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Real Option Valuation using NPV 

 

 

 

Abstract 

 

We show that a careful net present value (NPV) using risk-adjusted discount rates produces a real 

option valuation identical to that obtained from a risk-neutral option valuation. This general result 

demonstrates that NPV and risk-neutral option valuation are equivalent. Although equivalent, we 

argue that in this context the implementation of a traditional risk-adjusted NPV will often be 

computationally infeasible—for reasons related to sheer volume of disaggregated sample paths. 

Fortunately, the risk-adjusted option valuation framework of Arnold and Crack (2000) allows this 

same risk-adjusted NPV to be executed by seamlessly discounting the payoffs to different sample 

paths using the correct risk-adjusted discount rates. It also allows the analyst to capture physical 

probability information not available in a risk-neutral valuation. 
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Introduction 

When executed carefully, the net present value (NPV) of a real option project is shown to 

be identical to the result of a risk-neutral real option valuation.  We compare and contrast these 

two valuation techniques and conclude that although equivalent, a traditional risk-adjusted NPV 

technique is often going to be computationally infeasible unless executed using the risk-adjusted 

option valuation framework of Arnold and Crack (2000). 

A project’s NPV is the value of the project’s discounted expected cash inflows less the 

value of the project’s discounted expected cash outflows. Expectations are usually taken with 

respect to physical probabilities and discounting is conducted using a risk-adjusted rate of return.  

 For a project that displays optionality, however, valuation is often via an option pricing 

technique.  Most option pricing techniques (either closed form formulae or numerical techniques) 

use risk-neutral valuation. Thus, most real option valuations also use risk-neutral valuation. Risk-

neutral valuation appears to be different to NPV valuation because it typically uses risk-neutral 

probabilities (as opposed to physical probabilities) and a riskless discount rate (as opposed to a 

risk-adjusted discount rate). We show that these differences are really just matters of convenience 

of execution.  

 We next discuss optionality and leverage. Then we introduce a real option project which 

we value using three different techniques: first, risk-neutral option pricing with riskless discount 

rates; second, option valuation using physical probabilities and risk-adjusted discount rates; and 

third, traditional NPV techniques using risk-adjusted discount rates. The second technique helps 

to clarify the link between the first and third techniques, and provides a convenient method to 

implement a risk-adjusted NPV with computational ease. These three techniques lead to identical 

valuations. We discuss the pros and cons of each technique and conclude with a summary. 
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Optionality 

 A project with optionality allows you to opt into good states of the world and opt out of 

bad states of the world. In our example in the next section, states of the world are tied to sales 

forecasts in a product market. Early design and development costs in that example give the option 

to expend production costs later and go into production if sales forecasts are high or to abandon 

completely if sales forecasts are low. This is analogous to buying a financial option (with 

premium analogous to the design and development costs in our example) giving you the right to 

buy an underlying security (with value analogous to PV of future sales in our example) by 

expending the strike (analogous to production costs in our example).  

 The ability to opt into good states of the world and out of bad states of the world means 

that the holder of the option, be it real or financial, has a leveraged claim on the cash flows 

accruing to the underlying asset. This leverage means that the discount rate for the option is not 

the same as the discount rate for the underlying. This point is made very clear in the example that 

follows. In the case of a simple call option, the discount rate of the option is a leveraged up 

version of the discount rate of the underlying (Cox and Rubinstein [1985, Chapter 5]). The 

bottom line is that finding the option’s discount rate is all-important, but the complexities of this 

in the option framework mean that most people turn instead to risk-neutral valuation. We present 

a risk-adjusted framework as a viable alternative. 

 

A Simple Real Option Project 

 Suppose a firm is considering entering a particularly volatile product market.  Once the 

product hits the market, it must recoup all of its investment in the initial year because the industry 

is prone to fads where the product must be different from what customers already own in order to 

be marketable.  If the product is introduced today, it will generate (a present value of) $200 

million in sales, but at a production cost of (present value) $300 million.  There are development 

and design costs of $50 million to add to the production cost, so entering the market today is 
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certain to lead to financial failure. Let us ignore taxes (or assume that all cash flows are calculated 

after tax).  Assume there are no costs or benefits other than today’s development and design costs, 

the future production costs, and the future PV of sales.  

What if the firm develops the product now, but delays going into production until the 

market has had the opportunity to expand?  The downside to immediate development is that the 

development and design costs must be incurred now; the upside to immediate development is that 

patents will be obtained ahead of competitors, thus establishing a toehold.  The benefit to 

delaying production is that uncertain dollar values of sales in the future have at least the potential 

to cover the future production costs. 

Suppose the riskless rate is 5% per annum. Suppose the continuously compounded 

expected growth in the PV of dollar sales available to the firm in this market is 18% per annum, 

and the estimated standard deviation of this growth rate is 60% per annum.  The expected growth 

rate of sales and its associated standard deviation are the return and volatility of the underlying 

process in the model (i.e., the process to which the option applies).  The product market payoffs 

are an asset available for future purchase if the appropriate development expenditure is made 

today.  We need to determine the value of establishing a toehold by developing the product now.  

If this value exceeds the development and design costs, then we should develop the product now, 

and otherwise not. 

 Suppose we restrict ourselves to going into production only at a five-year horizon, at 

which time the costs of going into production are forecast to be $400 million.  The current 

development of the product thus creates a five-year European-style call option with a strike price 

of $400 million.1  The option is only exercised (i.e., we spend the cost of production) when the 

PV at year five of future sales is above the production cost.  

                                                 
1 A simple option like this can be valued using Black-Scholes. Our binomial framework, however, handles 

much more complicated options than this example.  
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The development of this product provides the right, but not the obligation, to take the 

product to market in the future.  The option-like characteristic of being able to wait and see if the 

market for the product has sufficiently expanded is valuable.  Any valuation technique must 

capture the value of this optionality. 

Option Valuation Technique #1: Risk-Neutral Valuation 

A simple risk-neutral valuation (Cox, Ross and Rubinstein 1979, “CRR”) begins by 

cutting the life of the underlying process into equal time steps and building a multi-step binomial 

tree.  At each step of the CRR tree the underlying process is modeled as rising by multiplicative 

factor teu ∆= σ or falling by multiplicative factor ted ∆−= σ , where σ is the annualized 

standard deviation of the continuously compounded growth rate of the level of the underlying 

process (60% here) and t∆ is the length of the time step in years. We use a five-step tree, with 

each step of length one year, so 1=∆t here. At each node of the tree, the risk-neutral probability2 

of the up step is given by )/()( )( dudeq tr −−= ∆ , where r is the annualized continuously 

compounded riskless rate (5% here), and discounting is performed at the riskless rate. Figure 1 

displays the CRR tree of potential sales levels and the final risk-neutral probabilities. 

To value the real option using risk-neutral techniques we may either find the value at 

each final node in Figure 1, and then step backwards through the tree finding repeated one-step 

riskless discounted expected values using the risk-neutral probability q, or we may note that 

because the option is European style, we need only multiply the final nodal values by the final 

risk-neutral probabilities and discount using the riskless rate for five years—as shown in Figure 2. 

Either way, we arrive at the risk-neutral option valuation of $73.25 million. This exceeds the 

initial development/design costs of $50 million by $23.25 million, so we should proceed. 

 

                                                 
2 Under these probabilities the expected growth rate of the underlying process is simply the riskless rate. 

Thus, these probabilities describe behavior in a world in which investors behave as if they are risk neutral. 
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Figure 1: Potential Sales Revenue in Millions 

Current Year 1 Year 2 Year 3 Year 4 Year 5 
Risk Neutral 

Probability

$200.00 $364.42 $664.02 $1209.93 $2204.64 $4017.11 0.96%

 $109.76 $200.00 $364.42 $664.02 $1209.93 7.34%

  $60.24 $109.76 $200.00 $364.42 22.52%

  $33.06 $60.24 $109.76 34.55%

  $18.14 $33.06 26.50%

  $9.96 8.13%

Notes: the number $1,209.03 in the table, for example, is the PV three years from now of all future sales if 

the process has experience three “ups.” The final risk-neutral probability 7.34%, for example, is calculated 

as hNqhq
h
N −−⎟
⎠
⎞

⎜
⎝
⎛ )1( , where 5=N , 4=h , )/())(( dudtreq −−∆= , 822119.1=∆= teu σ , 

548812.0=d , 05.0=r is the riskless rate, 60.0=σ , and 1=∆t is the time step. 

 

Figure 2: Risk-Neutral Option Valuation 

Year 5 Sales Max(Sales-Prod. Cost, 0) Probability Product
 $4,017.11   $3,617.11 0.96%      $34.61 
 $1,209.93   $809.93 7.34%      $59.45 

 $364.42  $0  22.52% $0  
 $109.76  $0  34.55% $0  
 $33.06  $0  26.50% $0  

 $9.96  $0  8.13% $0  
 Sum = $94.06

 Disc. Sum = $73.25
 Year 5 Sales ($ millions) and probability are taken from Figure 1. “Product” is the product of 

second and third columns. The discounted sum is calculated as SumrTe− , where r=0.05 is the riskless rate, 

T=5 years, and Sum=$94.06 as shown above.  
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Option Valuation Technique #2: Risk-Adjusted Option Valuation (GEMPOP) 

Arnold and Crack (2000) present the generalized multi-period option pricing model 

(GEMPOP).  The GEMPOP model allows the analyst to discount payoffs one step ahead in a 

binomial tree using risk-adjusted discount rates and physical probabilities. It is thus a risk-

adjusted, rather than a risk-neutral, option valuation technique. 

Keeping to the continuously-compounded notation used above, the GEMPOP model is 

written down in Equation (1) to give the value tV of a derivative at time t as a function of the 

values uV and dV one step ahead at time tt ∆+ in a binomial tree (Arnold and Crack [2000]). 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

−
−

−= ∆∆
∆+

∆− )()()( trtkdu
tt

tr
t ee

du
VV

VEeV ,    (1) 

where k is the physical, rather than risk-neutral, continuously-compounded growth rate of the 

level of the underlying, r is the riskless rate, u and d are as before, t∆ is the step length, and 

)( ttVE ∆+ is taken with respect to the physical probability of an up move given by 

)/()( )( dudep tk −−= ∆ . That is, dutt VppVVE )1()( −+=∆+ . 

The GEMPOP model does not use risk-neutral valuation: the term )( ttVE ∆+  in Equation 

(1) uses the physical probability p, and the riskless discount rate appearing in Equation (1) goes 

hand-in-hand with a certainty equivalent interpretation of the term that follows the discounting.3 

If the physical probability p appearing in Equation (1) is replaced by the risk-neutral probability 

q, the GEMPOP model reduces immediately to the CRR risk-neutral option pricing model.  

                                                 
3 The adjustment to the expected value of the option is similar to an adjustment suggested later by Hodder, 

Mello, and Sick (2001). 
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Implicit within Equation (1) is a risk-adjusted discount rate Vk for the derivative4 over the 

time step t∆ . It can be inferred by writing down )()(
tt

tk
t VEeV V

∆+
∆−= , and substituting for tV  

and ( )ttVE ∆+ , as in Equations (2).  

( )

( ) ( )

[ ]( ) ,
)1()(

1ln1

)(
1ln1

ln1

)(

)()(

)()(

)(

⎥
⎦

⎤
⎢
⎣

⎡
−

−+−
−

−
∆

−=⇔

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

−
∆

−=⇔

⎥
⎦

⎤
⎢
⎣

⎡
⋅

∆
−

=⇔

=

∆∆

∆∆

∆+

∆+

∆+
∆−

trtk

du

du
V

trtk

tt

du
V

tt

t
V

tt
tk

t

ee
VppVdu

VV
t

rk

ee
VEdu

VV
t

rk

VE
V

t
k

VEeV V

   (2) 

where, as before, )/()( )( dudep tk −−= ∆ is the physical probability of an up move, and k is the 

physical continuously-compounded growth rate of the level of the underlying.5 

Given all inputs to the final line in Equations (2), the risk-adjusted discount rate Vk on the 

option may be determined at any node in the binomial tree. Figure 3 shows the value of the real 

option (calculated using the GEMPOP model Equation (1)) and the one-period discount rate Vk  

(calculated using the last line of Equations (2)) for the option at each node in the tree for which 

the option has value. To implement this, we use k=18% (the growth rate in sales). 

 

 

 

 

                                                 
4 See Cox and Rubinstein (1985, p323–324) for an exploration of some related issues for European-style 

financial options. 

5 If this were a financial option, k would be the risk-adjusted discount rate on the underlying security. 



 9

Figure 3: Valuation of the Option-Like Project with Associated Discount Rates (All Dollar 

Values in Millions) 

Current Year 1 Year 2 Year 3 Year 4 Year 5 Physical 
Probability

$73.25 
25.686% 

$170.48 
24.970% 

$388.45 
24.004%

$859.73 
22.628%

$1824.14 
20.511%

$3617.11 3.42%

 $16.08 
30.500% 

$42.84 
30.500%

$114.12 
30.500%

$304.02 
30.500%

$809.93 16.50%

  $0.00 
N/A

$0.00 
N/A

$0.00 
N/A

$0.00 31.81%

  $0.00 
N/A

$0.00 
N/A

$0.00 30.65%

  $0.00 
N/A

$0.00 14.77%

  $0.00 
 

2.85%

Note: The final physical probability 16.50%, for example, is calculated as hNphp
h
N −−⎟
⎠
⎞

⎜
⎝
⎛ )1( , where 

5=N , 4=h , )/())(( dudtkep −−∆= , 822119.1=∆= teu σ , 548812.0=d , 18.0=k is the 

physical growth rate, and 1=∆t is the time step. 

 

As the option becomes more in-the-money in Figure 3, the discount rate falls.  This is a 

general result: the discount rate for a call option tends to fall as the option becomes more in the 

money and rise as the option becomes more out of the money.6 That is, the rate Vk falls as the 

leverage falls and rises as the leverage rises. The discount rate for the option is thus “path 

dependent”—it depends upon the path followed through the binomial tree by the underlying. This 

is not a new result—Black and Scholes’ original derivation of the option pricing formula uses a 

path-dependent discount rate calculated via an “instantaneous CAPM” (Black and Scholes [1973, 

p645–646], Black [1989, p5]). 

                                                 
6 There are exceptions to this, for example if the underlying has large negative beta. Similarly, if the option 

is a put, the opposite result holds. Though in each case, the statement holds true with respect to the 

magnitude of the option’s discount rate. 
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We can see in Figure 3 that the physical probability that the project will be undertaken 

(i.e., that the real option ends up in the money) is 3.42%+16.50%=19.92% (the sum of the top 

two ending nodal probabilities). This probabilistic information cannot be inferred from the CRR 

risk-neutral probabilities in Figure 1. 

 Note that although the option values in Figure 3 are calculated using the GEMPOP 

model, they are identical to those values that would be calculated at each step in the tree using the 

CRR risk-neutral model (Arnold and Crack [2000]). 

 An immediate consequence of being able to calculate the risk-adjusted discount rate for 

the option at any point in the binomial tree is that we may now use these numbers to implement 

the NPV technique for our real option. 

 

Option Valuation Technique #3: Traditional NPV 

Table 1 finds the NPV of the real option project by disaggregating the individual sample 

paths through the binomial tree that lead to non-zero payoffs. Only one path leads to the highest 

node (with payoff $3,617.11), but five different paths lead to the second highest node (with 

payoff $809.93). For example, “uuuud” and “uuudu” both lead to the second highest node (where 

“uuuud” denotes four up steps followed by a down). 

This is a traditional NPV analysis because we have simply added together discounted 

expected payoffs using risk-adjusted discount rates and physical probabilities. Note that if we ask 

“What is the discount rate?,” this is not a well posed question because different payoffs require 

different discount rates, and even identical payoffs arrived at via different sample paths of the 

underlying require different discount rates. The PV of $73.25 is of course identical to the two 

previous valuations. 
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Table 1: Calculation of NPV (All Dollar Values in Millions) 

Panel A: Present Value of Sample Path Payoffs 
Future 
Payoff 

Discount Factor Calculated by Compounding 
 Along the Sample Path (from Figure 3) Product

$3,617.11 EXP(-(25.686%+24.970%+24.004%+22.628%+20.511%)) $1113.70
$809.93 EXP(-(25.686%+24.970%+24.004%+22.628%+20.511%)) $249.38
$809.93 EXP(-(25.686%+30.500%+30.500%+30.500%+30.500%)) $184.95
$809.93 EXP(-(25.686%+24.970%+30.500%+30.500%+30.500%)) $195.46
$809.93 EXP(-(25.686%+24.970%+24.004%+30.500%+30.500%)) $208.58
$809.93 EXP(-(25.686%+24.970%+24.004%+22.628%+30.500%)) $225.67

Panel B: Calculation of NPV 
Product 

 from Panel A 
Probability of 
Sample Path* Product

$1113.70 3.42427% $38.14
$249.38 3.30014% $8.23
$184.95 3.30014% $6.10
$195.46 3.30014% $6.45
$208.58 3.30014% $6.88
$225.67 3.30014% $7.45

Summation of Discounted Payoff times Probability = $73.25 
 

Net Present Value = $73.25 - $50.00 = $23.25 
 

*We calculate the probability of observing that sample path using hNh pp −− )1( where h is the 

number of ups, N-h is the number of downs, and p is the physical probability as before. 

 

 There is a redundancy here that may not be immediately obvious to the reader. To find 

the discount rates for the option using Equations (2), we walk backwards through the tree and 

keep track of the option values one step ahead (denoted uV and dV in Equation (2)). Thus, we need 

to know the real option values one step ahead within the binomial tree in order to derive the risk-

adjusted discount rate for the real option at that node. Thus, we need to value the option at each 

node using option pricing techniques (GEMPOP) in order to deduce the discount rate that allows 

us to value the option using NPV techniques. It is not circular, but it is certainly redundant.  
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Which Valuation Method and Why? 

 If we do wish to execute a traditional NPV valuation of our real option, then we need to 

find discount rates associated with each possible sample path through the tree. This information 

can be harvested from the GEMPOP model by disaggregating the different sample paths. This 

leads, however, to a problem as follows. 

Our five-step tree has, for example, 5
4
5

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
different paths leading to the second-to-

highest ending node (each listed in Table 1), and there are a total of only 

322
5 5

5

1
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑
=h h

sample paths through the binomial tree. In practice, however, absent any 

accelerated convergence techniques, a 100-step binomial tree may be needed to remove 

discreteness-induced numerical artifacts (e.g., Rubinstein [1999, p269–270]). If we use a 100-step 

tree, however, there are 100
99

100
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
different sample paths leading to the second-to-highest 

ending node, and a total of 100
100

1
2

100
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑
=h h

paths through the binomial tree—this is more than 

the number of atoms in the universe.7 Disaggregating these sample paths and finding the discount 

rate for each is not just impractical, but it is in fact impossible given any computing technology. 

A back-of-the-envelope calculation suggests that if you list 1,000 discount rates per page, you 

need a stack of paper 12,000,000,000,000,000 miles high just to list the discount rates for every 

                                                 
7 We would in fact need to consider only the ending nodes in a 100-step tree with positive option value. 

With our particular numerical example’s parameters, this is only the uppermost 48 ending nodes in the 100-

step tree and there are only 
2399.3

1002100

53
100

=∑
=

⎟
⎠
⎞

⎜
⎝
⎛

h h
sample paths leading to these nodes—but that is still 

more than the number of atoms in the universe (details of calculation available upon request). 
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sample path through a 100-step tree. You need to square that number for a 200-step tree! You 

simply cannot analyse a data set this huge.  

An NPV alternative is to solve for a single path-independent risk-adjusted discount rate 

that equates our final payoffs to our PV. This discount rate, however, over-discounts the deeper 

in-the-money sample path payoffs and under-discounts the less in-the-money sample path 

payoffs. The bottom line is that no single risk-adjusted discount rate correctly applies to all 

sample paths, but calculating a risk-adjusted discount rate for each sample path is typically going 

to be computationally infeasible. 

Fortunately, each of these sample paths, and their appropriate risk-adjusted discounting, 

are handled by construction within the structure of the GEMPOP model. The GEMPOP model 

may thus be considered to be a convenient method for implementing a traditional risk-adjusted 

NPV analysis that would otherwise be computationally intensive. 

If valuation is your only goal, then risk-neutral valuation (e.g., CRR) is probably the most 

convenient technique because the discount rates on the option-like project are path-independent. 

By altering the probabilities and discarding the risk premium, the CRR technique allows you to 

use the same discount rate (the riskless rate) for all paths. The downside is that you must use risk-

neutral probabilities and riskless discounting, and these can take some getting used to.  

If you wish to perform a risk-adjusted NPV and to obtain numerical accuracy, then the 

number of sample paths is so large that you are likely to need the GEMPOP model to implement 

the NPV. The GEMPOP model involves only marginally more computational complexity than 

the CRR model, it avoids risk-neutral pricing and riskless discount rates, and it allows the analyst 

to capture physical probabilities (e.g., probability of the option finishing in the money).  
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Conclusion 

We show that a careful NPV using risk-adjusted world discount rates produces real 

option valuations identical to those obtained from a risk-neutral option valuation. Thus, NPV 

techniques and risk-neutral option valuation techniques are equivalent. Although equivalent, 

practical implementation of a traditional risk-adjusted NPV analysis may be computationally 

infeasible because of the large number of sample paths leading to payoffs. For convenience, we 

recommend either the risk-adjusted GEMPOP option valuation framework of Arnold and Crack 

(2000) (when probabilistic information is required) or a risk-neutral option valuation framework 

(when valuation is the only goal).  
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