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1 Introduction

In this article we consider real estate investment decisions from a real option point of
view. More precisely, the situation is as follows. Suppose that an investor is determined
to buy the house that he is living in within a fixed period of time. We ask for the
optimal point in time to perform the investment, i.e. to change from renting to owning
the house. Thereby, we define the optimal point in time to be the one that maximizes
the net present value of all cash flows from the point of view of the investor. The cash
flows under consideration are the following. Up to the time of the investment, the investor
has frequent rent payments constituing negative cash flows. After the investment, he has
frequent credit and maintenance payments, both constituing negative cash flows as well.
We assume that the investment is fully financed by a credit, and that the period of time
for the credit payments is fixed. Finally, we assume that after the original period of time
the house is sold, thereby constituing a positive cash flow.

Now, the decision to exercise (i.e. to buy the house) is considered as real option. Con-
sequently, the above problem becomes an optimal stopping problem, where we seek for
a stopping time (the exercise time) that maximizes the expected utility (the net present
value of the cash flows). For comparison, we also consider the utility for renting the house
without ever buying it. Of course, in this case only the frequent rent payments over the
full period of time contribute to the utility function. The risk factors taken into account
are the price of the house on the one hand, and the risk free rate on the other. Both
risk factors are modeled by binomial processes. For the first process we assume a simple
geometric random walk whereas for the second we assume a geometric random walk with
mean reversion. Moreover, we assume that the house price is in proportion to the general
house price index, such that we can extract the model parameters (drift and volatility)
from historical data for the general house price index. Finally, we assume that the risk
free rate coincides with the overnight rate, such that we can extract the model parameters
(mean, drift and volatility) from historical data for the overnight rate. In particular we
do not consider term structures in our model. We note that for the case of the geometric
random walk, drift and volatility can be computed from the first two moments of the
returns given by a historical time series. On the contrary, for the case of the geometric
random walk with mean reversion the model parameters have to be determined by fitting
them to a historical time series.

2 The Model

We consider a series of N + 1 equidistant time steps s, where N € N. We assume that
the house price index I, follows a geometric Random Walk,

Ipn— 1, =1,(p+0X,) (s=0,..,N—1), (2.1)
where 1 > 0 denotes the drift, ¢ > 0 denotes the standard deviation, and the X, denote
i.i.d. random variables such that

1

BLX, = 1] = 5 = PX, = —1] (2.2)



where P denotes the probability measure. Moreover, we assume that the risk free rate R
follows a mean reversion Random Walk,

Ry — R, = R, (a (F—RS)JrﬁYS) (s=0,..,N —1), (2.3)

where R > 0 denotes the mean, o > 0 denotes the drift, 3 > 0 denotes the standard
deviation, and Y, denote i.i.d. random variables such that

1
PlY, =1 = 5= PlY, = —1]. (2.4)
Finally, we assume that X, and Y, are independent for r # s, and that X, and Y, have a
joint distribution independent of s. More precisely, we assume that for some 0 < p < 1

the following equations hold,*

IP[XS:1,5@:1]:%:@[)@:—1,5@:—1], (2.5)

1—
2p —P[X, = —1,Y, = 1]. (2.5b)

Throughout the text the expectation of a random variable Z w.r.t. P will be denoted by
E|Z]. Moreover, the expectation of Z taken at time step s will be denoted by E,[Z]. More

precisely, E,[Z] denotes the conditional expectation of Z w.r.t. the sigma field generated
by Xo,. . -7X5—1 and }/0,. . .,}/5_1.

PX,=1,Y, = —1]

Next, we define the utility function for an investor living in a house during the time period
[0, N] who is determined to buy the house within that period.

1. First, we consider renting an average house during the time period [0, n]. We assume
that due to maintenance the value of the house throughout the period is given by
the house price index. For simplicity, we assume rent payments of amount P;(rent)
at the time steps s = 0,...,n — 1. Moreover, we assume that Ps(rent) is in fixed
proportion to the house price index, i.e.

P(rent) =« I, (2.6)

where v > 0 denotes a given constant. We define the net present value (NPV) of
the rent payments at time step s = 0 as the discounted NPV of the rent payments
at time step s = n. The NPV of the rent payments at time step s = n is defined
as the sum of the compounded rent payments where the compounding is performed
due to a short term investment strategy. Altogether, the net present value of the
rent payments is given by

—_

n—

1

NPVn (rent) = m

Il
=)

S

(Ps(rent) ﬁ(l + Rk))

k=s

3

R ) (fsﬁuwk)). (27)

s= k=s

o

TWe note that our assumptions on the distributions of X, and Y; already determine the joint distri-
bution up to the parameter p. To see this, assume that P[X, = 1,Y; = 1] = L. Since P[X, = 1] = % and
Py, =1] = %, this implies P[X; = 1,Y; = —1] = 1;—7” and P[X, = —1,Y;
joint probabilities have to sum up to 1, we also have P[X, = —1,Y; = —1]

121 = 1%]”. Finally, since the
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2. Next, we consider buying an average house at time step s = n at price [,,. We
assume that the full price is payed by a credit taken at time step s = n. For
simplicity, we assume constant repayments of amount P,(credit) at each time step
s=n+1,...,n+ K, where K € N denotes the given number of repayments. The
residual debt Dy (k) after k payments satisfies the following recursion equation,

Dk(0) = 1,, Dy(k+1)=(1+ R, + S) Dg(k) — P,(credit), (2.8)
where S > 0 denotes the given credit spread. The solution is given by
k—1
Dr(k) = (1+ R, + 8¢ 1, =Y (1+ R, +S)" P,(credit)

Il
=)

(1+R,+S)k—1
R, +S
By assumption, the credit is amortised after K payments. Consequently,
(R, +S)(1+ R, +9)K
(1+R,+S)K -1
We define the NPV of the credit payments at time step s = 0 to be the discounted
NPV of the credit payments at time step s = n. The NPV of the credit payments at

time step s = n is defined as the sum of the discounted credit payments. Altogether,
the net present value of the credit payments is given by

=1+ R, + 91, -

P, (credit). (2.9)

Dig(K) =10 — P, (credit) = I,. (2.10)

K .
' 1 P, (credit)
NPV, (credit) =
A% (Cl"e 1 ) (1+Ro)n kz; (1 +Rn)k
1 (1+R.) =1 (R, +S)(1+ R, + 95

_ . . _ I, 2.11
(1+ Ro)" Ry, (1+R,) 1+R, + -1 " (2.11)

3. Next, we consider maintaining the house during the time period |[n, N|. We assume
that due to maintenance the value of the house throughout the period is given by
the house price index. For simplicity, we assume maintenance payments of amount

Ps(maint) at time steps s = n,..., N — 1. Moreover, we assume that Ps(maint) is
in fixed proportion to the house price index, i.e.
Py(maint) = 9§ I, (2.12)

where 0 > 0 denotes a given constant. We define the NPV of the maintenance
payments at time step s = 0 to be the discounted NPV of the maintenance payments
at time step s = n. The NPV of the maintenance payments at time step s = n is
defined as the sum of the discounted and projected future maintenance payments.
Altogether, the net present value of the maintenance payments is given by

N-1

o E, [Py(maint)]
NPV (maint) = o >, U1 Ry

S=n

o1, = L+p "
= O . 2.1
(11 Ro)" Z<1+Rn> (2.13)

S=n




4. Finally, we consider selling the house at time step s = /N at price Iy. In accordance
with our approach in points 1, 2, 3, we define the NPV of the sale payment as
the discounted NPV of the sale payment at time step s = n. The NPV of the sale
payment at time step s = n is defined as the discounted and projected sale payment.
Altogether, the net present value of the sale payment is given by

1 E,[Iy] I, 1+p\""
NPV, (sale) = : - . (214
(1) = T Ry Wt B (LF Roy <1+f% (2.14)

We define the utility function U, for the above investor by
U, = — NPV, (rent) — NPV, (credit) — NPV, (main) + NPV, (sale). (2.15)

Now, the optimal time 7 for the investor to buy the house can be written as the following
optimal stopping problem:

Find a stopping time T < N such that
E|U,] — mazimal, (2.16)

From the general mathematical theory we know that one solution 7 to the above problem
is obtained by way of constructing the Snell envelope U, corresponding to our utility
function U,,

Uy = Uy, U, = max{Uy,, E,[U,11]}  (n=N—1,..,0). (2.17)

From a numerical point of view the above equations allow to compute U, recursively from
U, backwards for n = N, ...,0. Finally, having U, and U, at hand one solution 7 to the
above optimal stopping problem is given by

T:min{ne{O,...,N}‘Un:Un}. (2.18)

Since one of our goals was to compare buying the house to renting it exclusively, we next
define the utility function for an investor living in a house during the time period [0, N]
without ever buying it. Given that the investor is determined from the start never ever
to buy the house, we define the utility function to be the negative of the NPV of the rent
payments. In this case, the NPV of the rent payments is simply the sum of the discounted
and projected rent payments. Altogether, the utility function is given by

= 2 E[P,(rent)] B Ay AN
VoL T Ry _“0;(1%) ' (2:19)

However, given that the investor in indecisive up to time step s = n whether or not to
buy the house and only then makes his decision never ever to buy it, we define the utility
function to be the negative of the discounted NPV of the rent payments at time step
s =n. According to points 1 and 3 above the utility function is given by

n—l n—l N—l S—n
Y v I 1 +p
Vo= s 1 1+ R - . 2.20
07 Ry Z( 111 k>) i 2 (1) (2:20)



3 Numerical Results

In our model the risk factors under consideration are the price of the house on the one
hand, and the risk free rate on the other. In order to be able to extract the model
parameters from historical time series, we assume that the house under consideration
is an average house rather than a particular one, such that the corresponding price is
represented by a general house price index. Since there is no such index, we define it to
be the average of the inflation index [2| and the property price index [3]. This is based
on the assumptions that the price of the house and the price of the property make up
for one half of the total amount each. Moreover, we assume that the risk free rate in our
model is represented by the overnight rate. For both, the general house price index and
the overnight rate, we have time series at hand that cover a time period of 30 years. In
particular, the N time steps in our model precisely correspond to a time period of T'= 30
years. Since we have assumed that the house price index follows a geometrical random
walk, the corresponding drift ;1 and the corresponding volatility o can be computed as the
arithmetical mean of the first and the second moment of the returns for the given time
series, respectively. However, for the risk free rate the situation is more complicated. Since
we have assumed that it follows a mean reversion random walk, we have to determine the
mean R, the drift o, and the standard deviation 3 with the help of a best fit. Therefore,
we split our original time series into a number of different time series, where each new time
series still covers a range of 30 years. This way we obtain a historical process RL® for the
risk free rate, where the new time series constitute the paths of the process. Having the
process RT® at hand we take (@, 3, R) to be the minimizer of the following error function,

®(a, B, R) = % (Z (E[R,] —E [RSSDQ)

n—

+ % (; |Var[R,] — Var [R°] ‘) . (3.1)

We note that our original time series for the risk free rate shows oscillations with com-
paratively long periods, such that our new time series are strongly correlated (see figure
1). Consequently, our method systematically underestimates the standard deviation f3.

We have obtained our numerical results with the help of a C programm. Due to efficient
usage of memory it will run even on old machines. However, it takes about 5000 seconds
on a 1.4 GHz Pentium machine to calculate the 4" paths of a tree with N = 15 such that
less than 2 MB RAM occupied.

In what follows, we investigate the influence of several model parameters on the expected
values for the exercise time and the utilities. From figure 2 we can see that the credit
spread S only has a minor influence on the expected exercise time. Since an increase
in S makes buying the house more expensive, the expected utility for buying the house
decreases with increasing S. Figure 3 shows that the expected exercise time increases
with increasing initial interest rate Ry. In particular, for Ry < R we have 7 = 0 whereas
for Ry > R we have 7 = N. Of course, this is an artefact from modelling the risk free
rate as a mean reversion process. For Ry < R we know for sure that the interest rate
will rise and thus buying the house becomes more expensive. Consequently, buying the
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Figure 1: Time Series for the risk free rate. The data have been extracted from the
overnight rates [1].

house immediately is an optimal exercise strategy. On the contrary, for Ry > R the
interest rate will fall and thus buying the house becomes less expensive. Consequently,
buying the house as late as possible is an optimal exercise strategy. From the expression
for V we immediately see that the utility for renting the house exclusively increases with
increasing [y. Interestingly, the graph of the expected utility for buying the house has
a global minimum at some Ry > 0. Moreover, it intersects the graph of the expected
utility for renting the house exclusively twice. When Ry is in the range between the two
intersection points, renting the house exclusively is more attractive than buying it, whereas
the contrary is true otherwise. Figure 4 shows that the parameter p that determines the
correlation between the house price index and the risk free rate only has a minor influence
on the expected exercise time as well as on the expected utilities. Figure 5 shows that
the expected exercise time decreases with increasing parameter . Bearing in mind the
definition of 7, it is perfectly intuitive that an increasing rent makes buying the house more
attractive. Of course, the expected utilities decrease with increasing parameter -y, too.
Moreover, we see that the graph of the expected utility for buying the house intersects
the graph of the expected utility for renting the house exclusively. When v is in the
range to the left of the intersection point, renting the house exclusively is more attractive
than buying it, whereas the contrary is true otherwise. Contrasting the dependence on -,
figure 6 shows that the expected exercise time increases with increasing ¢. Bearing in mind
the definition of ¢, it is also perfectly intuitive that increasing maintenance costs make
buying the house less attractive. Moreover, we see that the graph of the expected utility
for buying the house intersects the graph of the expected utilitiy for renting the house
exclusively. When ¢ is in the range to the left of the intersection point, buying the house is



more attractive than renting it exclusively, whereas the contrary is true otherwise. Figure
7 shows that the expected exercise time decreases with increasing standard deviation §3.
Moreover, we see that the graph of the expected utility for buying the house intersects
the graph of the expected utilitiy for renting the house exclusively. When [ is in the
range to the left of the intersection point, renting the house exclusively is more attractive
than buying it, whereas the contrary is true otherwise. Finally, figure 8 shows that the
expected exercise time increases with an increasing number of credit payments K. Due
to the credit spread S, the expected utility for buying the house decreases with increasing
K. This is clear since in our model an increase in K corresponds to an extension of the
time period in which the credit debt is repayed, and consequently enforces the effect of
the credit spread. However, a decrease in K increases the height of the frequent credit
payments, such that in reality the financial situation of the investor may give a bound on
K. Moreover, we see that the graph of the expected utility for buying the house intersects
the graph of the expected utilitiy for renting the house exclusively. When K is in the
range to the left of the intersection point, buying the house is more attractive than renting
it exclusively, whereas the contrary is true otherwise.
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