
Kademlia for data storage and retrieval in enterprise

networks*

Natalya Fedotova, Stefano Fanti, Luca Veltri

Department of Information Engineering

University of Parma, Italy

Abstract — Centralized organization of current enterprise

networks doesn’t represent an ideal solution in terms of

information security and reliability. Denial of service, packet

filtering and low resistance to failure are frequent shortcomings

of centralized systems. To avoid the above problems we introduce

a distributed P2P data organization system to the enterprise

environment. We propose to apply Kademlia-based Distributed

Hash Tables to organize data storage and retrieval systems of

enterprise networks. Due to a tree-like structure of the identifier

space and a prefix matching lookup algorithm, Kademlia is easy

adaptable to the context of enterprise hierarchy, e.g. it facilitates

the assignment of different privileges regarding data access, to

various system entities. We present a solution that provides

geographically separated users of enterprise networks with

possibility to share, modify and publish data in parallel way.

Keywords-component: enterprise network, Distributed Hash

Tables, Kademlia, data storage and retrieval system

I. INTRODUCTION

Computer networks has become an integral part of the

technical infrastructure of today enterprises, and play an

important role in management of their business activity and

successful realization of any type of projects.

An enterprise network is defined as a geographically

dispersed network for a large business enterprise, that typically

comprises a number of local area networks (LANs), which

have to interface with each other, as well as with a central

database management system and many client workstations.

Usually, such network is based on a client-server model and

centralized architecture.

An enterprise network should provide effective

mechanisms for: secure communication between network

terminals, rapid and secure data exchange between different

system units, reliable data storage system, secure network

access, simple network administration. It is also very

important to make data, produced by some department

maximally available for other interested entities. It should be

realized in accordance with a predefined policy of attribution

of different privileges, regarding data access, to users from

various departments of the same organization. The possibility

of collaboration between different geographically distant work

groups engaged in a common task in real-time and transparent

mode is indispensable for many enterprises.

* This work has been partially supported by the Italian Ministry for

University and Research (MIUR) within the project PROFILES under the

PRIN 2006 research program.

Currently, almost all enterprise networks as well as the

groupware they utilize, have either a centralized architecture

or a hybrid architecture based on the use of central servers that

require high administration and maintenance costs. Moreover,

centralized systems are subject to some problems regarding

information security, data retrieval efficiency and reliability,

such as: “denial of service” and “packet filtering” attacks,

single point of failure, low network scalability.

To cope with these problems we propose to introduce a

distributed peer-to-peer (P2P) data organization system to the

enterprise environment. This system exploits hardware and

memory resources of all terminals of the network to provide a

reliable data storage system and the possibility of effective

collaboration between geographically distant users. In this

case all the network terminals together form a huge distributed

disk space. Moreover, the distributed structure gives the

possibility of incremental growth of the network, delivering

complementary capacity when and where needed. This feature

is very appreciable in potentially extensible environment of

enterprise networks.

The solution we present here is based on resource sharing

and data storage principles inhering in peer-to-peer networks

based on Distributed Hash Tables (DHT). In a DHT-based

P2P system a group of distributed hosts collectively manage a

mapping from keys to data values according to some

predefined algorithm (CAN, Chord, Pastry, Tapestry,

Kademlia), without any fixed hierarchy and with a very little

human assistance.

Today, a great number of P2P platforms use DHT-based

overlay networks, that create a structured virtual topology

above the basic transport protocol level implementing

effective self-organizing data storage and lookup mechanisms.

The concept of Virtual Enterprise Networks involves use of

overlay mechanisms as well: Supernet layer with the

appropriate address system is employed to protect data

transmitted by the network layer [1].

In this paper we propose application of Kademlia DHTs to

organize data storage and retrieval in enterprise networks. Due

to the particular nature of the enterprise environment, it is

necessary to make some modifications in Kademlia protocol in

order to better suit several specific security requirements.

Since most of enterprise networks exploit trustless public

network infrastructures, it is important to provide users with

appropriate data authenticity and access control instruments,

that can guarantee secure communication and data exchange.

We introduce a system of different levels of privileges based

on use of prefix identifiers (prefix_IDs) for both nodes and

resources to handle read/write permissions in accordance with

a certain enterprise hierarchical model. This is realizable due

to Kademlia’s tree-like structure of the identifier space.

The rest of the paper is organized as follows: the next

section provides the background on DHT principles and

Kademlia protocol; it is also explained why in our case

Kademlia is preferred to other DHTs. In section 3 we describe

details of realization of enterprise data exchange and storage

system based on Kademlia protocol. Section 4 draws some

conclusions and defines directions of the future work.

 II. BACKGROUND: DHT PRINCIPLES AND KADEMLIA

A. DHT routing, lookup and storage mechanisms

All DHT algorithms are based on the idea of consistent

hashing and they share the following fundamental principle:

route a message to a node responsible for an identifier in

)(log NO b
steps using a certain routing metric, where N is the

number of nodes in the system, and b is the base of the

logarithm with values (2, 4, 16…).

The basic element of a typical DHT-based network is a

routing table-based lookup service, which maps a given key to

a node that is responsible for the key, using a hash function

[2]. To publish a file, its name should be converted to a

numeric key using a hash function. Then a “lookup (key)”

operation should be invoked and the file with corresponding

metadata should be sent to a resulting node with STORE RPC

[3]. So, a node, that needs to get this file, should only convert

its name into the key, invoke a “lookup (key)” and request a

resulting node for a copy of the required file.

Depending on the mode of organization of the identifier

space DHT-based lookup algorithms can implement routing in

one dimension (Chord, Pastry, Tapestry, Kademlia) and

multiple dimensions (CAN). The data structure of the routing

tables maintained by existing lookup algorithms can present:

skip-list (Chord), tree-like data structure (Pastry, Tapestry,

Kademlia), rectangles (CAN).

B. Why Kademlia

Kademlia [3] is a peer-to-peer DHT based on the XOR

metric. The distance between two identifiers is defined as:

d (x,y) = x XOR y. All nodes and resources in this system have

160-bit identifiers (keys). The data are replicated by finding k

(the recommended value for k is 20) nodes closest to a key and

storing the key/value pair on them. As it was noted above,

Kademlia has a tree-like data structure and the routing process

is implemented in prefix-matching mode. The routing table

size is N2log .

Comparing the main characteristics of different DHT

algorithms, we can say that Kademlia is the most appropriate

system to be applied to enterprise networks due to the

following advantages it offers:

• the binary tree-based structure of the identifier
space and routing by prefix matching permit to

manage the assignment of IDs to enterprise
terminals and diverse privileges to single
departments in simple and intuitive mode. It also
allows easy implementation of eventual algorithm
modifications in the case of enhancement of a
network’s dimensions;

• the symmetry of XOR-metric provides peers with
a possibility to learn and update routing
information from queries they receive during a
lookup process;

• a Kademlia system can be presented as a bucket
table. So, the lookup speed can be increased by
considering b bits (instead of one bit) at each step,
reaching a desired resource in less time.

 III. APPLICATION OF KADEMLIA PRINCIPLES IN ENTERPRISE

NETWORKS ENVIRONMENT

A. Network topology

Before describing the processes of publishing and

modifying data stored by network nodes, it is necessary to

explain how the new identification system is organized.

Let’s consider an enterprise network of some hypothetical

company. We suppose that our company consists of many

departments of different levels (A, B, C), which have different

privileges regarding the possibility to access and modify the

data produced by the same department or by another one.

According to this system of privileges, any department of level

A can access and modify data produced only by an office of

the same level. Any B department has more privileges than A

departments: it can get and modify data produced by any B

office and also by any office of level A. Accordingly, C

departments are enabled to access and modify files created by

departments of lower levels A and B, and so on. Finally there

are nodes with a manager status (M), that can get, change,

store and cancel files produced by nodes of any department.

Some types of data should be accessible and shared by all

the departments, for example administrative circulars,

recommendations, instructions, etc. So, this information

should be stored at A nodes, that belong to the lowest level of

the described system, to provide free access to these resources

for all the nodes of the network.

Since an enterprise network is a quite particular system

with specific requirements regarding information security and

access control mechanisms, it is necessary to make some

appropriate modifications in Kademlia protocol to adapt this

algorithm to such environment. Let’s begin from keys and

node IDs assignment.

B. Assignment of node identifiers

Although each workstation of an enterprise network may

have a static IP address, it is not convenient to assign to a node

an identifier obtained as a hash function of its static IP

address, because the node would get the same node ID every

time it joins the network, and it would potentially be more

vulnerable to masquerade attacks.

Fig. 1. Assignment of IDs to the network terminals

The solution we propose is a random attribution of node

IDs by some trusted bootstrap terminal that should be

contacted by nodes to join the network. In this case we avoid a

situation when a malicious node can get and use a specific ID

in order to possess certain keys related to confidential data.

To organize all work processes (storage, retrieval and

exchange of data) and interactions between network terminals

in accordance with hierarchical principles described above, we

propose a solution explained below.

Each Kademlia node has a 160-bit node ID, that we divide

in two strings of bits, the former is called prefix_ID, the latter

is called node_ID. The prefix consists of β bits, and the

remaining 160 - β bits represent the node_ID. The length of

the prefix and of the node ID depends on the network

dimensions and on the corresponding structure, i.e. on the

number of nodes in the network and the number of different

departments that an enterprise consists of. The prefix defines a

level that a node belongs to.

When some node contacts a bootstrap terminal, this one

recognizes the level of privileges the node can enjoy

examining its certificate, and assigns to the node the

corresponding prefix_ID predefined for the departments of this

level. The node_ID should be randomly generated by the

bootstrap terminal, that also verifies that the matched pair

<prefix_ID; node_ID> doesn’t coincide with some node that

is already online. The assigned ID expires immediately when a

node leaves the network.

Since Kademlia system has a tree-like data structure it is

quite simple to realize this ID assignment technique (Fig. 1).

C. Key assignment and data storage procedures

Regarding the key assignment to files published on the

network, the 160-bit key ID cannot be simply calculated as

hash function of the file, as it happens in Kademlia. In fact,

also in this case, the prefix-based mechanism is needed.

Without involving the prefixes we can have the following

situation: when a node A is going to publish some file, it first

calculates the key applying a hash function to the file’s

content, then looks up for the nodes closest to the key. Since

these ones may belong to departments of level B or C, the file

could be stored at nodes of the higher level that is inaccessible

for nodes of level A for the future modifications and use. So,

in terms of files retrieval efficiency and according to the

“competence principle” it’s more useful to store data using the

already introduced prefix-based approach.

Fig 2. Example of data storage procedure

In order to implement this principle, we use the same

technique as for nodes’ IDs, dividing a key identifier in two

strings of bits that represent the prefix_ID (the first β bits) and

the key_ID (the remaining 160-β bits). The key_ID can be

obtained applying a hash function to the file content, as it is

implemented in Kademlia. A prefix_ID of a resource usually

coincides with a prefix_ID of the node that produced it. So, the

prefix indicates a level of “confidentiality” of a file’s content,

i.e. if it is for common use or only for limited use of certain

departments. However, if a node B, for example, intends to

make a file it has created available for all departments, it

should store the file on some node of level A. To do it the

“publisher” should assign to the file a prefix_ID predefined by

the bootstrap for nodes of level A. Hence, according to

Kademlia principles the file will be stored at some node of

level A with the node_ID “closest” to the file’s key_ID.

Obviously, a node is not permitted to store data at nodes of the

level that is higher than its own one.

Thus, for the efficient data retrieval, files should be stored

in such mode that nodes, using those files frequently during a

work process, could easily get them. This is possible only if all

necessary files are hosted by nodes of the same or the lower

level in respect of the level of a certain node.

To illustrate the mechanisms described above we provide a

simple example. In our example (Fig.2) instead of 160-bit key-

space we consider 4-bit space, where the number of bits

assigned to the prefix_ID is β = 2 and the other two bits

represent node_ID or key_ID. All terminals represented on the

figure are online.

Let’s suppose that a node C needs to publish a file for

internal use of department C with key_ID 01. In this case the

node has to store the data at some node of level C. So the file’s

ID (key) will be 1001. In this example there is only one node

C online apart from the publisher. Calculating the distances

between the key of our resource and IDs of the active nodes

according to XOR-metric, we obtain the following results:

dist(1001;1010)=0011=3

dist(1001;1101)=0100=4

dist(1001;0000)=1001=9

dist(1001;0011)=1010=10

dist(1001;0010)=1011=11

dist(1001;0110)=1111=15

So, the closest nodes are: the node C with ID=1010, the

Manager node 1101, and the node 0000 of level A. But to

avoid the problem of data storage at inappropriate nodes, the

publisher should verify the node IDs returned by the lookup

procedure and choose for the storage the nodes with opportune

prefix_IDs. In our case the opportune node is C with ID=1010

of the original sub-tree. Thus, the STORE RPC should be sent

only to nodes with IDs that satisfy the condition:

(,) 2ndist ID key β−< ,

where n is the total number of bits in the node ID, β is the

number of bits in the prefix. This inequality imposes an upper

bound to the distance between the key and the target nodes.

Likewise, if IDs of two nodes satisfy this condition, they

reside at the same sub-tree and belong to the same department.

D. Data publication process

Publication of data in Kademlia is implemented by storing

of <key, value> pairs corresponding to a certain file at nodes

with the IDs closest to the key. The flexibility of DHT

algorithms provides us with two possibilities: the “value” can

represent information about an “address” (ID) of a node where

a file can be found and the resource’s description (metadata),

as well as the file itself. Since, most of the files produced and

exchanged by nodes in enterprise environment represent

different types of documentation (text, diagrams, tables) that

usually don’t occupy a lot of disk space, the second way is

preferred. In this way we can use mechanisms of “integrated

backup” to avoid situations when some node leaves the

network and resources it possesses become unreachable for

other terminals. It is realized in the following mode. A

publisher defines the k closest nodes for a resource to be stored

according to Kademlia principles.

In order to rationally distribute network memory resources

and to avoid excessive traffic increase, the “value”

representing a replica of the resource is stored at γ nodes from

these k nodes (γ < k). The rest k – γ nodes receive the STORE

RPC regarding the same <key, value> pair, but with the

“value” in the form of the file’s metadata. So, on the network a

certain number of the replicas will be presented, and leaving of

some of the file’s holders will not create any problem.

Besides the limit on the number of replicas γ, it also makes

sense to introduce size limits for files to be replicated. The

files that exceed this limit can be stored only at the nodes of

origin, and the corresponding metadata should be hosted by

the nodes defined by XOR metric.

To simplify the task of a publisher, we propose to apply a

“tree-like data memorization model”. Using this model a

publisher doesn’t need to send a <key, value> pair to all γ

nodes. Instead of this, it sends the pair concerning a file to be

stored, to two nodes that it consider the closest. In this case the

<key, value> pair is complemented by a Time To Live (TTL)

parameter such that:

Fig.3 Tree-like data memorization model

γ=∑
=

TTL

i

i

1

2

When the two closest nodes receive the STORE RPC, each

of them store the received data and send to the node that has

initialized the process a confirmation of the executed data

storage. Then they verify that the TTL value is not null yet, as

at each step of the process it is decremented by one. Hence,

each of these nodes sends the new TTL value and the <key,

value> pair to other two nodes it regards the closest to the key,

and so on until TTL value has reached zero. Figure 3

illustrates a tree-like data memorization process for γ=6.

This technique of data publication represents a quite fast

and reliable mechanism. Such model provides a uniform

distribution of a resource’s replicas within the network. It

guarantees that each node potentially interested in a certain

file, keeps in its k-bucket at least one contact which possesses

a replica of this file or an ID of its possessor.

E. Modification and update of stored data

Now, let’s consider how a node can modify some file and

then publish this modification, making it available for remote

users working on the same file (editing of the same document,

performance of some calculations based on results of the

previous step). Realization of this mechanism provides a

possibility of real-time collaboration between interested users.

A node that has modified some file should publish the updated

version at a node from which the previous version of the file

was downloaded. If the latter is not active at this moment, the

file should be stored at some of the k nodes closest to the key

that store the metadata or a copy of the original version of the

file. In case of all these nodes leave the network, the updated

file should be published in accordance with the data

publication algorithm described above. As in the case of new

data publication, the STORE RPCs are sent to the k closest

nodes with appropriate <key, value> pairs. The tree-like data

memorization model is respected in the case of updates

publication too. It means that once a node has published a

modified version of some file at its node of origin, this last

sends the STORE RPCs with replicas and metadata of the

updated file to the appropriate γ and k nodes.

To effectuate the update procedure correctly, each <key,

value> pair should be supplemented with such data as:

• identity data of an “author” of modifications

confirmed by his digital certificate and the node

ID of the used terminal;

• exact date and time of update;

• an original file’s key and ID of a node that stores

it (in the case of its off-line status).

When some user publishes successive modifications of the

same file, the k nodes that store the file or the relative

metadata simply remove his precedent updates every time a

new update is performed.

IV. SECURITY MECHANISMS AND COUNTERMEASURES

A. Secure assignment of node identifiers

In section 3 we have already described the procedure of

secure assignment of node identifiers that consists in random

attribution of IDs by trusted bootstrap terminals. As noted

above, a node with ID, that is obtained as a hash function

(SHA-1) of its static IP address, is potentially vulnerable to

masquerade attacks. So, we try to avoid this undesired effect

applying the described ID assignment mechanism.

B. Use of certificates

For effective handling of privileges regarding data access,

it is necessary that each node, before downloading or

modifying some file, is able to demonstrate its belonging to a

department with the privileges equal or greater than those of

the file’s source node. To avoid some problems regarding

identity falsification, the use of digital certificates makes

sense. A personal digital certificate associates a public key to

some identity. Only the possessor of the certificate knows the

corresponding private key, that permits him/her to create own

digital signature and decrypt information encoded by the

public key. In our case, such certificate is attributed to a

certain network terminal and attests its identity and level of

privileges it possesses. So, regarding the described enterprise

model, certificates of types A, B and C enable nodes of the

corresponding levels to access, store and modify data within

the same-name sub-trees and those of the lower levels (for B

and C nodes). The certificates of type M are assigned to the

nodes with a manager status and permit them to access, store,

modify and cancel data produced and stored by any other

node.

C. Countermeasures

Regarding specific attacks of DHT-based environment [5],

the described system proposes the following countermeasures

and protective mechanisms.

 Some effects of incorrect lookup rooting attacks can be

avoided due to iterative character of Kademlia’s lookup

algorithm. In Kademlia such attacks can be detected by

checking the progress of lookup at each step. In the case of

absence of any progress (blatantly incorrect query

forwarding), lookup process is backtracked to the previous

“right” step and then proceeds with looking for an alternative

direction of the search. Sybil attacks are not excluded, but

lookup efficiency is improved by parallel routing (issuing α

lookup requests at a time) [4].

Incorrect routing update attack can be prevented, because

in Kademlia the update of routing tables is implemented by a

node automatically, as a “secondary effect” of ordinary

lookups and interactions with other nodes.

Partition attacks are prevented by involving trusted

bootstrap terminals that should be contacted by nodes to join

the network.

 Mechanism of replication and storage of resources at the γ

closest nodes prevents storage and retrieval attacks. So, even if

one of the γ nodes maliciously denies the existence of data it is

responsible for, there are other nodes enabled to provide the

same resource. In this way we also eliminate a single point of

failure represented by a unique node that stores a certain file.

Moreover, the system can effectively cope with overload of

targeted nodes with garbage packets, that represents a DHT

analogue of Denial of Service attack. The tree-like data

memorization model mitigates the impact of such attack due to

uniform distribution of a file’s replicas within the network.

Since the replicas are stored in different sub-trees, even in the

case of localized overload attacks to nodes of some selected

part of the key-space, it is always possible to find at least one

active node that stores a desired file’s replica.

V. CONCLUSIONS AND FUTURE WORK

Kademlia-based DHT represents a secure, reliable and

flexible infrastructure for data storage and retrieval system in

enterprise networks. We proposed some novel approaches

regarding the assignment of IDs and data storage in Kademlia:

prefix identifiers are introduced to handle data access

privileges, and the tree-like data memorization model is

proposed to improve the storage mechanisms. We are

currently working toward a software implementation of the

described solution.

REFERENCES

[1] G. Caronni et al., “Virtual Enterprise Networks: The Next Generation of
Secure Enterprise Networking”, in Proceedings of the 16th Annual
Computer Security Applications Conference, ACSAC 2000

[2] H. Balakrishnan et al., “Looking Up Data in P2P Systems”,
Communications of the ACM, Vol. 46, No. 2, pp.43-48, Feb. 2003.

[3] P. Maymounkov, D. Mazières, “Kademlia: A Peer-to-peer Information
System Based on the XOR Metric”, in Proceedings of the 1st
International Workshop on Peer-to-peer Systems, MIT, March 2002

[4] D. Stutzbach, R. Rejaie, “ Improving Lookup Performance over a
Widely-Deployed DHT”, in Proceedings of 25th IEEE International
Conference on Computer Communications, INFOCOM’06, April 2006

[5] E. Sit, R. Morris, “Security considerations for Peer-to-Peer Distributed
Hash Tables”, in Proceedings of the First International Workshop on
Peer-to-Peer Systems (IPTPS’02), Cambridge, March 2002

