2 admits a maximum atX =1/2, is null for the two absorbing

2 For an introduction to stochastic processes aodhststic calculus see, among others, Harrison [[L&85
Karatzas ans Shreve [1996].



points X =0 and X =1 and has symmetric values foX and1— X . Furthermore, when the
true value ofV is V3", the instantaneous drift raE[dX]/dt =g*X (1— X)zdt is positive
for any X D]O,]{ while it takes the negative vaIuE[dX]/dt =-g° )(2(1— X)dt for any
X D]O,]{ when the true value o¥/ is V™ . We conclude thatX =1 is an attractor when
V =V in the sense thaiX, tends to approach this value with a decreasingavae as time
goes. ConverselyX =0 is an attractor wher\/ =y Consequently, the continuous version
of the processX; seems to be adequate to describe how the arrivedformation improves the

knowledge on the true value of thé .

Insert Figure 1

The use of the proces¥X; in the theory of decision, more especially in opél stopping
time problems, is simplified by a particular feaguf this stochastic process. To see this, imagine
the following optimal problem. Consider an irrevidle project that generates a paydB(X) if
realized while a flow costC(X) is incurred as long as the project is not realiz€tle discount
rate isr . The problem is to determine the optimal tradetm#fween delaying the realization of the
project to benefit from an expected better knowledly spite of the flow cosC(X) or realizing

immediately the project. In formal terms, we hawesblve the program
T
F(xo) = M| [ - Clx Je e G{x. ) )
r 0

where E, stands for mathematical expectation conditionaltio@ initial value X, of X; at

t = 0. The first stopping time is

r=Inf{t=0; x,0Q} (8.b)
where
o ={x0[o0,1; F(X)>c(x}} (8.c)

is the continuation or waiting region. Program {8)typically solved by dynamic programmihg
The matter is that, as stressed by Propositiom £rogram (8) we have to take account of the fact

that the evolution of X, is described by two different stochastic processasording to the true

3 Actually, program (8) belongs to the class of opai stopping time problems. Shiryayev [1978] congés

a good and complete presentation of this specifiss of dynamic programming problems. Krylov [1980]
also contains a shorter introduction. A survey pphlcations in resources economics is made by @akd
Reed [1990].
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value of V . It is shown in appendix A that, in the interiof €2, the value functionF(X)

satisfies the following Bellman equation:
o’ 2
7><2(1—x) Fw—F F(X)-C(X)=0 OXOQ 9)

The main point to be outlined is that (9) may beedily obtained by assuming tha{; follows an
unique stochastic process whatever the true vafué ¢ the evolution of which is described by a
differential equation obtained by deleting the detmistic components ofdX in Proposition 4.

We thus conclude this section with Proposition 5:

ProPOSITIONS: we can work “as if” the evolution of the probabiji X assigned to

the value\/*"® of V was described by the differential equation
dX =0 X(1- X) dw

whatever the true value &f is.

Proposition 5 means that the modeling of the evolubf knowledge when uncertainty concerns a
parameter with two possible values can be summedsauthe use of the simple purely stochastic
process (there is no deterministic component) deedrin the proposition. This process admit
X =0 and X =1 as absorbing points so that, starting Witlila , 1] , the process will never quit

this interval. The instantaneous variance ratelentical to that shown in Figure 1. Proposition 5

proves to be useful when studying irreversible dexis under uncertainty with learning.

3. ACTING, LEARNING OR ABANDONING ?

With the mathematical preliminaries behind us, wanmow turn to the analysis of
irreversible decisions with the prospect of leagnimore about some uncertain parameters. In a
first stage, we examine how to adapt the canomeatiel of real option as presented in Dixit and
Pindyck [1994], and derived itself from the modelginally developed by McDonald and Siegel
[1986]. For this purpose, it is assumed that leagnis passive in the sense that no specific and
costly decision has to be made in order to acqui@e information. In a second stage, the more
realistic case of active learning where it is cpdth acquire more information is considered. The
trade off between the “look before you leap” priple and the precautionary principle is more

specifically discussed in this last case.
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3.1. The case of passive learning

We first consider the problem of whether to postpdhe realization of an irreversible
project in return for a better knowledge about aidghe key parameters involved in the decision
problem or to immediately concretize the projecttla risk that it appearsx postthat the true
value of the initially unknown parameter does nagtjfy the realization of the project. Uncertainty
is supposed to affect the expected sum of net bsnefsulting from the realization of the project
which amounts to\/S**> O if the optimistic scenario is the correct one, W" <0 if the
pessimistic scenario is the correct one. Althougis inot restricted to the field of environmental
and resource economics, this kind of problem isteusimilar to the standard problem of
environmental preservation examined by Arrow anshEr [1974]: the project considered may be
the construction of a dam in an area, say a niddeyan mountains, with entertainment as an
alternative and incompatible use. Irreversibilisythen due to the fact that, once the dam is bitilt,
is impossible to restore the original wilderness tbe area and the resulting amenities for
entertainment are definitely lost. Uncertainty tglly concerns the true money value of these
amenities rather than the gain from the productibelectricity. V is thus the difference between
the gain from the production of electricity and tloss of amenities from wilderness.

The modeling of how beliefs on which one of the gi@sistic or the optimistic scenarii is
the correct one change as time goes, follows theeslines as in the previous section. To make
things simple, economic agents are assumed togkeneéutral. Accordingly, the net payoff from

realizing at timet the project is valued at its expected value:

G(Xt) - xtvsup+(1_ Xt)vinf
= X, (Vsup_vinf)+vinf (10)

where X still denotes the probability assigned to the opstic scenario at timé . The optimal
trade off between postponing or immediately realizihe project corresponds to the solution of

the following optimal stopping problem:

F(Xo)= MaxEo[e_r TG(XT)] (11)

where I is the instantaneous discount rate afE, stands for mathematical expectation
conditional on the initial valueX , of the probability assigned to the optimistic se€in at time

t = 0. The maximization in (11) is subject to the equat given in Proposition 4, or equivalently
in Proposition 5, for the evolution ofX;. The optimal stopping timel and the associated

waiting regionQ are identical to those defined in (8.b) and (8.c).
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Program (11) is quite similar to one of the firstchsimplest real option problems, that of
McDonald and Siegel [1986]. It clearly appears 19) that the negative net payd(l"‘f received
if the project is realized when the pessimisticrsago is correct acts as the sunk investment cbst o
most real option models of irreversible investmehhe presence of the positive coefficient
V3P =y implies that the expected net paycG(X) is linearly increasing with respect to the
probability X assigned to the optimistic scenario, which reptatiee project gross value of
irreversible investment problems as the state WeiaThe only difference in program (11)
compared with the model of McDonald and Siegel [&P&nd most of the models developed in the
subsequent literature, like those detailed in Daad Pindyck [1994], is that the state varialig
does not follow a geometric Brownian motion but thew, and unused until the present work to
our knowledge, diffusion process described in Psifians 4 and 5.

At any time t, postponement of the project is optimal for, zdg all value of X; such
that the net payoff given in (10) is negative. Cegaently, Q necessarily includes the waiting
region associated with the net present value deifeQyay :{X D[O ,1] ; G(X) <O that is
[0, —Vi”f/(\/sup—vinf )] Hence, we can guess thd® takes the form|O, x*l

x* > —Vi”f/(\/S”p—Vi”f) is the optimal but unknown upper boundary & . The value

where

function F (X) and X* solve the following standard system of equations:

%2x2(1—x)2pxx—r F(X)=0 OX D[o,x*[ (12.2)
F(0)=0 (12.b)
F(X*): X*(Vsup_vinf)_vinf (12.c)
Fx (x*) = /P -y (12.d)

Equation (12.a) is identical to the Bellman equat{®) except that there is no flow cost incurred
when the project is postponed. Equation (12.b) édastraint associated with the lower boundary
of Q, it results from the fact thatX =0 is an absorbing point of the stochastic procegs:
once the probability assigned to the optimisticreamo reaches the null value, there is no more
uncertainty so that we are sure a definitive abamdent of the project is optimal. In the
terminology introduced by Dumas [1991], equatiof.€) is the standard value matching condition
of optimal stopping problem while equation (12.d¢) the smooth pasting condition. Equation
(12.a) differs from standard Bellman equations elsterizing most of real option problems.

Fortunately, there exists an analytical solutiorthis Bellman equation, the expression of which is

()= AKE( S s A ka2 ) -

13



where A and A, are two constants to be determined according ® bundary conditions
associated with the Bellman equation. We see bysstuttion that (13) satisfies (12.a) provided

that 8, and 3, are given by

8r+g? \8r +g?
=V¥2 79 59 andﬂzz——a<0

= 14
! 20 20 a4

Since 3, <0, the boundary condition (12.b) requires thAp = 0. Then, we obtainA; and
X* as solutions of the system formed by the valueahiztg condition (12.c) and the smooth
pasting condition (12.d). After some algebraic npatations, we obtain the value @K* given in

Proposition 6:

PROPOSITIONG: It is optimal to postpone the project and learn m@bout the true
value of V as long as the probability assigned to the optiigiscenario is lower

than the optimal threshold value

X*: Vinf (1+ zﬂl)
(\/sup_vinf )(1_ 2ﬂ1)+ 2Vinf

with  0< Xppy < X <1 if V>0 and V™ <0 and where
X npy = —Vi”f/(\/S“p—Vi”f) is the critical probability associated with the he

present value criteria. The expected value of trmgxrt then amounts to

AVXE=X)2 ] i xsx
F(X)= =X

X (\/S”p -y ) +y/f otherwise

where
A= Vsup_Vinf 2 /X*'::-l_x*j

2B +1-2xT (Y
1-x~
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Figure 2 illustrates Proposition 6 foys** =20, V"™ =-25, ¢ =05 and r = 003, it
outlines the classical analogy with an Americarafigial call option on an asset which is worth
X (VS’“p—Vinf ) with an infinite expiration date and an exerciséce equal to—\/™ . The value
function is drawn as a continuous line while thermténal payoff X (\/S’“p—vi”f)+vinf
corresponds to the dashed line. For these valuebmparametersx* amounts t00.882353
and X ypv is equal to0.555556.

Insert Figure 2

Some results of comparative statics are given ibl&dl, they follow on from the fact thaﬁl
increases withr , decreases wittg and from the limitslim, .o 3, =1/2, lim; .. B, =,
|imgﬂ0,81 =00 and |imy_ ﬂl = ]/2. A high instantaneous discount rafteor a low speed of
learning 0 lessen the interest of learning more since theduoe the gap between the optimal
threshold X* obtained with the real option criteria and the ioml threshold
Xnpy = —Vi”f/(\/S“p—Vi”f) characterizing the net present value criteria. @ogely, a low
instantaneous discount rate or a high speed ohlegrstrengthen the interest of acquiring more
information and, at the extreme, justify to postpdhe project until there is no more doubt that the

sup

true value ofV is VP, i.e. until X attains and remains at its higher valllewhich is an

absorbing point.
Insert Table 1

One of the more striking features of the optimatideon rule detailed in Proposition 6 is
that abandonment of the project never succeedspposment. To say it in an other way,
postponement is only aimed at making it sufficigrglre that the optimistic scenario is the correct
one to justify the realization of the project. & hot aimed at making it sufficiently sure that the
pessimistic scenario is the correct one to deflpibandon it. The reason for this result is that
learning induces no particular costs, which mearat ho specific effort is required to acquire
more information. This is designated as passivenieg. The case of active learning where

information is costly is now examined.

3.2. The case of active learning

So far, postponement of the project was optimall@asg as the probability of the
optimistic scenario remained below an optimal thiidd value. We can guess that the existence of

learning costs resulting from an active learningpgess may invalidate such a decision rule.
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Indeed, intuition suggests that the realizationtlod project should generate a sufficiently high
expected net payoff in return for the cost of aetiearning to justify postponement rather than a
definitive abandonment of the project with no leiagn To make this idea more concrete, we now
introduce a constant learning flow co6tincurred as long as the economic decider is endage
the learning process. The flow co&t results from the need to do scientific observatimd
experiences to evaluate the consequences of thaudtisn of the natural area. It may also results
from the need to explore the area in order to leaore about its geological characteristics and the
corresponding costs and benefits of building angleiting the dam if we consider the standard
model of environmental preservation introduced hbyot and Fisher [1974]. The problem is thus
now to decide whether to postponed the project d&atn more, or to realize the project
immediately, or to definitely abandon it. Postporatnkeeps the options to realize or abandon the
project alive while its realization is definitiveug to its irreversibility and its abandonment is
definitive also due to the absence of any new asitjoh of information. The optimal stopping

problem to be solved may thus be written as

F(Xo) = MaxEo{—}Ce_” +g” TG(xr)} (15.2)
T 0
with
sup __y yinf inf
G(X):Max{x(v \S)Jrv (15.b)

and subject to the equations given in Propositigno# equivalently in Proposition 5, for the
evolution of X; . The first term in the terminal payoff function§lb) corresponds to the terminal
payoff in case of an immediate realization of thejgct while the second term corresponds to
abandonment of the project. The optimal stoppimgetiand the continuation or waiting region are
identical to those defined in (8.b) and (8.c).

We already know that, like in the case of passiwarhing, the optimal waiting regiof
necessarily includes all the values of such that abandonment of the project is preferi@d
immediate realization according to the net pres@tie criteria. Moreover, since it is an absorbing
point, if X =0 there is no more expected change in the probghélisigned to the optimistic
scenario and abandonment is preferred to postponemerder to avoid learning costs. We can
guess that for values sufficiently close % = 0, abandonment is preferred to postponement also.
Therefore we conclude that postponement is morerasting for intermediate values oX than
for values approaching either zero or unity, thadadonment is optimal for low values o and

. . . . . . * % *
that immediate realization is preferred for highlues of X . We thus haveQ = [X , X J

16



where X* * > 0 is the lower bound of the waiting region behind ialhabandonment is optimal
and X pnpy < X* <1 is the upper bound of the boundary region abovdctwhan immediate
realization of the project is optimal. Then, goiafpng the same lines as in the case of passive
learning, we find that the value functiok (X) and the two optimal thresholds for the probability

assigned to the optimistic scenario solve the Balirequation
0'2 2 * % *
7><2(1—x) Fu—F F(X)-c=0 0OX D[x . X ] (16.a)

subject to the boundary conditions

F(X**)= 0 (16.b)
. (X**)= 0 (16.c)
Flx*)= x* -y ) -y (16.d)
Eex*)zvee-ym (16.)

Conditions (16.b) and (16.c) are respectively tladue matching and smooth pasting conditions
associated with the lower boun}i* * of the waiting region; they replace the conditi¢i®.b) in
the program (12) characterizing the case of pastaening. Conditions (16.d) and (16.e) are
identical to the value matching and smooth pastingditions (12.c) and (12.d) associated to the
upper boundx* of the waiting region. The general expression E(X) is still given by (13),
augmented by the term:/ I to take account of the existence of learning coStsbstituting this
expression in conditions (16.b), (16.c), (16.d) dié.e) yields a system of four equations to be
solved in X**, x*, A and A, . Unfortunately, we are unable to find an analytisalution
and numerical computations are required to soleeptoblem. Figure 3 illustrates the solution for
VvSP=20,v"™ =-25 0=05,r =003 ,andc=01.

Insert Figure 3

The lower boundx* * of the optimal waiting region amounts t8.0796468and the optimal
value 0.856003 of the upper boundx* of the waiting is slightly lower than the optimal
threshold value ofX above which an immediate realization of the projiscoptimal in the case
of passive learning. In order to get more insightto the comparative statics of the model, we
proceed with a sensitivity analysis illustrated Bigures 4.a and 4.b. It clearly appears that the
upper bound X* reacts to changes in the value of the degree afofimativeness”0 of
messages and in the value of the discount faten the same direction as the optimal threshold

value of the probability in the case of passiverteag does. Conversely, the way the lower bound
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X** reacts to changes in the values of the same pammés just opposite. Therefore, the
optimal waiting region tends to be wider as thecdisnt ratel decreases or ag increases and,
thus, as messages are more informative. Since thiéng region is the set of values of the
probability assigned to the optimistic scenario Isubat postponement is preferred to both an
immediate realization of the project or a defingimbandonment, it typically indicates the state of
knowledge for which the “look before you leap” pciple prevails. Above the upper bound of the
waiting region, there are sufficiently strong béi¢hat the optimistic scenario is the correct aoe
justify an immediate realization of the project. iG@rsely, below the lower bound of the waiting
region, there are sufficiently weak beliefs that thessimistic scenario is the true one not only to
abandon the project, but the learning process @tberwise stated, below the lower bound of the

waiting region, the precautionary principle presail

Insert Figures 4.a and 4.b

Note that, for values oty around 0.2, the lower boundx* * of the waiting region approaches
relatively high values (about035) and is highly sensitive to changes in the degwe
“informativeness” of messages. This result confiring intuition that the conjunction of a costly
learning process and noisy messages weakens thregttof postponing the project to learn more
about the unknown parameter. It justifies the apgdiion of the precautionary principal in the sense
that the prospect of acquiring more information gldonot serve as an argument to postpone the
irreversible project rather than to abandon it gmdserve the environment, if learning costs are
sufficiently high and if we are sufficiently surédt the real scenario is not the optimistic one but
the pessimistic one (that is, if the probabilidX assigned to the optimistic scenario to represent
the beliefs on the true value &f is lower than X* * ). In the context of the simple Bayesian real
option model developed in this paper, it thus appdhat the precautionary principle may follow
on from the existence of learning costs and crigiglepends on initial beliefs. The strong
dependence on initial beliefs may highlight whyfdient countries adopt different decisions while
facing an apparently identical irreversible projgeor instance, former negative experiences such
as the so-called “mad cow” disease may explain thatauthorities in charge of the health and
sanitary policy in the European Community are marenservative than their American
homologues when considering the introduction of &arally Modified Organisms in agricultural

practices.
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4. CONCLUSION

The simple Bayesian real option model developethia paper constitutes a first step in
the attempt to unify the real option theory and tBayesian approach of decision problems
involving both irreversibility and uncertainty. Aeexamination of some former work dealing with
such decision problems outlines the need for afieshapproach. For instance, in their application
of option valuation to the case of offshore petrote leases, Paddock Siegel and Smith [1988]
pointed that “the primary uncertainty surroundiniget exploration stage is the quantity of
hydrocarbons”. However, they assumed that the emfilon costs are sunk costs incurred at the
date of exploration and thus ignored the important¢he time to learn. The article by Pindyck
[2000] may also be viewed as an example of a rgdilom model dealing with a problem involving
Bayesian uncertainty but avoiding to do so. Indetbe, author is interested in uncertainty about
future damages caused by anthropogenic Green HGases accumulating in the atmosphere but
prefer to consider that this uncertainty is duect@nges in tastes or technology whereas Kolstad
[1996a] or Kelly and Kolstad [1999], among othertressed the role of scientific uncertainty
about the effective value of parameters linking tt@ncentration of Green House Gases and
money valued damages. Applications of the simpledetl@roposed here to environmental and
resource economics are numerous and include alilpnas where economic deciders are uncertain
about the existence and magnitude of externalideabout the quality and quantity of a natural
resource. Moreover, the model seems to be adedoaiealyze the role of learning costs, noisy
messages and primary beliefs to justify (a versiénthe precautionary principle and discuss the
conditions that make it more relevant than the itiadal “look before you leap” principle

supported by the real option theory.
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APPENDIX A: D ETERMINATION OF THE BELLMAN EQUATION

Consider a value ofX o in the interior of Q . Then, there always exists a time interval

At such that the probability »; lies in the interior ofQ also. Thus, we can write
At A
F(x) =5 J-Clx e di e F(x,) (A
0
Following Kamien and Schwartz [1991] or Dixit [L9P®y the mean value theorem and the linear
approximation of the exponential function in thagtgorhood of zero, (A.1) also reads
F(Xo) = ~C(X o)At + Eo[F (X a )/ + 1 At) (A2)
The numerator in the last term of (A.2) is
Eol F (X a)] = XoESP[F (X a)] + (L= X o) EX [F(Xa0)] (A3)

where E5° (respectiverEi(;‘f ) denotes mathematical expectation conditionaltmninitial value

X, of X and on the fact that the true value b is \/S*? (respectively\/™ ). After some

rearrangements, (A.2) then becomes

. E?)up[F (Xa) = F(x 0)]
At

+(1- Xo) =3 [F(XXB—F(XO)] - C(Xo)-T F(Xo) (A.4)

0=x

Ultimately, we are interested in the limit whef\t goes to zero. Then, Ito’s lemma gives the two

expected terms in (A.4), the Dynkins (H(X) for the two processes described in Proposition 4:

sup _ 2

fim & [F(xzz F(Xo)]:%x(z)(l_ ) Ea b ot xo(1- X Fx  (A52)
inf _ 2

lAitmo = [F(Xzz F(XO)] :%X%(l_ XO)zFxx_JZX(Z)(l_ Xo) Fx (A.5.b)

where F yx and F xx respectively stand for the first and the secondwdgives of F . Substitute

in (A.4) and simplify to finally obtain the Bellmaaquation

2
%X(z)(l_ )(o)2|:xx_r F(XO)_C(XO):O UXoUQ (A.6)
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Table 1: comparative statics for the
*
optimal threshold X in the context

of passive learning

BX*/ar : B
lime_oX " 1
ime X Xuew
ax*foo +
lims .o X Xnev
iMoo X" 1
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Figure 1:
V[dX]/dt =g° )(2(1— X)2 as a function ofX
forog =1

0.2 0.4 0.6 0.8

24



Figure 2:

The value of the project as a function of

In the case of passive learning
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Figure 3:
The value of the project as a function of
In the case of active learning
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Figure 4.a:
The upper and lower bound of the waiting regionfasctions of o

(dashed curve: optimal threshold value #f in the case of passive learning)
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Figure 4.b:

The upper and lower bound of the waiting regionfasctions ofr
(dashed curve: optimal threshold value #f in the case of passive learning)
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