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The Strategic Value of Flexible Quality Choice:
a Real Options Analysis

(Preliminary)

Abstract

In this paper the advantages of °exibility of quality choice are studied in a real
option framework. Before ¯rms can decide about quality they ¯rst have to incur a
sunk cost investment in order to enter the market. Flexibility of quality induces (ce-
teris paribus) earlier investment, and the value of being able to adjust quality over
time increases with demand uncertainty. It is also found that competition raises the
excess value due to °exibility and this excess value, in turn, increases with uncertainty.
Furthermore, we extend the general theory of strategic real options. From this theory
it is known that the follower's investment timing is irrelevant for the decision of the
leader. However, due to the addition of a second control in the form of quality choice,
the investment timing of the ¯rst investor is in°uenced by the decision of the other
¯rm. Moreover, introducing the second control variable in combination with strategic
interaction can result in the option value of the leader decreasing in uncertainty. Fi-
nally, we show that the follower can be driven out of the market due to "aggressive"
quality choice of the leader in high states of demand.

Keywords: real options, dynamic programming, market entry, second-mover ad-
vantage.

JEL classi¯cation: C61, D81, G31
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1 Introduction
In a period of rapid technological change and high market uncertainty, many

results from option pricing theory become a useful tool in evaluating corporate
investment opportunities. The option approach allows for determining the value
of managerial °exibility concerning, for example, timing of investment and scale
of operations. The implementation of option-based techniques requires taking
into consideration the di®erences between real and ¯nancial options. The former
type can be attributed two distinguishable features. First, in most cases real
options are not exclusive, i.e. exercising a given option by one party results in
the termination of corresponding options held by other parties.1 For example, an
option to open an outlet in an attractive location is alive only until a competitive
¯rm opens its own store there. Second, the ¯rm can in°uence both the value of
the underlying asset as well as the exercise price of the corresponding option. In
many situations there exists a positive relationship between the amount of the
sunk cost and the pro¯tability of the project (i.e. via the level of automatization
of the production process or via the product quality). Consequently, the ¯rm is
often faced with a menu of mutually exclusive real options with di®erent exercise
prices and payo® structures.

In the analysis we incorporate both these aspects of real options and ap-
ply them to investigate the investment decision in an uncertain product market
with positive network externalities and competitive entry threat. We develop
a strategic model in which a ¯rm chooses the timing of irreversible investment
and the quality of the product. Competitive entry is modeled as a timing game
with a second ¯rm. We compare the cases of a ¯xed and °exible quality choice,
which can be interpreted as corresponding to a licensed and, respectively, in-
ternally developed technology. This paper thus studies the additional value of
°exibility in quality choice. This °exibility, resulting in being able to adjust
quality over time, requires su±cient know-how within the ¯rm and the use of
a more advanced technology. In practice, the case of °exible quality will be
associated with higher (sunk) costs. According to the results of this paper these
higher costs are especially justī ed in competitive environments with large de-
mand uncertainty. Furthermore, we derive the optimal investment thresholds,
optimal quality choices and projects' valuations in terms of market parameters
and ¯rms' costs characteristics.

Consequently, we aim at unifying two streams of literature: strategic
real options and industrial organization-based endogenous quality choice. As
far as the real option framework is concerned, our model builds up upon such
contributions as Smets [24], Grenadier [11], Lambrecht and Perraudin [14], Per-
otti and Rossetto [22], Mason and Weeds [17], Huisman [13], and Nielsen [21],
which all have in common that they analyze the e®ects of both competition and
uncertainty on investment timing. Reinganum [23], and Fudenberg and Tirole
[10] provide the game-theoretical foundations within a deterministic framework.

Introducing quality choice as a strategic variable results in the extension
1Cf. Zingales [29].
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of the existing strategic real option framework to a class of models in which
¯rms are equipped with two control variables. Besides choosing the timing of
investment, the ¯rms now have to decide also about the optimal quality of the
product they are going to o®er in the product market. The result of this is that
some of the classic real-option results cease to hold. For example, the optimal
investment timing of the second ¯rm is no longer irrelevant for the investment
decision of the leader (cf., e.g., Huisman [13]). This is due to the fact that
the entry decision of the follower interacts with the second control variable of
the leader (quality), which, in turn, in°uences the leader's optimal investment
timing. With °exible quality the follower's investment decision becomes again
irrelevant since the leader can change quality instantaneously. As a consequence,
it can act as a monopolist until the follower's entry.

In the paper we show that due to strategic interaction with the follower,
the value of investment option of the leader can decrease in uncertainty in a sit-
uation where ¯xed-quality technology is used. Moreover, the value of the leader
is lower than the one of the follower. This latter result is due to strategic disad-
vantage of the ¯rst mover in a Stackelberg game in which the ¯rms compete in
strategic complements. The situation reverses under the °exible quality tech-
nology of the leader. Now, the value of the follower can decrease in uncertainty
since its project's value becomes concave in the realizations of random demand.

Furthermore, we show that under the °exible-quality technology, the
leader can drive its competitor out of the market in high states of the demand.
This is caused by the fact that the leader has an incentive to invest in quality
when demand is high. This reduces the demand for the product o®ered by the
follower to zero for states of demand exceeding a certain trigger.

We also discuss the impact of network externalities on the optimal in-
vestment timing, quality choice and ¯rms' valuations. Since, from the point of
view of a consumer, an increase of the degree of network externalities can com-
pensate the decrease in quality, the optimal quality choice of ¯rms is inversely
related to network externalities. Moreover, ¯rms wait with investing shorter
and their valuations are higher when the product market exhibits strong net-
work externalities.

As far as the literature on strategic quality choice is concerned, our
model is related to the contributions, to mention only few, by Motta [18], Aoki
and Prusa [1], Foros and Hansen [9], Dubey and Wu [6], Hoppe and Lehmann-
Grube [12] and Banker et al. [2].

Motta [18] considers a two-stage duopoly model with either ¯xed or
variable costs of quality improvements. Fixed costs can be associated with
R&D or advertising activities. Variable costs, that correspond to our framework,
re°ect more skilled labor and more expensive raw materials and inputs. The
result of the paper is that ¯rms di®erentiate qualities which is possible due to
setting di®erent prices. In our model, goods are di®erentiated horizontally so
the ¯rms set di®erent qualities even if the cost of the good to consumer is equal
and beyond their control. In a similar framework Aoki and Prusa [1] analyze
optimal sequential and simultaneous quality choice. Again, due to the fact that
the authors assume only vertical product di®erentiation and price competition,
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there exists a ¯rst-mover advantage in the quality choice game. In our case,
products are di®erentiated also horizontally and ¯rms do not in°uence prices.
As a consequence, qualities become strategic complements, reaction curves are
continuous, and the pro¯t of the second-mover is higher.

Foros and Hansen [9] apply a two-stage model extended to allow for
horizontal di®erentiation and network externalities to the market of Internet
Service Providers. They ¯nd that the optimal choice of quality is positively re-
lated to network externalities. Their result di®ers from ours due to the fact that
the substitution e®ect between quality and network externalities is dominated
in Foros and Hansen [9] by the impact of lower competitive pressure resulting
from higher network externalities.

Dubey and Wu [6] investigate ¯rms' incentives to invest in product
innovation, which ultimately leads to a quality increase. They show that the
relationship between the number of ¯rms and the propensity to innovate is bell-
shaped. In other words, if the number of ¯rms is "too large" or "too small"
the innovation process does not occur. The results of Dubey and Wu [6] are
consistent with our model that predicts that the possibility of entry increases the
quality provided by the otherwise monopolistic ¯rm. Using a di®erent analytical
framework Banker et al. [2] conclude that in the absence in the synergies among
the ¯rms in the quality cost, an increasing number of ¯rms leads to decreasing
quality. This ¯nding coincides with the argument of Dubey and Wu [6] for a
"too large" number of ¯rms and is caused by the fact that improving quality is
assumed to be su±ciently costly.

An alternative dynamic model of strategic quality choice is developed
by Hoppe and Lehmann-Grube [12]. In their framework, the ¯rms chose the op-
timal timing of entry, given that the available quality is a deterministic function
of time. Prior to the investment, ¯rms are assumed to pay R&D costs which are
proportional to time until investing. The authors show that, depending on the
cost of R&D, there can be either rent equalization (cf. e.g. Fudenberg and Tirole
[10]) or a second-mover advantage in the quality choice game. The assumption
made by Hoppe and Lehmann-Grube [12] that the costs of higher quality are
incurred prior to investment di®ers from ours in which the costs of quality occur
after the investment is made (similar to the notion of variable quality costs in
Motta [18]). As a consequence, contrary to Hoppe and Lehmann-Grube [12], we
do not observe the ¯rst-mover advantage (corresponding to payo® equalization
without exogenous ¯rms' roles) in the ¯xed-quality case in our model.

The paper is organized as follows. In Section 2 we present the model
of a monopolistic ¯rm with a ¯xed-quality technology. Section 3 extends the
model to a duopolistic environment. The discussion of the monopolistic model
with a °exible quality choice is presented in Section 4 and the analysis of its
duopolistic extension is included in Section 5. In Section 6 we compare the
impact of °exible quality on the value of the ¯rm. Section 7 concludes.
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2 Non-Strategic Model with Fixed Quality
Consider a situation in which a ¯rm has an investment opportunity to

launch a product/service in an uncertain market. It chooses the optimal in-
vestment timing and quality of the product. In this section we assume that
once chosen quality cannot be changed. The idea of the ¯xed quality choice
is therefore similar to Ueng [28], who considers an in¯nitely repeated oligopoly
game in which the qualities are chosen before the ¯rst period. It is realistic to
assume that the revenue per customer is not constant but evolves stochastically
over time.2 The instantaneous revenue per customer at time t is equal to xt ;
where xt follows the geometric Brownian motion

dxt = ®xtdt + ¾xtdwt: (1)

Here ® denotes the deterministic drift rate and ¾ is the instantaneous volatility
of the process. In the analysis we assume that the initial realization of (1),
x0, is su±ciently low, so that in all possible cases the market is too small for
immediate investment to be optimal.

There is a continuum of heterogenous consumers with valuations !i
distributed uniformly over the interval [0; 1]. As mentioned in the introduction,
a consumer derives utility not only from the stand alone good but also from the
number of other consumers using it. A consumer's utility function satisfying
these characteristics is3

Ui = !iq + an ¡ k; (2)

where q 2 R+ is the quality of the good, k 2 R+ is the cost the consumer
has to bear to acquire the good, and a 2 R+ is a parameter that measures the
intensity of the network externalities. Consequently, !i can be interpreted as
the marginal rate of substitution between income and quality, so that a higher
!i re°ects a lower marginal utility of income and, as a consequence, a higher
income (see also Tirole [27], p. 98). Large a implies that the consumer's utility
grows fast with the number of other users. In the opposite case, when a tends
to zero, the number of users of the same good does not a®ect the utility of the
consumer.4 The size of the network, n 2 [0; 1], is interpreted as the fraction of
the total market for which a given product is o®ered. Without loss of generality,
we normalize the absolute size of the total market to 1.

Network externalities are present if the number of other consumers using
the same product in°uences the utility of a given consumer. Positive (negative)

2For instance, the revenue per customer of a mobile telephone network depends on the
intensity of voice tra±c, competitive pressure, and arrival of new services that can be o®ered
to the customer against an additional fee. It is natural to assume that the evolution of these
economic variables over time contains an unpredictable component.

3Heterogeneity of consumers with respect to the value associated with the stand-alone
good and their homogeneity with respect to the degree of network externalities is a common
assumption in the economics of network literature (cf. Mason [16] and references therein).

4Of course, there are examples of negative a as well. For instance, the utility from having
a Rolls-Royce is decreasing in the number of other owners of this brand in the neighborhood.

6



network externalities imply that the utility of the consumer increases (decreases)
with the number of other users. An example of such a good is an access to
the web via a given Internet Service Provider, a computer operating system, an
audio recorder using a particular standard (DCC, MD, CD-R), or a mobile phone
(GSM, CDMA). We analyze a good for which the consumer's utility depends on
the network size and the quality (MacOS vs. Windows). The purchase decision
is determined mainly by these two parameters, so that we do not incorporate a
pricing strategy.

Such a choice of modeling approach follows recent empirical evidence.
In the analysis of the on-line book retail market Latcovich and Smith [15] claim
that "consumers do not respond much to signi¯cant price di®erences between
sellers [...]. But they [...] care about vertical characteristics such as reliability,
security, and ease of use". This support the idea of a quality-oriented market
analyzed in our paper. Also Varian and Shapiro [26] point out that the price is
an insigni¯cant determinant of a purchase decision for many information goods,
such as software. Referring to the market for spreadsheets they claim that
"the purchase price of the software is minor in comparison with the cost of
deployment, training and support. Corporate purchasers, and even individual
customers, were much more worried about picking the winner of the spreadsheet
wars than they were about whether their spreadsheet costs $49.95 or $99.95".

On the basis of the consumers' utility function, we can determine the
size of the network as a function of the quality chosen by the ¯rm. De¯ne
the consumer of type ! to be indi®erent between acquiring the good or not.
Consequently, it holds that

!q + an ¡ k = 0: (3)

By setting a < k < q, which is to ensure an interior solution for the size of the
network (we waive these restrictions later), and observing that the size of the
network, n, equals 1 ¡ !, we obtain

n (q) =
q ¡ k
q ¡ a

: (4)

Now, we are ready to provide a valuation framework for the project of
a single ¯rm. In solving the valuation problem we do not apply the contingent
claim approach since it is, in general, not possible to replicate the underlying
asset, i.e. the stochastic factor in the ¯rms' pro¯ts. Therefore we use the
dynamic programming methodology. For simplicity we assume risk neutrality
of the ¯rm.5 As a consequence, the assets are priced such that the expected
rate of return equals the risk-free rate.6

We further assume a constant value per customer, constant economies
of scale on the supply side, and that the marginal cost of operation, c (q), sat-
is¯es c0 (q) > 0 and c00 (q) ¸ 0. The ¯rm chooses quality q so as to maximize

5As known from, e.g., Dixit and Pindyck [5], dynamic programming under risk neutrality
yields the same results as contingent claims analysis in the complete markets framework.

6The assumption of risk-neutrality may be waived by adjusting the underlying assets' drift
rate to as proposed by Cox and Ross [3] in order to account for the risk premium.
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the value of the investment opportunity. In order to determine the value of
the investment opportunity, we begin with calculating the value of the project
after the investment decision is made. The value of the project is found by
integrating over time the discounted di®erence between the instantaneous value
of the installed base of consumers, xn (q), and the operating costs c (q)n (q).7
Therefore, if we denote the project value at time t by V , it holds that

V = E
·Z 1

t
(xt ¡ c (q)) n (q) e¡r (s¡t)ds

¸
(5)

=
n (q)xt

r ¡ ®
¡ c (q) n (q)

r
´ R (q) xt ¡ C (q) (6)

where r is the risk-free rate.
The ¯rm has to incur a sunk investment cost, I 2 R++. Although I

does not depend on the choice of quality, the cost associated with pursuing the
project increases with quality due to a higher present value of operating costs.8

The decision of the ¯rm is to choose the optimal quality, q, and timing of entry,
x¤, in order to maximize the expected value of the investment opportunity.

To ¯nd the optimal investment threshold and product quality we pro-
ceed in two steps. First, we solve the optimal stopping problem using the
methodology of McDonald and Siegel [19] for an arbitrary level of q . As an
intermediate result we obtain the optimal investment threshold and the value of
the investment opportunity as a function of q . Second, we maximize the value
of the investment opportunity with respect to q.

The threshold x¤ (q), being the lowest value of xt at which the ¯rm
enters the market, is

x¤ (q) =
¯2

¯ 2 ¡ 1
I + C (q)

R (q)
; (7)

where

¯2 = ¡ ®
¾2 +

1
2

+

sµ
®
¾2 ¡ 1

2

¶2

+
2r
¾ 2 > 1: (8)

By di®erentiating (7) we immediately obtain that @x¤ (q)=@q > 0. Conse-
quently, the level of demand su±cient for triggering optimal investment increases
with the quality of the product.

7The instantaneous value of the installed base of consumers can be obtained integrating
the utilities of participating consumers over their types,

R1
! (!q + an¡ k) d!. This equals

0:5n2 + 0:5 (q ¡ k)n which is convex in n. However, here we assume that the ¯rm does not
price discriminate so that it does not extract the whole consumer surplus. Instead, we impose
linearity in n of the ¯rm's pro¯t.

8An alternative interpretation of the cost structure is that the initial investment outlay
equals I + c (q)n (q)=r, and the marginal production cost is zero for all levels of q.
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The value of the investment opportunity, F (q; xt), equals

F (q; xt) =
(¯2 ¡ 1)¯2¡1

¯¯2
2

R (q)¯2 x¯2
t

(I + C (q))¯2¡1 : (9)

The proofs of (7), (8) and (9) follow directly from Dixit and Pindyck ([5], p.
142). Subsequently, we maximize the value of the investment opportunity with
respect to q , given the optimal investment rule, x¤ (q). In order to ensure that
our solution is a maximum, we introduce the following assumption.

Assumption 1 Let q¤ be the solution to @F (q; x¤)=@q = 0. Then it holds that

(¯2 (C + I) Rqq + CqRq ¡ (¯2 ¡ 1)CqqR)jq=q¤ < 0: (10)

The solution to the problem of quality choice is given in the following propo-
sition.

Proposition 1 Under Assumption 1 the optimal quality of the product, q¤, is
implicitly given by the following equation

Cq = x¤Rq : (11)

Proof. See Appendix.
From Proposition 1 it is obtained that the value of the investment oppor-

tunity is maximized if at the optimal investment threshold the marginal cost
of increasing the quality is equal to the marginal bene¯t. (11) implies that in
the optimum the ratio of elasticities of functions C (q) + I and R (q) equals the
wedge occurring in the threshold value x¤ (q) (cf. (7)), i.e.

"C +I;q

"R;q

¯̄
¯̄
q=q¤

=
¯2

¯ 2 ¡ 1
; (12)

where "f;x ´ xfx
f .

In order to provide more insight into the obtained result, we analyze the
relationship between market uncertainty, intensity of the network externalities,
size of the network and the optimal quality. Proposition 2 provides part of the
results.

Proposition 2 The quality of the product increases with revenue uncertainty
and its growth rate, i.e.

dq¤

d¾
> 0; and (13)

dq¤

d®
> 0: (14)

9



Proof. See the Appendix.

The fact that higher uncertainty concerning the demand side of the mar-
ket in°uences the quality choice of the ¯rm positively results from the option-like
structure of the project value and upside potential from higher quality invest-
ment. Furthermore, a higher growth rate of the market also implies a higher
quality choice since the ¯rm prefers to incur additional cost to increase quality
when revenue is expected to grow faster.9

Furthermore, numerical simulations indicate that the impact of network
externalities on the optimal quality choice is negative. The latter relationship
results from the fact that the level of quality and the degree of network exter-
nalities act as substitutes in the marginal consumer's utility function. Since a
higher quality is equivalent to a larger consumer base (cf. (4)), the size of the
network in optimum, n¤, also rises with ¾ and ®.

Market uncertainty and intensity of network externalities also have an
impact on the optimal investment threshold. Since both factors a®ect the opti-
mal investment threshold directly and indirectly (via the change of the optimal
quality), the total impact is determined by calculating the following total deriva-
tive:

dx¤ (q)
dµ

=
@x¤ (q)

@µ
+

@x¤ (q)
@q

dq
dµ

; µ 2 fa; ¾g: (15)

In the Appendix we prove the following proposition:

Proposition 3 It holds that

dx¤ (q)
d¾

> 0: (16)

Hence, the relationship between uncertainty and the optimal investment
threshold is positive. Therefore we conclude that the °exibility in the quality
choice does not change the classical result of real option theory (cf. Dixit and
Pindyck [5]).

Extensive numerical simulations show that the optimal investment thresh-
old decreases in the degree of network externalities. This is associated with the
fact that a higher degree of network externalities makes the product market
more valuable for the ¯rm. This results in a higher value of the investment
project (other things equal) and, thus, a lower value of x su±ces to achieve the
required pro¯tability ratio, ¯2= (¯2 ¡ 1), of the project at the time of investing.

3 Strategic Model with Fixed Quality
Here we introduce the possibility of competitive entry by a second ¯rm

(Firm 2). After entering the market, Firm 2 starts o®ering the good having a
9The positive sign of the derivative with respect to ® is equivalent to the negative derivative

with respect to the cost-of-carry, de¯ned as ± ´ r ¡®.
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quality q2. In general, q2 will di®er from q1, i.e. from the quality choice made
by Firm 1. The fact that the ¯rms do not compete in prices implies that for
the consumers the cost of accessing each network is equal across the networks.
Consequently, if the products were perfect substitutes, consumers would always
choose the product with a higher quality and the resulting market outcome
would always be a monopoly. In case of imperfect substitution this does not
hold any longer. Denote the degree of substitution by ½ 2 (0; 1). For ½ close to
unity, the goods are close substitutes, whereas a very small ½ implies that the
¯rms operate in virtually separated markets.

In order to analyze the impact of entry on the valuation of the ¯rst ¯rm
in the market (Firm 1), we adopt a simple structure for the market with di®er-
entiated goods (as, e.g., in Spence [25]) and allow for the presence of network
externalities as in Section 2. The system of inverse demand functions is given
by

½
k = (1 ¡ n1) q1 ¡ ½n2q2 + a (n1 + ½n2) for Firm 1's network, while
k = (1 ¡ n2) q2 ¡ ½n1q1 + a (n2 + ½n1) for Firm 2's network, (17)

and ni ; n 2 f1; 2g; is the size of Firm i's network. Each of the inverse demand
functions can be interpreted as follows. The LHS represents the instantaneous
cost (utility loss) of accessing the network. The RHS corresponds to the linear
demand schedule that decreases in the o®ered quantities, ni and nj, while its
negative slope is reduced by the presence of a component a (n1 + ½n2) which
re°ects network externalities. The impact of the quantity o®ered by Firm j on
Firm i's demand, and the network externalities among its consumers is scaled
down by factor ½ re°ecting imperfect substitution among the goods. It can be
easily noticed that for nj equal to zero, (17) reduces to the monopolistic demand
function of Section 2.

The size of the network of Firm i obtained by solving (17), subject to
ni 2 [0; 1], equals

ni (qi) =

8
><
>:

0 qi < q
i
;

1
1¡½2

qi¡q
i

qi¡a qi 2
h
q

i
;q i

i
;

qi¡k
qi¡a qi > qi ;

(18)

where

q
i

= k (1 ¡ ½) + ½ max [k; qj ] ; (19)

qi =
max [k; qj] ¡ k (1 ¡ ½)

½
; (20)

and i; j 2 f1; 2g; i 6= j. Depending on the quality o®ered, Firm i competes
with Firm j for moderate values of qi , it is a monopolist for high qi, or has
no customer base if qi is low. Both qualities q

i
and q i depend positively on

quality qj o®ered by the competitor. Moreover, higher substitutability of the
goods, captured by ½, results in shrinking the range of qualities in which ¯rms
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compete. This is intuitive since the closer substitutes the goods are, the less
they can di®er in qualities for both ¯rms to be present in the product market.
Since the once chosen qualities remain ¯xed and neither qi nor qi depends on

x, both ¯rms being active implies that qi 2
h
q

i
; qi

i
for i 2 f1; 2g. Otherwise,

one of the ¯rms would be better o® by not entering.
For analytical convenience, we impose the following linear speci¯cation

of the cost function:

c (qi) = c0 (qi ¡ a) ; c0 2 R++ ; qi 2 [a; 1); (21)

where c0 can be interpreted as an e±ciency parameter. Consequently, higher
values of c0 correspond to industries that are less e±cient in R&D. Setting
a quality equal to a (< k) is equivalent to the ¯rm producing no output and
incurring no cost (since ni (a) = c (a) = 0 in this case). The instantaneous
pro¯t function corresponding to (21) is

¼i = (x ¡ c0 (qi ¡ a)) ni: (22)

We solve the problem backwards in time. First, the optimal investment
threshold and quality choice of Firm 2 is determined. The value of Firm 2's
investment opportunity at t · T2 equals

V2 = E
·Z 1

T2

(xs ¡ c (q¤
2 )) n2(q¤

2)e¡r(s¡t)ds ¡ Ie¡r(T2¡t)
¸

; (23)

where T2 denotes the random stopping time associated with xt reaching Firm 2's
optimal investment threshold. A well-known procedure (cf. Dixit and Pindyck
[4], p. 145) allows for deriving Firm 2's optimal threshold, x¤

2, and the value of
its investment opportunity, F ¤

2 x¯2 :

x¤
2 =

¯2
¯2 ¡ 1

Ã
I

¡
1 ¡ ½2

¢

q2 ¡ q
2

+
c0

r

!
(q2 ¡ a) (r ¡ ®) ; (24)

F ¤
2 x¯2 = max

q2

³
q2 ¡ q2

´
x¤

2

¯ 2 (1 ¡ ½2) (r ¡ ®) (q2 ¡ a)

µ
x
x¤

2

¶¯2

: (25)

From (25) it follows that the quality maximizing the value of Firm 2's investment
opportunity, q¤

2 , is

q¤
2 =

1
2 (¯2 ¡ 1)

£ (26)
·
(2¯ 2 ¡ 1) q

2
¡ a+

q
q
2

¡ a
q

q
2

¡ a + 4¯ 2Ir (¯ ¡ 1) (1 ¡ ½2) c¡1
0

¸
:

Upon analyzing (26) it can be concluded that the qualities chosen by the ¯rms
are strategic complements. Since q

2
is an increasing function of q1 (see (19))
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and q¤
2 rises with q

2
, the quality chosen by Firm 2 is positively related to the

quality choice made by Firm 1.
This relationship, in combination with a closer inspection of (24), leads

to the following proposition.

Proposition 4 Firm 2 responds optimally to an increased quality of Firm 1
not only by rising its own quality but also by delaying its timing of entry, i.e.
the following inequalities hold

dq¤
2

dq1
> 0; and

dx¤
2

dq1
> 0:

Proof. See the Appendix.

Consequently, it can be concluded from Proposition 4 that the choice
of higher q1 is equivalent to entry-deterrent behavior of Firm 1.

Having calculated the optimal investment threshold of Firm 2, we are
in position to analyze the investment decision of Firm 1. First, we note that
the value of Firm 1's investment project at the time of investing, t, is given by

V1 = E

"Z T2

t
(xs ¡ c0 (q¤

1 ¡ a))n(q¤
1 )e¡r(s¡t)ds ¡ I

#

+E
·Z 1

T2

(xs ¡ c0 (q¤
1 ¡ a)) n1(q¤

1; q¤
2 )e¡r (s¡t)ds

¸
: (27)

Working out the expectations yields

V1 =
q¤
1 ¡ k

q¤
1 ¡ a

µ
x

r ¡ ®
¡ c0 (q¤

1 ¡ a)
r

¶
¡ I

| {z }
Monopolistic value

+ (28)

µ
1

1 ¡ ½2

q¤
1 ¡ q

1
q¤
1 ¡ a

¡ q¤
1 ¡ k

q¤
1 ¡ a

¶ µ
x¤

2
r ¡ ®

¡ c0 (q¤
1 ¡ a)
r

¶ µ
x
x¤

2

¶¯2

| {z }
Value lost due to the competitive entry

:

Again, applying the well-known procedure (cf. Dixit and Pindyck [4], p. 145)
yields the optimal threshold, x¤

1 , and the value of investment opportunity,
F ¤

1 x¯2 , of Firm 1

x¤
1 =

¯ 2

¯2 ¡ 1
I + C (q1)

R (q1)
; (29)

F ¤
1 x¯2 = (30)

max
q1

(q1 ¡ k) x¤
1

r¡® + ¯2

³
q1¡q

1
1¡½2 ¡ q1 + k

´ ³
x¤
2

r¡® ¡ c0(q1¡a)
r

´ ³
x¤
1

x¤
2

´¯2

¯2 (q1 ¡ a)

µ
x
x¤

1

¶¯2

:
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It is worthwhile noticing that the optimal investment timing of Firm 1 does
not explicitly depend on the action taken by Firm 2. This outcome results
from the fact that the roles of the ¯rms (leader vs. follower) are exogenously
determined. However, this result still di®ers from the classical result from the
real option theory (see, e.g., Huisman [13], p. 170) concerning the irrelevance
of the follower's investment timing for the decision of the leader. The reason
is that Firm 1's timing decision is a®ected by the choice of quality, q1, and,
according to (30), q1 depends on Firm 2's threshold x¤

2 and on the threshold
quality q

1
, which is a function of q2 (cf. (19)).

The dependence of Firm 1's investment threshold results from the fact
that in our model ¯rms have two control variables (timing and quality) as oppo-
site to one variable in classic real option models. It still holds that introducing
the competitor does not change the optimal ceteris paribus choice of the timing
variable. However, competitive entry changes the optimal choice of quality (the
second control variable). This makes the monopolistic choice of timing no longer
optimal and, as a consequence, it holds that x¤

1 6= x¤ .
As far as the value of the investment opportunity is concerned, it can be

determined by maximizing the argument of the RHS of (30). The derivative of
F ¤

1 with respect to q1 can be computed since x¤
1; x¤

2 and q2 are known functions
of q1. The unique (in the relevant interval) root of the derivative can be easily
found numerically.

3.1 Comparative Statics: Valuation of Firms
We are interested in the sensitivity of the value of the ¯rms with respect to

changes of market parameters. Figure 3.1 depicts the relationship between the
market volatility (left window) and network externalities (right window), and
the value of investment opportunities of both ¯rms.
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Figure 3.1. The value of the investment opportunity of Firm 1 (solid line) and
Firm 2 (dashed line) for the parameter values ½ = 0:5; k = 5; a = 2 (left window),
¾ = 0:2 (right window); c0 = 1; r = 0:05; ® = 0:015; x0 = 4; and I = 10:
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On the basis of Figure 3.1 two interesting observations can be made.
First, the value of Firm 1's investment opportunity is lower than the one of
Firm 2. Second, the value of Firm 1's project is non-monotonic in uncertainty.
The ¯rst phenomenon results from the strategic disadvantage of the ¯rst mover
in a game in which the ¯rms compete in strategic complements. As it can be
shown in a simple Stackelberg setting, the follower's payo® is higher than the
payo® of the leader if the control variables are strategic complements (cf. Tirole
[27], p. 331, footnote 53). Despite the fact that Firm 1 enjoys pro¯t from
investment for a longer period (it invests as ¯rst), its value is still lower than of
Firm 2.

Non-monotonicity of Firm 1's value results from the more "aggressive"
choice of quality of Firm 2 in a more uncertain market (cf. (13)). Consequently,
despite the fact that the option value increases in market volatility in a non-
strategic setting, the interaction among ¯rms drive down the value of Firm 1
when uncertainty is high.

Moreover, it can be seen that the presence of the network externalities
signi¯cantly enhances the value of the investment opportunities of both ¯rms.
The rate of increase is most dramatic where the degree of network externalities
approaches the cost of joining the network (i.e. when the marginal consumer's
valuation of the stand alone-good is equal to zero).

3.2 Comparative Statics: Firm 1's Strategic Choice of
Variables

Finally, we compare the non-strategic and strategic case with respect to
Firm 1's optimal investment threshold and its optimal quality choice (see Figures
3.2 and 3.3)
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Figure 3.2. The optimal investment threshold of Firm 1 in the non-strategic (solid
line) and strategic (dashed line) case for the parameter values ½ = 0:5; k = 5; a = 2
(right window); ¾ = 0:2 (left window); c0 = 1; r = 0:05; ® = 0:015; and I = 10:

From Figure 3.2 it can be concluded that the optimal investment thresh-
old is higher if a subsequent competitive entry threat exists. This contradicts

15



the result known from the strategic real option literature that the optimal in-
vestment threshold of the market leader is not in°uenced by the entry threat if
the roles of the ¯rms are exogenous. As we already concluded from (29), Firm
1's investment threshold depends on the investment timing and quality decision
of its competitor.
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Figure 3.3. The optimal quality choice of Firm 1 in the non-strategic (solid line)
and strategic (dashed line) case for the parameter values ½ = 0:5; k = 5; a = 2 (right
window); ¾ = 0:2 (left window); c0 = 1; r = 0:05; ® = 0:015; and I = 10:

On the basis of Figure 3.3 we conclude that the presence of a (potential)
competitor increases the quality chosen optimally by Firm 1. Higher quality (as
shown in Section 2), as well as the fact that, from the timing of the second
¯rm onwards, the market must be shared with the competitor, results in the
optimality of a higher - than in the non-strategic case - investment threshold
which, in turn, leads to the outcome depicted in Figure 3.2.

This result and the one concerning the project's value contradict the
¯ndings of Foros and Hansen [9], who analyze a duopoly model of Internet Ser-
vice Providers. In a modi¯ed Hotelling framework they show that the pro¯ts
decrease and the o®ered quality increases with the degree of network external-
ities. A point has to be made why this di®ers from our results. Here, in a
non-strategic framework, network externalities can act a substitute of quality
in a consumer's utility function. Consequently, a ¯rm can have less of an in-
centive to invest in (costly) quality when network externalities. This e®ect also
takes place in a strategic framework if the increase of quality occurs for a single
product. In case of Foros and Hansen [9], the increase of interconnection quality
a®ects at the same both products so that the substitution e®ect is dominated
by the impact of increased competitiveness.

4 Non-strategic Model with Flexible Quality
Here, it is assumed that within the ¯rm su±cient know-how is present for

adjusting quality, which can be valuable in case of changing demand character-
istics. The fact that the ¯rm can change quality could be caused for instance
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by the fact that its technology is the result of its own R&D process. Such an
interpretation implies that in the previous section quality was ¯xed because the
production technology was provided by an external vendor.

Once the entry threshold, x¤¤, is reached, production commences. The
marginal cost, c (q (x)), is a function of the instantaneously chosen product/service
quality. This quality is chosen in such a way that the value of the ¯rm is maxi-
mized. In this section we assume that no competitive entry threat exists.

Consequently, at each point in time the ¯rm chooses quality qt such
that10

q¤¤ (x) = arg max
q

[(x ¡ c (q)) n(q)] : (31)

From this the present value of the ¯rm's expected cash °ow at time t can be
determined

V = E
·Z 1

t
(x ¡ c (q¤¤ (x)))n(qs)e¡r(s¡t)ds

¸
: (32)

Since we in general allow for q < k, let us rede¯ne n (q) (cf. (4)) as

n (q) = max
·
0;

q ¡ k
q ¡ a

¸
: (33)

Maximizing (31) with cost specī cation (21) leads to the optimal quality choice

q¤¤ (x) = a +

s
(k ¡ a) x

c0
1fx>´g; (34)

where

´ = c0 (k ¡ a)

and 1B is an indicator function.11 (34) implies that for low states of demand
(i.e. for x < ´) the optimal choice of quality is a (< k), which corresponds to
the situation in which the market is not served and the ¯rm incurs no cost (see
(21)). As soon as x hits ´ from below, quality jumps to k and, subsequently,
adjusts continuously to changes in x. When x hits ´ from above, the quality
drops to a and the ¯rm again becomes idle without incurring variable costs.

De¯ne the instantaneous pro¯t function, ¼, to be equal to the expression
under the arg max operator in (31). Substituting q¤¤ into the instantaneous
pro¯t function yields

¼ =
¡p

x ¡ p
´
¢2 1fx>´g: (35)

10Our formulation di®ers from the optimal control models of quality as, e.g., presented
by El Ouardighi and Tapiero [8] (cf. also references therein) since these authors consider a
deterministic setting in which they include elements absent here such as pricing strategy and
learning e®ects.

111B denotes an indicator function of B such that 1B (x) =
½

1 x 2 B
0 x =2 B :
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Solving the Bellman equation12

0:5¾2x2
t V 00 + ®xV 0 + ¼ = rV (36)

for appropriate value matching and smooth pasting conditions yields:

V =
½

BM2x¯2 for x < ´;
BM1x¯1 + C0 + C1x0:5 + C2x for x > ´; (37)

where

BM1 ´ C0
´¡¯1¯2

¯1 ¡ ¯2
+ C1

´0:5¡¯1 (¯ 2 ¡ 0:5)
¯1 ¡ ¯ 2

+ C2
´1¡¯1 (¯2 ¡ 1)

¯1 ¡ ¯ 2
; (38)

BM2 ´ C0
´¡¯2¯1

¯1 ¡ ¯2
+ C1

´0:5¡¯2 (¯ 1 ¡ 0:5)
¯1 ¡ ¯ 2

+ C2
´1¡¯2 (¯1 ¡ 1)

¯1 ¡ ¯ 2
; (39)

C0 ´ ´
r
; (40)

C1 ´ ¡2p´
r ¡ 0:5® + 0:125¾2 ; (41)

C2 ´ 1
r ¡ ®

; (42)

¯1 = ¡ ®
¾2 +

1
2

¡

sµ
®
¾2 ¡ 1

2

¶2

+
2r
¾2 < 0: (43)

and ¯ 2 is given by (8). The value functions in the two regimes of the stopping
region are the solutions of the standard ODE (36) with the non-homogeneity
term de¯ned by (35). Under the regime x < ´ demand is too low and no ser-
vice/product is o®ered. Consequently, the value of the ¯rm consists entirely of
the option value to relaunch the activities should the market turn out to be
favorable. For x > ´ the ¯rm o®ers the service and makes positive pro¯t. Now,
the value of the ¯rm consists of two parts: the perpetuity value of the current
instantaneous pro¯t and the option-like component re°ecting the possibility of
ceasing the operations if x falls below ´. The perpetuity value of the instan-
taneous pro¯t has the structure of a portfolio of continuously paid dividends
proportional to various powers of the GBM (1). By either solving the Bellman
equation of type (36) with a non-homogeneity term being proportional to the
n-th power of x, or by calculating the drift coe±cient in the GBM for y ´ xn

using Itô's lemma, it can easily be shown that the e®ective discount rate corre-
sponding to the n-th power has a form r ¡ n® ¡ 0:5n (n ¡ 1)¾2 (cf. Dixit [4],
p. 13).

The optimal investment threshold and the value of the investment op-
portunity are found by applying the standard procedure for the optimal exercise

12The value of the ¯rm, V , (cf. (32)) still satis¯es the di®erential equation (36) since q is
an F-previsible process. Consequently,

dV = Vxdx+ 0:5Vxx (dx)2 + Vqdq = Vxdx+0:5Vxx (dx)2 ;

which after substituting (1) yields the LHS of (36).
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of an American option when the value of the investment project in the stopping
region is described by (37). It should just be noticed that it is never optimal
to exercise the investment option for x < ´ since by waiting an increment dt
the present value of investment cost diminishes by Irdt, whereas the expected
present value of the cash °ow remains unchanged. The value-matching and
smooth-pasting conditions regarding the expression for V when x > ´ in (37)
are

AMx¯2 = BM1x¯1 + C0 + C1x0:5 + C2x ¡ I; (44)
¯2AM x¯2¡1 = ¯ 1BM1x¯1¡1 + 0:5C1x¡0:5 + C2: (45)

From (44) and (45) the following implicit equation for the optimal investment
threshold, x¤¤ , can be obtained

(¯2 ¡ ¯ 1)BM1 (x¤¤)¯1 + ¯ 2 (C0 ¡ I) + (¯2 ¡ 0:5)C1 (x¤¤)0:5

+(¯2 ¡ 1)C2x¤¤ = 0: (46)

The value of the investment opportunity equals

F = (V (x¤¤) ¡ I)
³ x

x¤¤

´¯2 ´ AM x¯2 : (47)

Here, we would like to make an additional remark concerning the im-
plications of the °exible quality choice on the cost structure. Compared with
the ¯xed-quality case, the e®ective sunk cost in the current case equals I; as
opposed to I + C in the former. Consequently, the choice of °exible quality not
only allows for optimizing the product parameter when demand changes but
also for avoiding commitment to ¯xed production costs in the future.

5 Strategic Model with Flexible Quality
In this section we introduce the possibility of entry of a second ¯rm (Firm

2). As in the ¯xed quality case, such an entry threat is going to in°uence both
the optimal investment timing and the value of the investment opportunity of
Firm 1. We proceed as follows. First, we discuss possible market outcomes
dependent on the realization of the stochastic variable, x. Subsequently, we
determine the value of Firm 1 in the situation where both ¯rms have already
invested. Then, we move backwards and calculate the value of Firm 1 after it
entered the market but before Firm 2 invested. Finally, we determine the value
of Firm 1's investment opportunity and its optimal investment threshold, and
provide some comparative statics.

As in Section 3, Firm 2 is assumed to have the ¯xed-quality technology.
Pro¯t maximization of Firm 1 yields the following optimal quality schedule

q¤¤
1 =

8
>>><
>>>:

a; when Firm 1 is idle,

a +

r
(q

1
¡a)x
c0

; when Firm 1 is a duopolist,

a +
q

(k¡a)x
c0

; when Firm 1 is a monopolist.

(48)
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The ¯rst (idle) and the third (monopoly) case have already been derived in
Section 4. The result for the duopoly case can be obtained by maximizing the
pro¯t function (22) with respect to qi , i = 1, and using the observation that n1
is in this case de¯ned by the second equation in (18). Before we derive Firm 1's
pro¯t as a function of x, we formulate the following lemma.

Lemma 5 There are three regimes of the product market structure when Firm
1 has the °exible quality. For low realizations of x, market is served only by
the entrant (Firm 1 stays idle), intermediate realizations of x correspond to the
duopoly outcome, whereas high realizations of x are associated with Firm 1's
monopoly. The three regimes correspond to the following intervals

x 2 (0; ') ;
x 2 ('; {) ; and
x 2 ({; 1) ;

where

' ´ c0

³
q
1

¡ a
´

; (49)

{ ´ c2
0Ã

2

½2'
; (50)

where Ã ´ ½ (q1 ¡ a) ; and q
1

and q1 are given by (19) and (20).

Proof. See the Appendix.

The existence of three regimes of quality choice result from the fact that
now Firm 1 is able to adjust its quality, q1, as x evolves. Since from (19) and
(20) we learn that q

2
and q2 explicitly depend on q1, it follows that q

2
and q2

become functions of x. Consequently, for low realizations of x (lower than ')
Firm 1 remains idle (in order to avoid operating loss), whereas for intermediate
values of x it competes against Firm 2. If x becomes large (larger than {), Firm
1 can a®ord to choose quality that is high enough to prevent Firm 2 (with a
¯xed quality q2) from serving the market. Consequently, the quality choice (48)
re°ects the optimal response in the state of inaction, duopoly and monopoly,
respectively. This relationship is illustrated in Figure 5.1.
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Figure 5.1. Trigger qualities q
2
(short-dotted line), q2 (long-dotted line) as a

function of x; for the parameter values ½ = 0:5; k = 5; a = 2; c0 = 1; and q2 = 7:5
(solid line). For low realizations of x (below ') only Firm 2 is active in the market
whereas for high realizations (above {) Firm 1 becomes a monopolist - the quality of
Firm 2 is too low. For intermediate values of x both r̄ms serve the market since q2
remains within the bounds determined by q2 and q2.

Denote the value of the Firm 1, provided that Firm 2 has already entered
the market, by V d

1 . V d
1 satis¯es the following Bellman equation

0:5¾2x2
t
@2V d

1

@x2 + ®x
@V d

1

@x
+ ¼ 1 = rV d

1 ; (51)

where

¼1 =

8
><
>:

0 for x < ';
1

1¡½2

¡p
x ¡ p'

¢2 for ' < x < {;¡p
x ¡ p´

¢2 for x > { :
(52)

For x < ' Firm 1 is idle, for x > { it earns monopoly pro¯t, whereas for
x 2 ('; {) it has a duopoly pro¯t. The latter can be calculated by substituting
the intermediate cases of (18) and (48) into (22). Solving (51) with the value
matching and smooth pasting conditions satis¯ed for realizations ' and { yields

V d
1 =

8
<
:

(D2 + D4) x¯2 for x < ';
D1x¯1 + D2x¯2 + E0 + E1x0:5 + E2x for ' < x < {;
(D1 + D3) x¯1 + C0 + C1x0:5 + C2x for x > {;

(53)
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where

D1 ´ E2
'1¡¯1 (¯2 ¡ 1)

¯1 ¡ ¯ 2
+ E1

'0:5¡¯1 (¯2 ¡ 0:5)
¯1 ¡ ¯2

+ E0
'¡¯1¯2

¯1 ¡ ¯2
; (54)

D2 ´ ¡E2
{1¡¯2 (¯1 ¡ 1) ½2

¯1 ¡ ¯2
¡ E1

{0:5¡¯2 (¯1 ¡ 0:5)
¯1 ¡ ¯2

¡
1 ¡ ½2

¢
' ¡ ´

'

¡Ed
0

{¡¯2¯ 1½
¯1 ¡ ¯2

; (55)

D3 ´ ¡E2
{1¡¯1 (¯2 ¡ 1) ½2

¯1 ¡ ¯2
¡ E1

{0:5¡¯1 (¯2 ¡ 0:5)
¯1 ¡ ¯2

¡
1 ¡ ½2

¢
' ¡ ´

'

¡Ed
0

{¡¯1¯ 2½
¯1 ¡ ¯2

; (56)

D4 ´ E2
'1¡¯2 (¯1 ¡ 1)

¯1 ¡ ¯ 2
+ E1

'0:5¡¯2 (¯1 ¡ 0:5)
¯1 ¡ ¯2

+ E0
'¡¯2¯1

¯1 ¡ ¯2
;

E0 ´ 1
1 ¡ ½2

'
r

; (57)

E1 ´ 1
1 ¡ ½2

¡2
p

'
r ¡ 0:5® + 0:125¾2 ; (58)

E2 ´ 1
1 ¡ ½2

1
r ¡ ®

; (59)

and C0; C1; and C2 are de¯ned by (40), (41) and (42). Again, it can be seen that
the value of Firm 1 consists of the present value of the expected cash °ow and the
option-like components re°ecting possible switches across regimes. Parameters
Ek and Ck, k 2 f1; 2; 3g, correspond to the duopolistic and monopolistic pro¯t
function, respectively. Components of the form Dlx¯1 , l 2 f1; 2; 3;4g, re°ect
the possibility of switching to the regime corresponding to lower than current
realizations of x, whereas the opposite is true for components Dlx¯2 .

Equipped with the valuation formula for Firm 1 when both ¯rms are
already present in the market, we are ready to derive the value of Firm 1, V m

1 ,
prior to Firm 2's entry

V m
1 = V +

¡
V d

1 (x¤¤
2 ) ¡ V (x¤¤

2 )
¢µ

x
x¤¤

2

¶¯2

; (60)

where x¤¤
2 denotes Firm 2's entry threshold (derived in the Appendix). V m

1
equals the monopolistic value of Firm 1 (as de¯ned by (37)) adjusted for the
component re°ecting competitive entry. The latter component equals the value
loss from switching from monopoly to duopoly multiplied by the probability-
weighted discount factor corresponding to the random time of Firm 2's entry.

In the last step, we determine the value of Firm 1's investment oppor-
tunity. We already know that the valuation formulae for V di®er across the two
regimes (cf. (37)) and that it is never optimal for Firm 1 to invest in the ¯rst
regime. Consequently, when applying the value-matching and smooth-pasting
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conditions, we have to use the expression corresponding to the second regime.
A simple algebraic manipulation yields the following implicit formula for the
optimal investment threshold of Firm 1, x¤¤

1

(¯2 ¡ ¯ 1)BM1 (x¤¤
1 )¯1 + ¯ 2 (C0 ¡ I) + (¯2 ¡ 0:5)C1 (x¤¤

1 )0:5

+(¯2 ¡ 1)C2x¤¤
1 = 0: (61)

A comparison of (61) with (46) leads to the observation that x¤¤
1 = x¤¤ . This

is in line with the classic strategic real option models in which the roles of the
¯rms (leader vs. follower) are determined exogenously and where the ¯rms have
a single control variable (investment timing). This ¯nding can be explained by
the fact that in our case the decision problem of the Firm 1 with one discrete
control variable (timing) and with one continuous control variable (quality)
can be transformed into the problem of a single discrete variable whereas the
relevant payo® functions are at each moment optimized with respect to the
continuous variable. Consequently, the value of Firm 1 is no longer a function
of quality since this is chosen optimally given the realization of xt and the choice
of exogenous parameters.

The value of the investment opportunity of Firm 1, F1, equals

F1 =

Ã
V (x¤¤

1 ) +
¡
V d

1 (x¤¤
2 ) ¡ V (x¤¤

2 )
¢µ

x¤¤
1

x¤¤
2

¶¯2

¡ I

!µ
x

x¤¤
1

¶¯2

´ A1x¯2: (62)

It can immediately be noticed that F1 < F (cf. (47)) because of the present
value of future revenues lost due to competitive entry, which is equal to

¡
V d

1 (x¤¤
2 ) ¡ V (x¤¤

2 )
¢µ

x¤¤
1

x¤¤
2

¶¯2

:

As soon as competitive entry becomes very remote, i.e. when x¤¤
2 ! 1, it holds

that the problem reduces to the valuation of a monopolistic ¯rm and F1 = F .

5.1 Comparative Statics: Valuation of Firms
Analogous to Section 3, we are interested in the sensitivity of the ¯rms' value
with respect to changes of market parameters. Figure 5.2 depicts the relation-
ship between the market volatility (left window) and network externalities (right
window), and the value of the investment opportunities of both ¯rms.
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Figure 5.2. The value of the investment opportunity of Firm 1 (solid line) and
Firm 2 (dashed line) for the parameter values ½ = 0:5; k = 5; a = 2 (left window),
¾ = 0:2 (right window); c0 = 1; r = 0:05; ® = 0:015; x0 = 4; and I = 10:

Inspection of Figure 5.2 leads to two main conclusions First, contrary
to the ¯xed quality case, the value of Firm 1's investment opportunity is higher
than of Firm 2. Second, the value of Firm 2's project is non-monotonic in
uncertainty (like the value of Firm 1 in the previous case). The ¯rst result is
implied by the fact that Firm 1 is a leader in the investment game but, thanks to
its °exibility with regard to quality choice, acts as a follower in the Stackelberg
quality game. Consequently, Firm 1 not only receives cash °ow from the project
over a longer period but also is able to adjust its quality optimally given the
quality choice of Firm 2, q2, and the realization of the stochastic demand, xt .

The non-monotonicity of Firm 2's value in uncertainty results from two
factors. First, Firm 1 can exploit (relatively) more the changes in stochastic
demand by changing its quality when uncertainty is high. Moreover, higher
uncertainty a®ects the e®ective discount rates of the components of Firm 2's
value that are concave in xt. Consequently, the presence of such concavities leads
to a lower valuation in a more uncertain environment. A positive relationship
between Firm 2's value and uncertainty at the low levels of uncertainty can be
explained by the traditional option argument that, in this case, dominates the
strategic e®ects.

As far as the relationship between the degree of network externalities
and the value of the ¯rms is concerned, it resembles the picture of the ¯xed
quality case. Again, the presence of the network externalities leads to an increase
in the value of the investment opportunities of both ¯rms and the rate of this
increase is highest when the degree of network externalities approaches the cost
of joining the network, k.

5.2 Comparative Statics: Firm 1's Strategic Choice of
Variables

In the case in which quality is °exible, the following observations can be
made. First, the optimal investment threshold in the presence of entry threat
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is identical to the level of x triggering the investment of the monopolist. This
is due to the well-known fact that if the roles of the ¯rms are predetermined
and the only choice variable of the leader is the investment timing, future entry
of the follower does not impact the investment timing of the leader. Second,
upon examining (48), we can conclude that the quality chosen by Firm 1 does
not change in a continuous way. In the following subsection, we present a short
discussion of the properties of q¤¤

1 (xt).

5.2.1 Properties of q¤¤
1 (xt)

The optimal quality choice, q¤¤
1 , piecewise (weakly) increases in the state

of the market, xt . At ' and { the quality exhibits discontinuities. Calculating
the relevant limits yields

lim
x#'

q¤¤
1 (x) ¡ lim

x"'
q¤¤
1 (x) = ½q2 + (1 ¡ ½)k ¡ a > 0; (63)

lim
x#{

q¤¤
1 (x) ¡ lim

x"{
q¤¤
1 (x) = (q1 ¡ a)

Ãs
k ¡ a
q
1

¡ a
¡ 1

!
< 0: (64)

Realizations ' and { are reversible switch points in which the functional form
of the optimal quality changes. As pointed out by Mella-Barral and Perraudin
[20], the function describing the optimal choice of a control variable is in general
discontinuous in the switch points (see also Dumas [5]). Continuity is implied if
the switch points are chosen optimally so as to maximize the value of the ¯rm.
Here, the switch points are not chosen optimally by Firm 1 but result from the
change of the product market structure. From (48) it can be seen that for low x
Firm 1 ceases operations as the revenues do not cover the operating costs. When
x reaches ' from below, Firm 1 resumes operations and the resulting outcome is
duopolistic. Finally, when x reaches { Firm 1 covers the entire market and the
monopoly prevails. Consequently, the discontinuity of q¤¤

1 (x) occurs at both '
and { .

A positive sign of (63) results from the fact that the quality of the idle
¯rm equals a (cf. (48)), whereas resuming the operations requires the quality
exceeding k (> a). A negative sign of (64) can be explained as follows. At the
moment x equals { (cf. Figure 5.1), quality chosen by Firm 1 is that high that
Firm 1 captures all customers. Hence, Firm 2 leaves the market after which
Firm 1 reduces quality. It can do so since Firm 2 will not re-enter (unless x falls
below {). Firm 2 knows that if it re-entered, Firm 1 would immediately raise
quality to the optimal duopoly level..

6 Valuation E®ects of Flexible vs. Fixed Quality
In this section we analyze the e®ects on the valuation of the °exible vs.

¯xed technology choice made by Firm 1. We address the following two related
questions: i) what is the relationship between the loss in value due to the
expected competitive entry (in comparison with monopoly) and the ¯xed or
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°exible quality choice, and ii) what is the impact of °exibility on the valuation
with and without competitive entry threat. Figure 6.1 contains a comparison
of the ratio of Firm 1's value in the monopoly vs. duopoly case for °exible and
¯xed quality choice.
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Figure 6.1. The relationship between the ratio of Firm 1's duopolistic to monopo-
listic value under ¯xed (solid line), Rv, and °exible (dashed line), Rfl , quality choice
and market uncertainty (left window) and network externalities (right window) for
the parameter values ½ = 0:5; k = 5; a = 2 (left window), ¾ = 0:2 (right window);
c0 = 1; r = 0:05; ® = 0:015; and I = 10:

On the basis of Figure 6.1 it can be concluded that the value lost due to
competitive entry is much lower when quality is °exible (as opposed to ¯xed
quality). This results from the fact that the °exible quality choice is associated
with Firm 1's follower's role in the quality game played by the ¯rms at each
instant. The follower's advantage is stronger when the demand uncertainty is
higher (see left window). Finally, we can observe that the degree of network
externalities have little e®ect on the ¯rms' relative valuation until they become
very high in the ¯xed quality case. Then the fraction of Firm 1's value lost
due to the competitive entry as compared to monopoly is even higher (cf. right
window).

Now, let us analyze the impact of °exible quality choice on the ¯rms'
valuation from a slightly di®erent angle. Instead of looking at the value lost
due to competitive entry, we investigate the value impact of a switch from the
¯xed- to °exible-quality technology. Figure 6.2 depicts this e®ect as a function
of demand uncertainty and network externalities.
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Figure 6.2. The relationship between the ratio of Firm 1's °exible to ¯xed tech-
nology value without (solid line), Rm, and with (dashed line), Rd, competitive entry
threat and market uncertainty (left window) and network externalities (right window)
for the parameter values ½ = 0:5; k = 5; a = 2 (left window), ¾ = 0:2 (right window);
c0 = 1; r = 0:05; ® = 0:015; and I = 10:

From Figure 6.2 we draw the following conclusions. First, the excess value of
the °exible technology is higher in a strategic than in a monopolistic framework.
Moreover, the strategic impact of °exibility is increasing in demand uncertainty
(cf. left window). Whereas in the monopolistic framework the value gain occur-
ring due to the °exible technology is moderate and does not increase sharply
in ¾, both the value gain and its sensitivity towards growing uncertainty are
much more dramatic. Like previously, the value impact of network externalities
is relatively small and a®ects the advantage of the °exible technology adversely.

7 Conclusions

In the paper we determine advantages of °exibility in quality choice of a ¯rm
considering an uncertain product market sector exhibiting network externalities.
The ¯rm is able to adjust quality over time when it possesses su±cient know-
how, invented the technology itself, or adopted a more advanced technology. In
general, this requires larger sunk costs and the aim of this paper is to determine
in which cases it is particularly justī ed to incur these larger costs.

First, we derive the optimal investment threshold and the quality choice
of the ¯rm using the ¯xed-quality in both the monopolistic and duopolistic
framework. Second, we repeat the analysis for the °exible technology choice.
Finally, we perform a comparison of outcomes resulting from applying the two
alternative technologies.

We show that the qualities chosen by the ¯rms in the ¯xed-quality
framework are strategic complements. This implies that a higher quality chosen
by the market leader is associated with a higher quality provided by the second
¯rm to enter. Moreover, the market leader uses the quality as a means to deter
entry since its level of quality chosen under competitive entry threat is higher
than in an isolated monopolistic market. Finally, since the ¯rms play a version
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of a Stackelberg game in strategic complements, the value of the second ¯rm to
enter exceeds the one of the leader.

We also extend general results of strategic real option theory. From this
theory it is known that if roles of the ¯rms are exogenous or they su±ciently
di®er in characteristics, the follower's investment timing is irrelevant for the
decision of the leader. However, due to the addition of a second control in the
form of quality choice, the investment timing of the ¯rst investor is in°uenced
by the decision of the other ¯rm.

If the market leader is able to adjust quality over time, its optimal in-
vestment strategy is identical to the monopolistic case. This observation results
from the fact that the loss due to the competitive entry equally a®ects the value
of its investment opportunity before investing and the value of the project once
the sunk cost is incurred. Moreover, the °exible quality choice of the leader im-
plies three di®erent market structures as functions of the underlying demand.
When demand is low, only the second ¯rm is active, moderate demand is asso-
ciated with both ¯rms serving the market, whereas high demand implies that
the entire market is served by the leader.

A comparison of ¯rms' values under two alternative technologies leads to
further conclusions. It appears that the strategic value of the °exible (as opposed
to ¯xed) technology is much higher than its value in an isolated monopoly.
A related observation is that value loss from the competitive entry is much
lower when the quality is °exible. Second, the value of °exible quality choice
increases with uncertainty since an immediate quality adjustment to the changes
in stochastic demand is possible. Moreover, the case of °exibility also allows
for achieving the second-mover advantage in the Stackelberg game after the
competitive entry. The latter result is ampli¯ed if the market uncertainty is
high.

8 Appendix
Proof of Proposition 1. The optimal quality level is calculated by maximiz-
ing (9) with respect to q . The corresponding ¯rst-order condition is (dependence
on q is dropped for the sake of transparency)

0 =
(¯2 ¡ 1)¯2¡1

¯¯2
2

x¯2

(C + I)2¯2¡2 £ (65)

³
¯2R

¯2¡1 (C + I)¯2¡1 Rq ¡ (¯ 2 ¡ 1)R¯2 (C + I)¯2¡2 Cq

´
;

for which it follows that

¯2 (C + I)Rq ¡ (¯ 2 ¡ 1) RCq = 0: (66)

Dividing by (¯2 ¡ 1)x¤R and observing that ¯2
¯2¡1

C+I
x¤R = 1 yields the desired

result. The corresponding second-order condition is

(¯2 (C + I) Rqq + CqRq ¡ (¯2 ¡ 1)CqqR)jq=q¤ < 0: (67)
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This is a necessary and su±cient condition for the relevant functions which en-
sures that q¤ corresponds to a local maximum and is formulated as Assumption
1. If (66) has multiple solutions satisfying (67), then the one corresponding to
the highest value of (9) is chosen.

Proof of Proposition 2. We begin by de¯ning (cf. (66))

H (q) = ¯2 (C (q) + I)Rq (q) ¡ (¯2 ¡ 1)Cq (q) R (q) : (68)

For q¤ it holds that H (q¤; ¢) = 0. Therefore, the impact of a change in µ 2 fa; ¾g
can be determined by applying the envelope theorem:

dq¤

dµ
= ¡Hµ

Hq
: (69)

By Assumption 1 we know that

@H (q)
@q

¯̄
¯̄
q=q¤

< 0: (70)

Consequently, from (69) and (70) it follows that (we drop the dependence of
variables on q)

sgn
@H
@µ

¯̄
¯̄
q=q¤

= sgn
dq
dµ

¯̄
¯̄
q=q¤

for µ 2 fa; ¾g: (71)

We have

@H
@¾

¯̄
¯̄
q=q¤

=
@¯2

@¾
((C + I)Rq ¡ CqR) > 0; (72)

@H
@®

¯̄
¯̄
q=q¤

=
@¯2

@®
((C + I)Rq ¡ CqR)

+¯2 (C + I)Rq® ¡ (¯2 ¡ 1)CqR® (73)

=
@¯2

@®
((C + I)Rq ¡ CqR) > 0:

Proof of Proposition 3. Result (16) follows immediately from (15).
Repeating (15), we have

dx¤ (q)
dµ

=
@x¤ (q)

@µ
+

@x¤ (q)
@q

dq
dµ

; µ 2 fa; ¾g; (74)

and we are interested in the signs of the components of (15). We know that

@x¤ (q)
@q

=
¯2

¯2 ¡ 1
CqR ¡ (C + I)Rq

R2 : (75)
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Consequently, in the optimum

@x¤ (q)
@q

¯̄
¯̄
q=q¤

=
¯ 2

¯2 ¡ 1
CqR ¡ (C + I)Rq

R2

>
¯2

(¯2 ¡ 1)2
(¯2 ¡ 1)CqR ¡ ¯2 (C + I)Rq

R2

= 0: (76)

The last equality directly results from (66). Moreover, by di®erentiating (7), we
immediately obtain that

@x¤ (q)
@¾

> 0: (77)

What we still have to establish is the sign of dq
d¾ : Using the results of Proposition

2 we obtain
dq¤

d¾
> 0: (78)

This completes the proof.
Proof of Proposition 4. The sign of derivative dq¤

2=dq¤
1 immediately

follows from (26) and the argument thereafter. In order to determine the sign
of dx¤

2=dq¤
1, we ¯rst express x¤

2 as

x¤
2 =

¯2

¯ 2 ¡ 1

I
¡
1 ¡ ½2

¢
r + c0

³
q2 ¡ q

2

´

r (r ¡ ®)¡1
q2 ¡ a
q2 ¡ q

2

: (79)

Subsequently, we show that two last factors of (79) increase with q
2
. We already

know that q
2

is an increasing function of q1. Consequently, we derive expressions
for q2 ¡ q

2
and q2 ¡ a on the basis of (26):

q2 ¡ q
2

=
1

2(¯2 ¡ 1)
£ (80)

·
q
2

¡ a +
q

q
2

¡ a
q

q
2

¡ a + 4¯2Ir (¯ ¡ 1) (1 ¡ ½2) c¡1
0

¸
;

q2 ¡ a =
1

2 (¯2 ¡ 1)
£ (81)

·
(2¯ ¡ 1)

³
q
2

¡ a
´

+
q

q
2

¡ a
q

q
2

¡ a+ 4¯ 2Ir (¯ ¡ 1) (1 ¡ ½2) c¡1
0

¸
:

By inspecting (80) we immediately conclude that the second factor of (79) is
increasing in q

2
. Now, we concentrate on the derivative of the ratio q2¡a

q2¡q2
. It

can be written (using (80) and (81)) as

d
dq

2

Ã
q2 ¡ a
q2 ¡ q

2

!
=

d
dq

2

0
@

(2¯2 ¡ 1)
³
q

2
¡ a

´
+ f

³
q

2

´

q
2

¡ a + f
³
q

2

´

1
A ; (82)
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where

f
³
q
2

´
=

q
q
2

¡ a
q

q
2

¡ a + K:

and K = 4¯2Ir (¯2 ¡ 1)
¡
1 ¡ ½2

¢
c¡1
0 > 0. Now, (82) can be expressed as

d
dq

2

Ã
q2 ¡ a
q2 ¡ q

2

!
=

2 (¯2 ¡ 1)
³
f

³
q

2

´
¡ f 0

³
q
2

´ ³
q
2

¡ a
´´

³
q

2
¡ a + f

³
q
2

´´2 :

In the ¯nal step, we determine the sign of the second factor in the numerator

f
³
q
2

´
¡ f 0

³
q

2

´ ³
q
2

¡ a
´

=

=
q

q
2

¡ a
q

q
2

¡ a + K ¡

³
2q

2
¡ 2a + K

´ p
q
2

¡ a

2
q

q
2

¡ a + K
=

=

³
2q

2
¡ 2a + 2K

´ p
q
2

¡ a

2
q

q
2

¡ a + K
¡

³
2q

2
¡ 2a + K

´ p
q
2

¡ a

2
q

q
2

¡ a+ K
> 0:

This completes the proof.
Proof of Lemma 5. The lemma can be proven by analyzing the pro¯t

functions of the ¯rms in a duopoly and two cases of a monopoly. Pro¯t maxi-
mization based on the system of demands (17) with the optimal quality schedule
of Firm 1 (48) yields the following Stackelberg pro¯ts of Firm 1 and Firm 2,
denoted by ¼1 and ¼2, respectively:

¼1 =
1

1 ¡ ½2

¡p
x ¡ p

'
¢2 ; (83)

¼2 =
1

1 ¡ ½2

µ¡½p'
·

x1:5 +
c0Ã
·

x + ½
p

'x0:5 ¡ c0Ã
¶

: (84)

Here, '; Ã and · are functions of q2, which is chosen at the beginning of the
game (the quality chosen by Firm 2 is ¯xed at the moment of undertaking
investment). Since ¼2 is concave and decreasing for su±ciently large x, it can
be shown that for x > { it holds that ¼2 = n2 = 0: In the same fashion in can
be shown that ¼1 = 0 for x < ': What remains to be proven is that ' < { . It
can be seen upon manipulating (49) and (50) that

{ ¡ ' = c0

(q1 ¡ a)2 ¡
³
q
1

¡ a
´2

³
q
1

¡ a
´ > 0 , q1 ¡ q

1
> 0:

The latter inequality is proven directly by observing that

qi ¡ q
i

= 0 for ½ = 1; and

@
³
q i ¡ q

i

´

@½
< 0:
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This completes the proof.
Derivation of Firm 2's optimal investment threshold. First, we

derive the value of the Firm 2. Denote the value of the Firm 2 after entering
the market, by V2. V2 satis¯es the following Bellman equation

0:5¾2x2
t V

00
2 + ®xV 0

2 + ¼2 = rV2; (85)

where

¼2 =

8
><
>:

c0Ã¡½'
(1¡½2)· (x ¡ ·) for x < ';

1
1¡½2

³
¡½

p
'

· x1:5 + c0Ã
· x + ½p'x0:5 ¡ c0Ã

´
for ' < x < {;

0 for x > { ;
(86)

and

· = c0 (q2 ¡ a) : (87)

The value of (86) for x > { is zero since for high demand, Firm 1 captures the
entire market share (cf. Lemma 5). For the result corresponds to (84), whereas
for x < ' Firm 2 achieves monopoly pro¯t (cf. (22)) since Firm 1 remains idle.
Solving (85) with the value matching and smooth pasting conditions satis¯ed
for realizations ' and { yields

V2 =

8
<
:

(B2 + B4)x¯2 + CM
0 + CM

2 x for x < ';
B1x¯1 + B2x¯2 + CD

0 + CD
1 x0:5 + CD

2 x + CD
3 x1:5 for ' < x < {;

(B1 + B3)x¯1 for x > {;
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where

B1 ´ CD
3

'1:5¡¯1 (¯2 ¡ 1:5)
¯1 ¡ ¯ 2

+ CD
2

'1¡¯1 (¯2 ¡ 1)
¯1 ¡ ¯ 2

½'
c0Ã

+CD
1

'0:5¡¯1 (¯2 ¡ 0:5)
¯1 ¡ ¯2

+ CD
0

'¡¯1¯ 2

¯1 ¡ ¯2

½'
c0Ã

B2 ´ ¡CD
3

{1:5¡¯2 (¯1 ¡ 1:5)
¯1 ¡ ¯2

¡ CD
2

{1¡¯2 (¯1 ¡ 1)
¯ 1 ¡ ¯2

¡CD
1

{0:5¡¯2 (¯1 ¡ 0:5)
¯1 ¡ ¯2

¡ CD
0

'¡¯2¯1
¯1 ¡ ¯2

B3 ´ ¡CD
3

{1:5¡¯1 (¯2 ¡ 1:5)
¯1 ¡ ¯2

¡ CD
2

{1¡¯1 (¯2 ¡ 1)
¯ 1 ¡ ¯2

¡CD
1

{0:5¡¯1 (¯2 ¡ 0:5)
¯1 ¡ ¯2

¡ CD
0

{¡¯1¯ 2
¯1 ¡ ¯2

B4 ´ CD
3

'1:5¡¯2 (¯1 ¡ 1:5)
¯1 ¡ ¯ 2

+ CD
2

'1¡¯2 (¯1 ¡ 1)
¯1 ¡ ¯ 2

½'
c0Ã

+CD
1

'0:5¡¯2 (¯1 ¡ 0:5)
¯1 ¡ ¯2

+ CD
0

'¡¯2¯ 1

¯1 ¡ ¯2

½'
c0Ã

CM
0 ´ ¡ (c0Ã ¡ ½') c0a

r

CM
2 ´ c0Ã ¡ ½'

r ¡ ®

CD
0 ´ ¡1

1 ¡ ½2
c0Ã
r

CD
1 ´ 1

1 ¡ ½2

®p'
r ¡ 0:5® + 0:125¾2

CD
2 ´ 1

· (1 ¡ ½2)
c0Ã

r ¡ ®

CD
3 ´ ¡1

· (1 ¡ ½2)
®p'

r ¡ 1:5® ¡ 0:375¾2

Despite the fact that the expressions for the value of Firm 2 di®er across the
regimes, calculating the option value of the investment opportunity of Firm
2 represents no additional di±culty comparing to the traditional analysis. It
can be shown that the value is negative under the ¯rst regime, reaches the
peak under the second regime and tends asymptotically to zero under the third
regime. Therefore, it cannot be optimal for Firm 2 to invest under regimes one
and three. Here, I is assumed to be not excessively high so that such xt exists
for which the net present value of Firm 2's investment is positive. Consequently,
the value of Firm's 2 option to invest can be calculated on the basis of the value-
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matching and smooth-pasting conditions corresponding to the second regime

A2x¯2 = B1x¯1 + B2x¯2 + C0 + C1x0:5 + C2x + C3x1:5 ¡ I
¯2A2x¯2¡1 = ¯ 1B1x¯1¡1 + ¯ 2B2x¯2¡1 + 0:5C1x¡0:5 + C2 + 1:5C3x0:5:

The optimal investment threshold of Firm 2, x¤¤
2 , is implicitly de¯ned by

(¯2 ¡ ¯1) B1 (x¤¤
2 )¯1 + ¯2 (C0 ¡ I) + (¯2 ¡ 0:5)C1 (x¤¤

2 )0:5

+ (¯2 ¡ 0:5)C2x¤¤
2 x + (¯2 ¡ 0:5)C3 (x¤¤

2 )1:5 = 0

Moreover, the value of the investment opportunity of Firm 2 is

F2 = A2x¯2 ;

where

A2 ´ max
q2

B1 (x¤¤
2 )¯1 + B2 (x¤¤

2 )¯2 + C0 + C1 (x¤¤
2 )0:5 + C2x¤¤

2 + C3 (x¤¤
2 )1:5 ¡ I

(x¤¤
2 )¯2

:

References
[1] Aoki, Reiko, and Thomas J. Prusa, 1996, Sequential versus Simultaneous

Choice with Endogenous Quality, International Journal of Industrial Orga-
nization, 15, pp. 103-121.

[2] Banker, Rajiv D., Inder Khosla, and Kingshuk K. Sinha, 1998, Quality and
Competition, Management Science, 44, pp. 1179-1192.

[3] Cox, John C., and Steven A. Ross, 1976, The Valuation of Options for
Alternative Stochastic Processes, Journal of Financial Economics, 53, pp.
385-408.

[4] Dixit, Avinash, 1993, The Art of Smooth Pasting, Vol. 55 in Fundamentals
of Pure and Applied Economics, Harwood Academic Publishers.

[5] Dixit, Avinash, and Robert Pindyck, 1996, Investment under Uncertainty
(2nd printing), Princeton University Press.

[6] Dubey, Pradeep, and Chien-wei Wu, 2002, When Less Competition Induces
More Product Innovation, Economic Letters, 74, pp. 309-312.

[7] Dumas, Bernard, 1991, Super Contact and Related Optimality Conditions,
Journal of Economic Dynamics and Control, 15, pp. 675-685.

[8] El Ouardighi, Fouad, and Charles S. Tapiero, 1998, Quality and Di®usion
of Innovations, European Journal of Operational Research, 106, pp. 31-38.

34



[9] Foros, Âystein and Bj¿rn Hansen, 2002, Competition and Compatibility
among Internet Service Providers, Information Economics and Policy, 13,
pp. 411-425.

[10] Fudenberg, Drew, and Jean Tirole, 1985, Preemption and Rent Equaliza-
tion in the Adoption of New Technology, Review of Economic Studies, 52,
pp. 383-401.

[11] Grenadier, Steven R., 1996, The Strategic Exercise of Options: Devel-
opment Cascades and Overbuilding in Real Estate Markets, Journal of
Finance, 51, pp. 1653-1679.

[12] Hoppe, Heidrun C. and Ulrich Lehmann-Grube, 2001, Second-Mover Ad-
vantages in Dynamic Quality Competition, Journal of Economics and Man-
agement Strategy, 10, pp. 419-434.

[13] Huisman, Kuno J.M., 2001, Technology Investment: A Game Theoretic Real
Options Approach, Kluwer Academic Publishers.

[14] Lambrecht, Bart, and William Perraudin, 1999, Real Options and Preemp-
tion under Incomplete Information, Working Paper, Birkbeck College.

[15] Latcovich, Simon, and Howard Smith, 2001, Pricing, Sunk Costs, and Mar-
ket Structure Online: Evidence from Book Retailing, Oxford Review of
Economic Policy, 17, pp. 217-234.

[16] Mason, Robin, 2000, Network Externalities and the Coase Conjecture, Eu-
ropean Economic Review, 44, pp. 1981-1992.

[17] Mason, Robin, and Helen Weeds, 2001, Networks, Options and Pre-
emption, Working Paper, University of Southampton.

[18] Motta, Massimo, 1993, Endogenous Quality Choice: Price vs. Quantity
Competition, Journal of Industrial Economics, 41, pp. 113-131.

[19] McDonald, Robert, and Daniel Siegel, 1986, The Value of Waiting to Invest,
Quarterly Journal of Economics, 101, pp. 707-728.

[20] Mella-Barral, Pierre, and William Perraudin, 1997, Strategic Debt Service,
Journal of Finance, 52, pp. 531-556.

[21] Nielsen, Martin J., 2002, Competition and Irreversible Investments, Inter-
national Journal of Industrial Organization, 20, pp. 731-743.

[22] Perotti, Enrico C. and Silvia Rossetto, 2000, Internet Portals as Portfolios
of Entry Options, Working Paper, University of Amsterdam.

[23] Reinganum, Jennifer F., 1981, On the Di®usion of New Technology: A
Game Theoretic Approach, Review of Economic Studies, 48, pp. 395-405.

35



[24] Smets, Frank, 1991, Exporting versus FDI: The E®ect of Uncertainty Irre-
versibilities and Strategic Interactions, Working Paper, Yale University.

[25] Spence, Michael, 1976, Product Di®erentiation and Welfare, American Eco-
nomic Review, 66, pp. 407-414.

[26] Shapiro, Carl, and Hal R. Varian, 1998, Information Rules, Harvard Busi-
ness School Press.

[27] Tirole, Jean, 1988, The Theory of Industrial Organization, MIT Press.

[28] Ueng, Shyh-Fang, 1997, On Economic Incentive for Quality Upgrading,
Journal of Economics and Business, 49, pp. 459-473.

[29] Zingales, Luigi, 2000, In Search of New Foundations, Journal of Finance,
55, pp. 1623-1653.

36


