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Abstract 
 
 

This paper provides an overview of numerical methods and its applicability for 
solving real option problems.  It discusses alternative approaches and shows that both 
forward and backward induction procedures have a place in real options valuation. 

 
  A case-project with the option of investing in the future contingent on a 

stochastic output price is valued using binomial trees, finite differences, and simulation.  
The Black and Scholes (1973) analytical solution to this problem is used as a benchmark.  
All four methods provide similar results. 

 
The extension of simulation methods to American-Type options is discussed and 

a solution to Brennan and Schwartz´s (1985) classic mine valuation problem is presented.  
The benefits of this approach, with its better handling of complex uncertainty modeling 
and path-dependent cash flows, are discussed.  
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1. - Introduction 
 
 Traditional finance literature stresses that the value of an asset is determined by 
future cash flows.  As long as these cash flows are certain, the task of determining asset 
values amounts to finding adequate inter-temporal discount factors to transform these 
future flows into equivalent present values.  
 
 Uncertainty introduces two additional complications into asset valuation.  First, 
we must find a way to penalize the present value of the risky cash flow so that we can 
take into consideration not only the time value of money but also risk aversion.  This may 
be done by determining risk premiums that should be added to inter-temporal discount 
factors or, alternatively, by replacing expected cash flows by their certainty equivalents. 
 
 A second and somewhat more difficult issue arises when cash flows are a 
nonlinear function of a risky state variable.  Risk premiums become then much more 
difficult to be derived, and the contingent claims approach of finding certainty 
equivalents for cash flows at each state of nature becomes the only practical approach.  
 
 It has long been noted that simulation lends itself nicely to valuing assets under 
uncertainty.  As long as cash flows may be determined using past information, a 
nonlinear cash flow function poses no additional burden.  An example of past-dependent 
nonlinear cash flows is the European call option.  The value of this option is nonlinear by 
being equivalent to the maximum value between two assets, and past dependent in the 
sense that cash flows depend only on past information.  This approach, which values a 
function by unfolding uncertainty as it evolves from the past, is known as forward 
induction and may be successfully applied whenever present cash flows do not depend on 
future events. 
 

An additional difficulty arises when nonlinear cash flows are dependent on future 
information.  For example, American options may be exercised at any of several dates.  
Thus, cash flows on a given date depend not only on past information but also on 
expectations of future events.  It has long been known that whenever uncertainty can be 
described by a markovian process (in the sense that all past information may be 
embedded in current state variable values) the value of a security may be obtained by 
some kind of backward induction.  This procedure works its way into the present starting 
from some known value, typically at option expiration.  

 
A number of backward induction procedures have been proposed for valuing 

assets, from dynamic programming, to binomial and multinomial trees, to finite 
difference procedures for solving partial differential equations.  All these procedures start 
from some boundary conditions and solve simultaneously for asset value and the optimal 
exercise policy, determining the shape of the cash flow function in such a way as to 
maximize asset value. 

 
 Both forward and backward induction procedures have a role in asset valuation.  
While forward induction handles in an easier way complex uncertain processes, including 
path dependent cash flows that may arise because of technical or tax reasons,  backward 



induction is specially appropriate for handling American-type options very common in 
real option problems.  Until recently simulation procedures were only recommended for 
European-type options in forward induction implementations.  In section 3 we present the 
basic intuition of how to use simulation for American-type options and provide an actual 
application to a well-known real option problem.  
 
2. - Standard Simulation and Other Numerical Approaches 
 
2.1 European Real Option Valuation by Numerical Procedures 
  

Some contingent claims problems may be solved through closed-form analytical 
expressions, but most can not.   If there is no analytical solution numerical methods must 
be used. To illustrate our discussion on alternative numerical approaches and compare 
them to a standard simulation, we define a simple real-option valuation problem and 
solve it using different methods.  

 
Let's assume we want to value a project with cash flows contingent on a 

stochastic output price, S.  The project requires no initial investment at time T0 = 0 but 
requires an investment I1 at time T1 which, if undertaken, generates cash flows with a 
present value at T1 of V(S).  Depending on the value of V(S) the manager may decide not 
to invest at T1, in which case the project must be abandoned at zero liquidation value. The 
value of this project may be modeled as a call option written on V(S) with exercise price 
I1 and time to maturity T1. 

 
We may be able to solve for the value of this project using the well-known Black 

and Scholes (1973) formula for a call option, provided some assumptions are made.  
Among them are that S is a tradable asset, that markets are sufficiently complete as to 
allow the hedging of output price risk and that output price returns follow a Brownian 
motion with constant interest rates and volatility.  If these assumptions apply then there is 
no need to resort to numerical procedures. 

 
Most real option models, however, do not have closed-form analytical solutions.  

There are many reasons why this may be the case, including a more complex uncertainty 
model or project-flexibility specification.  In these cases, to value the contingent claim 
numerical solution procedures must be used. 

 
There are many numerical methods that may be used to value a European-type 

contingent claim.  In order to place standard Monte Carlo simulation procedures into 
perspective and to discuss its comparative strengths and weaknesses, we solve the above 
problem using three alternative numerical procedures: binomial trees, finite differences, 
and simulation.  We assume Black and Scholes (1973) holds so we have an analytical 
solution that can be used as a benchmark for our approximate numerical methods.   

 
For concreteness we assume risk-adjusted prices follow a geometric brownian 

motion with a discretized specification as follows: 
 



                                     ZtStrSS ∆+∆=∆ σ                                                                      (1) 
with  

r = 0.10 
σ = 0.2 
∆t = time interval 
Z = random variable with a standardized Normal distribution. 

 
Also the investment project described earlier has the following specification: 
 

V(S) = aS + b 
a = 10 
b = 0 
I1 = 10 
T0 = 0 
T1 = 1 
 
As stated earlier, the value of this real option can be directly obtained using Black 

and Scholes (1973), which gives the value of the project for an initial output price of 1 is 
$1.30. We now solve this same valuation problem using the three alternative numerical 
approaches.  We implement all three numerical solutions using standard Excel 
spreadsheets.  
 
2.2 Binomial Trees. 
 

Discrete tree representations of stochastic processes and their use in option 
valuation have been proposed by Cox et al (1979), Rendleman and Barter (1979), and 
Sharpe (1978).  We explain the binomial tree, which is the simplest one.  Binomial trees 
assume that uncertainty at any state can be represented by two alternative states.  These 
two states are defined such that the implied price distribution matches as closely as 
possible the probability distribution of the underlying continuous state variable.  Given 
our stochastic process for output price, we must restrict the values and probabilities of the 
two states in such a way that the expected price return over the next time interval is equal 
to r∆t and that its volatility is σ∆t0.5.  A solution is to define the two values for the state 
variable as Su and Sd, with probabilities p and (1-p), with: 
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Depending on the required accuracy we determine the size of the time interval ∆t, 

or equivalently, the number of subintervals in which we partition the total time to 
maturity.  In our case the time to maturity is T1 = 1, and we arbitrarily divide it into 10 
subintervals, setting ∆t = 0.1. Once the binomial tree that represents the underlying price 
distribution is obtained, it is possible to value the derivative asset (in our case the 
investment project) as a contingent claim on output price.  
 

In Figure 2.1 a binomial tree solution to our investment valuation problem is 
presented. A two-dimensional vector is specified at each binomial node: output price and 
option value.  To obtain option values, we compute the cash flows at maturity (T1) as:  

 
Max(V(S) – I1; 0).   
 
These values are presented bolded at the extreme right of the figure.   

 
The next step is to compute the option value for each of the preceding nodes.   As 

an example, on the top-right corner of Figure 2.1 a box with three nodes is presented. The 
option value of 7.77 is computed as the expected option value at the two following nodes 
using the risk neutral probabilities: 
 

 
This procedure is repeated column by column from right to left.  The last node 

represents the current option value of 1.31 for an initial output price of 1.  This option is 
very similar to our analytical solution value using Black and Scholes.  
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Time to Maturity
1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

1.88
8.82

Information in each node:
1.77

Output Price S 7.77
Real Option Value

1.66 1.66
6.78 6.59

1.56 1.56
5.86 5.67

1.46 1.46 1.46
5.01 4.81 4.62

1.37 1.37 1.37
4.21 4.01 3.82

1.29 1.29 1.29 1.29
3.47 3.27 3.08 2.88

1.21 1.21 1.21 1.21
2.80 2.59 2.38 2.19

1.13 1.13 1.13 1.13 1.13
2.22 2.01 1.78 1.55 1.35

1.07 1.07 1.07 1.07 1.07
1.72 1.51 1.29 1.04 0.75

1.00 1.00 1.00 1.00 1.00 1.00
1.31 1.11 0.91 0.68 0.42 0.00

0.94 0.94 0.94 0.94 0.94
0.80 0.63 0.44 0.23 0.00

0.88 0.88 0.88 0.88 0.88
0.42 0.28 0.13 0.00 0.00

0.83 0.83 0.83 0.83
0.17 0.07 0.00 0.00

0.78 0.78 0.78 0.78
0.04 0.00 0.00 0.00

0.73 0.73 0.73
0.00 0.00 0.00

0.68 0.68 0.68
0.00 0.00 0.00

0.64 0.64
0.00 0.00

0.60 0.60
0.00 0.00

0.57
0.00

0.53
0.00   

 
Figure 2.1 Binomial tree solution to a European Real Option Investment 
 



 
 
 
2.3 Finite Differences. 
 

An alternative to binomial trees is to use finite differences for solving the 
valuation equation.  In this case we can use standard no-arbitrage conditions to derive a 
partial differential equation for the value of the contingent claim.  For our real option 
problem, the standard Black and Scholes differential equation for the value of the real 
option H(S,t) is: 
 

022
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with the following boundary condition at maturity 
 

H(S, t =T1) = Max[V(S)-I1;0]     (6) 
 
Also S is an absorption state, thus: 
 

H(0,t) = 0        (7) 
 
 

Schwartz (1977) proposed the finite difference procedure of discretizing all state 
variables, setting the value of the contingent claim at the boundary conditions, replacing 
first and second derivatives by a finite difference approximation, and solving backwards 
using a discretized version of the partial differential equation that represents the valuation 
equation.  There are two basic finite difference approaches: the implicit and the explicit 
method.  Even though the former is more robust, we implement the latter for expositional 
reasons.   
 

In our problem, the value of the project is a function of two state variables: output 
price, S, and time to maturity, T. Time is discretized into M intervals, and price S into N 
intervals.  The Black and Sholes differential equation is then replaced by the following 
difference approximations: 
 

∆S = Smax/N       (8) 
 

∆T= T1/M      (9) 
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 Once these approximations are substituted into the differential equation, we obtain: 
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Thus, knowing the values of the contingent claim at i + 1 we can obtain the values 
at i.  Given that we have a boundary condition that gives initial values at i = M, it is 
possible to work backwards from i = M to i = 0. 

T

Smax

Imax
0 i=Mi=0

j=0

j=N
H(S,0) = Max[V(S) - I1; 0]

Hijij

H(0,T)=0

 

Figure 2.2 State Space Discretization 



Figure 2.3 presents an explicit finite difference solution to the investment 
valuation problem.  The three right columns compute the constants necessary for the 
calculations.  The next column to the left values the real option at the boundary:  

 
Option Value at Maturity = Max(V(S) – I1; 0). 

 
Using the above equations, the preceding columns are computed.  Finally, project 

value for each initial price, when time to maturity is 1, is presented.   It can be noted that 
for an initial output price of 1, the computed option value is 1.30, again very similar to 
our previous results.  
   



 

Real Option Value
Time to Maturity(i)

j Price 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 aj bj cj
20 2.0 10 10 10 10 10 10 10 10 10 10 10 0.6931 -0.5941 0.8911
19 1.9 9.2 9.3 9.2 9.3 9.2 9.2 9.2 9.2 9.1 9.1 9 0.6208 -0.4396 0.8089
18 1.8 8.6 8.4 8.5 8.4 8.4 8.3 8.3 8.2 8.2 8.1 8 0.5525 -0.2931 0.7307
17 1.7 7.6 7.7 7.6 7.6 7.5 7.4 7.4 7.3 7.2 7.1 7 0.4881 -0.1545 0.6564
16 1.6 6.8 6.7 6.7 6.6 6.6 6.5 6.4 6.3 6.2 6.1 6 0.4277 -0.0238 0.5861
15 1.5 5.9 5.8 5.7 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5 0.3713 0.0990 0.5198
14 1.4 4.9 4.8 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4 0.3188 0.2139 0.4574
13 1.3 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3 0.2703 0.3208 0.3990
12 1.2 3.01 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 0.2257 0.4198 0.3446
11 1.1 2.11 2.0 1.9 1.8 1.7 1.6 1.5 1.3 1.2 1.1 1 0.1851 0.5109 0.2941
10 1.0 1.30 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.4 0.2 0 0.1485 0.5941 0.2475

9 0.9 0.67 0.6 0.5 0.4 0.4 0.3 0.2 0.1 0.1 0.0 0 0.1158 0.6693 0.2050
8 0.8 0.26 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0 0.0871 0.7366 0.1663
7 0.7 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0624 0.7960 0.1317
6 0.6 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0416 0.8475 0.1010
5 0.5 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0248 0.8911 0.0743
4 0.4 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0119 0.9267 0.0515
3 0.3 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0030 0.9545 0.0327
2 0.2 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 -0.0020 0.9743 0.0178
1 0.1 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 -0.0030 0.9861 0.0069
0 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0000 0.9901 0.0000  

 
Figure 2.3 (Explicit) Finite difference solution to a European Real Option Investment 

 



2.4 Standard Simulation. 
 

Boyle (1977) proposed a Monte Carlo simulation approach for European option 
valuation.  The method is based on the idea that simulating price trajectories can 
approximate probability distributions of terminal asset values.   Option cash flows are 
computed for each simulation run and then averaged.  The discounted average cash flow 
using the risk free interest rate represents a point estimator of the option value.   
 

There are several ways to increase estimation accuracy, the simplest one being to 
increment the number of simulating paths.  Efficiency may also be improved by using 
variance reduction techniques, including the control-variate and antithetic-variate 
approaches [Hammersley and Handscomb (1964)].  In what follows we solve our real 
option problem implementing the latter. 
 

Figure 2.4 shows a spreadsheet with simulation runs to value the real option.  
Each run starts with an initial output price of 1, and by using a specific set of random 
numbers, a price trajectory is computed.  For example, our first price trajectory ends (at 
option maturity) with an output price of 0.88.  The next column to the right shows the 
option payoff for that specific price.  Given that for that price the project would be 
abandoned, option value is zero.   
 

To implement the antithetic variate variance reduction technique, our next row in 
Figure 2.4 presents the price trajectory using the same random numbers as before, but 
with a change in sign.  Given that our initial random numbers were such that output price 
at maturity was low (0.88), by changing random number signs this second row provides a 
price trajectory with high output price at maturity (1.34). For this new output price the 
option is now valuable, providing a cash flow of 3.44. It is easy to see that an average of 
these two rows provides a lower variance estimate of actual cash flows than using any 
single one.   
 

Once an adequate number of price trajectories is generated, real option value may 
be computed by discounting average option cash flows at the risk free rate.  It can be seen 
that in our case with a set of only 30 independent price trajectories (60 rows including 
their antithetic values) we are able to obtain a very close value for our real option 
problem (1.30).  In most cases it is necessary to make a much higher number of 
simulation runs to obtain accurate estimates. 



Time to Maturity(i)
Run 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 V(S) NPV 

1 1.00 0.98 0.98 0.91 1.00 0.99 0.95 0.97 0.95 0.91 0.88 0.00 0.00
1.00 1.04 1.06 1.16 1.06 1.09 1.16 1.16 1.20 1.28 1.34 3.44 1.56

2 1.00 0.98 0.99 1.11 1.13 1.11 1.23 1.19 1.26 1.27 1.31 3.12 1.98
1.00 1.04 1.05 0.95 0.94 0.98 0.89 0.94 0.91 0.91 0.90 0.00 1.49

3 1.00 0.98 1.07 1.09 1.06 1.01 1.06 1.00 1.06 1.08 1.25 2.50 1.30
1.00 1.04 0.97 0.97 1.01 1.08 1.05 1.13 1.09 1.08 0.94 0.00 1.37

4 1.00 0.93 0.89 0.90 0.88 0.75 0.77 0.82 0.90 0.80 0.72 0.00 1.28
1.00 1.09 1.16 1.17 1.22 1.43 1.41 1.34 1.24 1.40 1.58 5.81 1.68

5 1.00 0.92 0.88 0.72 0.68 0.64 0.60 0.59 0.60 0.67 0.70 0.00 1.30
1.00 1.10 1.17 1.41 1.52 1.63 1.77 1.84 1.85 1.65 1.60 6.01 1.89

10 1.00 1.00 1.02 0.99 0.96 1.09 0.99 0.94 0.89 0.90 0.88 0.00 1.29
1.00 1.02 1.02 1.07 1.12 1.00 1.11 1.18 1.27 1.29 1.33 3.33 1.43

15 1.00 1.07 1.08 1.15 1.09 1.14 1.24 1.43 1.45 1.54 1.61 6.10 1.33
1.00 0.95 0.96 0.92 0.98 0.96 0.89 0.77 0.78 0.75 0.73 0.00 1.44

20 1.00 0.91 0.93 0.93 0.93 0.94 0.92 0.94 1.01 1.13 1.18 1.75 1.32
1.00 1.11 1.11 1.13 1.16 1.16 1.22 1.21 1.15 1.03 1.01 0.10 1.37

25 1.00 1.10 1.10 1.06 1.13 1.18 1.23 1.24 1.35 1.35 1.35 3.53 1.31
1.00 0.92 0.94 0.99 0.95 0.92 0.90 0.91 0.85 0.86 0.88 0.00 1.34

30 1.00 1.05 1.02 1.05 1.09 1.08 1.13 1.07 1.04 1.12 1.18 1.82 1.30
1.00 0.97 1.01 1.01 0.99 1.02 0.99 1.06 1.11 1.05 1.01 0.15 1.30   

 
Figure 2.4 Simulation Solution to a European Real Option Investment 



2.5 Comparing Alternative Numerical Procedures. 
 

We have presented simple spreadsheet implementations of three alternative 
numerical approsches to the same real option problem.   Each of them has its own merits 
and is especially useful for specific types of valuation problems. 
 

Maybe the most important factor in choosing the appropriate numerical approach 
is the type of option we are trying to value.  Standard simulation is a forward induction 
procedure, and as such presents problems for valuing American-type options.  In 
situations when the optimal strategy is not known in advance, standard simulation 
procedures are not able to correctly value these options.  As discussed later, many real 
options allow decision-makers to change production or investment levels at different 
points in time, and are therefore modeled as American options.  Finite difference and 
binomial trees, on the other hand, are backward induction procedures that can determine 
optimal exercise policies, correctly valuing these American options. 
 

What is a weakness for simulation in handling American-type options becomes a 
strength when there are path-dependent cash flows.  For example, current tax payments 
normally depend on past profits, presenting a difficulty for all backward induction 
procedures.  It is always possible to circumvent this problem by defining new state 
variables that represent path dependent information, but this may increase model 
complexity in a substantial way.  Therefore, in the presence of path-dependent cash 
flows, simulation is a much better procedure than backward induction procedures.  
 

The main characteristic that makes simulation so attractive is its ability to cope 
with uncertainty in a very simple way.  The recent trend in modeling price uncertainty 
using multi-factor models is much easier to implement using standard simulation than 
using other numerical approaches.   Something similar can be said on the use of complex 
stochastic processes for modeling the dynamics of these risk factors, which are simpler to 
implement using simulation. 
 

Finally, the fact that the cost of computing has been going down so dramatically 
in the past years and that this trend shows no sign of weakening in the near future, 
presents a favorable prospect for increasing use of simulation.  Moreover, its major 
drawback, the inability to successfully handle American-type options, has been tackled 
by new research in recent years, as described in the following section.  With lower 
computational costs we can expect handling increasing modeling complexity, and an 
enhanced use of simulation techniques.    



3. - Simulation for American Options 
 
3.1 Introduction 
 

As stated earlier, there have been several recent efforts to extend Monte Carlo 
simulation techniques for solving American-type options.  These include Barraquand and 
Martineau (1995), Broadie and Glasserman (1997a, 1997b), Broadie, Glasserman and 
Jain (1997), Raymar and Zwecher (1997), Longstaff and Schwartz (1998), and others.  
These methods attempt to combine the simplicity of forward induction with the ability of 
determining the optimal option exercise of backward induction.  In this section we give 
the basic intuition of this new approach and in the next the results of its application to the 
classical Brennan and Schwartz (1985) model for evaluating natural resource 
investments. 

 
Longstaff and Schwartz (1998) propose a promising new procedure for solving 

American options.  Their approach basically consists of estimating a conditional expected 
payoff function for each date for the continuation value of the American option, and 
comparing this value with its exercise value.  Whenever the exercise value is higher than 
the continuation value the option should be optimally exercised, while in the opposite 
case it would not.  To estimate the conditional expected payoff value they first run 
several thousand state variable paths, and at a second stage they make a backward 
induction analysis of when it is optimal to exercise.  At any point in time (starting from 
the end) each path generates one observation on the optimality of exercising or not for 
that path.  Using cross sectional regressions it is possible to estimate when it is optimal to 
exercise for given date and state variable values, and solve recursively backwards. 

 
Another approach (used in the next section) proposed by Barraquand and 

Martineau (1995) has been applied to solve some financial options. Its main insight is 
that in most cases it is possible to discretize and to reduce the dimensionality of the 
valuation problem, and still get reasonably good approximations.   For example, if we 
assume a multi-factorial process for a state variable S, the procedure calls for making 
several thousand Monte Carlo simulations on S and grouping the obtained values into a 
fixed set of "bins", as shown in Figure 3.1.  Then, by making successive simulation runs 
it is possible to empirically determine the transition probabilities between successive bins 
and finally to solve backwards the valuation process using each bin as a decision unit (see 
Figure 3.2). 
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Figure 3.1 Simulation paths for the uncertain state variable and grouping into bins 
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Figure 3.2 Determination of Transition Probabilities between Bins. 
 
 
 



 
One of the crucial success factors in using this methodology is the selection of the 

one-dimensional state variable that will represent all state variables in the problem.   As 
Broadie and Glasserman (1997b) point out, this procedure does not ensure convergence 
when, for example, there are disjoint optimal exercise sectors.  In this case, further 
increases in the number of one-dimensional bins are not able to determine the optimal 
exercise policy, as Figure 3.3 shows.   
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Figure 3.3 Example of Disjoint Optimal Exercise Regions 
 

To reduce this problem, Raymar and Zwecher (1997) recommend adding a second 
dimension to the bin grouping process, so the state of the economy can be represented by 
more than a one-dimensional vector. 
 

Most of the literature for solving American options by simulation has 
concentrated on valuing financial options. In the next section we illustrate the use of the 
Barraquand and Martineau (1995) procedure for the more complex optimal operation of a 
copper mine, initially modeled in Brennan and Schwartz (1985).  Other applications of 
simulation to real options include Cortazar and Schwartz (1998), who solve for the 
optimal timing of a development investment in an oil reserve using the Barraquand and 
Martineau (1995) procedure, and Cortazar, Acosta and Osorio (1999) who compare 
different simulation alternatives for valuing real options and extend some of the results 
presented in the next section.  

 
 
 



 
 

3.2 Evaluating Natural Resource Investments: Solving the Brennan and Schwartz 
(1985) Mine Problem Using Monte Carlo Simulation. 
 

3.2.1 The Model and Solution Procedure. 
 
Most real investments have embedded American-type options in their cash flow 

function.  Whenever investments may be delayed, capacity expanded at different dates, 
and/or production suspended or resumed, the optimal timing of this decision is crucial for 
asset value maximization. 
 

In this section we use the Barraquand and Martineau (1995) simulation procedure 
for solving the Brennan and Schwartz (1985)2 model for valuing a copper mine which 
involves several American-type options.  In this model, mine value depends on the 
discounted cash flows of future production, with copper prices following a stochastic 
process. The mine has finite copper reserves (Q), a constant-returns-to-scale technology 
with average unit cost of production A(Q), a flexible tax structure, a diversifiable 
expropriation risk, and several American-type options including the flexibility to 
temporally stop or resume production (with associated costs) or to abandon the mine.  
The mine has a maximum production rate and will optimally either produce at the 
maximum rate or close down. 
   

Brennan and Schwartz (1985) solve their model by backward induction using 
finite difference numerical approximations to the partial differential equations that 
describe the value of the mine.  They start the valuation process at known boundary 
conditions, including setting the value of the mine to zero when resources are exhausted 
or if output price becomes zero.  
 

The key elements to solve such a real option problem by simulation are: 1) the 
definition of a proper valuation grid, with each node representing a markovian state of the 
mine susceptible to be solved by backward induction, and 2) the discretization of the risk-
neutral price process to simulate possible price paths.  
 

First, to define the valuation grid, the value of the mine at any moment can be 
seen as depending on copper price, on remaining reserves, and on whether the mine is 
open or closed.  It is convenient to discretize total reserves into units of production, q.  
Each unit of production represents total copper output that will be produced after a 
decision in that regard has been made and before a new review on whether or not to 
continue producing is made. 
 

Depending on the current state of the mine, the feasible next stages can be 
determined.  For example, if the mine is open and has n units of copper reserves (each 
one of q pounds of copper) the mine manager might decide to maintain the mine open 
(reducing next-stage reserves to n – 1 units), to close the mine (with next-stage reserves 
                                                           
2 See chapter XX of this book for a full presentation of this model. 



remaining the same), or to definitely abandon the mine.  Each decision is associated with 
different cash flows.   In the first case the cash flow is equal to the revenues minus the 
costs of production, in the second to the closing and maintenance costs, and in the third to 
zero.    
 

Similarly, if the mine is currently closed and has n units of copper reserves, the 
manager might decide to keep it closed, to open it (reducing next-stage reserves to n -1 
units), or to abandon the mine.  The cash flows in this case are equal to the maintenance 
costs for the first alternative, to the revenues minus the costs of producing a unit minus 
the cost of opening the closed mine for the second case, and to zero in the third 
alternative. 
 

To solve for the optimal decision for each state of the mine we compute the 
expected value of each alternative decision, which, in turn, depends on the transition 
probabilities for the changes in copper prices and on the optimal continuation value once 
any of the three decisions is made.  
 

The second element in solving by simulation such an evaluation problem is the 
definition of the stochastic process that models uncertainty.  To obtain the price change 
probabilities we must specify the price stochastic process. Brennan and Schwartz (1985) 
assume a random walk process for the risk-adjusted commodity price returns.   We 
discretize this process using the following equation: 
 

ZtStSrS ∆+∆−=∆ σκ )(      (17) 

 

where S is the commodity price, r is the (real) risk-free interest rate, κ the convenience 
yield, σ the volatility of price returns, ∆t the time-increment, and Z a standardized 
Normal random variable.  Even though a mean-reverting process for commodity prices 
might be better, we use this random walk process for comparison with the finite-
difference method used in the original paper.  In the next section we discuss possible 
model extensions that take this issue into account. 
 

Following Barraquand and Martineau (1995), to obtain a discrete number of price 
states that adequately represent this stochastic process, a first set of simulation runs is 
performed.  For each time interval, ∆T, all price paths are sorted and grouped into 200 
bins, each one with the same number of observations.  The average, maximum and 
minimum price in each bin is computed. Successive simulation runs are then performed 
and used to compute the transition probabilities between bins at successive time intervals.   
 

Once transition probabilities are obtained, backward induction is used on the 
discrete state space that includes prices and mine states. Figure 3.4 shows a graphical 
representation of the grid that must be solved by backward induction.  Assuming the 
mine is open and has 2 units of production, the arrows indicate the feasible states that 
could be reached with some non-zero probability.   We solve the grid starting from the 



end and work our way backwards determining the optimal operating policy for each state 
vector value. 
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Figure 3.4 Feasible States that can be Reached depending on Managerial Decisions 

Each State is defined by the commodity price (Si), the level of reserves (2q, 1q or 0q) and 
whether the mine is currently Open (O), Closed (C), or Abandoned  
 
 
3.2.2 Mine Value and Optimal Policy. 
 

To check the simulation method accuracy we compare our results with those 
obtained by finite differences as reported in Brennan and Schwartz (1985). Table 3.1 
presents a comparison of both solutions.  It can be verified that the simulation method 
provides good approximations. 
 
 
 
 
 
 
 
 
 
 



 
Mine Value (MMUS$) 

Brennan-Schwartz  

Mine Value (MMUS$) 

Barraquand-Martineau 

 

Error (%) 
Copper 
Price 
(US$/lb) 

Open Closed  Open Closed Open Closed 

0.4 4.15 4.35 4.19 4.39  1.0 0.9 

0.5 7.95 8.11 7.97 8.17 0.3 0.7 

0.6 12.52 12.49 12.53 12.53 0.1     0.3 

0.7 17.56 17.38 17.57 17.37 0.1   -0.1 

0.8 22.88 22.68 22.90 22.70 0.1 0.1 

0.9 28.38 28.18 28.44 28.24 0.2 0.2 

1.0 34.01 33.81 34.10 33.90 0.3 0.3 

 
Table 3.1 Mine Value using Simulation and Finite Differences 

 
The optimal policy obtained by the simulation method is illustrated in Figure 3.5. 
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Figure 3.5 Critical Spot Prices for Opening, Closing, and Abandoning the Mine  
 

This result is reasonably close to the finite-differences optimal policy, as can be 
seen in Figure 3.6, which compares the critical opening prices obtained by finite 
differences and by simulation. 
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Figure 3.6 Critical Opening Price using Simulation and Finite Differences 
 
3.2.3 Model Extensions. 
 

The main contribution of simulation procedures for solving real option problems 
is its ability to handle models of increased complexity.  In the following we provide some 
examples of model extensions that can easily be accommodated using these procedures. 
 

The first type of possible extension deals with modeling uncertainty.   There is an 
extensive bibliography on the appropriate number and specification of the risk factors to 
be used for the stochastic process that defines uncertainty [Schwartz (1997)]. The simple 
random walk process in the last section was simply used to match the Brennan and 
Schwartz (1985) model, and is a very strong assumption given state-of-the-art research in 
commodity prices. Given that simulation is much more efficient to solve problems with 
multi-factor processes, simulation models can easily be extended to use more complex 
process specifications.  
 

A second type of possible extension deals with the modeling of the derivative 
asset. The last section already considered one model extension (over Brennan and 
Schwartz (1985)) with the use of time as a state variable.  This allows for including time-
dependent information, like cost inflation or finite-time concessions for mine production. 
Other extensions of the derivative asset model could easily be considered. 

 
Finally, extensions of the modeling approach itself could be considered.  For 

example, additional dimensions of the state variables could allow for a richer definition 
of the optimal policy, a source of considerable value in real options investments. 



 
4.- Conclusions 
 
This paper provides an overview of simulation and its applicability for solving 

real option problems.  It discusses alternative numerical approaches to valuing assets and 
shows that both forward and backward induction procedures have a place in real options 
valuation. 
 

To highlight the relative merits of the different numerical methods, a case-project 
with the option of investing in the future contingent on a stochastic output price was 
valued using binomial trees, finite differences, and simulation.  Given that the project can 
be modeled as a European call option, the Black and Scholes (1973) analytical solution 
was used as a benchmark. The four methods provided similar results.  

 
Standard simulation methods, even though very powerful for solving European-

type options, have traditionally been considered inadequate for solving American-type 
options, a major drawback for their use in real option valuation.  Recent research, 
however, has proposed extensions of simulation that combine forward and backward 
procedures for valuing American-type options.   We present an application of these 
extended simulation methods to solve Brennan and Schwartz´s (1985) classic mine 
valuation problem.  The benefits of this approach, with its better handling of complex 
uncertainty modeling and path-dependent cash flows, are discussed.  
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