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1 Addendum on the Gaussian kernel

As covered in a previous lecture, the One-Class SVM Classification aims at novelty/outlier detection in high
dimensional spaces. The strategy there is to find a hyperplane in the feature space s.t. the observed data is
separated away from the origin as far as possible. Here is an intuition:

The most commonly used kernel in practice is the Gaussian kernel, K(x, x′) = e−
1

2
‖x−x′‖. We can think

about the feature map:
Φ(x) : x 7→ K(·, x)

as a map from a point x to a Gaussian bump around x.

Now, let us look more closely at the functions K(·, x) in the feature space. What is the ”length” of a ”vector”
Φ(x) for an arbitrary x?

‖Φ(x)‖2
H = 〈K(·, x),K(·, x)〉H = K(x, x) = 1

by the reproducing property of H.

And, what is the angle between any two vectors Φ(x) and Φ(x′)?

cos(α) = 〈Φ(x),Φ(x′)〉H = 〈K(·, x),K(·, x′)〉H = K(x, x′) ≥ 0

The two facts above show that in the feature space, all the data points lie on the unit sphere within a single
quadrant. This justifies the approach in One-Class SVM, which finds a hyperplane which separates the data
away from the origin ( see Figure 1 ).

2 The Representer Theorem

In the general case, the primal problem P is:

min
f∈H

{C(f, {xi, yi}) + Ω(‖f‖H)}

where {xi, yi}, i = 1, · · · ,m are the training data. If the problem satisfies the following conditions:

1. the loss function C is pointwise; i.e.,

C(f, {xi, yi}) = C({xi, yi, f(xi)})

which only depends on {f(xi)}, the values of f at the data points.

2. Ω(·) is monotonically increasing.
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Figure 1: One-Class SVM

then the Representer Theorem ( Kimeldorf & Wahba, 1971 ) states that every minimizer of P admits a
representation of the form

f(·) =
m
∑

i=1

αiK(·, xi)

I.e., the optimal f∗ is a linear combination of ( a finite set of ) functions given by the data {xi}.

This is a powerful result. It shows that although we search for the optimal solution in an infinite-dimensional
space ( in fact, if we don’t have the regularization term, then we have infinitely many solutions which exactly
go through all the data ), adding the regularization term reduces the problem to finite-dimensional.

One way to prove the result is to use a Fourier basis, but this is complicated, involving calculus of variations.
Here we give a simple, coordinate-free proof:

Without loss of generality, we assume that the second term in P has the form Ω̄(‖f‖2
H). Since this is just a

monotonic transform, and in the original problem we allow for all monotonic functions Ω, we don’t lose any
generality.

Consider the linear subspace HD of H spanned by the functions K(·, xi), i = 1, · · · ,m. Every f in the Hilbert
space H has a unique decomposition, a component in the subspace and a component orthogonal to it:

f(·) = f‖(·) + f⊥(·) =
m
∑

i=1

αiK(·, xi) + f⊥(·)

where f⊥ is perpendicular to the subspace HD, i.e., 〈f⊥,K(·, xi)〉H = 0 for all i = 1, · · · ,m.

Use the reproducing property,

f(xj) = 〈f(·),K(·, xj)〉 =
∑

i

αi 〈K(·, xi),K(·, xj)〉 + 〈f⊥(·),K(·, xj)〉

The second term vanishes, so

f(xj) =
∑

i

αiK(xj , xi)
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I.e., the values of f at the data points only depend on the coefficients {αi} and not the perpendicular
component f⊥.

Why is this fact important? Because the loss function C is pointwise, so the first term only depends on the
values of f at the data points. We can establish equivalence classes for the functions in H s.t. f and f ′ are
equivalent if and only if f(xj) = f ′(xj) for all the data xj .

The first term in P is the same for all the functions within each equivalence class. For the second term,

Ω(‖f‖H) = Ω̄(‖f‖2
H) = Ω̄(‖

∑

i

αiK(·, xi)‖
2
H + ‖f⊥‖

2
H)

Ω is monotonic, so the minimizer of P within each equivalence class, i.e., for αi’s fixed, is the one which
satisfies ‖f⊥‖ = 0.

The global minimizer f∗ of the primal problem P belongs to some equivalence class and it must be the
minimizer within that class. Hence it satisfies ‖f ∗

⊥‖ = 0, i.e., f∗ =
∑

i αiK(·, xi).

3 Another Way to Understand SVM: L1 Regularization

The framework above does not provide us any intuition why, in SVM, some or most of the αi’s are zero.
The regularization in the primal problem of SVM, wT w, is L2-like. As we have seen in the example of linear
regression, L1 regularization tends to make some of the parameters zero, while L2 regularization usually
does not.

One motivation comes from basis-pursuit denoising ( Chen & Donoho ), which studies the following cost:

J(α) =
1

2
‖f(·) −

N
∑

i−1

αiϕi(·)‖
2
L2

+ λ‖α‖L1

The L2 norm in the first term can not be calculated exactly. Instead, we approximate it by averaging over
the data points,

J(α) ≈
1

2N

N
∑

n=1

(

yn −

N
∑

i=1

αiϕi(xn)

)2

+ λ

N
∑

i=1

|αi|

This cost term does not look like SVM yet, but the L1 regularization does force some of the αi’s to be zero.
Girosi pointed out that the following modified cost term does lead to SVM:

JSV M (α) =
1

2
‖f(·) −

N
∑

i=1

αiK(·, xi)‖
2
H + λ‖α‖L1

where in the first term we use the RKHS norm instead of the L2 term. The surprising fact is that with the
RKHS norm the first term can be calculated exactly, using the reproducing property:

JSV M (α) = 1

2
‖f‖2

H −
∑

i αi 〈f(·),K(·, xi)〉 + 1

2

∑

i

∑

j αiαj 〈K(·, xi),K(·, xj)〉 + λ‖α‖L1

= 1

2
‖f‖2

H −
∑

i αif(xi) + 1

2

∑

i

∑

j αiαjK(xi, xj) + λ
∑

i |αi|

The first term, the RKHS norm of f , is independent of the αi’s. If we assume that yi = f(xi), i.e., noise-free,
the optimization problem becomes

min
f







−
∑

i

αiyi +
1

2

∑

i

∑

j

αiαjK(xi, xj) + λ
∑

i

|αi|
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and this is exactly the dual problem of SVM. It has the form of a L2-like term ( in the RKHS ) plus a L1

regularizer. Notice that formally it looks very different from the primal problem.

4 Introduction to Linear Operators

4.1 Linear operators

For a given Hilbert space H, a function T : H → H is called a linear operator if:

1. T (f1 + f2) = Tf1 + Tf2, for any f1, f2 ∈ H;

2. T (αf) = α(Tf), for any f ∈ H and α scalar.

Some examples of linear operators:

1. For a finite-dimensional Hilbert space, a linear operator A : g 7→ f can be represented as an n × n

matrix, where n = dimH. Choose a basis {φi} for H, if under this basis g has a representation
g =

∑

i giφi and similarly f =
∑

i fiφi, then A has a matrix representation (aij), such that g = Af iff
gi =

∑

j aijfj .

2. Integral operators are linear. For example, (Tf)(·) =
∫

K(·, x)f(x)dx, where K is a given kernel.

3. Differential operators are linear. For example, Tf = d
dx

f , Tf =
(

a d2

dx2 + b d
dx

)

f .

4.2 Adjoint operators

Adjoint operators are defined as following: a linear operator T ∗ is adjoint to a linear operator T if <

Tf, g >=< f, T ∗g > for all f, g ∈ H.

Examples of adjoint operators:

1. In Rn, 〈x, y〉 = xT y, so we have 〈Ax, y〉 =
〈

x,AT y
〉

. The adjoint operator of A is the transpose of A.

2. What is the adjoint operator of d
dx

in L2? Since

〈

d

dx
f, g

〉

=
∫

d
dx

f(x)g(x)dx

= f(x)g(x)|+∞
−∞ −

∫

f(x) d
dx

g(x)dx

=
∫

f(x)
[(

− d
dx

)

g(x)
]

d(x)

The first term vanishes because both f and g are in L2 so the limit goes to zero. The adjoint operator
of d

dx
is − d

dx
.


