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Abstract

Regularization Networks and Support Vector Machines are techniques for solving certain problems of
learning from examples – in particular the regression problem of approximating a multivariate function from
sparse data. We present both formulations in a unified framework, namely in the context of Vapnik’s theory of
statistical learning which provides a general foundation for the learning problem, combining functional analysis
and statistics.
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1 Introduction

The purpose of this paper is to present a theoretical framework for the problem of learning from examples.
Learning from examples can be regarded as the regression problem of approximating a multivariate function from
sparse data – and we will take this point of view here1. The problem of approximating a function from sparse
data is ill-posed and a classical way to solve it is regularization theory [90, 10, 11]. Classical regularization theory,
as we will consider here2, formulates the regression problem as a variational problem of finding the function f

that minimizes the functional

min
f∈H

H[f ] =
1

l

l
∑

i=1

(yi − f(xi))
2 + λ‖f‖2

K (1)

where ‖f‖2
K is a norm in a Reproducing Kernel Hilbert Space H defined by the positive definite function K, l is

the number of data points or examples (the l pairs (xi, yi)) and λ is the regularization parameter (see the seminal
work of [100]). Under rather general conditions the solution of equation (1) is

f(x) =
l
∑

i=1

ciK(x,xi). (2)

Until now the functionals of classical regularization have lacked a rigorous justification for a finite set of training
data. Their formulation is based on functional analysis arguments which rely on asymptotic results and do
not consider finite data sets3. Regularization is the approach we have taken in earlier work on learning [67,
37, 75]. The seminal work of Vapnik [92, 93, 94] has now set the foundations for a more general theory that
justifies regularization functionals for learning from finite sets and can be used to extend considerably the classical
framework of regularization, effectively marrying a functional analysis perspective with modern advances in the
theory of probability and statistics. The basic idea of Vapnik’s theory is closely related to regularization: for a
finite set of training examples the search for the best model or approximating function has to be constrained to
an appropriately “small” hypothesis space (which can also be thought of as a space of machines or models or
network architectures). If the space is too large, models can be found which will fit exactly the data but will have
a poor generalization performance, that is poor predictive capability on new data. Vapnik’s theory characterizes
and formalizes these concepts in terms of the capacity of a set of functions and capacity control depending on the
training data: for instance, for a small training set the capacity of the function space in which f is sought has to
be small whereas it can increase with a larger training set. As we will see later in the case of regularization, a
form of capacity control leads to choosing an optimal λ in equation (1) for a given set of data. A key part of the
theory is to define and bound the capacity of a set of functions.
Thus the key and somewhat novel theme of this review is a) to describe a unified framework for several learning
techniques for finite training sets and b) to justify them in terms of statistical learning theory. We will consider
functionals of the form

H[f ] =
1

l

l
∑

i=1

V (yi, f(xi)) + λ‖f‖2
K , (3)

where V (·, ·) is a loss function. We will describe how classical regularization and Support Vector Machines [94]
for both regression (SVMR) and classification (SVMC) correspond to the minimization of H in equation (3) for
different choices of V :

• Classical (L2) Regularization Networks (RN)

V (yi, f(xi)) = (yi − f(xi))
2 (4)

1There is a large literature on the subject: useful reviews are [42, 18, 100, 37], [94] and references therein.
2The general regularization scheme for learning is sketched in Appendix A.
3The method of quasi-solutions of Ivanov and the equivalent Tikhonov’s regularization technique were developed to solve ill-posed

problems of the type Af = F , where A is a (linear) operator, f is the desired solution in a metric space E1, and F are the “data” in
a metric space E2.
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• Support Vector Machines Regression (SVMR)

V (yi, f(xi)) = |yi − f(xi)|ǫ (5)

• Support Vector Machines Classification (SVMC)

V (yi, f(xi)) = |1 − yif(xi)|+ (6)

where | · |ǫ is Vapnik’s epsilon-insensitive norm (see later), |x|+ = x if x is positive and zero otherwise, and yi is
a real number in RN and SVMR, whereas it takes values −1, 1 in SVMC. Loss function (6) is also called the soft
margin loss function. For SVMC, we will also discuss two other loss functions:

• The hard margin loss function:
V (yi, f(x)) = θ(1 − yif(xi)) (7)

• The misclassification loss function:
V (yi, f(x)) = θ(−yif(xi)) (8)

Where θ(·) is the Heaviside function. For classification one should minimize (8) (or (7)), but in practice other
loss functions, such as the soft margin one (6) [21, 93], are used. We discuss this issue further in section 6.

The minimizer of (3) using the three loss functions has the same general form (2) (or f(x) =
∑l

i=1 ciK(x,xi)+ b,
see later) but interestingly different properties4. In this review we will show how different learning techniques
based on the minimization of functionals of the form of H in (3) can be justified for a few choices of V (·, ·) using
a slight extension of the tools and results of Vapnik’s statistical learning theory. In section 2 we outline the
main results in the theory of statistical learning and in particular Structural Risk Minimization – the technique
suggested by Vapnik to solve the problem of capacity control in learning from ”small” training sets. At the end
of the section we will outline a technical extension of Vapnik’s Structural Risk Minimization framework (SRM).
With this extension both RN and Support Vector Machines (SVMs) can be seen within a SRM scheme. In recent
years a number of papers claim that SVM cannot be justified in a data-independent SRM framework (i.e. [84]).
One of the goals of this paper is to provide such a data-independent SRM framework that justifies SVM as well as
RN. Before describing regularization techniques, section 3 reviews some basic facts on RKHS which are the main
function spaces on which this review is focused. After the section on regularization (section 4) we will describe
SVMs (section 5). As we saw already, SVMs for regression can be considered as a modification of regularization
formulations of the type of equation (1). Radial Basis Functions (RBF) can be shown to be solutions in both
cases (for radial K) but with a rather different structure of the coefficients ci.
Section 6 describes in more detail how and why both RN and SVM can be justified in terms of SRM, in the sense of
Vapnik’s theory: the key to capacity control is how to choose λ for a given set of data. Section 7 describes a naive
Bayesian Maximum A Posteriori (MAP) interpretation of RNs and of SVMs. It also shows why a formal MAP
interpretation, though interesting and even useful, may be somewhat misleading. Section 8 discusses relations
of the regularization and SVM techniques with other representations of functions and signals such as sparse
representations from overcomplete dictionaries, Blind Source Separation, and Independent Component Analysis.
Finally, section 9 summarizes the main themes of the review and discusses some of the open problems.

2 Overview of statistical learning theory

We consider the case of learning from examples as defined in the statistical learning theory framework [92, 93, 94].
We have two sets of variables x ∈ X ⊆ Rd and y ∈ Y ⊆ R that are related by a probabilistic relationship. We say
that the relationship is probabilistic because generally an element of X does not determine uniquely an element
of Y , but rather a probability distribution on Y . This can be formalized assuming that a probability distribution
P (x, y) is defined over the set X × Y . The probability distribution P (x, y) is unknown, and under very general
conditions can be written as P (x, y) = P (x)P (y|x) where P (y|x) is the conditional probability of y given x, and
P (x) is the marginal probability of x. We are provided with examples of this probabilistic relationship, that is
with a data set Dl ≡ {(xi, yi) ∈ X × Y }l

i=1 called the training data, obtained by sampling l times the set X × Y

according to P (x, y). The problem of learning consists in, given the data set Dl, providing an estimator, that is
a function f : X → Y , that can be used, given any value of x ∈ X , to predict a value y.

4For general differentiable loss functions V the form of the solution is still the same, as shown in Appendix C.
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In statistical learning theory, the standard way to solve the learning problem consists in defining a risk functional,
which measures the average amount of error associated with an estimator, and then to look for the estimator,
among the allowed ones, with the lowest risk. If V (y, f(x)) is the loss function measuring the error we make when
we predict y by f(x)5, then the average error is the so called expected risk:

I[f ] ≡

∫

X,Y

V (y, f(x))P (x, y) dxdy (9)

We assume that the expected risk is defined on a “large” class of functions F and we will denote by f0 the function
which minimizes the expected risk in F :

f0(x) = arg min
F

I[f ] (10)

The function f0 is our ideal estimator, and it is often called the target function6.
Unfortunately this function cannot be found in practice, because the probability distribution P (x, y) that defines
the expected risk is unknown, and only a sample of it, the data set Dl, is available. To overcome this shortcoming
we need an induction principle that we can use to “learn” from the limited number of training data we have.
Statistical learning theory as developed by Vapnik builds on the so-called empirical risk minimization (ERM)
induction principle. The ERM method consists in using the data set Dl to build a stochastic approximation of
the expected risk, which is usually called the empirical risk, and is defined as7:

Iemp[f ; l] =
1

l

l
∑

i=1

V (yi, f(xi)). (11)

The central question of the theory is whether the expected risk of the minimizer of the empirical risk in F is close
to the expected risk of f0. Notice that the question is not necessarily whether we can find f0 but whether we can
“imitate” f0 in the sense that the expected risk of our solution is close to that of f0. Formally the theory answers
the question of finding under which conditions the method of ERM satisfies:

lim
l→∞

Iemp[f̂l; l] = lim
l→∞

I[f̂l] = I[f0] (12)

in probability (all statements are probabilistic since we start with P (x, y) on the data), where we note with f̂l

the minimizer of the empirical risk (11) in F .
It can been shown (see for example [94]) that in order for the limits in eq. (12) to hold true in probability, or
more precisely, for the empirical risk minimization principle to be non-trivially consistent (see [94] for a discussion
about consistency versus non-trivial consistency), the following uniform law of large numbers (which “translates”
to one-sided uniform convergence in probability of empirical risk to expected risk in F) is a necessary and sufficient
condition:

lim
l→∞

P

{

sup
f∈F

(I[f ] − Iemp[f ; l]) > ǫ

}

= 0 ∀ǫ > 0 (13)

Intuitively, if F is very “large” then we can always find f̂l ∈ F with 0 empirical error. This however does not
guarantee that the expected risk of f̂l is also close to 0, or close to I[f0].
Typically in the literature the two-sided uniform convergence in probability:

lim
l→∞

P

{

sup
f∈F

|I[f ] − Iemp[f ; l]| > ǫ

}

= 0 ∀ǫ > 0 (14)

is considered, which clearly implies (13). In this paper we focus on the stronger two-sided case and note that
one can get one-sided uniform convergence with some minor technical changes to the theory. We will not discuss
the technical issues involved in the relations between consistency, non-trivial consistency, two-sided and one-sided
uniform convergence (a discussion can be found in [94]), and from now on we concentrate on the two-sided uniform
convergence in probability, which we simply refer to as uniform convergence.
The theory of uniform convergence of ERM has been developed in [95, 96, 97, 92, 94]. It has also been studied in
the context of empirical processes [28, 72, 29]. Here we summarize the main results of the theory.

5Typically for regression the loss functions is of the form V (y − f(x)).
6In the case that V is (y − f(x))2 , the minimizer of eq. (10) is the regression function f0(x) =

∫

yP (y|x)dy .
7It is important to notice that the data terms (4), (5) and (6) are used for the empirical risks Iemp.
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2.1 Uniform Convergence and the Vapnik-Chervonenkis bound

Vapnik and Chervonenkis [95, 96] studied under what conditions uniform convergence of the empirical risk to
expected risk takes place. The results are formulated in terms of three important quantities that measure the
complexity of a set of functions: the VC entropy, the annealed VC entropy, and the growth function. We begin
with the definitions of these quantities. First we define the minimal ǫ-net of a set, which intuitively measures the
“cardinality” of a set at “resolution” ǫ:

Definition 2.1 Let A be a set in a metric space A with distance metric d. For a fixed ǫ > 0, the set B ⊆ A is
called an ǫ-net of A in A, if for any point a ∈ A there is a point b ∈ B such that d(a, b) < ǫ. We say that the set
B is a minimal ǫ-net of A in A, if it is finite and contains the minimal number of elements.

Given a training set Dl = {(xi, yi) ∈ X × Y }l
i=1, consider the set of l-dimensional vectors:

q(f) = (V (y1, f(x1)), ..., V (yl, f(xl))) (15)

with f ∈ F , and define the number of elements of the minimal ǫ-net of this set under the metric:

d(q(f), q(f ′)) = max
1≤i≤l

|V (yi, f(xi)) − V (yi, f
′(xi))|

to be NF (ǫ;Dl) (which clearly depends both on F and on the loss function V ). Intuitively this quantity measures
how many different functions effectively we have at “resolution” ǫ, when we only care about the values of the
functions at points in Dl. Using this quantity we now give the following definitions:

Definition 2.2 Given a set X ×Y and a probability P (x, y) defined over it, the VC entropy of a set of functions
V (y, f(x)), f ∈ F , on a data set of size l is defined as:

HF(ǫ; l) ≡

∫

X,Y

ln NF (ǫ;Dl)
l
∏

i=1

P (xi, yi)dxidyi

Definition 2.3 Given a set X ×Y and a probability P (x, y) defined over it, the annealed VC entropy of a set of
functions V (y, f(x)), f ∈ F , on a data set of size l is defined as:

HF
ann(ǫ; l) ≡ ln

∫

X,Y

NF (ǫ;Dl)
l
∏

i=1

P (xi, yi)dxidyi

Definition 2.4 Given a set X ×Y , the growth function of a set of functions V (y, f(x)), f ∈ F , on a data set of
size l is defined as:

GF (ǫ; l) ≡ ln

(

sup
Dl∈(X×Y )l

NF (ǫ;Dl)

)

Notice that all three quantities are functions of the number of data l and of ǫ, and that clearly:

HF(ǫ; l) ≤ HF
ann(ǫ; l) ≤ GF (ǫ; l) .

These definitions can easily be extended in the case of indicator functions, i.e. functions taking binary values8

such as {−1, 1}, in which case the three quantities do not depend on ǫ for ǫ < 1, since the vectors (15) are all at
the vertices of the hypercube {0, 1}l.
Using these definitions we can now state three important results of statistical learning theory [94]:

• For a given probability distribution P (x, y):

8In the case of indicator functions, y is binary, and V is 0 for f(x) = y, 1 otherwise.
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1. The necessary and sufficient condition for uniform convergence is that

lim
l→∞

HF(ǫ; l)

l
= 0 ∀ǫ > 0

2. A sufficient condition for fast asymptotic rate of convergence9 is that

lim
l→∞

HF
ann(ǫ; l)

l
= 0 ∀ǫ > 0

It is an open question whether this is also a necessary condition.

• A sufficient condition for distribution independent (that is, for any P (x, y)) fast rate of convergence is that

lim
l→∞

GF (ǫ; l)

l
= 0 ∀ǫ > 0

For indicator functions this is also a necessary condition.

According to statistical learning theory, these three quantities are what one should consider when designing and
analyzing learning machines: the VC-entropy and the annealed VC-entropy for an analysis which depends on
the probability distribution P (x, y) of the data, and the growth function for a distribution independent analysis.
In this paper we consider only distribution independent results, although the reader should keep in mind that
distribution dependent results are likely to be important in the future.
Unfortunately the growth function of a set of functions is difficult to compute in practice. So the standard
approach in statistical learning theory is to use an upper bound on the growth function which is given using
another important quantity, the VC-dimension, which is another (looser) measure of the complexity, capacity, of
a set of functions. In this paper we concentrate on this quantity, but it is important that the reader keeps in
mind that the VC-dimension is in a sense a “weak” measure of complexity of a set of functions, so it typically
leads to loose upper bounds on the growth function: in general one is better off, theoretically, using directly the
growth function. We now discuss the VC-dimension and its implications for learning.
The VC-dimension was first defined for the case of indicator functions and then was extended to real valued
functions.

Definition 2.5 The VC-dimension of a set {θ(f(x)), f ∈ F}, of indicator functions is the maximum number h
of vectors x1, . . . ,xh that can be separated into two classes in all 2h possible ways using functions of the set.
If, for any number N , it is possible to find N points x1, . . . ,xN that can be separated in all the 2N possible ways,
we will say that the VC-dimension of the set is infinite.

The remarkable property of this quantity is that, although as we mentioned the VC-dimension only provides
an upper bound to the growth function, in the case of indicator functions, finiteness of the VC-dimension is
a necessary and sufficient condition for uniform convergence (eq. (14)) independent of the underlying
distribution P (x, y).

Definition 2.6 Let A ≤ V (y, f(x)) ≤ B, f ∈ F , with A and B <∞. The VC-dimension of the set {V (y, f(x)), f ∈ F}
is defined as the VC-dimension of the set of indicator functions {θ (V (y, f(x)) − α) , α ∈ (A,B)}.

Sometimes we refer to the VC-dimension of {V (y, f(x)), f ∈ F} as the VC dimension of V in F . It can be easily
shown that for y ∈ {−1,+1} and for V (y, f(x)) = θ(−yf(x)) as the loss function, the V C dimension of V in F
computed using definition 2.6 is equal to the V C dimension of the set of indicator functions {θ(f(x)), f ∈ F}
computed using definition 2.5. In the case of real valued functions, finiteness of the VC-dimension is only sufficient
for uniform convergence. Later in this section we will discuss a measure of capacity that provides also necessary
conditions.
An important outcome of the work of Vapnik and Chervonenkis is that the uniform deviation between empirical
risk and expected risk in a hypothesis space can be bounded in terms of the VC-dimension, as shown in the
following theorem:

9This means that for any l > l0 we have that P{supf∈F |I[f ] − Iemp[f ]| > ǫ} < e−cǫ2l for some constant c > 0. Intuitively, fast
rate is typically needed in practice.
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Theorem 2.1 (Vapnik and Chervonenkis 1971) Let A ≤ V (y, f(x)) ≤ B, f ∈ F , F be a set of bounded
functions and h the VC-dimension of V in F . Then, with probability at least 1− η, the following inequality holds
simultaneously for all the elements f of F :

Iemp[f ; l] − (B −A)

√

h ln 2el
h − ln(η

4 )

l
≤ I[f ] ≤ Iemp[f ; l] + (B −A)

√

h ln 2el
h − ln(η

4 )

l
(16)

The quantity |I[f ] − Iemp[f ; l]| is often called estimation error, and bounds of the type above are usually called
VC bounds10. From eq. (16) it is easy to see that with probability at least 1 − η:

I[f̂l] − 2(B −A)

√

h ln 2el
h − ln(η

4 )

l
≤ I[f0] ≤ I[f̂l] + 2(B −A)

√

h ln 2el
h − ln(η

4 )

l
(17)

where f̂l is, as in (12), the minimizer of the empirical risk in F .
A very interesting feature of inequalities (16) and (17) is that they are non-asymptotic, meaning that they hold
for any finite number of data points l, and that the error bounds do not necessarily depend on the dimensionality
of the variable x.
Observe that theorem (2.1) and inequality (17) are meaningful in practice only if the VC-dimension of the loss
function V in F is finite and less than l. Since the space F where the loss function V is defined is usually very
large (i.e. all functions in L2), one typically considers smaller hypothesis spaces H. The cost associated with
restricting the space is called the approximation error (see below). In the literature, space F where V is defined
is called the target space, while H is what is called the hypothesis space. Of course, all the definitions and analysis
above still hold for H, where we replace f0 with the minimizer of the expected risk in H, f̂l is now the minimizer
of the empirical risk in H, and h the VC-dimension of the loss function V in H. Inequalities (16) and (17)
suggest a method for achieving good generalization: not only minimize the empirical risk, but instead minimize
a combination of the empirical risk and the complexity of the hypothesis space. This observation leads us to the
method of Structural Risk Minimization that we describe next.

2.2 The method of Structural Risk Minimization

The idea of SRM is to define a nested sequence of hypothesis spaces H1 ⊂ H2 ⊂ . . . ⊂ Hn(l) with n(l) a non-
decreasing integer function of l, where each hypothesis space Hi has VC-dimension finite and larger than that
of all previous sets, i.e. if hi is the VC-dimension of space Hi, then h1 ≤ h2 ≤ . . . ≤ hn(l). For example Hi

could be the set of polynomials of degree i, or a set of splines with i nodes, or some more complicated nonlinear
parameterization. For each element Hi of the structure the solution of the learning problem is:

f̂i,l = arg min
f∈Hi

Iemp[f ; l] (18)

Because of the way we define our structure it should be clear that the larger i is the smaller the empirical error of
f̂i,l is (since we have greater “flexibility” to fit our training data), but the larger the VC-dimension part (second
term) of the right hand side of (16) is. Using such a nested sequence of more and more complex hypothesis spaces,
the SRM learning technique consists of choosing the space Hn∗(l) for which the right hand side of inequality (16)

is minimized. It can be shown [92] that for the chosen solution f̂n∗(l),l inequalities (16) and (17) hold with

probability at least (1 − η)n(l) ≈ 1 − n(l)η 11, where we replace h with hn∗(l), f0 with the minimizer of the

expected risk in Hn∗(l), namely fn∗(l), and f̂l with f̂n∗(l),l.
With an appropriate choice of n(l)12 it can be shown that as l → ∞ and n(l) → ∞, the expected risk of the
solution of the method approaches in probability the minimum of the expected risk in H =

⋃∞
i=1Hi, namely

I[fH]. Moreover, if the target function f0 belongs to the closure of H, then eq. (12) holds in probability (see for
example [94]).

10It is important to note that bounds on the expected risk using the annealed VC-entropy also exist. These are tighter than the
VC-dimension ones.

11We want (16) to hold simultaneously for all spaces Hi, since we choose the best f̂i,l.
12Various cases are discussed in [26], i.e. n(l) = l.
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However, in practice l is finite (“small”), so n(l) is small which means that H =
⋃n(l)

i=1 Hi is a small space.
Therefore I[fH] may be much larger than the expected risk of our target function f0, since f0 may not be in H.
The distance between I[fH] and I[f0] is called the approximation error and can be bounded using results from
approximation theory. We do not discuss these results here and refer the reader to [52, 25].

2.3 ǫ-uniform convergence and the Vγ dimension

As mentioned above finiteness of the VC-dimension is not a necessary condition for uniform convergence in the
case of real valued functions. To get a necessary condition we need a slight extension of the VC-dimension that
has been developed (among others) in [48, 2], known as the Vγ–dimension13. Here we summarize the main results
of that theory that we will also use later on to design regression machines for which we will have distribution
independent uniform convergence.

Definition 2.7 Let A ≤ V (y, f(x)) ≤ B, f ∈ F , with A and B < ∞. The Vγ-dimension of V in F (of the
set {V (y, f(x)), f ∈ F}) is defined as the the maximum number h of vectors (x1, y1) . . . , (xh, yh) that can be
separated into two classes in all 2h possible ways using rules:

class 1 if: V (yi, f(xi)) ≥ s+ γ

class 0 if: V (yi, f(xi)) ≤ s− γ

for f ∈ F and some s ≥ 0. If, for any number N , it is possible to find N points (x1, y1) . . . , (xN , yN ) that can be
separated in all the 2N possible ways, we will say that the Vγ-dimension of V in F is infinite.

Notice that for γ = 0 this definition becomes the same as definition 2.6 for VC-dimension. Intuitively, for γ > 0
the “rule” for separating points is more restrictive than the rule in the case γ = 0. It requires that there is a
“margin” between the points: points for which V (y, f(x)) is between s + γ and s − γ are not classified. As a
consequence, the Vγ dimension is a decreasing function of γ and in particular is smaller than the VC-dimension.
If V is an indicator function, say θ(−yf(x)), then for any γ definition 2.7 reduces to that of the VC-dimension of
a set of indicator functions.
Generalizing slightly the definition of eq. (14) we will say that for a given ǫ > 0 the ERM method converges
ǫ-uniformly in F in probability, (or that there is ǫ-uniform convergence) if:

lim
l→∞

P

{

sup
f∈F

|Iemp[f ; l] − I[f ]| > ǫ

}

= 0. (19)

Notice that if eq. (19) holds for every ǫ > 0 we have uniform convergence (eq. (14)). It can be shown (variation
of [94]) that ǫ-uniform convergence in probability implies that:

I[f̂l] ≤ I[f0] + 2ǫ (20)

in probability, where, as before, f̂l is the minimizer of the empirical risk and f0 is the minimizer of the expected
expected risk in F14.
The basic theorems for the Vγ-dimension are the following:

Theorem 2.2 (Alon et al. , 1993 ) Let A ≤ V (y, f(x))) ≤ B, f ∈ F , F be a set of bounded functions. For
any ǫ > 0, if the Vγ dimension of V in F is finite for γ = αǫ for some constant α ≥ 1

48 , then the ERM method
ǫ-converges in probability.

Theorem 2.3 (Alon et al. , 1993 ) Let A ≤ V (y, f(x))) ≤ B, f ∈ F , F be a set of bounded functions. The
ERM method uniformly converges (in probability) if and only if the Vγ dimension of V in F is finite for every
γ > 0. So finiteness of the Vγ dimension for every γ > 0 is a necessary and sufficient condition for distribution
independent uniform convergence of the ERM method for real-valued functions.

13In the literature, other quantities, such as the fat-shattering dimension and the Pγ dimension, are also defined. They are closely
related to each other, and are essentially equivalent to the Vγ dimension for the purpose of this paper. The reader can refer to [2, 7]
for an in-depth discussion on this topic.

14This is like ǫ-learnability in the PAC model [91].
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Theorem 2.4 (Alon et al. , 1993 ) Let A ≤ V (y, f(x)) ≤ B, f ∈ F , F be a set of bounded functions. For any
ǫ ≥ 0, for all l ≥ 2

ǫ2 we have that if hγ is the Vγ dimension of V in F for γ = αǫ (α ≥ 1
48), hγ finite, then:

P

{

sup
f∈F

|Iemp[f ; l] − I[f ]| > ǫ

}

≤ G(ǫ, l, hγ), (21)

where G is an increasing function of hγ and a decreasing function of ǫ and l, with G → 0 as l → ∞ 15.

From this theorem we can easily see that for any ǫ > 0, for all l ≥ 2
ǫ2 :

P
{

I[f̂l] ≤ I[f0] + 2ǫ
}

≥ 1 − 2G(ǫ, l, hγ), (22)

where f̂l is, as before, the minimizer of the empirical risk in F . An important observations to keep in mind is
that theorem 2.4 requires the Vγ dimension of the loss function V in F . In the case of classification, this implies
that if we want to derive bounds on the expected misclassification we have to use the Vγ dimension of the loss
function θ(−yf(x)) (which is the V C− dimension of the set of indicator functions {sgn (f(x)), f ∈ F}), and not
the Vγ dimension of the set F .
The theory of the Vγ dimension justifies the “extended” SRM method we describe below. It is important to keep
in mind that the method we describe is only of theoretical interest and will only be used later as a theoretical
motivation for RN and SVM. It should be clear that all the definitions and analysis above still hold for any
hypothesis space H, where we replace f0 with the minimizer of the expected risk in H, f̂l is now the minimizer
of the empirical risk in H, and h the VC-dimension of the loss function V in H.
Let l be the number of training data. For a fixed ǫ > 0 such that l ≥ 2

ǫ2 , let γ = 1
48ǫ, and consider, as

before, a nested sequence of hypothesis spaces H1 ⊂ H2 ⊂ . . . ⊂ Hn(l,ǫ), where each hypothesis space Hi has
Vγ-dimension finite and larger than that of all previous sets, i.e. if hi is the Vγ-dimension of space Hi, then
h1 ≤ h2 ≤ . . . ≤ hn(l,ǫ). For each element Hi of the structure consider the solution of the learning problem to be:

f̂i,l = arg min
f∈Hi

Iemp[f ; l]. (23)

Because of the way we define our structure the larger i is the smaller the empirical error of f̂i,l is (since we have
more “flexibility” to fit our training data), but the larger the right hand side of inequality (21) is. Using such a
nested sequence of more and more complex hypothesis spaces, this extended SRM learning technique consists of
finding the structure element Hn∗(l,ǫ) for which the trade off between empirical error and the right hand side of
(21) is optimal. One practical idea is to find numerically for each Hi the “effective” ǫi so that the bound (21) is

the same for all Hi, and then choose f̂i,l for which the sum of the empirical risk and ǫi is minimized.
We conjecture that as l → ∞, for appropriate choice of n(l, ǫ) with n(l, ǫ) → ∞ as l → ∞, the expected risk of
the solution of the method converges in probability to a value less than 2ǫ away from the minimum expected risk
in H =

⋃∞
i=1Hi. Notice that we described an SRM method for a fixed ǫ. If the Vγ dimension of Hi is finite for

every γ > 0, we can further modify the extended SRM method so that ǫ→ 0 as l → ∞. We conjecture that if the
target function f0 belongs to the closure of H, then as l → ∞, with appropriate choices of ǫ, n(l, ǫ) and n∗(l, ǫ)
the solution of this SRM method can be proven (as before) to satisfy eq. (12) in probability. Finding appropriate
forms of ǫ, n(l, ǫ) and n∗(l, ǫ) is an open theoretical problem (which we believe to be a technical matter). Again,

as in the case of “standard” SRM, in practice l is finite so H =
⋃n(l,ǫ)

i=1 Hi is a small space and the solution of this
method may have expected risk much larger that the expected risk of the target function. Approximation theory
can be used to bound this difference [59].
The proposed method is difficult to implement in practice since it is difficult to decide the optimal trade off between
empirical error and the bound (21). If we had constructive bounds on the deviation between the empirical and
the expected risk like that of theorem 2.1 then we could have a practical way of choosing the optimal element of
the structure. Unfortunately existing bounds of that type [2, 7] are not tight. So the final choice of the element
of the structure may be done in practice using other techniques such as cross-validation [100].

2.4 Overview of our approach

In order to set the stage for the next two sections on regularization and Support Vector Machines, we outline here
how we can justify the proper use of the RN and the SVM functionals (see (3)) in the framework of the SRM
principles just described.

15Closed forms of G can be derived (see for example [2]) but we do not present them here for simplicity of notation.
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The basic idea is to define a structure in terms of a nested sequence of hypothesis spaces H1 ⊂ H2 ⊂ . . . ⊂ Hn(l)

with Hm being the set of functions f in the RKHS with:

‖f‖K ≤ Am, (24)

where Am is a monotonically increasing sequence of positive constants. Following the SRM method outlined
above, for each m we will minimize the empirical risk

1

l

l
∑

i=1

V (yi, f(xi)),

subject to the constraint (24). This in turn leads to using the Lagrange multiplier λm and to minimizing

1

l

l
∑

i=1

V (yi, f(xi)) + λm(‖f‖2
K −A2

m),

with respect to f and maximizing with respect to λm ≥ 0 for each element of the structure. We can then choose
the optimal n∗(l) and the associated λ∗(l), and get the optimal solution f̂n∗(l).
The solution we get using this method is clearly the same as the solution of:

1

l

l
∑

i=1

V (yi, f(xi)) + λ∗(l)‖f‖2
K (25)

where λ∗(l) is the optimal Lagrange multiplier corresponding to the optimal element of the structure An∗(l).
Notice that this approach is quite general. In particular it can be applied to classical L2 regularization, to SVM
regression, and, as we will see, to SVM classification with the appropriate V (·, ·).
In section 6 we will describe in detail this approach for the case that the elements of the structure are infinite
dimensional RKHS. We have outlined this theoretical method here so that the reader understands our motivation
for reviewing in the next two sections the approximation schemes resulting from the minimization of functionals
of the form of equation (25) for three specific choices of the loss function V :

• V (y, f(x)) = (y − f(x))2 for regularization.

• V (y, f(x)) = |y − f(x)|ǫ for SVM regression.

• V (y, f(x)) = |1 − yf(x)|+ for SVM classification.

For SVM classification the loss functions:

• V (y, f(x)) = θ(1 − yf(x)) (hard margin loss function), and

• V (y, f(x)) = θ(−yf(x)) (misclassification loss function)

will also be discussed. First we present an overview of RKHS which are the hypothesis spaces we consider in the
paper.

3 Reproducing Kernel Hilbert Spaces: a brief overview

A Reproducing Kernel Hilbert Space (RKHS) [5] is a Hilbert space H of functions defined over some bounded
domain X ⊂ Rd with the property that, for each x ∈ X , the evaluation functionals Fx defined as

Fx[f ] = f(x) ∀f ∈ H

are linear, bounded functionals. The boundedness means that there exists a U = Ux ∈ R+ such that:

|Fx[f ]| = |f(x)| ≤ U ||f ||

for all f in the RKHS.
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It can be proved [100] that to every RKHS H there corresponds a unique positive definite function K(x,y) of
two variables in X , called the reproducing kernel of H (hence the terminology RKHS), that has the following
reproducing property:

f(x) =< f(y),K(y,x) >H ∀f ∈ H, (26)

where < ·, · >H denotes the scalar product in H. The function K behaves in H as the delta function does in L2,
although L2 is not a RKHS (the functionals Fx are clearly not bounded).
To make things clearer we sketch a way to construct a RKHS, which is relevant to our paper. The mathematical
details (such as the convergence or not of certain series) can be found in the theory of integral equations [43, 19, 22].
Let us assume that we have a sequence of positive numbers λn and linearly independent functions φn(x) such
that they define a function K(x,y) in the following way 16:

K(x,y) ≡
∞
∑

n=0

λnφn(x)φn(y), (27)

where the series is well defined (for example it converges uniformly). A simple calculation shows that the function
K defined in eq. (27) is positive definite. Let us now take as our Hilbert space to be the set of functions of the
form:

f(x) =
∞
∑

n=0

anφn(x) (28)

for any an ∈ R, and define the scalar product in our space to be:

<

∞
∑

n=0

anφn(x),
∞
∑

n=0

dnφn(x) >H≡
∞
∑

n=0

andn

λn
. (29)

Assuming that all the evaluation functionals are bounded, it is now easy to check that such an Hilbert space is a
RKHS with reproducing kernel given by K(x,y). In fact we have:

< f(y),K(y,x) >H=
∞
∑

n=0

anλnφn(x)

λn
=

∞
∑

n=0

anφn(x) = f(x), (30)

hence equation (26) is satisfied.
Notice that when we have a finite number of φn, the λn can be arbitrary (finite) numbers, since convergence is
ensured. In particular they can all be equal to one.
Generally, it is easy to show [100] that whenever a function K of the form (27) is available, it is possible to
construct a RKHS as shown above. Vice versa, for any RKHS there is a unique kernel K and corresponding λn,
φn, that satisfy equation (27) and for which equations (28), (29) and (30) hold for all functions in the RKHS.
Moreover, equation (29) shows that the norm of the RKHS has the form:

‖f‖2
K =

∞
∑

n=0

a2
n

λn
. (31)

The φn consist a basis for the RKHS (not necessarily orthonormal), and the kernel K is the “correlation” matrix
associated with these basis functions. It is in fact well know that there is a close relation between Gaussian
processes and RKHS [56, 38, 70]. Wahba [100] discusses in depth the relation between regularization, RKHS and
correlation functions of Gaussian processes. The choice of the φn defines a space of functions – the functions that
are spanned by the φn.
We also call the space {(φn(x))

∞
n=1 , x ∈ X} the feature space induced by the kernel K. The choice of the φn

defines the feature space where the data x are “mapped”. In this paper we refer to the dimensionality of the
feature space as the dimensionality of the RKHS. This is clearly equal to the number of basis elements φn, which
does not necessarily have to be infinite. For example, with K a Gaussian, the dimensionality of the RKHS is
infinite (φn(x) are the Fourier components ein·x), while when K is a polynomial of degree k (K(x,y) = (1+x ·y)k

- see section 4), the dimensionality of the RKHS is finite, and all the infinite sums above are replaced with finite
sums.

16When working with complex functions φn(x) this formula should be replaced with K(x,y) ≡
∑

∞

n=0
λnφn(x)φ∗

n(y)
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It is well known that expressions of the form (27) actually abound. In fact, it follows from Mercer’s theorem [43]
that any function K(x,y) which is the kernel of a positive operator 17 in L2(Ω) has an expansion of the form
(27), in which the φi and the λi are respectively the orthogonal eigenfunctions and the positive eigenvalues of the
operator corresponding to K. In [89] it is reported that the positivity of the operator associated to K is equivalent
to the statement that the kernel K is positive definite, that is the matrix Kij = K(xi,xj) is positive definite for
all choices of distinct points xi ∈ X . Notice that a kernel K could have an expansion of the form (27) in which
the φn are not necessarily its eigenfunctions. The only requirement is that the φn are linearly independent but
not necessarily orthogonal.
In the case that the space X has finite cardinality, the “functions” f are evaluated only at a finite number of
points x. If M is the cardinality of X , then the RKHS becomes an M -dimensional space where the functions f
are basically M -dimensional vectors, the kernel K becomes an M ×M matrix, and the condition that makes it a
valid kernel is that it is a symmetric positive definite matrix (semi-definite if M is larger than the dimensionality
of the RKHS). Positive definite matrices are known to be the ones which define dot products, i.e. fKfT ≥ 0 for
every f in the RKHS. The space consists of all M -dimensional vectors f with finite norm fKfT .
Summarizing, RKHS are Hilbert spaces where the dot product is defined using a function K(x,y) which needs to
be positive definite just like in the case that X has finite cardinality. The elements of the RKHS are all functions
f that have a finite norm given by equation (31). Notice the equivalence of a) choosing a specific RKHS H b)
choosing a set of φn and λn c) choosing a reproducing kernel K. The last one is the most natural for most
applications. A simple example of a RKHS is presented in Appendix B.
Finally, it is useful to notice that the solutions of the methods we discuss in this paper can be written both in
the form (2), and in the form (28). Often in the literature formulation (2) is called the dual form of f , while (28)
is called the primal form of f .

4 Regularization Networks

In this section we consider the approximation scheme that arises from the minimization of the quadratic functional

min
f∈H

H[f ] =
1

l

l
∑

i=1

(yi − f(xi))
2 + λ‖f‖2

K (32)

for a fixed λ. Formulations like equation (32) are a special form of regularization theory developed by Tikhonov,
Ivanov [90, 44] and others to solve ill-posed problems and in particular to solve the problem of approximating
the functional relation between x and y given a finite number of examples D = {xi, yi}l

i=1. As we mentioned in
the previous sections our motivation in this paper is to use this formulation as an approximate implementation
of Vapnik’s SRM principle.
In classical regularization the data term is an L2 loss function for the empirical risk, whereas the second term –
called stabilizer – is usually written as a functional Ω(f) with certain properties [90, 67, 37]. Here we consider
a special class of stabilizers, that is the norm ‖f‖2

K in a RKHS induced by a symmetric, positive definite func-
tion K(x,y). This choice allows us to develop a framework of regularization which includes most of the usual
regularization schemes. The only significant omission in this treatment – that we make here for simplicity – is
the restriction on K to be symmetric positive definite so that the stabilizer is a norm. However, the theory can
be extended without problems to the case in which K is positive semidefinite, in which case the stabilizer is a
semi-norm [100, 54, 30, 32]. This approach was also sketched in [88].
The stabilizer in equation (32) effectively constrains f to be in the RKHS defined by K. It is possible to show
(see for example [67, 37]) that the function that minimizes the functional (32) has the form:

f(x) =
l
∑

i=1

ciK(x,xi), (33)

where the coefficients ci depend on the data and satisfy the following linear system of equations:

(K + λI)c = y (34)

where I is the identity matrix, and we have defined

17We remind the reader that positive definite operators in L2 are self-adjoint operators such that < Kf, f > ≥ 0 for all f ∈ L2.
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(y)i = yi , (c)i = ci , (K)ij = K(xi,xj).

It is remarkable that the solution of the more general case of

min
f∈H

H[f ] =
1

l

l
∑

i=1

V (yi − f(xi)) + λ‖f‖2
K , (35)

where the function V is any differentiable function, is quite similar: the solution has exactly the same general form
of (33), though the coefficients cannot be found anymore by solving a linear system of equations as in equation
(34) [35, 38, 88]. For a proof see Appendix C.
The approximation scheme of equation (33) has a simple interpretation in terms of a network with one layer of
hidden units [69, 37]. Using different kernels we get various RN’s. A short list of examples is given in Table 1.

Kernel Function Regularization Network
K(x− y) = exp(−‖x− y‖2) Gaussian RBF

K(x− y) = (‖x − y‖2 + c2)−
1
2 Inverse Multiquadric

K(x− y) = (‖x − y‖2 + c2)
1
2 Multiquadric

K(x− y) = ‖x− y‖2n+1 Thin plate splines
K(x− y) = ‖x− y‖2n ln(‖x − y‖)
K(x,y) = tanh(x · y − θ) (only for some values of θ)

Multi Layer Perceptron
K(x,y) = (1 + x · y)d Polynomial of degree d
K(x, y) = B2n+1(x− y) B-splines

K(x, y) = sin(d+1/2)(x−y)

sin (x−y)
2

Trigonometric polynomial of degree d

Table 1: Some possible kernel functions. The first four are radial kernels. The multiquadric and thin plate
splines are positive semidefinite and thus require an extension of the simple RKHS theory of this paper. The
last three kernels were proposed by Vapnik [94], originally for SVM. The last two kernels are one-dimensional:
multidimensional kernels can be built by tensor products of one-dimensional ones. The functions Bn are piecewise
polynomials of degree n, whose exact definition can be found in [83].

When the kernel K is positive semidefinite, there is a subspace of functions f which have norm ‖f‖2
K equal to

zero. They form the null space of the functional ‖f‖2
K and in this case the minimizer of (32) has the form [100]:

f(x) =
l
∑

i=1

ciK(x,xi) +
k
∑

α=1

bαψα(x), (36)

where {ψα}k
α=1 is a basis in the null space of the stabilizer, which in most cases is a set of polynomials, and

therefore will be referred to as the “polynomial term” in equation (36). The coefficients bα and ci depend on the
data. For the classical regularization case of equation (32), the coefficients of equation (36) satisfy the following
linear system:

(K + λI)c + ΨTb = y, (37)

Ψc = 0, (38)

where I is the identity matrix, and we have defined

(y)i = yi , (c)i = ci , (b)i = bi ,

(K)ij = K(xi,xj) , (Ψ)αi = ψα(xi).

When the kernel is positive definite, as in the case of the Gaussian, the null space of the stabilizer is empty.
However, it is often convenient to redefine the kernel and the norm induced by it so that the induced RKHS

13



contains only zero-mean functions, that is functions f1(x) s.t.
∫

X
f1(x)dx = 0. In the case of a radial kernel K,

for instance, this amounts to considering a new kernel

K ′(x,y) = K(x,y) − λ0

without the zeroth order Fourier component, and a norm

‖f‖2
K′ =

∞
∑

n=1

a2
n

λn
. (39)

The null space induced by the new K ′ is the space of constant functions. Then the minimizer of the corresponding
functional (32) has the form:

f(x) =
l
∑

i=1

ciK
′(x,xi) + b, (40)

with the coefficients satisfying equations (37) and (38), that respectively become:

(K ′ + λI)c + 1b = (K − λ0I + λI)c + 1b = (K + (λ− λ0)I)c + 1b = y, (41)

l
∑

i=1

ci = 0. (42)

Equations (40) and (42) imply that the the minimizer of (32) is of the form:

f(x) =
l
∑

i=1

ciK
′(x,xi) + b =

l
∑

i=1

ci(K(x,xi) − λ0) + b =
l
∑

i=1

ciK(x,xi) + b. (43)

Thus we can effectively use a positive definite K and the constant b, since the only change in equation (41) just
amounts to the use of a different λ. Choosing to use a non-zero b effectively means choosing a different feature
space and a different stabilizer from the usual case of equation (32): the constant feature is not considered in the
RKHS norm and therefore is not “penalized”. This choice is often quite reasonable, since in many regression and,
especially, classification problems, shifts by a constant in f should not be penalized.
In summary, the argument of this section shows that using a RN of the form (43) (for a certain class of kernels
K) is equivalent to minimizing functionals such as (32) or (35). The choice of K is equivalent to the choice
of a corresponding RKHS and leads to various classical learning techniques such as RBF networks. We discuss
connections between regularization and other techniques in sections 4.2 and 4.3.
Notice that in the framework we use here the kernels K are not required to be radial or even shift-invariant.
Regularization techniques used to solve supervised learning problems [67, 37] were typically used with shift
invariant stabilizers (tensor product and additive stabilizers are exceptions, see [37]). We now turn to such
kernels.

4.1 Radial Basis Functions

Let us consider a special case of the kernel K of the RKHS, which is the standard case in several papers and
books on regularization [100, 68, 37]: the case in which K is shift invariant, that is K(x,y) = K(x − y) and the
even more special case of a radial kernel K(x,y) = K(||x − y||). Section 3 implies that a radial positive definite
K defines a RKHS in which the ”features” φn are Fourier components that is

K(x,y) ≡
∞
∑

n=0

λnφn(x)φn(y) ≡
∞
∑

n=0

λne
i2πn·xe−i2πn·y. (44)

Thus any positive definite radial kernel defines a RKHS over [0, 1] with a scalar product of the form:

< f, g >H≡
∞
∑

n=0

f̃(n)g̃∗(n)

λn
, (45)
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where f̃ is the Fourier transform of f . The RKHS becomes simply the subspace of L2([0, 1]d) of the functions
such that

‖f‖2
K =

∞
∑

n=1

|f̃(n)|2

λn
< +∞. (46)

Functionals of the form (46) are known to be smoothness functionals. In fact, the rate of decrease to zero of
the Fourier transform of the kernel will control the smoothness property of the function in the RKHS. For radial
kernels the minimizer of equation (32) becomes:

f(x) =
l
∑

i=1

ciK(||x − xi||) + b (47)

and the corresponding RN is a Radial Basis Function Network. Thus Radial Basis Function networks are a special
case of RN [67, 37].
In fact all translation-invariant stabilizers K(x,xi) = K(x−xi) correspond to RKHS’s where the basis functions
φn are Fourier eigenfunctions and only differ in the spectrum of the eigenvalues (for a Gaussian stabilizer the

spectrum is Gaussian, that is λn = Ae(−n2/2) (for σ = 1)). For example, if λn = 0 for all n > n0, the corresponding
RKHS consists of all bandlimited functions, that is functions with zero Fourier components at frequencies higher
than n0

18. Generally λn are such that they decrease as n increases, therefore restricting the class of functions to
be functions with decreasing high frequency Fourier components.
In classical regularization with translation invariant stabilizers and associated kernels, the common experience,
often reported in the literature, is that the form of the kernel does not matter much. We conjecture that this
may be because all translation invariant K induce the same type of φn features - the Fourier basis functions.

4.2 Regularization, generalized splines and kernel smoothers

A number of approximation and learning techniques can be studied in the framework of regularization theory
and RKHS. For instance, starting from a reproducing kernel it is easy [5] to construct kernels that correspond to
tensor products of the original RKHS; it is also easy to construct the additive sum of several RKHS in terms of
a reproducing kernel.

• Tensor Product Splines: In the particular case that the kernel is of the form:

K(x,y) = Πd
j=1k(x

j , yj)

where xj is the jth coordinate of vector x and k is a positive definite function with one-dimensional input
vectors, the solution of the regularization problem becomes:

f(x) =
∑

i

ciΠ
d
j=1k(x

j
i , x

j)

Therefore we can get tensor product splines by choosing kernels of the form above [5].

• Additive Splines: In the particular case that the kernel is of the form:

K(x,y) =
d
∑

j=1

k(xj , yj)

where xj is the jth coordinate of vector x and k is a positive definite function with one-dimensional input
vectors, the solution of the regularization problem becomes:

f(x) =
∑

i

ci(
d
∑

j=1

k(xj
i , x

j)) =
d
∑

j=1

(
∑

i

cik(x
j
i , x

j)) =
d
∑

j=1

fj(x
j)

18The simplest K is then K(x, y) = sinc(x − y), or kernels that are convolution with it.
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So in this particular case we get the class of additive approximation schemes of the form:

f(x) =
d
∑

j=1

fj(x
j)

A more extensive discussion on relations between known approximation methods and regularization can be found
in [37].

4.3 Dual representation of Regularization Networks

Every RN can be written as

f(x) = c ·K(x) (48)

where K(x) is the vector of functions such that (K(x))i = K(x,xi). Since the coefficients c satisfy the equa-
tion (34), equation (48) becomes

f(x) = (K + λI)−1y · K(x) .

We can rewrite this expression as

f(x) =
l
∑

i=1

yibi(x) = y · b(x) (49)

in which the vector b(x) of basis functions is defined as:

b(x) = (K + λI)−1K(x) (50)

and now depends on all the data points and on the regularization parameter λ. The representation (49) of the
solution of the approximation problem is known as the dual19 of equation (48), and the basis functions bi(x) are
called the equivalent kernels, because of the similarity with the kernel smoothing technique [86, 39, 41]. Notice
that, while in equation (48) the difficult part is the computation of coefficients ci, the kernel function K(x,xi)
being predefined, in the dual representation (49) the difficult part is the computation of the basis function bi(x),
the coefficients of the expansion being explicitly given by the yi.
As observed in [37], the dual representation of a RN shows clearly how careful one should be in distinguishing
between local vs. global approximation techniques. In fact, we expect (see [86] for the 1-D case) that in most
cases the kernels bi(x) decrease with the distance of the data points xi from the evaluation point, so that
only the neighboring data affect the estimate of the function at x, providing therefore a “local” approximation
scheme. Even if the original kernel K is not “local”, like the absolute value |x| in the one-dimensional case or the
multiquadric K(x) =

√

1 + ‖x‖2, the basis functions bi(x) are bell shaped, local functions, whose locality will
depend on the choice of the kernel K, on the density of data points, and on the regularization parameter λ. This
shows that apparently “global” approximation schemes can be regarded as local, memory-based techniques (see
equation 49) [57].

4.4 From regression to classification

So far we only considered the case that the unknown function can take any real values, specifically the case of
regression. In the particular case that the unknown function takes only two values, i.e. -1 and 1, we have the
problem of binary pattern classification, i.e. the case where we are given data that belong to one of two classes
(classes -1 and 1) and we want to find a function that separates these classes. It can be shown [27] that, if V in
equation (35) is (y − f(x))2, and if K defines a finite dimensional RKHS, then the minimizer of the equation

H[f ] =
1

l

l
∑

i=1

(f(xi) − yi)
2 + λ‖f‖2

K , (51)

19Notice that this “duality” is different from the one mentioned at the end of section 3.
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for λ → 0 approaches asymptotically the function in the RKHS that is closest in the L2 norm to the regression
function:

f0(x) = P (y = 1|x) − P (y = −1|x) (52)

The optimal Bayes rule classifier is given by thresholding the regression function, i.e. by sign(f0(x)). Notice that
in the case of infinite dimensional RKHS asymptotic results ensuring consistency are available (see [26], theorem
29.8) but depend on several conditions that are not automatically satisfied in the case we are considering. The
Bayes classifier is the best classifier, given the correct probability distribution P . However, approximating function
(52) in the RKHS in L2 does not necessarily imply that we find the best approximation to the Bayes classifier.
For classification, only the sign of the regression function matters and not the exact value of it. Notice that an
approximation of the regression function using a mean square error criterion places more emphasis on the most
probable data points and not on the most “important” ones which are the ones near the separating boundary.
In the next section we will study Vapnik’s more natural approach to the problem of classification that is based
on choosing a loss function V different from the square error. This approach leads to solutions that emphasize
data points near the separating surface.

5 Support vector machines

In this section we discuss the technique of Support Vector Machines (SVM) for Regression (SVMR) [93, 94] in
terms of the SVM functional. We will characterize the form of the solution and then show that SVM for binary
pattern classification can be derived as a special case of the regression formulation.

5.1 SVM in RKHS

Once again the problem is to learn a functional relation between x and y given a finite number of examples
D = {xi, yi}l

i=1.
The method of SVMR [94] corresponds to the following functional

H[f ] =
1

l

l
∑

i=1

|yi − f(xi)|ǫ + λ‖f‖2
K (53)

which is a special case of equation (35) and where

V (x) = |x|ǫ ≡

{

0 if |x| < ǫ

|x| − ǫ otherwise,
(54)

is the ǫ−Insensitive Loss Function (ILF) (also noted with Lǫ). Note that the ILF assigns zero cost to errors
smaller then ǫ. In other words, for the cost function | · |ǫ any function closer than ǫ to the data points is a perfect
interpolant. We can think of the parameter ǫ as the resolution at which we want to look the data. For this reason
we expect that the larger ǫ is, the simpler the representation will be. We will come back to this point in section
8.
The minimizer of H in the RKHS H defined by the kernel K has the general form given by equation (43), that is

f(x) =
l
∑

i=1

ciK(xi,x) + b, (55)

where we can include the constant b for the same reasons discussed in section 4.
In order to find the solution of SVM we have to minimize functional (53) (with V given by equation (54)) with
respect to f . Since it is difficult to deal with the function V (x) = |x|ǫ, the above problem is replaced by the
following equivalent problem (by equivalent we mean that the same function minimizes both functionals), in which
an additional set of variables is introduced:

Problem 5.1

min
f,ξ,xi∗

Φ(f, ξ, ξ∗) =
C

l

l
∑

i=1

(ξi + ξ∗i ) +
1

2
‖f‖2

K (56)
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subject to the constraints:

f(xi) − yi ≤ ǫ+ ξi i = 1, . . . , l
yi − f(xi) ≤ ǫ+ ξ∗i i = 1, . . . , l
ξi, ξ

∗
i ≥ 0 i = 1, . . . , l.

(57)

The parameter C in (56) has been introduced in order to be consistent with the standard SVM notations [94].
Note that λ in eq. (53) corresponds to 1

2C . The equivalence is established just noticing that in problem (5.1) a
(linear) penalty is paid only when the absolute value of the error exceeds ǫ, (which correspond to the Vapnik’s
ILF). Notice that if either of the two top constraints is satisfied with some non-zero ξi (or ξ∗i ), the other is
automatically satisfied with a zero value for ξ∗i (or ξi).
Problem (5.1) can be solved through the technique of Lagrange multipliers. For details see [94]. The result is
that the function which solves problem (5.1) can be written as:

f(x) =
l
∑

i=1

(α∗
i − αi)K(xi,x) + b,

where α∗
i and αi are the solution of the following QP-problem:

Problem 5.2

min
α,α�W(α,α�) = ǫ

l
∑

i=1

(α∗
i + αi) −

l
∑

i=1

yi(α
∗
i − αi) +

1

2

l
∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi,xj),

subject to the constraints:

l
∑

i=1

(α∗
i − αi) = 0,

0 ≤ α∗
i , αi ≤

C

l
, i = 1, . . . , l.

The solutions of problems (5.1) and (5.2) are related by the Kuhn-Tucker conditions:

αi(f(xi) − yi − ǫ− ξi) = 0 i = 1, . . . , l (58)

α∗
i (yi − f(xi) − ǫ− ξ∗i ) = 0 i = 1, . . . , l (59)

(
C

l
− αi)ξi = 0 i = 1, . . . , l (60)

(
C

l
− α∗

i )ξ
∗
i = 0 i = 1, . . . , l. (61)

The input data points xi for which αi or α∗
i are different from zero are called support vectors (SVs). Observe

that αi and α∗
i cannot be simultaneously different from zero, so that the constraint αiα

∗
i = 0 holds true. Any of

the SVs for which 0 < αj <
C
l (and therefore ξj = 0) can be used to compute the parameter b. In fact, in this

case it follows from the Kuhn-Tucker conditions that:

f(xj) =
l
∑

i=1

(α∗
i − αi)K(xi,xj) + b = yj + ǫ.

from which b can be computed. The SVs are those data points xi at which the error is either greater or equal to
ǫ20. Points at which the error is smaller than ǫ are never support vectors, and do not enter in the determination
of the solution. A consequence of this fact is that if the SVM were run again on the new data set consisting of
only the SVs the same solution would be found.
Finally observe that if we call ci = α∗

i − αi, we recover equation (55). With respect to the new variable ci
problem (5.2) becomes:

20In degenerate cases however, it can happen that points whose error is equal to ǫ are not SVs.
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Problem 5.3

min
c
E[c] =

1

2

l
∑

i,j=1

cicjK(xi,xj) −
l
∑

i=1

ciyi + ǫ

l
∑

i=1

|ci|

subject to the constraints

l
∑

i=1

ci = 0,

−
C

l
≤ ci ≤

C

l
, i = 1, . . . , l.

This different formulation of SVM will be useful in section 8 when we will describe the relation between SVM
and sparse approximation techniques.

5.2 From regression to classification

In the previous section we discussed the connection between regression and classification in the framework of
regularization. In this section, after stating the formulation of SVM for binary pattern classification (SVMC) as
developed by Cortes and Vapnik [21], we discuss a connection between SVMC and SVMR. We will not discuss the
theory of SVMC here; we refer the reader to [94]. We point out that the SVM technique has first been proposed
for binary pattern classification problems and then extended to the general regression problem [93]. Here our
primary focus is regression and we consider classification as a special case of regression.
SVMC can be formulated as the problem of minimizing:

H(f) =
1

l

l
∑

i

|1 − yif(xi)|+ +
1

2C
‖f‖2

K, (62)

which is again of the form (3). Using the fact that yi ∈ {−1,+1} it is easy to see that our formulation (equation
(62)) is equivalent to the following quadratic programming problem, originally proposed by Cortes and Vapnik
[21]:

Problem 5.4

min
f∈H,ξ

Φ(f, ξ) =
C

l

l
∑

i=1

ξi +
1

2
‖f‖2

K

subject to the constraints:

yif(xi) ≥ 1 − ξi, i = 1, . . . , l
ξi ≥ 0, i = 1, . . . , l.

(63)

The solution of this problem is again of the form:

f(x) =
l
∑

i=1

αiK(xi,x) + b, (64)

where it turns out that 0 ≤ αi ≤
C
l . The input data points xi for which αi is different from zero are called, as in

the case of regression, support vectors (SVs). It is often possible to write the solution f(x) as a linear combination
of SVs in a number of different ways (for example in case that the feature space induced by the kernel K has
dimensionality lower than the number of SVs). The SVs that appear in all these linear combinations are called
essential support vectors.
Roughly speaking the motivation for problem (5.4) is to minimize the empirical error measured by

∑l
i=1 ξi

21

while controlling capacity measured in terms of the norm of f in the RKHS. In fact, the norm of f is related to
the notion of margin, an important idea for SVMC for which we refer the reader to [94, 15].

21As we mentioned in section 2, for binary pattern classification the empirical error is defined as a sum of binary numbers which

in problem (5.4) would correspond to
∑l

i=1
θ(ξi). However in such a case the minimization problem becomes computationally

intractable. This is why in practice in the cost functional Φ(f, �) we approximate θ(ξi) with ξi. We discuss this further in section 6.
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We now address the following question: what happens if we apply the SVMR formulation given by problem (5.1)
to the binary pattern classification case, i.e. the case where yi take values {−1, 1}, treating classification as a
regression on binary data?
Notice that in problem (5.1) each example has to satisfy two inequalities (which come out of using the ILF), while
in problem (5.4) each example has to satisfy one inequality. It is possible to show that for a given constant C in
problem (5.4), there exist C and ǫ in problem (5.1) such that the solutions of the two problems are the same, up
to a constant factor. This is summarized in the following theorem:

Theorem 5.1 Suppose the classification problem (5.4) is solved with parameter C, and the optimal solution is
found to be f . Then, there exists a value a ∈ (0, 1) such that for ∀ǫ ∈ [a, 1), if the regression problem (5.1) is
solved with parameter (1 − ǫ)C, the optimal solution will be (1 − ǫ)f .

We refer to [74] for the proof. A sketch of the proof is given in Appendix D. A direct implication of this result is
that one can solve any SVMC problem through the SVMR formulation. A formal proof of this result can also be
given in the framework of SRM as discussed in Appendix D. It is an open question what theoretical implications
theorem 5.1 may have about SVMC and SVMR. In particular in section 6 we will discuss some recent theoretical
results on SVMC that have not yet been extended to SVMR. It is possible that theorem 5.1 may help to extend
them to SVMR.

6 SRM for RNs and SVMs

At the end of section 2 we outlined how one should implement both RN and SVM according to SRM. To use
the standard SRM method we first need to know the VC-dimension of the hypothesis spaces we use. In sections
4 and 5 we saw that both RN and SVM use as hypothesis spaces sets of bounded functions f in a RKHS with
||f ||K bounded (i.e. ||f ||K ≤ A), where k is the kernel of the RKHS. Thus, in order to use the standard SRM
method outlined in section 2 we need to know the VC dimension of such spaces under the loss functions of RN
and SVM.
Unfortunately it can be shown that when the loss function V is (y− f(x))2 (L2) and also when it is |yi − f(xi)|ǫ
(Lǫ), the VC-dimension of V (y, f(x)) with f in HA = {f : ||f ||K ≤ A} does not depend on A, and is infinite
if the RKHS is infinite dimensional. More precisely we have the following theorem (for a proof see for example
[101, 34], or for an outline of the proof see Appendix E):

Theorem 6.1 Let N be the dimensionality of a RKHS R. For both the L2 and the ǫ-insensitive loss function V ,
the VC-dimension of V in the space HA = {f ∈ R : ||f ||K ≤ A} is O(N), independently of A. Moreover, if N is
infinite, the VC-dimension is infinite for any positive A.

It is thus impossible to use SRM with this kind of hypothesis spaces: in the case of finite dimensional RKHS,
the RKHS norm of f cannot be used to define a structure of spaces with different VC-dimensions, and in the
(typical) case that the dimensionality of the RKHS is infinite, it is not even possible to use bound (16). So the
VC-dimension cannot be used directly neither for RN nor for SVMR.
On the other hand, we can still use the Vγ dimension and the extended SRM method outlined in section 2. Again
we need to know the Vγ dimension of our loss function V in the space HA defined above. In the typical case
that the input space X is bounded, the Vγ dimension depends on A and is not infinite in the case of infinite
dimensional RKHS. More precisely the following theorem holds (for a proof see [34]):

Theorem 6.2 Let N be the dimensionality of a RKHS R with kernel K. Assume our input space X is bounded
and let R be the radius of the smallest ball B containing the data x in the feature space induced by kernel K. The
Vγ dimension h for regression using L2 or Lǫ loss functions for hypothesis spaces HA = {f ∈ R | ‖f‖K ≤ A}

and y bounded, is finite for ∀ γ > 0, with h ≤ O(min (N, (R2+1)(A2+1)
γ2 )).

Notice that for fixed γ and fixed radius of the data the only variable that controls the Vγ dimension is the upper
bound on the RKHS norm of the functions, namely A. Moreover, the Vγ dimension is finite for ∀ γ > 0; therefore,
according to theorem (2.3), ERM uniformly converges in HA for any A <∞, both for RN and for SVMR. Thus
both RNs and SVMR are consistent in HA for any A <∞. Theoretically, we can use the extended SRM method
with a sequence of hypothesis spaces HA each defined for different As. To repeat, for a fixed γ > 0 (we can let γ
go to 0 as l → ∞) we first define a structure H1 ⊂ H2 ⊂ . . . ⊂ Hn(l) where Hm is the set of bounded functions
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f in a RKHS with ||f ||K ≤ Am, Am <∞, and the numbers Am form an increasing sequence. Then we minimize
the empirical risk in each Hm by solving the problem:

minimize
1

l

l
∑

i=1

V (yi, f(xi))

subject to : ||f ||K ≤ Am (65)

To solve this minimization problem we minimize

1

l

l
∑

i=1

V (yi, f(xi)) + λm(||f ||2K −A2
m) (66)

with respect to f and maximize with respect to the Lagrange multiplier λm. If fm is the solution of this problem,
at the end we choose the optimal fn∗(l) in Fn∗(l) with the associated λn∗(l), where optimality is decided based on a
trade off between empirical error and the bound (21) for the fixed γ (which, as we mentioned, can approach zero).
In the case of RN, V is the L2 loss function, whereas in the case of SVMR it is the ǫ-insensitive loss function.
In practice it is difficult to implement the extended SRM for two main reasons. First, as we discussed in section
2, SRM using the Vγ dimension is practically difficult because we do not have tight bounds to use in order to pick
the optimal Fn∗(l) (combining theorems 6.2 and 2.4, bounds on the expected risk of RN and SVMR machines
of the form (65) can be derived, but these bounds are not practically useful). Second, even if we could make a
choice of Fn∗(l), it is computationally difficult to implement SRM since (65) is a constrained minimization problem
one with non-linear constraints, and solving such a problem for a number of spaces Hm can be computationally
difficult. So implementing SRM using the Vγ dimension of nested subspaces of a RKHS is practically a very
difficult problem.
On the other hand, if we had the optimal Lagrange multiplier λn∗(l), we could simply solve the unconstrained
minimization problem:

1

l

l
∑

i=1

V (yi, f(xi)) + λn∗(l)||f ||K (67)

both for RN and for SVMR. This is exactly the problem we solve in practice, as we described in sections 4 and
5. Since the value λn∗(l) is not known in practice, we can only “implement” the extended SRM approximately
by minimizing (67) with various values of λ and then picking the best λ using techniques such as cross-validation
[1, 98, 99, 47], Generalized Cross Validation, Finite Prediction Error and the MDL criteria (see [94] for a review
and comparison).
Summarizing, both the RN and the SVMR methods discussed in sections 4 and 5 can be seen as approximations
of the extended SRM method using the Vγ dimension, with nested hypothesis spaces being of the form HA =
{f ∈ R : ||f ||K ≤ A}, R being a RKHS defined by kernel K. For both RN and SVMR the Vγ dimension of the
loss function V in HA is finite for ∀ γ > 0, so the ERM method uniformly converges in HA for any A < ∞, and
we can use the extended SRM method outlined in section 2.

6.1 SRM for SVM Classification

It is interesting to notice that the same analysis can be used for the problem of classification. In this case the
following theorem holds [33]:

Theorem 6.3 Let N be the dimensionality of a RKHS R with kernel K. Assume our input space X is bounded
and let R be the radius of the sphere where our data x belong to, in the feature space induced by kernel K. The

Vγ dimension of the soft margin loss function |1− yf(x)|+ in HA = {f ∈ R : ||f ||K ≤ A} is ≤ O(min(N ,R2A2

γ2 )).

In the case that N is infinite the Vγ dimension becomes ≤ O(R2A2

γ2 ), which is finite for ∀ γ > 0.

This theorem, combined with the theorems on Vγ dimension summarized in section 2, can be used for a distribution
independent analysis of SVMC (of the form (65)) like that of SVMR and RN. However, a direct application of
theorems 6.3 and 2.4 leads to a bound on the expected soft margin error of the SVMC solution, instead of a more
interesting bound on the expected misclassification error. We can bound the expected misclassification error as
follows.
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Using theorem 2.4 with the soft margin loss function we can get a bound on the expected soft margin loss in
terms of the empirical one (the

∑l
i=1 ξi of problem 5.4) and the Vγ dimension given by theorem 6.3. In particular

theorem 2.4 implies:

Pr

{

sup
f∈HA

|Iemp[f ; l]− I[f ]| ǫ >

}

≤ G(ǫ,m, hγ), (68)

where both the expected and the empirical errors are measured using the soft margin loss function, and hγ is the
Vγ dimension of theorem 6.3 for γ = αǫ and α as in theorem 2.4. On the other hand, θ(−yf(x)) ≤ |1 − yf(x)|+
for ∀ (x, y), which implies that the expected misclassification error is less than the expected soft margin error.
Inequality (68) implies that (uniformly) for all f ∈ HA:

Pr {I[f ] > ǫ+ Iemp[f ; l]} ≤ G(ǫ,m, hγ), (69)

Notice that (69) is different from existing bounds that use the empirical hard margin (θ(1 − yf(x))) error [8]. It

is similar in spirit to bounds in [85] where the
∑l

i=1 ξ
2
i is used22. On the other hand, it can be shown [33] that

the Vγ dimension for loss functions of the form |1 − yf(x)|σ+ is of the form O(R2A2

γ
2
σ

) for ∀ 0 < σ ≤ 1. Thus,

using the same approach outlined above for the soft margin, we can get bounds on the misclassification error of
SVMC in terms of

∑l
i=1(ξi)

σ, which, for σ near 0, is close to the margin error used in [8] (for more information
we refer the reader to [33]). It is important to point out that bounds like (69) hold only for the machines of the
form (65), and not for the machines of the form (3) typically used in practice [33]. This is unlike the bound in
[8] which holds for machines of the form (65) and is derived using the theoretical results of [6] where a type of
“continuous” SRM (for example for a structure of hypothesis spaces defined through the continuous parameter
A of (65)) is studied23.
In the case of classification the difficulty is the minimization of the empirical misclassification error. Notice
that SVMC does not minimize the misclassification error, and instead minimizes the empirical error using the
soft margin loss function. One can use the SRM method with the soft margin loss function (6), in which case
minimizing the empirical risk is possible. The SRM method with the soft margin loss function would be consistent,
but the misclassification error of the solution may not be minimal. It is unclear whether SVMC is consistent
in terms of misclassification error. In fact the Vγ dimension of the misclassification loss function (which is the
same as the VC-dimension - see section 2) is known to be equal to the dimensionality of the RKHS plus one
[94]. This implies that, as discussed at the beginning of this section, it cannot be used to study the expected
misclassification error of SVMC in terms of the empirical one.

6.1.1 Distribution dependent bounds for SVMC

We close this section with a brief reference to a recent distribution dependent result on the generalization error
of SVMC. This result does not use the Vγ or VC dimensions, which, as we mentioned in section 2, are used
only for distribution independent analysis. It also leads to bounds on the performance of SVMC that (unlike the
distribution independent ones) can be useful in practice24.
For a given training set of size l, let us define SVl to be the number of essential support vectors of SVMC, (as we
defined them in section 5 - see eq. (64)). Let Rl be the radius of the smallest hypersphere in the feature space
induced by kernel K containing all essential SVs, ‖f‖2

K(l) the norm of the solution of SVMC, and ρ(l) = 1
‖f‖2

K
(l)

the margin. Then for a fixed kernel and for a fixed value of the SVMC parameter C the following theorem holds:

Theorem 6.4 (Vapnik, 1998) The expected misclassification risk of the SVM trained on m data points sampled
from X × Y according to a probability distribution P (x, y) is bounded by:

E











min
(

SVl+1,
R2

l+1

ρ(l+1)

)

l+ 1











where the expectation E is taken over P (x, y).

22The
∑l

i=1
ξi can be very different from the hard margin (or the misclassification) error. This may lead to various pathological

situations (see for example [78]).
23All these bounds are not tight enough in practice.
24Further distribution dependent results have been derived recently - see [45, ?, ?].
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This theorem can also be used to justify the current formulation of SVMC, since minimizing ||f ||2K(l) (which is
what we do in SVMR) affects the bound of theorem (6.4). It is an open question whether the bound of (6.4) can
be used to construct learning machines that are better than current SVM. The theorem suggests that a learning

machine should, instead of only minimizing ||f ||2K , minimize min
(

SVl,
R2

l+1

ρ(l+1)

)

. Finally, it is an open question

whether similar results exist for the case of SVMR. As we mentioned in section 5, the connection between SVMC
and SVMR outlined in that section may suggest how to extend such results to SVMR. The problem of finding
better distribution dependent results on the generalization capabilities of SVM is a topic of current research which
may lead to better learning machines.

7 A Bayesian Interpretation of Regularization and SRM?

7.1 Maximum A Posteriori Interpretation of Regularization

It is well known that a variational principle of the type of equation (1) can be derived not only in the context of
functional analysis [90], but also in a probabilistic framework [49, 100, 98, 71, 56, 11]. In this section we illustrate
this connection for both RN and SVM, in the setting of RKHS.
Consider the classical regularization case

min
f∈H

H[f ] =
1

l

l
∑

i=1

(yi − f(xi))
2 + λ‖f‖2

K (70)

Following Girosi et al. [37] let us define:

1. Dl = {(xi, yi)} for i = 1, · · · , l to be the set of training examples, as in the previous sections.

2. P [f |Dl] as the conditional probability of the function f given the examples Dl.

3. P [Dl|f ] as the conditional probability of Dl given f . If the function underlying the data is f , this is the
probability that by random sampling the function f at the sites {xi}l

i=1 the set of measurement {yi}l
i=1 is

obtained. This is therefore a model of the noise.

4. P [f ]: is the a priori probability of the random field f . This embodies our a priori knowledge of the function,
and can be used to impose constraints on the model, assigning significant probability only to those functions
that satisfy those constraints.

Assuming that the probability distributions P [Dl|f ] and P [f ] are known, the posterior distribution P [f |Dl] can
now be computed by applying the Bayes rule:

P [f |Dl] ∝ P [Dl|f ] P [f ]. (71)

If the noise is normally distributed with variance σ, then the probability P [Dl|f ] can be written as:

P [Dl|f ] ∝ e
− 1

2σ2

∑

l

i=1
(yi−f(xi))

2

.

For now let us write informally the prior probability P [f ] as

P [f ] ∝ e−‖f‖2
K . (72)

Following the Bayes rule (71) the a posteriori probability of f is written as

P [f |Dl] ∝ e
−[ 1

2σ2

∑

l

i=1
(yi−f(xi))

2+‖f‖2
K ]
. (73)

One of the several possible estimates [56] of the function f from the probability distribution (73) is the so called
MAP (Maximum A Posteriori) estimate, that considers the function that maximizes the a posteriori probability
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P [f |Dl], and therefore minimizes the exponent in equation (73). The MAP estimate of f is therefore the minimizer
of the functional:

1

l

l
∑

i=1

(yi − f(xi))
2 +

1

l
α‖f‖2

K

where α is the a priori defined constant 2σ2, that is

1

l

l
∑

i=1

(yi − f(xi))
2 + λ̃‖f‖2

K .

where λ̃ = α
l . This functional is the same as that of equation (70), but here it is important to notice that

λ(l) = α
l . As noticed by Girosi et al. [37], functionals of the type (72) are common in statistical physics [65],

where the stabilizer (here ‖f‖2
K) plays the role of an energy functional. As we will see later, the RKHS setting

we use in this paper makes clear that the correlation function of the physical system described by ‖f‖2
K is the

kernel K(x,y)25.
Thus in the standard MAP interpretation of RN the data term is a model of the noise and the stabilizer is a prior
on the regression function f . The informal argument outlined above can be made formally precise in the setting
of this paper in which the stabilizer is a norm in a RKHS (see also [100]). To see the argument in more detail,
let us write the prior (72) as:

P [f ] ∝ e−‖f‖2
K = e

−
∑

M

n=1

a2
n

λn

where M is the dimensionality of the RKHS, with possibly M = ∞. Of course functions f can be represented as
vectors a in the reference system of the eigenfunctions φn of the kernel K since

f(x) =
M
∑

n=1

anφn(x) . (74)

The stabilizer

‖f‖2
K =

M
∑

n=1

a2
n

λn
= aT Λ−1a

can of course be also expressed in any other reference system (φ′ = Aφ) as

‖f‖2
K = bT Σ−1b

which suggests that Σ can be interpreted as the covariance matrix in the reference system of the φ′. It is clear in
this setting that the stabilizer can be regarded as the Malahanobis distance of f from the mean of the functions.
P [f ] is therefore a multivariate Gaussian with zero mean in the Hilbert space of functions defined by K and
spanned by the φn:

P [f ] ∝ e−‖f‖2
K = e−(bT Σ−1b) .

Thus the stabilizer can be related to a Gaussian prior on the function space.
The interpretation is attractive since it seems to capture the idea that the stabilizer effectively constrains the de-
sired function to be in the RKHS defined by the kernel K. It also seems to apply not only to classical regularization
but to any functional of the form

H[f ] =
1

l

l
∑

i=1

V (yi − f(xi)) + λ‖f‖2
K (75)

25As observed in [37, 67] prior probabilities can also be seen as a measure of complexity, assigning high complexity to the functions
with small probability. This is consistent with the Minimum Description Length (MDL) principle proposed by Rissanen [79] to
measure the complexity of a hypothesis in terms of the bit length needed to encode it. The MAP estimate mentioned above is closely
related to the Minimum Description Length Principle: the hypothesis f which for given Dl can be described in the most compact
way is chosen as the “best” hypothesis. Similar ideas have been explored by others (see [93, 94] for a summary).
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where V (x) is any monotonically increasing loss function (see [38]). In particular it can be applied to the SVM
(regression) case in which the relevant functional is

1

l

l
∑

i=1

|yi − f(xi)|ǫ + λ‖f‖2
K . (76)

In both cases, one can write appropriate P [Dl|f ] and P [f ] for which the MAP estimate of

P [f |Dl] ∝ P [Dl|f ]P [f ]

gives either equation (75) or equation (76). Of course, the MAP estimate is only one of several possible. In
many cases, the average of f =

∫

fdP [f |Dl] may make more sense26 (see [56]). This argument provides a formal
proof of the well-known equivalence between Gaussian processes defined by the previous equation with P [f |Dl]
Gaussian and the RN defined by equation (70)27.
In the following we comment separately on the stabilizer – common to RN and SVM – and on the data term –
which is different in the two cases.

7.2 Bayesian interpretation of the stabilizer in the RN and SVM functionals

Assume that the problem is to estimate f from sparse data yi at location xi. From the previous description it is
clear that choosing a kernel K is equivalent to assuming a Gaussian prior on f with covariance equal to K. Thus
choosing a prior through K is equivalent a) to assume a Gaussian prior and b) to assume a correlation function
associated with the family of functions f . The relation between positive definite kernels and correlation functions
K of Gaussian random processes is characterized in details in [100], Theorem 5.2. In applications it is natural to
use an empirical estimate of the correlation function, whenever available. Notice that in the MAP interpretation
a Gaussian prior is assumed in RN as well as in SVM. For both RN and SVM when empirical data are available
on the statistics of the family of functions of the form (74) one should check that P [f ] is Gaussian and make it
zero-mean. Then an empirical estimate of the correlation function E[f(x)f(y)] (with the expectation relative to
the distribution P [f ]) can be used as the kernel28.
Notice also that the basis functions φn associated with the positive definite function K(x,y) correspond to the
Principal Components associated with K.

7.3 Bayesian interpretation of the data term in the Regularization and SVM func-

tional

As we already observed the model of the noise that has to be associated with the data term of the SVM functional
is not Gaussian additive as in RN. The same is true for the specific form of Basis Pursuit Denoising considered
in section 8, given the equivalence with SVM. Data terms of the type V (yi − f(xi)) can be interpreted [38] in
probabilistic terms as non-Gaussian noise models. Recently, Pontil, Mukherjee and Girosi [73] have derived a
noise model corresponding to Vapnik’s ǫ-insensitive loss function. It turns out that the underlying noise model
consists of the superposition of Gaussian processes with different variances and means, that is29:

exp (−|x|ǫ) =

∫ +∞

−∞

dt

∫ ∞

0

dβλ(t)µ(β)
√

β exp
(

−β(x− t)2
)

, (77)

with:

λǫ(t) =
1

2(ǫ+ 1)

(

χ[−ǫ,ǫ](t) + δ(t− ǫ) + δ(t+ ǫ)
)

, (78)

µ(β) ∝ β2 exp

(

−
1

4β

)

. (79)

where χ[−ǫ,ǫ](t) is 1 for t ∈ [−ǫ, ǫ], 0 otherwise,

26In the Gaussian case - Regularization Networks - the MAP and the average estimates coincide.
27Ironically, it is only recently that the neural network community seems to have realized the equivalence of many so-called neural

networks and Gaussian processes and the fact that they work quite well (see [53] and references therein).
28We neglect here the question about how accurate the empirical estimation is.
29In the following we introduce the variable β = (2σ2)−1.
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Figure 1: An experiment (suggested by V. Vapnik) where the optimal λ does not simply depend on the training
set as λ = α

l with α a constant and l the number of data points in the training set. In the right figure we plot
λl as a function of the number of data. The data were generated from a 1-d sinusoid along 3 periods, with small
uniform noise added. A SVMR with Gaussian kernel was used. We scaled the ordinate by 50 to compare with
the log(log(l)) plot shown on the left. The number of training data ranged from 10 to 500. For each l we plot
λl with λ being the optimal one (i.e. 2

C for the SVMR) estimated by using the true function for validation. The
right figure shows that λl is not a constant as the MAP interpretation would require.

For the derivation see Appendix F or [73]. Notice that the variance has a unimodal distribution that does not
depend on ǫ, and the mean has a distribution which is uniform in the interval [−ǫ, ǫ], (except for two delta
functions at ±ǫ, which ensures that the mean has not zero probability to be equal to ±ǫ). The distribution of the
mean is consistent with the current understanding of Vapnik’s ILF: errors smaller than ǫ do not count because
they may be due entirely to the bias of the Gaussian noise.

7.4 Why a MAP interpretation may be misleading

We have just seen that minimization of both the RN and the SVMR functionals can be interpreted as corre-
sponding to the MAP estimate of the posterior probability of f given the data, for certain models of the noise
and for a specific Gaussian prior on the space of functions f . However, a MAP interpretation of this type may
in general be inconsistent with Structural Risk Minimization and more generally with Vapnik’s analysis of the
learning problem. The following argument due to Vapnik shows the general point.
Consider functionals (32) and (53). From a Bayesian point of view, instead of the parameter λ – which in RN
and SVM is a function of the data (through the SRM principle) – we have λ̃ which depends on the data as α

l : the
constant α has to be independent of the training data (i.e. their size l). On the other hand, as we discussed in
section 2, SRM dictates a choice of λ depending on the training set. It seems unlikely that λ could simply depend
on α

l as the MAP interpretation requires for consistency. Figure (7.4) gives a preliminar empirical demonstration
that in the case of SVMR the “MAP” dependence of λ as α

l may not be correct.
Fundamentally, the core of Vapnik’s analysis is that the key to learning from finite training sets is capacity control,
that is the control of the complexity of the hypothesis space as a function of the training set. From this point of
view the ability to choose λ as a function of the training data is essential to our interpretation of Regularization
and SVM in terms of the VC theory (compare the procedure described in our SRM section 2). Full capacity
control and appropriate dependency of λ on the training set, which we expect in the general case not to be simply
of the form α

l , is lost in the direct MAP interpretation that we described in this chapter. Of course, an empirical
Bayesian interpretation relying on hyper-parameters in the prior is possible and often useful but it amounts to
little more than a parametric form for the posterior distribution, usually used in conjunction with maximum
likelihood estimation of the parameters from the data.

8 Connections between SVMs and Sparse Approximation techniques

In recent years there has been a growing interest in approximating functions and representing signals using linear
superposition of a small number of basis functions selected from a large, redundant set of basis functions, called
a dictionary. These techniques go under the name of Sparse Approximations (SAs) [17, 16, 63, 40, 23, 55, 20, 25].
We will start with a short overview of SAs. Then we will discuss a result due to Girosi [36] that shows an
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equivalence between SVMs and a particular SA technique. Finally we will discuss the problem of Independent
Component Analysis (ICA), another method for finding signal representations.

8.1 The problem of sparsity

Given a dictionary of basis functions (for example a frame, or just a redundant set of basis functions) {ϕ1(x), . . . , ϕn(x)}
with n very large (possibly infinite), SA techniques seek an approximation of a function f(x) as a linear combi-
nation of the smallest number of elements of the dictionary, that is, an approximation of the form:

fc(x) =
n
∑

i=1

ciϕi(x), (80)

with the smallest number of non-zero coefficients ci. Formally, the problem is formulated as minimizing the
following cost function:

E[c] = D(f(x),
n
∑

i=1

ciϕi(x)) + ǫ‖c‖L0, (81)

where D is a cost measuring the distance (in some predefined norm) between the true function f(x) and our
approximation, the L0 norm of a vector counts the number of elements of that vector which are different from
zero, and ǫ is a parameter that controls the trade off between sparsity and approximation. Observe that the larger
ǫ is in (81), the more sparse the solution will be.
In the more general case of learning function f is not given, and instead we have a data setDl = {(x1, y1), . . . (xl, yl)}
of the values yi of f at locations xi

30. Note that in order to minimize E[c] we need to know f at all points x.
In the learning paradigm, in the particular case that D(f(x),

∑n
i=1 ciϕi(x)) = ‖f(x)−

∑n
i=1 ciϕi(x)‖2

L2
, the first

term in equation (81) is replaced by an empirical one, and (81) becomes:

1

l

l
∑

i=1

(yi −
n
∑

j=1

cjϕj(xi))
2 + ǫ‖c‖L0 (82)

Minimizing (81) can be used as well to find sparse approximations in the case that the function f is generated by
a function f0 corrupted by additive noise. In this case the problem can be formulated as finding a solution c to:

f = Φc + η (83)

with the smallest number of non-zero elements, where Φ is the matrix with columns the elements of the dictionary,
and η is the noise. If we take a probabilistic approach and the noise is Gaussian, the problem can again be
formulated as minimizing:

E[c] = ‖f(x) −
n
∑

i=1

ciϕi(x)‖2
L2

+ ǫ‖c‖L0, (84)

Unfortunately it can be shown that minimizing (81) is NP-hard because of the L0 norm. In order to circumvent
this shortcoming, approximated versions of the cost function above have been proposed. For example, in [17, 16]
the authors use the L1 norm as an approximation of the L0 norm, obtaining an approximation scheme that they
call Basis Pursuit De-Noising (BPDN) which consists of minimizing:

E[c] = ‖f(x) −
n
∑

i=1

ciϕi(x)‖2
L2

+ ǫ

n
∑

i=1

|ci|, (85)

8.2 Equivalence between BPDN and SVMs

In this section we consider the particular case in which we are given a data set Dl = {(x1, y1), . . . , (xl, yl)}, and
the dictionary consists of basis functions of the form:

ϕi(x) = K(x,xi) ∀i = 1, . . . , l (86)

30For simplicity we consider the case where P (x is the uniform distribution.

27



where K is the reproducing kernel of a RKHS H, and the size l of Dl is equal to the size n of the dictionary.
Moreover, following [36], we assume that f(x) in eq. (81) is in the RKHS, and we use as the cost D in (81) the
norm in the RKHS H induced by the kernel K, and approximate the L0 norm with L1. Under these assumptions,
we get the SA technique that minimizes:

E[c] = ‖f(x) −
n
∑

i=1

ciϕi(x)‖2
K + ǫ‖c‖L1. (87)

subject to f(xi) = yi.
It can be shown [36] that this technique is equivalent to SVMR in the following sense: the two techniques give
the same solution, which is obtained by solving the same quadratic programming problem. Girosi [36] proves the
equivalence between SVMR and BPDN under the assumption that the data set {(xi, yi)}l

i=1 has been obtained
by sampling, in absence of noise, the target function f . Functional (87) differs from (85) only in the cost D.
While Chen et al., in their BPDN method, measure the reconstruction error with an L2 criterion, Girosi measures
it by the true distance, in the H norm, between the target function f and the approximating function f∗. This
measure of distance, which is common in approximation theory, is better motivated than the L2 norm because it
not only enforces closeness between the target and the model, but also between their derivatives, since ‖ · ‖K is a
measure of smoothness.
Notice that from eq. (87) the cost function E cannot be computed because it requires the knowledge of f (in the
first term). If we had ‖ · ‖L2 instead of ‖ · ‖K in eq. (87),this would force us to consider the approximation:

‖f(x) − f∗(x)‖2
L2

≈
1

l

l
∑

i=1

(yi − f∗(xi))
2 (88)

However if we used the norm ‖ · ‖K we can use the reproducing property (26) obtaining (see [36]):

E[c] =
1

2
(‖f‖2

K +
l
∑

i,j=1

cicjK(xi;xj) − 2
l
∑

i=1

ciyi) + ǫ‖c‖L1 (89)

Observe that functional (89) is the same as the objective function of SVM of problem 5.3 up to the constant
1
2‖f‖

2
K . However, in the SVM formulation the coefficients ci satisfy two constraints, which in the case of sparsity

are trivially satisfied under further assumptions. For details see [36]. It also follows from eq. (80) and (86) that
the approximating function is of the form:

f∗(x) ≡ fc(x) =
l
∑

i=1

ciK(x;xi). (90)

This model is similar to the one of SVM (eq. (55)), except for the constant b.
This relation between SVMR and SA suggests directly that SVM yield a sparse representation.

8.3 Independent Component Analysis

Independent Component Analysis (ICA) is the problem of finding unknown sources whose linear superposition
gives a number of observed signals, under the only assumption that the sources are statistically independent. A
particular application is Blind Source Separation (BSS) where one is given a signal and seeks to decompose it as
a linear combination of a number of unknown statistically independent sources. Following the notation in [4], the
problem can be formulated as finding at any time t both the n (n predefined) sources x(t) = (x1(t), . . . , xn(t))
and the mixing matrix A (which is assumed to be the same for every t) of the system of linear equations:

s(t) = Ax(t) + η (91)

where s(t) is our observed signal at time t, the elements of x(t), namely xi(t), are generated by statistically
independent sources, and η is additive noise.
Observe that for any t the formulations of ICA and SA (see eq. (83)) are similar (Φ is A, f is s(t) and c is x(t)).
The difference is that in the case of SA we know the mixing matrix (“basis”) A (Φ) and we only solve for the
sources x (c) with the smallest number of non-zero elements, while for ICA and BSS both the matrix A and the
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sources x are unknown, and we assume that xi(t) are statistically independent, while we don’t have any explicit
restriction on A.
Various methods for ICA have been developed in recent years [3, 9, 61, 51, 63]. A review of the methods can
be found in [50]. Typically the problem is solved by assuming a probability distribution model for the sources
xi(t). A typical prior distribution is the Laplacian, namely P (x(t)) ∝ ·e|x1(t)|+···+|xn(t)|. Moreover, if the noise η
is Gaussian with zero mean and variance σ2, then, for a given A, the probability of s(t) given A can be written
as:

P (s(t)|A) = P (s(t)|A,x(t)) · P (x(t)) ∝ · e
||s(t)−Ax(t)||2

2σ2 · e|x1(t)|+···+|xn(t)| (92)

The MAP estimate of (92) gives x(t) as the minimizer of:

||s(t) −Ax(t)||2 + ǫ ·
n
∑

i=1

|xi(t)| (93)

Observe that this is the same as that of BPDN (eq. (85)). Therefore, for a fixed A the sources can be found
by solving a (BPDN) problem. In fact iterative methods where at every iteration A is fixed and the sources are
found, and then for fixed sources, A is updated using a learning rule have been developed in [63].
To summarize, using a Laplacian prior on the sources and following an iterative method for solving both for the
sources and for their linear combination, ICA and BSS can be seen as iterative methods where at each iteration
one solves a SA problem. This connection between ICA and sparsity has also been studied in [62]. Notice that if
the prior on the sources is different, in particular if it is super-Gaussian, then the solution at every iteration need
not be sparse.

9 Remarks

9.1 Regularization Networks can implement SRM

One of the main focuses of this review is to describe and motivate the classical technique of regularization –
minimization of functionals such as in equation (1) – within the framework of VC theory. In particular we have
shown that classical regularization functionals can be motivated within the statistical framework of capacity
control.

9.2 The SVM functional is a special formulation of regularization

Classical Regularization H[f ] = 1
l

∑l
i=1(yi − f(xi))

2 + λ‖f‖2
K

SVM Regression (SVMR) H[f ] = 1
l

∑l
i=1 |yi − f(xi)|ǫ + λ‖f‖2

K

SVM Classification (SVMC) H[f ] = 1
l

∑l
i=1 |1 − yif(xi)|+ + λ‖f‖2

K

Table 2: A unified framework: the minimizer of each of these three functionals has always the same form: f(x) =
∑l

i=1 ciK(x,xi) or f(x) =
∑l

i=1 ciK(x,xi) + b. Of course in classification the decision function is sign(f(x)).

Throughout our review it is clear that classical Regularization Networks, as well as Support Vector Machines
for regression and Support Vector Machines for classification (see Table (2)), can be justified within the same
framework, based on Vapnik’s SRM principle and the notion of Vγ dimension. The three functionals of the table
have different loss functions V (·, ·) but the same stabilizer. Thus the minimizer has the same general form and,
as a consequence, the associated network has the same architecture. In particular, RKHS, associated kernels,
and the mapping they induce from the input space into a higher dimensional space of features φn, are exactly
the same in SVM as in RN. The different loss functions of SVM determine however quite different properties of
the solution (see Table (2)) which is, unlike regularization, sparse in the cn. Notice that loss functions different
from quadratic loss have been used before in the context of regularization. In particular, the physical analogy of
representing the data term using nonlinear spring (classical L2 regularization corresponds to linear springs) was
used and studied before (for instance see [38]). It is, however, the specific choice of the loss functions in SVMC
and SVMR that provides several of their characteristic features, such as sparsity of the solution. Notice also
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that the geometric interpretation of ‖f‖2
K in terms of the margin [94] is true only for the classification case and

depends on the specific loss function V (·, ·) used in SVMC.

9.3 SVM, sparsity and compression

From the Kuhn-Tucker conditions of the QP problem associated with SVM one expects the Support Vectors to be
usually sparser than the data. Notice that this is not obvious from a direct inspection of the functional H[f ] itself,
where the regularizer is a L2 norm on the function space. Especially in the case of regression it is not immediately
obvious that the H[f ] in SVMR should yield a sparser solution than the H[f ] of classical regularization (see Table
(2)). The equivalence of SVMR with a special form of Basis Pursuit Denoising shows that the ǫ-insensitive loss
function with a L2 regularizer is equivalent to a L2 loss function and a L1 regularizer. The latter is known to
yield sparsity, though it is only an approximation of a ”true” sparsity regularizer with the L0 norm. Notice that
SVM – like regularization – uses typically many features φn, but only – unlike regularization – a sparse subset of
the examples. Thus SVM is not sparse in the primal representation (see section 3) of the classifier (or regressor)
but it is sparse in the dual representation since it tends to use a subset of the dictionary consisting of the set of
K(x,xi).
In this context, an interesting perspective on SVM is to consider its information compression properties. The
support vectors represent in this sense the most informative data points and compress the information contained
in the training set: for the purpose of, say, classification of future vectors, only the support vectors need to be
stored, while all other training examples can be discarded. There is in fact a relation between the compression
factor expressed as the ratio of data points to support vectors and the probability of test error. Vapnik [94], in
comparing the empirical risk minimization principle with the Minimum Description Length principle [79], derives
a bound on the generalization error as a function of the compression coefficient.

9.4 Gaussian processes, regularization and SVM

The very close relation between Gaussian processes and RN is well known [56, 100]. The connection is also valid
for SVM in regression as well as in classification, since it depends on the form of the stabilizer, which is the same.
The functional H of classical regularization is the exponent of the Gaussian conditional probability distribution
characterizing the Gaussian process. The MAP estimate applied to the probability distribution corresponds to
minimization of H yielding Regularization Networks – of which Radial Basis Function networks are a special case.
Thus RN are connected to Gaussian processes via the MAP estimate, which in this case coincides with another
estimate – the posterior mean.

9.5 Kernels and how to choose an input representation

A key issue in every learning problem concerns the input (and output) representation. This issue is outside the
scope of the theory outlined in this review. There are however a few interesting observations that can be made.
As pointed out by Vapnik, the choice of the kernel K is equivalent to choosing features related to the original
inputs x by well-behaved functions φn(x), where the φn are defined by K(x,y) ≡

∑N
n=1 λnφn(x)φn(y). Assume

that K is given and that the input representation is now changed through a vector function h(x) mapping the
original input x into the new feature vector h. This is equivalent to using a new kernel K ′ defined in terms of the
composite features φn(h(x)) as K ′(x,y) ≡

∑N
n=1 λnφn(h(x))φn(h(y)). For example, in the case of a polynomial

kernel K = (1 + x · y)d, a linear transformation of the input data x′ = PTx is equivalent to using a new kernel
K ′(x,y) = (1 + xPPTy)d. Clearly in the case that the projection is onto an orthonormal basis so that matrix
P is orthonormal, the transformation does not affect the learning machine. On the other hand, if P is a matrix
whose columns form an overcomplete or undercomplete set of basis functions, the transformation can change the
learning machine. In many cases – especially when K is an expansion in an infinite series of φn – the most natural
description is in terms of the kernel itself. In other cases, the best strategy is to define a finite set of features φn

and then construct the kernel by computing K(x,y) =
∑N

n=1 λnφn(x)φn(y).

Synthesis of kernels from kernels
There are several symmetric positive definite kernels and a number of ways to construct new ones from existing
kernels by operating on them with a few operations such as addition and convolution. For instance, if K1 and
K2 are kernels then K1 +K2 is a kernel and K1K2 is a kernel; (K1)

n is a kernel. Thus the kernel
∑d

i=0(x · y)i

corresponds to the features of a polynomial of degree d in the spirit of [66]; Vapnik’s kernel K(x,y) = (1+x ·y)d
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is in fact equivalent and more compact. Aronszajn [5] describes several ways to construct positive definite kernels
and thereby the associated RKHS. A completely equivalent analysis exists for correlation functions.

Exploiting prior information
In practical problems the choice of the regressors is often much more important than the choice of the learning
machine. The choice of an appropriate input representation depends of course on prior information about the
specific regression or classification problem. A general theory on how to use prior information to determine the
appropriate representation is likely to be very far away. There are however a few approaches which yield some
promise.

• Kernels and estimates of correlation functions.

Assume that the problem is to estimate f from sparse data yi at location xi. As we described in section
7, let us assume that there is prior information available in terms of the correlation function R(x,y) =
E[f(x)f(y)] of the family of functions to which f belongs. In applications, for instance, it may be possible
to obtain an empirical estimate of the correlation function. From a Bayesian point of view this prior
information together with the assumption of a Gaussian prior, determines the choice of the kernel K = R

and this automatically determines the feature representation – the φn – to be used in the regression problem.
Preliminary experiments indicate that this strategy may give better results than other regression approaches
[64].

• Invariances and Virtual Examples.

In many pattern recognition problem specific invariances are known to hold a priori. Niyogy et al. [60]
showed how several invariances can be embedded in the stabilizer or, equivalently, in virtual examples (see
for a related work on tangent distance [87] and [82]).

• Generative probabilistic models.

Jaakkola and Haussler [45] consider the case in which prior information is available in terms of a parametric
probabilistic model P (x, y) of the process generating the data. They argue that good features for classifi-
cation are the derivatives of logP with respect to the natural parameters of the distributions at the data
points.

9.6 Capacity control and the physical world

An interesting question, outside the realm of mathematics, which has been asked recently is why large margin
classifiers seem to work well in the physical world. As we saw throughout this review, the question is closely related
to the question of why to assume smoothness in regression, that is why to use stabilizers such as ‖f‖2

K, which
are usually smoothness functionals. Smoothness can be justified by observing that in many cases smoothness of
input-output relations are implied directly by the existence of physical laws with continuity and differentiability
properties. In classification, minimization of ‖f‖K corresponds to maximization of the margin in the space of
the φn; it is also equivalent to choosing the decision boundary resulting from thresholding the smoothest f in
the original space, according to the smoothness criterion induced by K (notice that the decision boundary is the
level crossing of f and not necessarily smooth everywhere). Conversely, we would not be able to generalize for
input-output relations that are not smooth, that is for which ”similar” inputs do not correspond to ”similar”
outputs (in an appropriate metric!). Such cases exist: for instance the mapping provided by a telephone directory
between names and telephone numbers is usually not ”smooth” and it is a safe bet that it would be difficult to
learn it from examples. In cases in which physical systems are involved, however, input-output relations have some
degree of smoothness and can be learned. From this point of view large margin (in feature space) and smoothness
are properties of the physical world that are key to allow generalization, learning and the development of theories
and models.
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A Regularization Theory for Learning

Classical regularization methods proposed by Tikhonov and Arsenin [90] solve the learning problem by restricting
the space of functions to be the domain of a functional Ω(f), called the stabilizer, which possesses the following
three properties:

• The unknown function f is assumed to belong to the domain D(Ω) of functional Ω(f).

• On the domain D(Ω) the functional Ω(f) admits real nonnegative values.

• The sets:

Mc = {f : Ω(f) ≤ c}

are compact for every real nonnegative c.

For example, a functional of this sort typically used is the sum of the L2 norms of the first k derivatives of f . In
this case, the sets Mc defined above are Sobolev spaces. Using such a functional means that we restrict our space
of functions to be the space of smooth functions, the functions whose derivatives are in L2.
Given such a functional Ω(f), the idea of regularization is to find f as the minimizer of a certain loss functional
which we take to be:

H[f ] =
N
∑

i=1

V (f(xi) − yi) + λΩ[f ] . (94)

where V is the loss function and λ is a positive number that is usually called the regularization parameter. The
first term is enforcing closeness to the data, and the second enforces the solution to be in a set Mc with a
small c, while the regularization parameter controls the tradeoff between these two terms. For example, in the
particular case that Mc is a Sobolev space, the second term of the minimized functional enforces the smoothness
of f . The first term in equation (94) is the empirical error, while the second term is usually called the smoothness
functional since it enforces some sort of smoothness. Various methods for choosing λ are proposed in the literature
[1, 98, 99, 47, 94]. Under some conditions on the regularization parameter λ, it can be shown [90] that as the
number of training examples increases the minimizer of equation (94) converges to the exact solution f in the
space D(Ω).
To summarize, to solve the ill-posed problem of learning from examples using classical regularization methods,
we need to restrict the space where we search for the solution, and minimize a functional that depends on the
empirical error and a cost related with a functional defined on the space of functions we search.

B An example of RKHS

Here we present a simple way to construct meaningful RKHS of functions of one variable over [0, 2π]. In the
following all the normalization factors will be set to 1 for simplicity.
Let us consider any function K(x) which is continuous, symmetric, periodic, and whose Fourier coefficients λn

are positive. Such a function can be expanded in a uniformly convergent Fourier series:

K(x) =
∞
∑

n=0

λn cos(nx) . (95)

An example of such a function is

K(x) = 1 +
∞
∑

n=1

hn cos(nx) ==
1

2π

1 − h2

1 − 2h cos(x) + h2

where h ∈ (0, 1).
It is easy to check that, if (95) holds, then we have:

K(x− y) = 1 +
∞
∑

n=1

λn sin(nx) sin(ny) +
∞
∑

n=1

λn cos(nx) cos(ny) (96)
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which is of the form (27) in which the set of orthogonal functions φn has the form:

{φi(x)}
∞
i=0 ≡ (1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(nx), cos(nx), . . .) .

Therefore, given any function K which is continuous, periodic and symmetric we can then define a RKHS H over
[0, 2π] by defining a scalar product of the form:

< f, g >H≡
∞
∑

n=0

f c
ng

c
n + fs

ng
s
n

λn

where we use the following symbols for the Fourier coefficients of a function f :

f c
n ≡< f, cos(nx) > , fs

n ≡< f, sin(nx) >

The functions in H are therefore functions in L2([0, 2π]) whose Fourier coefficients satisfy the following constraint:

‖f‖2
H =

∞
∑

n=0

(f c
n)2 + (fs

n)2

λn
< +∞ (97)

Since the sequence λn is decreasing, the constraint that the norm (97) has to be finite can be seen as a constraint
on the rate of decrease to zero of the Fourier coefficients of the function f , which is known to be related to the
smoothness properties of f . Therefore, choosing different kernels K is equivalent to choose RKHS of functions
with different smoothness properties, and the norm (97) can be used as the smoothness functional.

C Regularized Solutions in RKHS

Let us look more closely at the solution of the minimization of functional (3). This is equivalent to assume that
the functions in H have a unique expansion of the form:

f(x) =
∞
∑

n=1

cnφn(x)

and that their norm is:

‖f‖2
H =

∞
∑

n=1

c2n
λn
.

We can think of the functional H[f ] as a function of the coefficients cn. In order to minimize H[f ] we take its
derivative with respect to cn and set it equal to zero, obtaining the following:

−C
l
∑

i=1

V ′(yi, f(xi))φn(xi) +
cn

λn
= 0. (98)

where we note by V ′ the partial derivative of V w.r.t. f . Let us now define the following set of unknowns:

ai ≡ CV ′(yi, f(xi)).

Using eq. (98) we can express the coefficients cn as a function of the ai:

cn = λn

l
∑

i=1

aiφn(xi).

The solution of the variational problem has therefore the form:

f(x) =
∞
∑

n=1

cnφn(x) =
∞
∑

n=1

l
∑

i=1

aiλnφn(xi)φn(x) =
l
∑

i=1

aiK(x,xi), (99)

where we have used the expansion (27). This shows that, independently of the form of V , as long as it is
differentiable, the solution of the regularization functional H[f ] is always a linear superposition of kernel functions,
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one for each data point. The loss function V affects the computation of the coefficients ai. In fact, plugging eq.
(99) back in the definition of the ai we obtain the following set of equations for the coefficients ai:

ai = CV ′



yi,

l
∑

j=1

Kijaj



 , i = 1, . . . , l

where we have defined Kij = K(xi,xj). In the case in which V (·, ·) = (·−·)2 we obtain the classical regularization
theory solution (see Girosi, Jones and Poggio, 1995 for an alternative derivation):

(K + γI) a = y,

where we have defined γ ≡ 1
C .

D Relation between SVMC and SVMR

We want to study problem 5.1 in the classification case (yi ∈ {−1, 1} ∀i). Note that when performing SVMR on
{−1, 1}-valued data, if ǫ ≥ 1, the optimal solution to problem 5.1 is f = 0, ξ = ξ∗ = 0. Therefore, we restrict our
attention to cases were ǫ < 1.
We start by making the following variable substitution:

ηi =

{

ξi if yi = 1
ξ∗i if yi = −1.

, η∗i =

{

ξ∗i if yi = 1
ξi if yi = −1.

(100)

Combining this substitution with our knowledge that yi ∈ {−1, 1} yields the following modification of problem 5.1:

Problem D.1

min
f,η,η� ΦC(f,η,η�) =

C

l

l
∑

i=1

(ηi + η∗i ) +
1

2
‖f‖2

K

subject to the constraints:

yif(xi) ≥ 1 − ǫ+ ηi i = 1, . . . , l
yif(xi) ≤ 1 + ǫ+ η∗i i = 1, . . . , l
ηi, η

∗
i ≥ 0, i = 1, . . . , l.

(101)

Continuing, we divide both sides of each constraint in problem D.1 by 1− ǫ, and make the variable substitutions
f ′ = w

1−ǫ , η
′ = η

1−ǫ , η
′∗ = η∗

1−ǫ :

Problem D.2

min
f,η0

,η0� Φ C
1−ǫ

(f ′,η0,η0�) =
1

l

C

1 + ǫ

l
∑

i=1

(ξ′i + ξ′∗i ) +
1

2
‖f ′‖2

K (102)

subject to the constraints:

yif(xi) ≥ 1 − η′i i = 1, . . . , l
yif(xi) ≤ 1+ǫ

1−ǫ + η′∗i i = 1, . . . , l

η′i, ξ
′∗
i ≥ 0 i = 1, . . . , l.

(103)

Notice that Problem D.2 looks very similar to the SVMC problem 5.4, the only difference being given by the
additional constraint in problem D.2 associate to the variable η′∗. Through an analysis of the KKT conditions
of problem D.2, it is easy to see that if f, ξ solves problem 5.4 with parameter C, under the additional condition
that ǫ ∈ [a, 1), f ′ = f, η′i = ξ, η′∗i = 0 solves problem D.2 with parameter C(1 + ǫ). Then (1 − ǫ)f is the solution
of problem 5.1 with parameter C(1 + ǫ). This result can be applied as well to formulation (65): if f, ξ solves of
problem 5.4 with parameter A and ǫ ∈ [a, 1), then (1− ǫ)f solves problem D.2 with parameter A

1−ǫ . The constant
a under which the relation is true can be related to the radius R of the smallest sphere containing all the data
points and to the norm of the solution to the SVMC problem 5.4. See [74] for further details and a complete
proof of the results reported here.

34



E Proof of the theorem 6.2

Below we always assume that data X are within a sphere of radius R in the feature space defined by the kernel
K of the RKHS. Without loss of generality, we also assume that y is bounded between −1 and 1. Let’s consider
first the case of the L1 loss function. Let B be the upper bound on the loss function (which always exists under
our assumptions). From definition 2.7 we can decompose the rules for separating points as follows:

class 1 if : yi − f(xi) ≥ s+ γ

or f(xi) − yi ≥ s+ γ (104)

class − 1 if : yi − f(xi)) ≤ s− γ

or f(xi)) − yi ≤ s− γ

for some B−γ ≥ s ≥ γ. Using this observation it is clear that for any N points, the number of separations we can
get using rules (105) is not more than the number of separations we can get using the product of two “indicator
functions with margin”:

function (a) : class − 1 if : yi − f1(xi) ≥ s1 + γ

class 1 if : yi − f1(xi)) ≤ s1 − γ (105)

function (b) : class 1 if : f2(xi) − yi ≥ s2 + γ

class − 1 if : f2(xi)) − yi ≤ s2 − γ

where f1 and f2 are in H, B − γ ≥ s1, s2 ≥ γ. For s1 = s2 = s and for f1 = f2 = f we recover (105): for
example, if y − f(x) ≥ s+ γ then indicator function (a) will give −1, indicator function (b) will give also −1, so
their product will give +1 which is what we get if we follow (105). So since we give more freedom to f1, f2, s1, s2
clearly we can get more separations for any set of points than we get using (105).
As discussed in section 2, for any N points the number of separations is bounded by the growth function.
Moreover, for products of indicator functions it is known [94] that the growth function is bounded by the product
of the growth functions of the indicator functions. Furthermore, the indicator functions in (106) are hyperplanes
with margin in the N + 1 dimensional space of vectors {φn(x), y} where the radius of the data is R2 + 1, the
norm of the hyperplane is bounded by A2 + 1, (where in both cases we add 1 because of y), and the margin

is bounded by γ2

A2+1 . The Vγ dimension hγ of these hyperplanes with margin is known [94, 8] to be bounded

by hγ ≤ min((N + 1) + 1, (R2+1)(A2+1)
γ2 ). So the growth function of the separating rules (105) is bounded by

G(l) ≤ ( el
hγ

)hγ ( el
hγ

)hγ whenever l ≥ hγ . If hreg
γ is the Vγ dimension of the L1 loss function, then clearly hreg

γ

cannot be larger than the larger number l for which the inequality:

2l ≤ (
el

hγ
)hγ (

el

hγ
)hγ (106)

holds. From this we get that l ≤ 5hγ , therefore hreg
γ ≤ 5 min (N + 2, (R2+1)(A2+1)

γ2 ) which proves the theorem for
the case of L1 loss functions.
The sketched proof can be extended to the general Lp loss function and to the Vapnik’s ILF [34].

F The noise model of the data term in SVMR

We compute here the probability distributions λǫ(t) and ν(σ) (see equations (78) and (79)) solving equation (77).
From equation (77) computing the integral with respect to β we obtain:

e−|x|ǫ =

∫ +∞

−∞

dtλ(t)G(x − t) (107)

where we have defined:

G(t) =

∫ ∞

0

dβµ(β)
√

βe−βt2 (108)
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Observe that the function G is a density distribution, because both the functions in the r.h.s. of equation (108) are
densities. In order to compute G we observe that for ǫ = 0 the function e−|x|ǫ becomes the Laplace distribution.
In this case we can simply set λǫ=0(t) = δ(t) and obtain G(t) from equation (107):

G(t) = e−|t|. (109)

We can then compute the probability distribution µ by inverting equation (108). This requires to computing the
inverse Laplace transform of e−|t|. We obtain:

µ(β) = β−2e−
1
4β . (110)

It remains to obtain the expression of λ(t) for ǫ > 0. To this purpose we write equation (107) in Fourier space:

F̃ [e−|x|ǫ] = G̃(ω)λ̃ǫ(ω) (111)

with:

F̃ [e−|x|ǫ ] =
sin(ǫω) + w cos(ǫω)

ω(1 + ω2)
. (112)

and:

G̃(ω) =
1

1 + ω2
. (113)

Plugging equations (112) and (113) in equation (111) we obtain:

λ̃ǫ(ω) =
sinǫω

ω
+ cosǫω. (114)

Finally taking the inverse Fourier Transform and normalizing we obtain equation (78). For more details see [73].
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