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behavior differs significantly from that of standard real options models. In particular,
there will be greater inertia in investment, in that the model leads to the manager having
an even greater “option to wait” than the owner. The interplay between the twin forces
of hidden information and hidden action leads to markedly different investment outcomes
than when only one of the two forces is at work.

JEL: G31

Keywords: real options, capital budgeting, agency cost, hidden information, hidden ac-
tion, investment timing.

∗We thank Harrison Hong, John Long, David Scharfstein, Bill Schwert, Jeff Zwiebel, and especially Mike
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1 Introduction

One of the most important topics in corporate finance is the formulation of the optimal

investment strategies of firms. There are two components of the investment decision: how

much to invest and when to invest. The first is the capital allocation decision and the

second is the investment timing decision. The standard textbook prescription for the capital

allocation decision is that firms should only invest in projects if their net present values

(NPV) are positive. Similarly, a standard framework for the investment timing decision is

the real options approach. The real options approach posits that the opportunity to invest in

a project is analogous to an American call option on the investment project, and the timing

of investment is economically equivalent to the optimal exercise decision for an option. The

real options approach is well summarized in Dixit and Pindyck (1994) and Trigeorgis (1996).1

However, both the simple NPV rule and the standard real options approach fail to account

for the incentive problems that confront decentralized firms. In most modern corporations,

shareholders delegate the investment decision to managers, taking advantage of their special

skills and expertise. In such decentralized settings, there are likely to be both information

asymmetries (e.g., managers are better informed than owners about projected cash flows) and

agency issues (e.g., unobserved managerial effort, perquisite consumption, empire building).

A number of papers in the corporate finance literature provide models of capital budgeting

under asymmetric information and agency.2 The focus of this literature is on the first

piece of the investment decision: the amount of capital allocated to managers for investment.

Thus, this literature provides predictions on whether firms over- or under-invest relative to

the benchmark of perfect information and no agency costs. The focus of this paper is on

the second piece of the investment decision: the timing of investment. We extend the real

options framework to account for the issues of information and agency in a decentralized

firm. Analogous to the notions of over- or under-investment, our paper provides results on

hurried or delayed investment.
1The application of the real options approach to investment is quite broad. Brennan and Schwartz (1985)

use an option pricing approach to analyze investment in natural resources. McDonald and Siegel (1986)
provided the standard continuous-time framework for analysis of a firm’s investment in a single project. Majd
and Pindyck (1987) enrich the analysis with a time-to-build feature. Dixit (1989) uses the real option approach
to examine entry and exit from a productive activity. Triantis and Hodder (1990) analyze manufacturing
flexibility as an option. Titman (1985) and Williams (1991) use the real options approach to analyze real
estate development.

2See Stein (2001) for a useful summary.
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In the standard real options paradigm, there are no agency conflicts as it is assumed that

the option’s owner makes the exercise decision.3 However, in this paper, an owner delegates

the option exercise decision to a manager. Thus, the timing of investment is determined by

the manager. The owner’s problem is to design an optimal compensation contract under both

hidden action and hidden information. The true quality of the underlying project can be high

or low. The hidden action problem is that the manager can influence the likelihood that the

quality of the project is high. An optimal contract will have the property that the manager

will be induced into providing costly (but unverifiable) effort.4 The hidden information

problem is that the underlying project’s future cash flow contains a component that is only

privately observable to the manager. Absent any mechanism that induces truth-telling, the

manager may have an incentive to lie about the true quality of the project and divert value

for his private interests. For example, the manager could divert privately observed cash flows

by consuming excessive perquisites, building empires, or by working less hard to manage the

project. An optimal contract (in accordance with the revelation principle) will induce the

manager to truthfully reveal his private information about project quality, and thus no actual

value diversion will take place in equilibrium.

Importantly, we show that the underlying option can be decomposed into two components:

a “manager’s option” and an “owner’s option.” The manager’s option has a payout upon

exercise that is a function of the contingent compensation contract. Based on this contractual

payout, the manager determines the exercise time. The owner’s option has a payout, received

at the manager’s chosen exercise time, equal to the payoff from the underlying option minus

the manager’s compensation. The model provides the solution for the optimal compensation

contract that comes as close as possible to the first-best no-agency solution.

The model implies investment behavior that differs substantially from that of the standard

real options approach with no agency problems. In general, managers will display greater

inertia in their investment behavior, in that they will invest later than implied by the first-

best solution. In essence, this is a result of the manager (even in an optimal contract) not
3While our paper focuses on the agency issues that provide a disconnect between the interests of owners

and shareholders, similar issues exist between stockholders and bondholders. Mello and Parsons (1992), Mauer
and Triantis (1994), Leland (1998), Mauer and Ott (2000), and Morellec (2001, 2003) examine the impact of
agency conflicts on firm value using the real options approach.

4As is standard in problems of moral hazard, we only consider parameter ranges under which exerting effort
is desirable for the owner. Outside of this parameter region, the problem reduces to one of hidden information
only.
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having a full ownership stake in the option payoff. This less than full ownership interest

implies that the manager has a greater “option to wait” than the owner.

An important aspect of the model is the interaction of hidden action and hidden infor-

mation. In fact, we find that the nature of the optimal contract depends explicitly on the

relative importance of these two forces. While we focus on the economically most interesting

case in which both forces play a role in the optimal contract, it is instructive to consider two

extremes. If the cost benefit ratio of inducing effort (a measure of the strength of the hidden

effort component) is very low, then the hidden action component disappears from the optimal

contract terms. Thus, if the nature of the underlying option is such that inducing effort is

sufficiently inexpensive, then we are left with a simple problem of hidden information and

the contract will simply reward the manager with informational rent. This is the setting of

Maeland (2002), which considers a real options problem with only hidden information about

the exercise cost.5 Conversely, as the cost benefit ratio of inducing effort becomes very high,

then the hidden action component dominates the optimal contract. The cost of inducing

effort is so high as to no longer necessitate the payment of informational rents. When the

cost benefit ratio of inducing effort is in an intermediate range, both forces are in effect,

and the optimal compensation contract must induce effort and truthful revelation of private

information. Interestingly, the interplay between hidden information and hidden action may

actually reduce the inefficiency in investment timing, compared with the setting in which

hidden information is the only friction. This is because the manager’s additional option to

exert effort makes his incentives more closely aligned with those of the owner.

In a later section, we generalize the model to allow for managers to display greater impa-

tience than owners. There are several potential justifications for such an assumption. First,

there are various models of managerial myopia that attempt to explain managers’ preference

for choosing projects with quicker pay-backs, even in the face of eschewing more valuable

long-term opportunities.6 Such models are based on information asymmetries and agency

problems. Second, in our “investment timing” setting, greater impatience can represent the

manager’s preference for empire building or greater perquisite consumption and reputation
5Bjerksund and Stensland (2000) provide a similar model to Maeland (2002), where a principal delegates

an investment decision to an agent who holds private information about the investment’s cost. Brennan
(1990) considers a setting in which managers attempt to signal the true quality of “latent” assets to investors
through converting them into observable assets (e.g., exercising real options).

6See Narayanan (1985), Stein (1989) and Bebchuk and Stole (1993).
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that comes from running a larger business sooner rather than later. Third, managers may

simply have a shorter horizon (due to job loss, alternative job offers, death, etc.). Phrased in

real options terms, managerial impatience leads to a smaller option to wait for the manager,

potentially reversing the previously mentioned larger option to wait that appears in the base

case model. While the base case model predicts that investment will never occur sooner than

the first-best case, in this generalized setting investment can occur earlier or later than the

first-best case.

The setting of our paper is most similar to that of Bernardo et al. (2001). In a de-

centralized firm under asymmetric information and moral hazard, they examine the capital

allocation decision, while we examine the investment timing decision. In their model, the

firm’s headquarters delegates the investment decision to a manager, who possesses private

information about project quality. The manager can improve project quality through the

exertion of effort, which is costly to the manager but unverifiable by headquarters. These

two assumptions mirror our framework. In addition, managers have preferences for “empire

building” in that they derive utility from overseeing large investment projects. This assump-

tion is addressed in the generalized version of our model that appears in Section 5. Absent

any explicit incentive mechanism, managers will always claim that all projects are of high

quality and worthy of funding, and then provide the minimal amount of effort. As in our

paper, they use an optimal contracting approach to jointly derive the optimal investment

and compensation policies. An incentive contract is derived that induces truth-telling and

minimizes the costs of agency. In equilibrium, they find that there will be under-investment

in all states of the world. Our model provides an intertemporal analogy to their equilibrium:

in our base case model, we find that in equilibrium there will be delayed investment due to

the information asymmetries and agency costs.7

While our paper derives an optimal compensation contract that best aligns the incentives

of owners and managers, other papers in the corporate finance literature analyze the capital
7In a different setting, Holmstrom and Ricart i Costa (1986) provide a model that combines an optimal

wage contract with capital rationing. In their model, the manager and the market learn about managerial
talent over time by observing investment outcomes. A conflict of interest arises because the manager wants
to choose investment to maximize the value of his human capital while the shareholders want to maximize
firm value. The optimal wage contract has the option feature that insures the manager against the possibility
that an investment reveals his ability to be of low quality, but allows the manager to captures the gains if he
is revealed to be of high quality. This option feature of the wage contract encourages the manager to take on
excessive risks. Rationing capital mitigates the manager’s incentive to over-invest. As a result, in equilibrium
both under- and over-investment are possible.
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budgeting problem under information asymmetry and agency using other control mechanisms.

Harris et al. (1982) consider the case of capital allocation in a decentralized firm with

multiple division managers. Managers have private information about project values. In

addition, managers have private interests in overstating investment requirements, and then

diverting the excess cash flows in order to minimize effort or to consume greater perquisites.

They focus on the role of transfer prices in allocating capital. Firms offer managers a menu of

allocation/transfer price combinations. In equilibrium, truth-telling is achieved, and there can

be both under- and over-investment.8 Harris and Raviv (1996) use a very similar framework,

but focus on a random auditing technology. By combining probabilistic auditing with a

capital restriction, headquarters is able to learn the true project quality from the manager.

In equilibrium there will be both regions of under- and over-investment. Stulz (1990) considers

a decentralized investment framework in which the manager has private information about

investment quality and a preference for empire building. Absent any controls, the manager

would always overstate the investment opportunities and invest all available cash. The owners

of the firm use debt as a mechanism of aligning the interests of managers and shareholders.

By increasing the required debt payment, managers have less free cash flow to spend on

investment projects. The optimal level of debt is chosen to trade off the benefits of preventing

managers from investing in negative NPV projects when investment opportunities are poor

with the costs of rationing managers away from taking positive NPV projects when investment

opportunities are good. Again, in equilibrium there will be both under- and over-investment.

The remainder of the paper is organized as follows. Section 2 describes the setup of the

model and simplifies the optimization program. Section 3 solves for the optimal contracts.

In Section 4, we analyze the implications of the model in terms of the stock price’s reaction

to investment, equilibrium investment lags, and the erosion of the option value due to the

agency problem. Section 5 generalizes the model to allow for managers to display greater

impatience than owners. Section 6 concludes. Appendices contain the solution details of the

optimal contracts.
8Antle and Eppen (1985) provide a model that is very similar to that of Harris et al (1982).
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2 Model

In this section, we begin with a description of the model. We then, as a useful benchmark,

provide the solution to the first-best no-agency investment problem. Finally, we present and

simplify the full principal-agent optimization problem faced by the owner.

2.1 Setup

The principal owns an option to invest in a single project. We assume that the principal

(owner) delegates the exercise decision to an agent (manager). Once investment takes place,

the project provides a stream of cash flows. A portion of the cash flows is observable to both

owner and manager, while another portion is privately observed only by the manager. Let

P (t) represent the present value of the observable component of the project’s cash flows, and

θ the present value of the privately observed component of cash flows. Thus, the total value

of the project is P (t) + θ.9

The assumption that a portion of cash flows is only known by the manager and not

verifiable by the owner is quite common in the capital budgeting literature. This information

asymmetry invites a host of agency issues. Harris et al. (1982) posit that managers have

incentives to understate project payoffs and to divert the free cash flow to themselves. In

their model, such value diversion takes the form of managers reducing their level of effort.

Stulz (1990), Harris and Raviv (1996) and Bernardo et al. (2001) model managers as having

preferences for perquisite consumption or empire building. In these models, managers have

incentives to divert free cash flows to inefficient investments or to excessive perquisites. In all

of these models, mechanisms are used by firms (i.e., incentive contracts, auditing, required

debt payments) to mitigate such value diversion.

In a standard call option setting, exercise yields the difference between the observable

value P (t) of the underlying asset and the exercise price, K. Thus, the payoff from exercise

is typically P (t) −K. However, in the present model, the payoff from exercise also includes

a privately observed random variable, θ, whose realization directly impacts the option payoff.
9For ease of presentation, we model the process P (t) for the present value of observable cash flows. We

could back up a step, and begin with an underlying process for observable cash flows. However, if observable
cash flows follow a geometric Brownian motion, then the present value of expected future observable cash
flows will also follow a geometric Brownian motion as above. Similarly, rather than modeling θ as the present
value of unobservable cash flows, we could begin with an underlying process for the unobservable cash flows
themselves.
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Thus, in this model the net payoff from exercise is P (t) + θ − K. Note that the problem

could be equivalently formulated as one in which the total value of the project is P (t) and

the effective cost of exercising the option is K − θ.

Let the value P (t) of the observable component of the underlying project evolve as a

geometric Brownian motion:

dP (t) = αP (t) dt + σP (t) dz(t), (1)

where α is the instantaneous conditional expected percentage change in P (t) per unit time,

σ is the instantaneous conditional standard deviation per unit time, and dz is the increment

of a standard Wiener process. Let P0 equal the value of the project at time zero, in that

P0 = P (0). Both the owner and the manager are risk neutral, with the risk-free rate of

interest denoted by r.10 For convergence, we assume that r > α.

The private component of value, θ, may take on two possible values: θ1 or θ2, with

θ1 > θ2.11 We denote ∆θ = θ1 − θ2 > 0. One may interpret a draw of θ1 as a “higher

quality” project and a draw of θ2 as a “lower quality” project. The effort of the manager

plays an important role in determining the likelihood of obtaining a higher quality project.

The manager may affect the likelihood of drawing θ1 by exerting a one-time effort, at time

zero. If the manager exerts no effort,12 the probability of drawing a higher quality project

θ1 equals qL. However, if the manager exerts effort, he incurs a cost ξ > 0 at time zero, but

increases the likelihood of drawing a higher quality project θ1 from qL to qH . Immediately

after his exerting effort, the manager observes the private component of project quality. In

order to ensure a positive “net” exercise price, we restrict θ1 < K.

The owner does not observe the private component of value, θ, and thus cannot contract

on θ. However, the manager can contract on the observable component of value, P (t).

Contingent on the level of P (t) at exercise, the manager is paid a wage.13 The revelation
10We rule out the time-zero selling-the-firm contract between the owner and the manager. This may be

justified, for example, if the manager is liquidity constrained and cannot obtain financing.
11In Section 3.3 we generalize the model to allow θ to have continuous distributions.
12Without loss of generality, we may normalize the manager’s lower effort level to zero.
13In order for the compensation contract to provide any incentive to the agent, wages cannot be paid prior

to the moment of exercise. However, the efficacy of paying wages after the moment of exercise depends on the
information structure of the model. If θ remains perpetually unobservable and/or not enforceable in courts
(as we assume in the model), then there is no benefit to paying wages after exercise; future wages would simply
be discounted back to the values used in the model. However, if θ becomes partially (or fully) revealed at
some future date, then the adverse selection problem (but not the moral hazard problem) can be mitigated
through delaying the payment of wages until a future date.
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principle will ensure that the private component of value will be truthfully revealed to the

owner at exercise. The manager has limited liability and is always free to walk away.14 In

addition, renegotiation is not allowed. While commitment leads to inefficiency in investment

timing ex-post, it increases the value of the project ex-ante.

In summary, the owner faces a problem with both hidden information (the owner does not

observe the true realization of θ) and hidden action (the owner cannot verify the manager’s

effort level). The owner needs to provide compensation incentive to both (i) induce the agent

exert effort at time zero and (ii) to have the agent reveal his type voluntarily and truthfully.

Before analyzing the optimal contract, we first briefly review the first-best no-agency solution

that is used as the benchmark.

2.2 First-Best Benchmark (The Standard Real Options Case)

As a benchmark, we consider the case in which there is no delegation of the exercise deci-

sion and the owner observes the true value of θ. Equivalently, this first-best solution can

be achieved in a principal-agent setting, provided that θ is both publicly observable and

contractible. Let W (P ; θ) denote the value of the owner’s option, in a world where θ is a

known parameter and P is the current level of P (t). Using standard arguments [i.e., Dixit

and Pindyck (1994)], W (P ; θ) must solve the following differential equation:

0 =
1
2
σ2P 2WPP + αPWP − rW. (2)

Differential equation (2) must be solved subject to appropriate boundary conditions.

These boundary conditions serve to ensure that an optimal exercise strategy is chosen:

W (P ∗(θ), θ) = P ∗(θ) + θ − K, (3)

WP (P ∗(θ), θ) = 1, (4)

W (0, θ) = 0. (5)

Here, P ∗(θ) is the value of P (t) that triggers entry. The first boundary condition is the

value-matching condition. It simply states that at the moment the option is exercised, the
14The limited-liability condition is essential in delivering the investment inefficiency result in this context.

Otherwise, with risk-neutrality assumptions for both the owner and the manager, and no limited liability, the
first-best optimal investment timing may be achieved even in the presence of hidden information and hidden
action. For a related discussion of limited liability, see Innes (1990). An alternative mechanism of generating
investment inefficiency in an agency context is to assume managerial risk aversion.
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payoff is P ∗(θ)+θ−K. The second boundary condition is the smooth-pasting or high-contact

condition.15 This condition ensures that the exercise trigger is chosen so as to maximize the

value of the option. The third boundary condition reflects the fact that zero is an absorbing

barrier for P (t).

Closed-form solutions for the value of the owner’s option at time zero, W (P0, θ), and

the exercise trigger P ∗(θ) are easily obtained. The value of the first-best option value and

exercise trigger can be written as:

W (P0; θ) =





(
P0

P ∗(θ)

)β
(P ∗(θ) + θ − K ) , for P0 < P ∗(θ),

P0 + θ − K, for P0 ≥ P ∗(θ),

(6)

where

P ∗(θ) =
β

β − 1
(K − θ) , (7)

and

β =
1
σ2


−

(
α − σ2

2

)
+

√(
α − σ2

2

)2

+ 2rσ2


 > 1. (8)

Since the realized value of θ can be either θ1 or θ2, we denote P ∗(θ1) = P ∗
1 and P ∗(θ2) =

P ∗
2 . We shall always assume the initial value of the project is less than the lower trigger,

P0 < P ∗
1 , to ensure that there is always some positive option value inherent in the project.

The ex-ante value of the owner’s option in the first-best no agency setting is qHW (P0; θ1)+

(1 − qH)W (P0; θ2). We can therefore write this first-best option value, V ∗(P0), as:

V ∗(P0) = qH

(
P0

P ∗
1

)β

(P ∗
1 + θ1 − K) + (1 − qH)

(
P0

P ∗
2

)β

(P ∗
2 + θ2 − K) . (9)

It will prove useful in future calculations to define the present value of one dollar received

at the first moment that a specified trigger P̂ is reached. Denote this present value operator

by the discount function D(P0; P̂ ). This is simply the solution to differential equation (2)

subject to the boundary conditions that D(P̂ ; P̂ ) = 1, and D(0; P̂ ) = 0. The solution can

be written as:

D(P0; P̂ ) =
(

P0

P̂

)β

, P0 ≤ P̂ . (10)

15See Merton (1973) for a discussion of the high-contact condition.
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2.3 A Principal-Agent Setting

The owner offers the manager a contract at time zero. The contract specifies a payment

made to the manager, paid at the time of exercise. The owner is committed to implementing

the contract. The payment can be made contingent on the observable component of the

value of the project at the time of exercise. Thus, in principle, for any realized value of P (t)

obtained at the time of exercise, P̂ , a contracted wage w(P̂ ) can be specified, provided that

w(P̂ ) > 0.

The principal-agent setting leads to a decomposition of the underlying option into two

options: an owner’s option and a manager’s option. The owner’s option has a payoff function

of P̂ +θ−K −w(P̂ ), and the manager’s option has a payoff function of w(P̂ ). Upon exercise,

the owner receives the value of the underlying project (P̂ + θ), after paying the exercise price

(K) and the manager’s wage (w(P̂ )). The manager’s payoff is the value of the contingent

wage, w(P̂ ). Obviously, the sum of these payoff functions equals the payoff of the underlying

option. The manager’s option is of the tradition American call option variety, since the

manager chooses the exercise time to maximize the value of his option. However, in this

optimal contracting setting, it is the owner who ultimately controls the timing of exercise

through the choice of contract parameters that induces the exercise policy that maximizes

the value of its option. In addition, the manager also possesses a compound option, since the

manager has the option to exert effort at time zero to increase the total expected surplus.

The properties of the manager’s option thus are contingent upon this initial effort choice.

Since there are only two possible values of θ, for any w(P̂ ) schedule, there can be at most

two wage/exercise trigger pairs that will be chosen by the manager.16 Thus, the contract

need only include two wage/exercise trigger pairs from which the manager can choose: one

that will be chosen by a manager when he observes θ1, and one chosen by a manager when

he observes θ2. Therefore, the owner will offer a contract that promises a wage of w1 if the

option is exercised at P1 and a wage of w2 if the option is exercised at P2. The revelation

principle will ensure that a manager who privately observes θ1 will exercise at the P1 trigger,

and a manager who privately observes θ2 will exercise at the P2 trigger.

The owner’s option has a payout function of P1+θ1−K−w1, if θ = θ1, and P2+θ2−K−w2,
16We allow for the possibility of a pooling equilibrium in which only one wage/exercise trigger pair is

offered. However, this pooling equilibrium always will be dominated by a separating equilibrium with two
wage/exercise trigger pairs.
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if θ = θ2. Thus, using the discounting function D( · ; · ) derived in (10), conditional on the

manager exerting effort, the value of the owner’s option, πo(P0;w1, w2, P1, P2), can be written

as:

πo(P0;w1, w2, P1, P2) = qHD(P0;P1)(P1 +θ1−K−w1)+(1−qH)D(P0;P2)(P2 +θ2−K−w2).

(11)

The manager’s option has a payout function of w1 if θ = θ1 and w2 if θ = θ2. Conditional

on the manager exerting effort, the value of the manager’s option, πm(P0;w1, w2, P1, P2), can

be written as:

πm(P0;w1, w2, P1, P2) = qH D(P0;P1)w1 + (1 − qH)D(P0;P2)w2. (12)

For notational simplicity, we sometimes will drop the parameter arguments and simply write

the owner’s and manager’s option values as πo(P0), and πm(P0), respectively.

The owner’s objective is to maximize its option value through its choice of the contract

terms w1, w2, P1, and P2. Thus, the owner solves the following optimization problem:

max
w1, w2, P1, P2

qH

(
P0

P1

)β

(P1 + θ1 − K − w1) + (1 − qH)
(

P0

P2

)β

(P2 + θ2 − K − w2) . (13)

This optimization is subject to a variety of constraints induced by the hidden information

and hidden action of the manager. The contract must induce the manager to accept the

contract, exert effort, exercise at the trigger P1 if θ = θ1, and exercise at the trigger P2 if

θ = θ2. It is the specification of these constraints to which we now turn.

There are both ex-ante and ex-post constraints. The ex-ante constraints ensure that the

manager exerts effort and that the contract is accepted. These are the standard constraints in

a static moral hazard setting. The ex-post constraints will ensure truth-telling in accordance

with the revelation principle. That is, in equilibrium the manager will exercise at the trigger

P1 when it truly has a high quality project, and at the trigger P2 otherwise. In addition,

there will be ex-post constraints on limited liability.

• ex-ante incentive constraint:

qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

w2 − ξ ≥ qL

(
P0

P1

)β

w1 + (1 − qL)
(

P0

P2

)β

w2. (14)

The left side of this inequality is the value of the manager’s option if effort is exerted minus

the cost of effort. The right side is the value of the manager’s option if no effort is exerted.
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This constraint ensures that the manager will exert effort. Re-arranging the ex-ante incentive

constraint (14) gives (
P0

P1

)β

w1 −
(

P0

P2

)β

w2 ≥ ξ

∆q
, (15)

where ∆q = qH − qL > 0.

• ex-ante participation constraint:

qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

w2 − ξ ≥ 0. (16)

This constraint ensures that the total value to the manager of accepting the contract is

non-negative.

The ex-post constraints ensure that managers will not have any incentive to divert value.

As discussed at the beginning of Section 2.1, managers with private information have an

incentive to misrepresent cash flows and divert free cash flows to themselves. For example,

the manager may have an incentive to lie and claim that a higher quality project is a lower

quality project, and then divert the difference in cash flows. This could be done by working

less hard [as in Harris et al. (1982)], or by spending the free cash flows on perquisites or

negative present value projects [as in Stulz (1990), Harris and Raviv (1996) and Bernardo

et al. (2001)]. Importantly, these incentive compatibility conditions ensure that this value

diversion does not occur; such deception only occurs off the equilibrium path.

• ex-post incentive constraints:
(

P0

P1

)β

w1 ≥
(

P0

P2

)β

(w2 + ∆θ) , (17)

(
P0

P1

)β

(w1 − ∆θ) ≤
(

P0

P2

)β

w2 . (18)

The second constraint will be shown not to bind, so only constraint (17) is relevant to

our discussion. The first inequality ensures that a manager of a higher quality project will

choose to exercise at P1. By truthfully revealing the private quality θ1 through exercising

at P1, the manager receives the wage w1. This inequality requires the payoff from truthful

revelation to be greater than or equal to the present value of the payoff from misrepresenting

the private quality by waiting until the trigger P2. The payoff from misrepresenting θ1 as

θ2 is equal to the wage w2, plus the value of diverting the private component of value ∆θ.

12



These truth-telling constraints are common in the literature on moral hazard and asymmetric

information. For example, entirely analogous conditions appear in Bolton and Scharfstein

(1990) and Harris et al. (1982).

• ex-post limited-liability constraints:

wi ≥ 0, i = 1, 2. (19)

Therefore, the owner’s problem has a total of six inequality constraints: the ex-ante

incentive and participation constraints, and each of the two ex-post incentive and limited-

liability constraints. Fortunately, the following four propositions simplify the problem in

that we can reduce the number of constraints to two.

Proposition 1. The limited-liability condition for a manager of a θ1-type project does not

bind. That is, w1 > 0.

Proof.

w1 ≥
(

P1

P2

)β

(w2 + ∆θ) ≥
(

P1

P2

)β

∆θ > 0,

The first and second inequalities follow from (17) and (19), respectively.

In order to motivate the manager to exert effort, we need to reward the manager with

an option value larger than zero, which is the manager’s reservation value. This leads to the

following result.

Proposition 2. The ex-ante participation constraint (16) does not bind.

Proof. (
P0

P1

)β

w1 +
1 − qH

qH

(
P0

P2

)β

w2 −
ξ

qH
≥ ξ

∆q
− ξ

qH
> 0,

where the first inequality follows from ex-ante incentive constraint (15) and the limited lia-

bility condition for the type-θ2 project.

The following result states that there is no rent for the manager of a θ2-type project.

Proposition 3. The limited liability for a manager of a θ2-type project binds, in that w2 = 0.

13



We verify the claim of this proposition in the appendix. The intuition is straightforward.

Giving the manager of a θ2-type project any positive rent implies a higher rent for managers

of θ1-type projects in order to meet the truth-telling constraint of the manager of a θ1-type

project. In order to minimize the rents subject to the manager’s participation and incentive

constraints, the owner shall give the manager of a θ2-type project zero ex-post rent.

Proposition 4 allows us to ignore (18) in the optimization problem.

Proposition 4. Optimal contracts imply w1 ≤ ∆θ.

A formal proof of this proposition appears in the appendix. Intuitively, if w1 > ∆θ, then

the manager of a θ2-type project would never accept the equilibrium contract with w2 = 0.

This would clearly be inconsistent with Proposition 3.

Propositions 1–4 jointly simplify the owner’s optimization problem as follows:

max
w1, P1, P2

qH

(
P0

P1

)β

(P1 + θ1 −K) − qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

(P2 + θ2 −K) (20)

subject to

(
P0

P1

)β

w1 ≥
(

P0

P2

)β

∆θ , (21)

(
P0

P1

)β

w1 ≥ ξ

∆q
. (22)

In summary, we now have a simplified optimization problem for the owner. Equation (20) is

the owner’s option value. Constraint (21) is the simplified ex-post incentive constraint for the

manager of the θ1-type project. Constraint (22) ensures that it is in the manager’s interest

to extend his effort at time zero.

The following proposition demonstrates that at least one of the two constraints binds.

Proposition 5. At least one of (21) and (22) binds.

The argument is immediate. If Proposition 5 did not hold, then reducing w1 will in-

crease the owner’s value strictly without violating any of the constraints. Note that the two

constraints can be written more succinctly as

(
P0

P1

)β

w1 ≥ max

[(
P0

P2

)β

∆θ,
ξ

∆q

]
. (23)
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3 Model Solution: Optimal Contracts

In this section, we provide the solution to the optimal contracting problem described in the

previous section: maximizing (20) subject to inequality constraints (21) and (22). We find

that the nature of the solution depends on the parameter values. In particular, the solution

depends explicitly on the magnitude of the cost benefit ratio of inducing the manager’s

effort. Depending on this magnitude, the optimal contract can take on three possible types:

a “pure hidden information” type, a “joint hidden information/hidden action” type, and a

“pure hidden action” type.

3.1 General Properties of the Solution

Before we provide the explicit solutions for the three contract regions, we discuss some general

properties of contracts that hold for all regions.

The following proposition demonstrates that the manager of the higher quality project

will exercise at the first-best level. Intuitively, for any manager’s option value that satisfies

the constraint (23), the owner will always prefer to choose the first best timing trigger P ∗
1 ,

and vary the wage w1 to achieve the same level of compensation. On the margin, for the

good state it is cheaper for the owner to increase the wage than to deviate from optimal

timing.

Proposition 6. The optimal contracts have P1 = P ∗
1 , for all admissible parameter regions.

Proof. Consider any candidate optimal contract
(
w̄1, P̄1, P̄2

)
with P̄1 6= P ∗

1 . The owner may

improve his surplus by proposing an alternative contract
(
ŵ1, P

∗
1 , P̄2

)
, in which ŵ1 is chosen

such that the manager’s option has the same value as the first contract, in that (P0/P
∗
1 )β ŵ1 =

(
P0/P̄1

)β
w̄1. The newly proposed contract is clearly feasible, as it will also satisfy con-

straints (21) and (22). For all such constant levels of the manager’s option value, the owner’s

objective function (20) is maximized by choosing P1 = P ∗
1 = arg max

x
(P0/x)β (x + θ1 − K).

As we shall now see, it is less costly for the owner to distort P2 away from the first-best

level than to distort P1 away from the first-best level in order to provide the appropriate

incentives to the manager. The next proposition demonstrates that delay (beyond first-best)

for the lower quality project is needed in order to create enough incentives for the manager

of a higher-quality project not to imitate the one with a lower-quality project.
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Proposition 7. For all admissible parameter regions, the investment trigger for a manager

of a θ2-type project is (weakly) later than the first-best, in that P2 ≥ P ∗
2 .

Proof. Suppose P2 < P ∗
2 . It is simple to show that this contract is dominated by the contract

with P2 = P ∗
2 . we can always increase P2 without violating constraint (21). Moreover, the

objective function (20) is increasing in P2, for P2 < P ∗
2 , irrespective of which constraint binds.

Thus, any contract with P2 < P ∗
2 is dominated by one with P2 = P ∗

2 .

Intuitively, the necessity of inducing truth-telling leads the manager to display a greater

“option to wait” than the first-best solution. In order to dissuade the manager of a θ1-type

project from exercising at the trigger P2, the contract must sufficiently increase P2 above P ∗
2

to make such “lying” unprofitable.

We shall see that the extent to which P2 exceeds P ∗
2 depends explicitly on the relative

strengths of the forces of hidden information and hidden action. The amount of suboptimal

delay will vary across the three regions, and will be discussed in greater detail below.

3.2 Optimal Contracts

We first define the three regions that serve to determine the nature of the optimal contract.

As a result of Proposition 5, the solution will depend on which of the two constraints (21)

and (22) bind. The key to the contract is the magnitude of the ratio of costs to benefits

of inducing the manager’s effort, defined by ξ/∆q. The numerator is the direct cost of

extending effort, and the denominator is the change in the likelihood of drawing a higher

quality project θ1 due to effort. The regions are then defined by where this cost benefit ratio

falls relative to the present value of receiving a cash flow of ∆θ at three particular trigger

values: P ∗
1 = P ∗(θ1), P ∗

2 = P ∗(θ2), and P ∗
3 = P ∗(θ3), where

θ3 = θ2 −
qH

1 − qH
∆θ < θ2. (24)

These present values are ordered by (P0 /P ∗
3 )β∆θ < (P0 /P ∗

2 )β∆θ < (P0 /P ∗
1 )β∆θ. Note that

another potential region in which ξ/∆q > (P0/P
∗
1 )β∆θ exists, however in this range the costs

of effort are so high as to no longer justify the exertion of effort in equilibrium. Thus, we do

not consider this region.17

17A proof of this result is available from the authors by request.
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Because optimal contracts specify P1 = P ∗
1 and w2 = 0 across all three regions, we may

focus on P2 and w1 when we describe the optimal contracts in each of the three regions. The

proofs detailing the solution are provided in Appendix A.

• Hidden Information Only Region: ξ/∆q < (P0/P
∗
3 )β ∆θ

In this region, we have

P2 = P ∗
3 = P ∗(θ3) > P ∗

2 , (25)

w1 =
(

P ∗
1

P ∗
3

)β

∆θ, (26)

where θ3 is given in (24).

The net costs of inducing effort are low enough so that there is no need for the firm to

have to compensate the manager for extending effort. In this range, the ex-ante incentive

constraint does not bind, and therefore the cost of effort does not find its way into the

optimal contract.18 The compensation that the manager of the θ1-type project receives is

purely an informational rent that induces the manager to exercise at the first-best trigger

P ∗
1 , in accordance with the revelation principle. Since w1 is relatively low in this region,

the P2 trigger needs to be high (relative to the first-best trigger P ∗
2 ) in order to dissuade the

manager of the θ1-type project from deviating from the equilibrium first-best trigger P ∗
1 .

We can use these contract terms to place a value on the owner’s and manager’s option

values. The owner’s and manager’s option values, πo(P0) and πm(P0), respectively, can be

written as:

πo(P0) = qH

(
P0

P ∗
1

)β

(P ∗
1 + θ1 − K) + (1 − qH)

(
P0

P ∗
3

)β

(P ∗
3 + θ3 − K) , (27)

πm(P0) = qH

(
P0

P ∗
3

)β

∆θ. (28)

It is interesting to note that the solution for the owner’s option value is observationally

equivalent to the first-best solution in which one substitutes θ3 for the lower project quality

θ2. In such a setting, the owner will choose to exercise at P ∗
1 if θ = θ1 and at P ∗

3 if θ = θ3.

Thus, the impact of the costs of hidden information is fully embodied by a reduction of

project quality in the low state.
18In a different setting where the hidden information is the cost of exercising, Maeland (2002) shows a

similar result.
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• Joint Hidden Information/Hidden Action Region: (P0/P
∗
3 )β ∆θ ≤ ξ/∆q ≤ (P0/P

∗
2 )β ∆θ

In this region, we have

P2 = PJ = P0

(
∆q∆θ

ξ

)1/β

> P ∗
2 , (29)

w1 =
(

P ∗
1

PJ

)β

∆θ =
ξ

∆q

(
P ∗

1

P0

)β

. (30)

Here, both the ex-ante and ex-post constraints bind. Since now the manager must be

induced into providing effort, w1 must be high enough to provide enough compensation for the

ex-ante incentive constraint (22) to bind. This reflects the hidden action component of the

contract. In addition, the exercise trigger P2 must be high enough to dissuade the manager

of the θ1-type project from deviating from the equilibrium first-best trigger P ∗
1 . Thus, in

this region, P2 is set so that the ex-post incentive constraint (21) binds, ensuring that the

revelation principle holds. This requires that P2 be above the full-information trigger P ∗
2 .

This deviation from the full-information trigger reflects the hidden information component

of the contract.

Importantly, P2 is lower in this region than it was in the hidden information only region.

This is due to the fact that in this joint region w1 is now higher in order to induce effort. This

higher wage makes it easier to satisfy the truth-telling constraint, and no longer necessitate as

great a deviation from P ∗
2 in order to prevent managers of the θ1-type project from pretending

to have a θ2-type project. Therefore, perhaps surprisingly, moral hazard serves to increase

investment efficiency since the increased share of the firm that must go to compensate the

manager leads the manager to more fully internalize the benefits of efficient investment timing.

The owner’s and manager’s option values, πo(P0) and πm(P0), respectively, can be written

as:

πo(P0) = qH

(
P0

P ∗
1

)β

(P ∗
1 + θ1 − K) + (1 − qH)

(
P0

PJ

)β

(PJ + θ3 − K) , (31)

πm(P0) = qH
ξ

∆q
. (32)

The owner’s option value deviates from the first-best value, V ∗(P0) in (9) in two ways. First,

the hidden information rents effectively make the manager mark down his privately observed

component of cash flows from θ2 to θ3; similar to that in the pure hidden information region.

Second, the exercise trigger for a manager of a θ2-type project is equal to PJ , which is larger
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than P ∗
2 . Note that the only difference between πo(P0) in this region and in the pure hidden-

information region is the different terms for the exercise trigger: PJ versus P ∗
3 . Here, the

trigger is lower due to the hidden action component.

• Hidden Action Only Region: (P0/P
∗
2 )β ∆θ < ξ/∆q < (P0/P

∗
1 )β ∆θ

In this parameter range, we have

P2 = P ∗
2 , (33)

w1 =
ξ

∆q

(
P ∗

1

P0

)β

. (34)

The equilibrium triggers equal those of the first-best outcomes. The moral hazard costs

are so high that the rent needed for motivating high effort (via the ex-ante incentive con-

straint) is sufficiently large so that the ex-post incentive constraints do not demand additional

rents. That is, the wage needed to motivate the manager to extend effort ends up being

high enough so that the manager of the θ1-type project no longer needs P2 to exceed P ∗
2 in

order to dissuade him from deviating from the equilibrium trigger P ∗
1 . Thus, the contract is

entirely driven by the need to motivate effort, as the ex-post incentive constraint that reflects

hidden information does not bind.

The owner’s and manager’s option values, πo(P0) and πm(P0), respectively, can be written

as:

πo(P0) = V ∗(P0) − qH
ξ

∆q
, (35)

πm(P0) = qH
ξ

∆q
. (36)

The owner’s option value is equal to the first-best solution V ∗(P0) characterized in (9), minus

the present value of the rent paid to the manager in order to induce effort.

Figure 1 summarizes the details of the optimal contracts through the three regions. The

upper and lower graphs plot the equilibrium trigger strategy P2 and wage payment w1 in

terms of effort cost ξ, respectively. The upper graph shows that the trigger strategy for the

manager of the θ2-type project is flat and equal to P ∗
3 for ξ in the pure hidden information

region; is decreasing and convex in ξ for the joint hidden action/hidden information region;

and is flat and equal to the first-best trigger level P ∗
2 for ξ in the pure hidden action. The

equilibrium trigger P2 is closer to the first-best level, for higher level of ξ, ceteris paribus.
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The lower graph plots corresponding wage contracts for a manager of the θ1-type project.

For low levels of ξ (pure hidden information region), he only needs to be compensated with

pure informational rents. In the joint hidden information/hidden action region, w1 increases

linearly in ξ. For sufficiently high ξ, the manager of a θ1-type project is sufficiently rewarded

so as to exercise at the first-best level.

3.3 An Extension to Cases with Continuous Distributions of θ

For ease of presentation, our basic model uses a simple two-point distribution for θ. In

order to check the robustness of our results, we generalize our model to allow for admissible

continuous distributions of θ on
[
θ, θ̄
]

in Appendix B. In this setting, the principal designs

the contract such that the manager will find it optimal to exert effort at time zero and then

reveal their θ truthfully by choosing the recommended equilibrium strategy P (θ) and w(θ).

The managers are protected by ex-post limited liability in that w(θ) ≥ 0 for all θ. Also, the

manager’s participation is voluntary at time zero. We show that the following key results

remain valid:

1. Agency problems (hidden information and hidden action) lead to a delayed investment

timing decision, compared with first-best trigger levels;

2. Introducing hidden action into the model at time zero lowers agency costs, because the

manager has an option to align his incentives better with the owner by exerting effort

at time zero. This leads to an investment timing trigger closer to the first-best level.

In addition, the model predicts that the manager with the lowest present value of privately

observed cash flows θ receives no rents, in that w(θ) = 0 as in our basic setting.19 The ex-ante

participation constraint does not bind, because the limited liability condition for the manager

and ex-ante incentive constraint together provide enough incentive for the manager with any

ex-post realized θ to participate, as in our basic setting. For technical convenience, we have

assumed that the distribution of θ under effort first-order stochastically dominates that under

no effort. Intuitively, the manager is more likely to draw a “better” distribution of θ after

exerting effort than not exerting effort. Under those conditions,20 managers of higher quality
19Recall that the manager with θ2 receives no rents.
20See Appendix B for other technical conditions.
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projects will exercise at lower equilibrium trigger strategies and receive higher equilibrium

wages.

We may further generalize our model by allowing for multiple discrete choices of effort

levels. One can solve this problem by following a similar two-step procedure: (i) first solving

for the optimal contract for each given level of effort; and (ii) then choosing the “optimal”

level of effort for the owner by searching for the maximum among owner’s option value across

all effort levels. Subtle technical issues arise when we allow for effort choice to be continuous.21

However, the basic approach and intuition remain valid.

4 Model Implications

In this section, we analyze several of the more important implications of the model. First,

Section 4.1 examines the stock price reaction to investment (or failure to invest). We shall

see that the stock price will move by a discrete jump due to the information released at the

trigger P ∗
1 . Investment at P ∗

1 signals good news about project quality and the stock price

jumps upward; failure to invest at P ∗
1 signals bad news about project quality and the stock

price falls downward. Second, a clear prediction of our model is that the principal-agent

problem will introduce inertia into a firm’s investment behavior, in that investment will on

average be delayed beyond first-best. Section 4.2 considers the factors that influence the

expected lag in investment. Third, specifically because the timing of investment differs

from that of the first-best outcome, the principal-agent problem results in a welfare loss and

reduction in the owner’s option value. Section 4.3 analyzes the comparative statics of the

welfare loss and owner’s option value with respect to the key parameters of the model.

In this section, we focus our analysis on the contract that prevails in the joint hidden

information/ hidden action region. It is in this region that the incentive problems are the

richest and most meaningful. The terms of the contract and resulting option values are

displayed in equations (29)–(32).
21We need to verify the validity of first-order approach, which refers to the practice of replacing an infinite

number of global incentive constraints imposed by ex-ante incentive to exert effort, with simple local incentive
constraints as captured by first-order condition associated with the global incentive constraints. See Rogerson
(1985) and Jewitt (1988) for more on the first-order approach.
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4.1 Stock Price Reaction to Investment

In this section, we analyze the stock price reaction to the information released via the man-

ager’s investment decision.22 The manager’s investment decision will signal to the market

the true value of θ, and the stock price will reflect this information revelation. Importantly,

this will allow for the manager’s compensation contract to be contingent on the firm’s stock

price. That is, while in the model we have made the incentive contract’s wages to be con-

tingent on the manager’s investment decision, the wages can also be made contingent on the

stock price.

The equity value of the firm is equal to the value of the owner’s option value given in

(31). Prior to the point at which P (t) reaches the threshold P ∗
1 , the market does not know

the true value of θ: the market believes that θ = θ1 with probability qH and θ = θ2 with

probability 1 − qH .

Once the process P (t) hits the threshold P ∗
1 , the manager’s unobserved component of

cash flows is fully revealed. The manager’s investment behavior signals to the market the

true value of θ. If the manager exercises the option at P ∗
1 , then the manager reveals to the

market that the privately observed component of cash flows is high. Therefore, the firm’s

value instantly jumps to Su, given by

Su = P ∗
1 + θ1 − K − w1 = P ∗

1 + θ1 − K −
(

P ∗
1

PJ

)β

∆θ . (37)

If the manager does not exercise his option at P ∗
2 , then the market infers that the manager’s

privately observed component of cash flows is low. Then, the firm’s value instantly drops to

Sd, given by

Sd =
(

P ∗
1

PJ

)β

(PJ + θ2 − K) . (38)

Figure 2 plots the stock price S as a function of P , the current value of the process P (t).

For all P < P ∗
1 , S (P ) = πo (P ), where πo is given in (31). For P = P ∗

1 , S(P ) = Su if

investment is undertaken, and S(P ) = Sd if investment is not undertaken. The jump in the

stock price at P ∗
1 is a result of the information revealed by the manager’s actions.

This result is consistent with the empirical findings in McConnell and Muscarella (1985).

They find that announcements of unexpected increases in investment spending lead to in-

creases in stock prices, and vice versa for unexpected decreases.
22We thank the referee for suggesting this discussion.
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Since the stock price movement at the trigger P ∗
1 reveals the true value of θ, the manager’s

incentive contract can be made contingent on the stock price. For example, the manager

could be paid a bonus w1 if the stock price jumps upward to Su. Since w2 = 0, no bonus is

paid if the stock price falls to Sd. Similarly, such a contingent payoff could be implemented

through a properly parameterized stock option grant.

4.2 Agency Problems and Investment Lags

In the standard real options setting, investment is triggered at the value maximizing triggers,

P ∗
1 and P ∗

2 , for the higher and lower project quality outcomes, respectively. However,

in our setting, while the trigger for investment in the higher quality state remains at P ∗
1 ,

investment in the lower quality state may be triggered at PJ , which is higher than the first-

best benchmark level P ∗
2 .

Let T and T ∗ be the stopping times at which the option is exercised, in our model and the

first-best setting, respectively. We denote Γ = E (T − T ∗) as the expected time lag due to the

principal-agent problem. A solution for such an expectation can be derived using Harrison

(1985, Chapter 3). The expected lag is given by

Γ =
(

1 − qH

α − σ2/2

)
ln
(

PJ

P ∗
2

)
(39)

=
(

1 − qH

α − σ2/2

)[
ln
(

P0

K − θ2

)
+

1
β

ln
(

∆q∆θ

ξ

)
− lnβ + ln (β − 1)

]
, (40)

where we assume that α > σ2/2 in order for this expectation to exist.

An important insight from Section 3 is that increases in the cost benefit ratio of inducing

effort lead to less distortion in investment timing. That is, as the ratio ξ/∆q increases, the

equilibrium trigger PJ becomes closer to the first-best trigger P ∗
2 . This is confirmed by the

following comparative static:

∂Γ
∂ (ξ/∆q)

= −
(

1 − qH

α − σ2/2

)
∆q

βξ
< 0. (41)

An increase in the volatility of the underlying project, σ, has an ambiguous effect on the

expected time lag Γ. This can be seen from the following comparative static:

∂Γ
∂σ

= −
(

1 − qH

α − σ2/2

)
1
β2

[
ln
(

∆q∆θ

ξ

)
− β

β − 1

]
∂β

∂σ
+

(1 − qH) σ

(α − σ2/2)2
ln
(

PJ

P ∗
2

)
, (42)

where ∂β/∂σ < 0. An increase in σ raises the option value and makes waiting more worth-

while, implying that both P ∗
2 and PJ are larger, ceteris paribus. However, if the marginal
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cost benefit ratio for exerting effort is relatively high, in that

ln
(

ξ

∆q

)
>

β − 1
β

+ ln(∆θ), (43)

then the change of PJ relative to the change in P ∗
2 is larger. Therefore, under such conditions

the expected time lag increases in volatility σ.

An increase in the expected growth rate of the project, α, also has an ambiguous effect

on the expected time lag Γ. This can be seen from the following comparative static:

∂Γ
∂α

= − 1 − qH

(α − σ2/2)2


ln

(
PJ

P ∗
2

)
− 1

β

(
ln
(

∆q∆θ

ξ

)
− β

β − 1

)
α − σ2/2√

(α − σ2/2)2 + 2rσ2


 . (44)

However, if (43) holds, then expected time lag decreases with drift α.

4.3 Welfare Loss and Option Values

Although the owner chooses the value-maximizing contract to provide an incentive for the

manager to extend effort, the agency problem ultimately still proves costly. In an owner-

managed firm, the manager will extend effort and will exercise the option at the first-best

stopping time. However, in firms with delegated management, there will be a welfare loss

due to the firm’s suboptimal exercise strategy.

By a welfare loss, we are referring to the difference between the values of the first-best

option value, V ∗(P0) in (9), and the sum of the owner and manager options, πo(P0) and

πm(P0) in (31) and (32). Thus, define the welfare loss due to agency issues as L, where

L = V ∗(P0) − [πo(P0) + πm(P0)]. Simplifying, we have:

L = (1 − qH)

[(
P0

P ∗
2

)β

(P ∗
2 − K + θ2) −

(
P0

PJ

)β

(PJ − K + θ2)

]
. (45)

This welfare loss is likely to have economic ramifications on the structure of firms. For firms

in industries with potentially large welfare losses due to agency costs, there will be powerful

forces that will push them to be privately held, or to be organized in a manner that provides

the closest alignment between owners and managers.

There are two effects of a later-than-first-best exercising trigger (PJ > P ∗
2 ) on the welfare

loss L: (i) a larger cash flow PJ + θ2 −K > P ∗
2 + θ2 −K reduces welfare loss, ceteris paribus,

and (ii) a lower discount factor [(P0/PJ)β < (P0/P
∗
2 )β ] increases the welfare loss. The latter

dominates the former, because PJ > P ∗
2 and P ∗

2 = arg max (P0/x)β (P0 + θ2 − K). Equation
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(45) suggests that welfare loss is driven by the distance of the equilibrium trigger PJ from

P ∗
2 . As previously discussed, the firm’s exercise timing becomes less distorted as the net cost

benefit ratio of inducing effort increases. That is, as the ratio ξ/∆q increases, the equilibrium

trigger PJ gets closer to the first-best trigger P ∗
2 , and thus:

∂L

∂ (ξ/∆q)
< 0. (46)

In terms of the owner’s option value, the incentive problem represents a trade-off between

timing efficiency and the surplus that must be paid to the manager to extend effort. One can

obtain better intuition on the forces at work in the agency problem through the following

decomposition. In the first-best solution, the owner pays the cost of effort ξ and obtains the

first-best option value V ∗(P0). In the agency equilibrium, the owner delegates the cost of

effort to the manager, but then holds the sub-optimal option value πo(P0). The loss in the

owner’s option value due to the incentive problem is therefore given by:

∆πo(P0) ≡ V ∗(P0) − ξ − πo(P0 ) = L + V m, (47)

where L is the total welfare loss given in (45), and V m is the ex-ante expected surplus paid

to the manager to exert effort, and is given by:

V m = πm(P0) − ξ = qH
ξ

∆q
− ξ =

qL

∆q
ξ. (48)

Decomposing the loss in the owner’s option value given in (47) into the sum of the tim-

ing component (L) and the compensation component (V m) is useful for providing intuition.

When the owner delegates the option exercise decision to the manager, the owner’s option

value is lowered for two reasons: (i) the exercising inefficiency induced by agency and infor-

mational asymmetry; and (ii) the surplus needed to pay the manager to induce him to extend

effort and reveal his private information. The impact of a higher effort cost ξ represents a

trade-off in terms of the timing and compensation components. As shown in (46), a higher

effort cost results in more efficient investment timing. This must be traded-off against the

increased compensation that must be paid to provide appropriate incentives to the manager,

as seen in (48). Therefore, the total effect on the loss of owner’s option value due to an

increase in ξ depends on whether the “timing effect” or “compensation effect” is larger, in
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that

∂

∂ξ
∆πo(P0) = − (1 − qH) (β − 1)

(
P0

PJ

)β (
1 − P ∗

2

K2

)
PJ

βξ
+

qL

∆q
(49)

=
β − 1

β

1
∆q∆θ

[− (1 − qH) (PJ − P ∗
2 ) + qL (P ∗

2 − P ∗
1 )] . (50)

If the investment trigger PJ is significantly larger than P ∗
2 , in that

(1 − qH) (PJ − P ∗
2 ) > qL (P ∗

2 − P ∗
1 ) , (51)

then an increase in ξ leads to a smaller loss in the owner’s option value, as the gain in timing

efficiency overshadows the loss due to the manager’s increased compensation.23

5 Impatient Managers and Early Investment

In the model, both owners and managers value payoffs identically. However, it may be the

case that managers are more impatient than owners. There are several potential justifications

for such an assumption. First, there are various models of managerial myopia that attempt

to explain a manager’s preference for choosing projects with quicker pay-backs, even in the

face of eschewing more valuable long-term opportunities. For example, Narayanan (1985)

and Stein (1989) argue that concerns about either the firm’s short-term performance or labor-

market reputation may give managers an incentive to take actions that pay off in the near

term at the expense of the longer term. Second, in our “investment timing” setting, greater

impatience can represent the manager’s preference for empire building or greater perquisite

consumption and reputation that comes from running a larger business sooner rather than

later. Third, managerial short-termism could be the result of the manager facing stochastic

termination.24 This termination, for example, could be due to the manager leaving for a

better job elsewhere or being fired. We can model such stochastic termination by supposing

that the manager faces an exogenous termination driven by a Poisson process with intensity
23Note that the above condition is non-empty. This can be seen as follows. Condition (51) is equivalent to

PJ >
1

1 − qH
[(1 − qH)P ∗

2 + qL(P ∗
2 − P ∗

1 )] = P ∗
3 − ∆q

1 − qH
(P ∗

2 − P ∗
1 ) .

The joint hidden action/hidden information region is characterized by P ∗
2 ≤ PJ ≤ P ∗

3 . Therefore, the above
condition is met for some PJ .

24We assume that the owner can costlessly replace the manager in the event of separation.
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ζ. The addition of stochastic termination transforms the manager’s option to one in which

his discount rate r is elevated to r + ζ to reflect the stochastic termination.25

Phrased in real options terms, managerial impatience leads to a smaller option to wait

for the manager, potentially reversing the previously mentioned larger “option to wait” that

results from the standard contracting model. Thus, this generalization leads to very different

predictions about investment timing. While the basic model predicts that investment will

never occur earlier than the first-best case, in this generalized setting investment can occur

earlier or later than the first-best case. This is similar to the result found in Stulz (1990) where

there is both over- and under-investment in the capital allocation decision, as shareholders

use debt to constrain managerial empire-building preferences.

Recall that the owner discounts future cash flows by the discount function D(P0; P̂ ) =(
P0/P̂

)β
for P0 < P̂ . We can therefore represent greater managerial impatience by defining a

managerial discount function Dm(P0; P̂ ) =
(
P0/P̂

)γ
, where γ > β ensures that Dm(P0; P̂ ) <

D(P0; P̂ ). That is, a dollar received at the stopping time P̂ is worth less to the manager

than to the owner.26

This generalized problem is basically the same as that of Section 2, with the exception

that the constraints all use γ rather than β. In addition, much of the solution is similar.

For example, Propositions 1 and 2 apply as before, using the same proof. In addition,

Proposition 3 and 4 remain valid, and are demonstrated in Appendix C. Thus, the optimal

contracting problem in the generalized setting can be written as:

max
w1, P1, P2

qH

(
P0

P1

)β

(P1 + θ1 −K)− qH

(
P0

P1

)β

w1 + (1 − qH)
(

P0

P2

)β

(P2 + θ2 −K), (52)

subject to
(

P0

P1

)γ

w1 ≥
(

P0

P2

)γ

∆θ , (53)
(

P0

P1

)γ

w1 ≥ ξ

∆q
. (54)

Similar to Proposition 5, at least one of (53) and (54) binds. Otherwise, the owner may strictly

increases his payoff by lowering the wage payment w1 without violating any constraints.
25We suppose that the manager receives his reservation value (normalized to zero), when the termination

occurs. See Yaari (1965), Merton (1971) and Richard (1975) for analogous results on stochastic horizon.
26Note that this is also consistent with the interpretation that the manager has a higher discount rate than

the owner. Since ∂β/∂r > 0, the manager’s higher discount rate is embodied by the condition γ > β.

27



Just as in Section 3, there are three contracting regions: a hidden information region,

a joint hidden information/hidden action region, and a hidden action region, depending on

the level of cost/benefit ratio ξ/∆q. In this section, we focus on the joint hidden informa-

tion/hidden action region.27

The joint hidden information/hidden action region is defined by: (P0/P̂
∗
3 )γ∆θ < ξ/∆q <

(P0/P
∗
2 )γ∆θ, where P̂ ∗

3 is defined in (C.11), and shown to be greater than the trigger P ∗
2 . In

this region the optimal contract can be written as:

P1 = P̂1, (55)

P2 = P̂J = P0

(
∆q∆θ

ξ

)1/γ

, (56)

w1 =

(
P̂1

P̂J

)γ

∆θ < ∆θ, (57)

w2 = 0, (58)

where P̂1 is the root of H(x) = 0, defined by

H(x) =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)(
x

P0

)γ ξ

∆q

]
− x. (59)

Unlike the results of the basic model, we now have the possibility of investment occurring

before the first-best trigger, in that P1 = P̂1 < P ∗
1 . To see this, note that H(0) = P ∗

1 and

H(P ∗
1 ) =

β

β − 1

(
1 − γ

β

)(
P ∗

1

P0

)γ ξ

∆q
< 0. (60)

The derivative of H( · ) is

H ′(x) =
β

β − 1
γ

(
1 − γ

β

)(
x

P0

)γ−1 1
P0

ξ

∆q
− 1 < 0. (61)

Therefore, there exists a unique solution P1 = P̂1 < P ∗
1 .

As in the basic model, the trigger strategy for the manager of a θ2-type project is greater

than the first-best trigger, P ∗
2 . Recall that P̂J > P ∗

2 in the region (P0/P̂
∗
3 )γ∆θ < ξ/∆q <

(P0/P
∗
2 )γ∆θ, where P ∗

3 is given in (C.11). However, for γ > β, the trigger is closer to the

first-best trigger than for the standard case in which γ = β. This is true, since for γ > β,

P̂J = P0

(
∆q∆θ

ξ

)1/γ

< P0

(
∆q∆θ

ξ

)1/β

= PJ . (62)

27The derivations for the optimal contracts in the other regions are shown in Appendix C.

28



Thus, when the manager is more impatient than the owner, equilibrium investment occurs

sooner than it does in the standard principal-agent model described earlier in the paper. In

particular, investment actually occurs prior to the first-best trigger for the θ1-type project.

The greater impatience on the part of the manager implies that it is in the owner’s interest

to offer a contract that motivates earlier exercise. This results in both costs and benefits

to the owner. By motivating investment for the θ2-type project earlier than the standard

principal-agent model, investment timing moves closer to the first-best. Since the manager

receives no surplus for the θ2-type project, the owner is the sole beneficiary of this timing

efficiency. However, investment for the θ1-type project occurs earlier than that in the model

of Section 2, which is the first-best outcome. Therefore, the owner is worse off with respect

to the θ1-type projects for two reasons: investment occurs too early, and the wage paid to

the manager in this state must be higher (than in the standard model) in order to motivate

earlier investment. The net effect on ex-ante owner’s option value is ambiguous and is driven

by the relative parameter values.

6 Conclusion

This paper extends the real options framework to account for the agency and information

issues that are prevalent in many real-world applications. When investment decisions are

delegated to managers, contracts must be designed that provide incentives for the manager

to both extend effort and to truthfully reveal their private information. This paper provides

a model of optimal contracting in a continuous-time principal-agent setting in which there is

both moral hazard and adverse selection. The implied investment behavior differs significantly

from that of the first-best no-agency solution. In particular, there will be greater inertia in

investment, as the model leads to the manager having an even greater option to wait than

the owner. The interplay between the twin forces of hidden information and hidden action

leads to markedly different investment outcomes than when only one of the two forces is at

work. Allowing the manager to have an effort choice that affects the likelihood of getting a

high quality project mitigates the investment inefficiency due to informational asymmetry.

When the model is generalized to include differing degrees of impatience between owners and

managers, we find that investment may occur either earlier or later than optimal.

Some extensions of the model would prove interesting. First, the model could allow for
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repeated investment decisions. This richer setting would permit owners to update their

beliefs over time, and for managers to establish reputations. Second, the model could also

be generalized to include competition in both the labor and product markets. As shown by

Grenadier (2002), the forces of competition greatly alter the investment behavior implied by

standard real options models.
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Appendices

A Solution to the Optimal Contracting Problem

This appendix provides a derivation of the optimal contracts detailed in Section 3.

Propositions 1 and 2 allow us to express the owner’s objective as maximizing the value

of his option, given in (13), subject to (15), (17), (18) and w2 ≥ 0. Using the method of

Kuhn-Tucker, we form the Lagrangian as follows:

L =
(

P0

P1

)β

(P1 + θ1 − K − w1) +
1 − qH

qH

(
P0

P2

)β

(P2 + θ2 − K − w2)

+ λ1

[(
P0

P1

)β

w1 −
(

P0

P2

)β

(w2 + ∆θ)

]
+ λ2

[(
P0

P2

)β

w2 −
(

P0

P1

)β

(w1 − ∆θ)

]

+ λ3

[(
P0

P1

)β

w1 −
(

P0

P2

)β

w2 −
ξ

∆q

]
+ λ4 w2, (A.1)

with corresponding complementary slackness conditions for the four constraints.

The first-order condition with respect to w1 gives

λ1 − λ2 + λ3 = 1 . (A.2)

The first-order condition with respect to w2 implies
(
−λ1 + λ2 − λ3 −

1 − qH

qH

)(
P0

P2

)β

+ λ4 = 0. (A.3)

Simplifying (A.3) gives λ4 = (P0/P2)
β /qH > 0. Therefore, the complementary slackness

condition λ4 w2 = 0 implies that w2 = 0. This proves Proposition 3.

The first-order conditions with respect to P1 and P2 imply:

P1 =
β

β − 1
(K − θ1 − λ2∆θ) , (A.4)

P2 =
β

β − 1

(
K − θ2 +

qH

1 − qH
λ1 ∆θ

)
. (A.5)

We conjecture that the ex-post incentive constraint for the manager of a θ2-type project,

(18), does not bind, in that λ2 = 0. We verify this conjecture, formalized in Proposition 4 for

each region. With λ2 = 0, then (A.2) may be written as λ1 + λ3 = 1. Therefore, it must be

the case that at least one of (21) and (22) binds (Proposition 5). Combining the conjecture

λ2 = 0 with (A.4) gives P1 = P ∗
1 (Proposition 6).

Thus, we have shown that provided we verify that (18) does not bind, the owner’s opti-

mization problem is summarized in equations (20)-(22). This problem is now solved below.
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A.1 The Hidden Information Only Region

Suppose that the ex-ante incentive constraint (22) does not bind. Since (21) must hold as an

equality and λ1 = 1, (A.5) implies P2 = P ∗
3 where P ∗

3 is given in (25) and w1 is given in (26).

The inequality P ∗
1 < P ∗

3 implies (18) does not bind, as conjectured. Finally, in order to be

consistent with the assumption that (22) does not bind, we require that ξ/∆q < (P0/P
∗
3 )β ∆θ,

the parameter range defining this hidden information only region.

A.2 The Joint Hidden Information/Hidden Action Region

We derive the optimal contract in this region by conjecturing that both (21) and (22) bind.

Solving these two equality constraints gives (29) and (30). The inequality PJ > P ∗
1 confirms

that (18) does not bind, as conjectured. The solution for P2 implies that λ1 can be written

as:

λ1 =
β − 1

β
(PJ − P ∗

2 )
1 − qH

qH∆θ
. (A.6)

The only possible region under which both constraints may bind28 is characterized by

(
P0

P ∗
3

)β

∆θ <
ξ

∆q
<

(
P0

P ∗
2

)β

∆θ . (A.7)

We now show that indeed both (21) and (22) bind throughout this entire region. The region

characterized by (A.7) can be equivalently expressed as P ∗
2 < PJ < P ∗

3 . Because (A.6)

implies that λ1 is monotonically increasing in PJ , therefore, 0 < λ1 < 1 in this region. Since

λ3 = 1−λ1, we also have 0 < λ3 < 1. By complementary slackness conditions, both (21) and

(22) bind in this joint region, confirming the result that (A.7) is the whole region, with both

constraints binding.29

A.3 The Hidden Action Only Region

Suppose that (21) does not bind and (22) binds, then λ1 = 0 by complementary slackness,

and λ3 = 1. Therefore, P2 = P ∗
2 given in (33) and w1 is given in (34). We need to verify

that (21) and (18) do not bind. The constraint (18) is non-binding if and only if P ∗
1 < PJ .

The constraint (21) is non-binding if and only if PJ < P ∗
2 . Thus, together these imply that

28If (P0/P ∗
1 )β∆θ > ξ/∆q > (P0/P ∗

2 )β∆θ, then only the third constraint binds. If (P0/P ∗
3 )β∆θ > ξ/∆q,

then only the first constraint binds. If ξ/∆q > (P0/P ∗
1 )β∆θ, then supporting high effort is no longer in the

owner’s interest.
29We also need additional technical conditions to ensure that inducing the manager to extend high effort is

in the interest of the owner.
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P ∗
1 < PJ < P ∗

2 , which is identical to the condition (P0/P
∗
2 )β∆θ < ξ/∆q < (P0/P

∗
1 )β∆θ, that

defines this region.

If the parameters do not fall in any of the three regions, namely, ξ/∆q > (P0/P
∗
1 )β∆θ

then it can be shown that the owner will not choose to motivate the manager to exert effort.

The cost of effort is so high as to overwhelm any potential benefits of motivating effort. A

proof of this result is available from the authors upon request.

B Optimal Contracting with a Continuous Distribution of θ

This appendix contains the derivation of the optimal contracts when the distribution of the

project’s unobserved component θ of cash flows is continuous.

Denote the manager’s time-zero expected utility as u(θ̂, θ), if he reports that his privately

observed present value of cash flows is θ̂, and the true level of his privately observed value is

θ. His time-zero expected utility is then given by

u(θ̂, θ) =

(
P0

P (θ̂)

)β (
w(θ̂) + θ − θ̂

)
. (B.1)

We denote U(θ) as the (truth-telling) manager’s utility whose privately observed component

of cash flows is θ. That is,

U(θ) = u(θ, θ) =
(

P0

P (θ)

)β

w(θ). (B.2)

As in Section 2, we denote ξ as the cost of extending effort at time zero. Let FH(θ) and

FL(θ) be the cumulative distribution functions of θ drawn if the manager extends effort and

if he does not extend effort, respectively. Using the revelation principle, we may write the

principal’s optimization problem as follows:

max
P ( · ), w( · )

∫ θ̄

θ

(
P0

P (θ)

)β

(P (θ) + θ − K − w(θ)) dFH(θ) , (B.3)

subject to:

1. ex-post incentive-compatibility condition:

U(θ) ≥ u(θ̂, θ) , for any θ̂ and θ ; (B.4)

2. limited-liability condition:

w(θ) ≥ 0 , for any θ ; (B.5)

33



3. ex-ante incentive compatibility condition:

∫ θ̄

θ
U(θ) dFH(θ) − ξ ≥

∫ θ̄

θ
U(θ) dFL(θ) ; (B.6)

4. ex-ante participation constraint:

∫ θ̄

θ
U(θ) dFH(θ) − ξ ≥ 0. (B.7)

Proposition 8. The ex-ante participation constraint (B.7) does not bind.

Proof. The ex-ante incentive constraint (B.6) and the limited-liability condition (B.5) to-

gether imply that the ex-ante participation constraint (B.7) does not bind.

First, we simplify the ex-ante incentive constraint (B.6) using integration by parts. This

gives ∫ θ̄

θ
M(θ) dU(θ) ≥ ξ , (B.8)

where M(θ) = − (FH(θ) − FL(θ)) .

Next, we simplify the ex-post incentive-compatibility condition (B.4) by totally differen-

tiating U(θ), the utility for a truth-telling manager of a type-θ project, with respect to θ.

This gives
dU(θ)

dθ
= u1

dθ̂

dθ
+ u2 , (B.9)

where

u1 =
∂u(θ̂, θ)

∂θ̂

∣∣∣∣
θ̂=θ

, and u2 =
∂u(θ̂, θ)

∂θ

∣∣∣∣
θ̂=θ

. (B.10)

Since the manager optimally reveals his project quality by choosing recommended equilibrium

strategy, we have u1(θ, θ) = 0. Therefore, we have U ′(θ) = u2. Integration gives

U(θ) = U(θ) +
∫ θ

θ
u2(s, s) ds = U(θ) +

∫ θ

θ

(
P0

P (s)

)β

ds. (B.11)

We note that the Spence-Mirrlees condition is satisfied.30

A standard result in the contracting literature with asymmetric information states that the

limited-liability condition for a manager of a θ-type project binds, in that U(θ) = w(θ) = 0.
30Details are available upon request.
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Therefore, the informational rent U(θ) that accrues to the manager of a θ-type project is

given by

U(θ) =
∫ θ

θ

(
P0

P (s)

)β

ds . (B.12)

The relationship between U(θ) and the equilibrium wage implies that

w(θ) =
(

P (θ)
P0

)β

U(θ) =
∫ θ

θ

(
P (θ)
P (s)

)β

ds. (B.13)

Using (B.13), we simplify the present value of expected wage payment as follows:
∫ θ̄

θ

(
P0

P (θ)

)β

w(θ) dFH (θ) =
∫ θ̄

θ

[∫ θ

θ

(
P0

P (s)

)β

ds

]
dFH(θ) ,

=

[∫ θ

θ

(
P0

P (s

)β

ds

]
FH(θ)

∣∣∣∣
θ̄

θ

−
∫ θ̄

θ
FH(θ)

(
P0

P (θ)

)β

dθ ,

=
∫ θ̄

θ
λH(θ)

(
P0

P (θ)

)β

dFH(θ), (B.14)

where

λH(θ) =
1 − FH(θ)

fH(θ)
(B.15)

is the inverse of the hazard rate under FH( · ).

Using (B.14) allows us to simplify the principal’s optimization problem as follows:

max
P ( · )

∫ θ̄

θ

(
P0

P (θ)

)β

(P (θ) + θ − K − λH(θ)) dFH(θ) , (B.16)

subject to the ex-ante incentive constraint (B.8) and ex-post limited-liability condition (B.5).

The equilibrium wage is then obtained by using (B.13).

Similar to the model with discrete values for θ, optimal contracts, characterized by the

pair of trigger strategy and wage payment functions, depend on the region in which effort

cost ξ lies. Subsection B.1 solves for the optimal contracts in the region under which the

ex-ante incentive constraint does not bind. Subsection B.2 solves for the optimal contracts

in the region under which both the ex-ante incentive constraint and the ex-post incentive

constraint bind.

B.1 The Hidden Information Only Region

If effort cost ξ is low enough, then no additional rent is needed to induce the manager to

extend effort. The following condition ensures that the ex-ante incentive constraint (B.8)

does not bind.
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Condition 1. ∫ θ̄

θ
M(θ)

(
P0

P ∗
3 (θ)

)β

dθ ≥ ξ, (B.17)

where

P ∗
3 (θ) =

β

β − 1
[K − θ + λH(θ)] . (B.18)

Maximizing (B.16) may be done point by point. This gives the candidate optimal trigger

level P (θ) = P ∗
3 (θ), where P ∗

3 (θ) is given in (B.18). Because λH(θ) > 0, the exercise trigger

is larger than the first-best level, confirming the intuition delivered in Section 3 using the

two-point distribution of θ. A verification easily confirms that (B.8) does not bind under

Condition 1.

The following condition ensures that the candidate trigger strategy is positive for any θ.

Condition 2. For all θ on the support, θ − λH(θ) < K .

Finally, we ensure that the candidate trigger strategy decreases in θ by requiring the

following condition:

Condition 3. dλH(θ)/dθ < 1.

It is straightforward to note that Conditions 2 and 3 also imply that wage is positive and

increases in the project quality θ, as seen from (B.13).

B.2 The Joint Hidden Information/Hidden Action Region

When the effort cost is higher, both the ex-ante incentive constraint (B.6) and the ex-post

incentive constraint (B.4) bind. The condition governing the parameters for this region when

θ is drawn from a continuous distribution is given as follows.

Condition 4.
∫ θ̄

θ
M(θ)

(
P0

P ∗
3 (θ)

)β

dθ ≤ ξ ≤
∫ θ̄

θ
M(θ)

(
P0

P ∗
2 (θ)

)β

dθ , (B.19)

where P ∗
3 (θ) is given in (B.18) and

P ∗
2 (θ) =

β

β − 1

(
K − θ +

1 − FL(θ)
fH(θ)

)
. (B.20)
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Denote l as the Lagrangian multiplier for (B.8). Then, the candidate equilibrium trigger

strategy is given by

P (θ) = PJ(θ) =
β

β − 1

(
K − θ + λH(θ) − l

M(θ)
fH(θ)

)
. (B.21)

The Lagrangian multiplier l is positive under Condition 4. Therefore, the optimal trigger

with the exception of the one for the manager of the lowest quality project θ is larger than

the first-best P ∗(θ) = β(K − θ)/(β − 1). Because (B.8) holds with strict equality, we may

combine (B.8), (B.12) and (B.21) in order to obtain

ξ =
∫ θ̄

θ
M(θ)

(
P0

PJ(θ)

)β

dθ . (B.22)

Solving the above equation gives the Lagrangian multiplier l. It is straightforward to show

that the Lagrangian multiplier l increases in effort cost ξ, in that

dl

dξ
=

P0

β − 1

[∫ θ̄

θ

M2(θ)
fH(θ)

(
β

β − 1

)2 ( P0

PJ(θ)

)β+1

dθ

]−1

. (B.23)

Therefore, as effort cost ξ increases, the optimal trigger PJ(θ) decreases, as shown below:

dPJ(θ)
dξ

= − β

β − 1
M(θ)
fH(θ)

dl

dξ
< 0. (B.24)

This is consistent with our intuition and results in Section 3 that a higher effort cost mitigates

investment inefficiency by pushing the exercise trigger towards the first-best level.

The following two conditions ensure that the conjectured candidate solutions PJ(θ) is

positive and decreasing in θ.

Condition 5.
d

dθ

(
θ − λH(θ) + l

M(θ)
fH(θ)

)
> 0 , (B.25)

for 0 ≤ l ≤ 1.

Condition 6. The distribution FH( · ) first-order stochastically dominates FL( · ), in that

FH(θ) ≤ FL(θ), for all θ . (B.26)

This implies M(θ) ≥ 0, for all θ.

We note that, under Conditions 5 and 6, wage is positive and increasing in θ, in that

w(θ2) =
∫ θ

θ2

(
P (θ2)
P (s)

)β

ds >

∫ θ2

θ

(
P (θ1)
P (s)

)β

ds >

∫ θ1

θ

(
P (θ1)
P (s)

)β

ds = w(θ1) , (B.27)

for θ2 > θ1. The first inequality follows from the monotonicity of P (θ).
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C Derivations of Optimal Contracts in Section 5

This appendix provides a derivation of the optimal contracts for the generalized model of

Section 5. Propositions 1 and 2 apply as in Section 2. Using the method of Kuhn-Tucker,

we form the Lagrangian as follows:

L =
(

P0

P1

)β

(P1 + θ1 − K − w1) +
1 − qH

qH

(
P0

P2

)β

(P2 + θ2 − K − w2)

+ λ1

[(
P0

P1

)γ

w1 −
(

P0

P2

)γ

(w2 + ∆θ)
]

+ λ2

[(
P0

P2

)γ

w2 −
(

P0

P1

)γ

(w1 − ∆θ)
]

+ λ3

[(
P0

P1

)γ

w1 −
(

P0

P2

)γ

w2 −
ξ

∆q

]
+ λ4 w2 , (C.1)

with corresponding complementary slackness conditions for the four constraints. As in Ap-

pendix A, we also conjecture that the ex-post incentive constraint does not bind, in that the

Lagrangian multiplier λ2 associated with the constraint below is zero:
(

P0

P2

)γ

w2 ≥
(

P0

P1

)γ

(w1 − ∆θ) . (C.2)

We will verify this conjecture for each region.

The first-order conditions with respect to w1 and w2 imply

0 = (λ1 + λ3)
(

P0

P1

)γ

−
(

P0

P1

)β

, (C.3)

0 = − (λ1 + λ3)
(

P0

P2

)γ

− 1 − qH

qH

(
P0

P2

)β

+ λ4 . (C.4)

Using (C.3) to simplify (C.4) gives λ4 > 0. The complementary slackness condition implies

that w2 = 0. The first-order conditions with respect to P1 and P2 are given by

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)
w1

]
, (C.5)

P2 =
β

β − 1

[
K − θ2 + λ1

qH

1 − qH

γ

β

(
P0

P2

)γ−β

∆θ

]
. (C.6)

Therefore, it must be the case that at least one of (53) and (54) binds (Similar to Proposition

5 of Section 2). Depending on the cost benefit ratio ξ/∆q, we have three disjoint regions to

be analyzed below, similar to the analyses in Section 3.

C.1 The Hidden Information Only Region

Suppose that the constraint (54) does not bind and thus λ3 = 0. Then, λ1 = (P0/P1)
β−γ >

1. A binding ex-ante incentive constraint (53) implies that the wage payment is w1 =
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(P1/P2)
γ ∆θ . The first-order conditions (C.5) and (C.6) give the following coupled equa-

tions:

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)(
P1

P2

)γ

∆θ

]
, (C.7)

P2 =
β

β − 1

[
K − θ2 +

qH

1 − qH

γ

β

(
P1

P2

)γ−β

∆θ

]
. (C.8)

Note that with γ > β, we immediately have P1 < P ∗
1 and P2 > P ∗

2 . Therefore, w1 < ∆θ, as

conjectured, confirming that (C.2) does not bind and λ2 = 0.

Define the ratio x = P1/P2. The coupled equations (C.7) and (C.8) allow us to first solve

for ratio x∗, in that

G(x∗) = 0, (C.9)

where

G(x) = x

[
K − θ2 +

γ

β

(
qH

1 − qH

)
xγ−β∆θ

]
−
[
K − θ1 +

(
1 − γ

β

)
xγ∆θ

]
= 0. (C.10)

First, note that G(0) = −(K − θ1) < 0 and G(1) = γ∆θ/(β(1 − qH)) > 0. Second,

G′(x) = K − θ2 +
γ + γ(γ − β)

β

qH

1 − qH
xγ−β∆θ + γxγ−1

(
γ

β
− 1
)

∆θ > 0 ,

for γ > β. Therefore, there exist a unique x∗ ∈ (0, 1) solving (C.9).

Therefore, for the region defined by ξ/∆q < (P/P̂ ∗
3 )γ∆θ, where

P̂ ∗
3 =

β

β − 1

[
K − θ2 +

qH

1 − qH

γ

β
(x∗)γ−β∆θ

]
, (C.11)

the optimal contract can be written as:

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)
(x∗)γ ∆θ

]
, (C.12)

P2 = P̂ ∗
3 , (C.13)

w1 =
(

P1

P2

)γ

∆θ, (C.14)

w2 = 0. (C.15)

Finally, if ξ/∆q < (P0/P̂
∗
3 )γ∆θ, constraint (54) is indeed not binding, consistent with our

conjecture.
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C.2 The Joint Hidden Information/Hidden Action Region

We derive the optimal contract in this region by conjecturing that both (53) and (54) bind.

Solving these two equality constraints gives (56) and (57). Plugging (56) and (57) into the

first-order condition (C.5) gives

P1 =
β

β − 1

[
K − θ1 +

(
1 − γ

β

)(
P1

P̂J

)γ

∆θ

]
. (C.16)

The solution for P1 is P̂1, the same solution for P1 as in the hidden action region. In

Section 5 we proved that a unique P̂1 exists, where P̂1 ∈ (0, P ∗
1 ). Naturally, we have

w1 =
(
P1/P̂J

)γ
∆θ. As before, we have verified that (C.2) does not bind in this region,

because P̂1 < P̂J implies that w1 < ∆θ.

We know that the only possible regions in which both (53) and (54) bind is (P0/P̂
∗
3 )γ∆θ ≤

ξ/∆q ≤ (P0/P
∗
2 )γ∆θ, since we have already shown that in the other regions only one of

these constraints binds.31 Equivalently stated in terms of P̂J , this region is characterized by

P ∗
2 < P̂J < P̂ ∗

3 . We now verify that the above solutions are indeed optimal for this entire

region. Recall that λ1 + λ3 =
(
P0/P̂1

)β−γ
. Therefore, if we show that λ1 lies within the

range defined by

0 < λ1 <

(
P0

P̂1

)β−γ

, (C.17)

then we have shown both (53) and (54) bind (λ1, λ3 6= 0).

The first-order condition with respect to P2 implies that

λ1 =

[
β

β − 1
qH

1 − qH

γ

β

(
P0

P̂J

)γ−β

∆θ

]−1 (
P̂J − P ∗

2

)
. (C.18)

Since P̂J > P ∗
2 , we have confirmed that λ1 > 0. We next prove that λ1 <

(
P0/P̂1

)β−γ
.

Expressing λ1 as a function of P̂J , we can rewrite (C.18) as:

λ1(P̂J ) =

(
P0

P̂1(P̂J)

)β−γ (
P̂1(P̂J )

P̂J

)β−γ [
qH

1 − qH

γ

β
(P ∗

2 − P ∗
1 )
]−1 (

P̂J − P ∗
2

)
. (C.19)

Note that from (C.16), P̂1 is a function of P̂J ; we make this functional dependence explicit

in the above equation. Proving that λ1 <
(
P0/P̂1

)β−γ
over the region P̂J ∈ (P ∗

2 , P̂ ∗
3 ) is

equivalent to showing that

N(x) > 0, for x ∈ (P ∗
2 , P̂ ∗

3 ),
31Note that in the region ξ/∆q > (P0/P̂1)

γ∆θ, it can be shown that effort cannot be induced. This result
is available upon request.
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where N(x) is defined by

N(x) = P ∗
2 +

(
P̂1(x)

x

)γ−β
qH

1 − qH

γ

β
(P ∗

2 − P ∗
1 ) − x. (C.20)

Using implicit differentiation in (C.16), we can write:

dP̂1(x)
dx

=
P̂1(x)

x

γ(P̂1(x) − P ∗
1 )

γ(P̂1(x) − P ∗
1 ) − P̂1(x)

> 0, (C.21)

because P̂1(x) < P ∗
1 in this region. Therefore,

dL(x)
dx

= (γ − β)
qH

1 − qH

γ

β
(P ∗

2 − P ∗
1 )

(
P̂1(x)

x

)γ−β−1
1
x2

(
x

dP̂1(x)
dx

− P̂1(x)

)
− 1 . (C.22)

From (C.21),

x
dP̂1(x)

dx
− P̂1(x) =

(
P̂1(x)

)2

γ(P̂1(x) − P ∗
1 ) − P̂1(x)

< 0, (C.23)

because P̂1(x) < P ∗
1 in this region. Therefore, N ′(x) < 0, for x ∈ (P ∗

2 , P̂ ∗
3 ). Since N(P̂ ∗

3 ) = 0,

we thus have N(x) > 0 for x ∈ (P ∗
2 , P̂ ∗

3 ). This confirms that λ1, λ3 > 0 in this entire region,

and therefore both (53) and (54) bind.

C.3 The Hidden Action Only Region

Suppose that (54) binds, while (53) does not. Thus, λ1 = 0 and λ3 = (P0/P1)
β−γ > 1. With

λ1 = 0, equation (C.6) implies that P2 = P ∗
2 .

A binding (54) implies that the wage payment is

w1 =
(

P1

P0

)γ ξ

∆q
=
(

P1

P̂J

)γ

∆θ, (C.24)

where P̂J is given in (56). Substituting (C.24) into (C.5) gives P1 = P̂1, the root of the

expression given in (59). Section 5 proves that a unique P̂1 exists, where P̂1 ∈ (0, P ∗
1 ).

To ensure that our conjecture that (C.2) is not binding, (C.24) implies that we need to

check if P̂1 < P̂J holds. This inequality can be written as ξ/∆q < (P0/P̂1)γ∆θ, which is

assured to hold in this region. In order to be consistent with the fact that (53) does not bind,

we need (P0/P
∗
2 )γ∆θ > ξ/∆q, which again holds in this region.
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Figure 1: Optimal incentive contracts across the three parameter regions. The upper and lower graphs
plot the equilibrium trigger strategy P2 and wage payment w1 in terms of effort cost ξ, respectively.
As the cost of effort increases, the hidden action problem becomes more pronounced. The upper graph
demonstrates that as the cost of effort increases, the equilibrium trigger strategy P2 decreases, as it
approaches the first best trigger P ∗

2 . The lower graph demonstrates that as the cost of effort increases,
the wage payment must increase in order to induce effort from the manager. In summary, as the cost
of inducing hidden effort increases, the timing of investment becomes more efficient while the value of
the compensation package increases.

46



0
0

Su

Sd

P ∗
1

P

S
to

ck
P

ri
ce

Manager invests

Manager does not invest

πo(P )

Figure 2: Stock price reaction to investment. This graph plots the stock price as a function of P ,
the present value of the observed component of cash flows. Whenever the level of P is below the
lower investment trigger P ∗

1 , the market does not know the true value of θ, the present value of the
unobserved component of cash flows. Thus, for all P below P ∗

1 , the stock price equals the value of the
owner’s option given in (31). At the moment the process P hits the trigger P ∗

1 , the true value of θ is
revealed through the manager’s action: if the manager invests, then the value of θ is the higher value
θ1; if the manager does not invest, then the value of θ is the lower value θ2. Thus, the stock price is
discontinuous at P ∗

1 . Investment signals good news and the stock price jumps to Su, while failure to
invest signals bad news and the stock price drops to Sd, where Su and Sd are given in (37) and (38),
respectively.

47


