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Abstract. A proper and efficient representation of molecular surfaces is
an important issue in biophysics from several view points. Molecular sur-
faces indeed are used for different aims, in particular for visualization, as
support tools for biologists, computation, in electrostatics problems in-
volving implicit solvents (e.g. while solving the Poisson-Boltzmann equa-
tion) or for molecular dynamics simulations. This problem has been rec-
ognized in the literature, resulting in a multitude of algorithms that differ
on the basis of the adopted representation and the approach/technology
used. Among several molecular surface definitions, the blobby surface is
particularly appealing from the computational and the graphics point
of view. In the paper we describe an efficient software component able
to produce high-resolution blobby surfaces for very large molecules us-
ing the CUDA architecture. Experimental results shows a speedup of
35.4 considering a molecule of 91,000 atoms and a resulting mesh of 168
million triangles.
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1 Introduction

Molecular surface computation is a key issue from at least two perspectives: from
both the visualization and the biophysical computation view point.

In the first case a user is interested in the overall rendering quality of the
molecular model: classical paradigms triangulate the surface and then visualize
the mesh [6]. Furthermore, the use of present Graphic Processing Units (GPU)
capabilities allows the direct rendering of quadrics patches by ray tracing [7].

From the biophysical stand point a user is interested in a molecular surface
that is able to capture the physical problem at hand and that is computation-
ally efficient. An example of such use case is the Poisson-Boltzmann equation
(PB), where the electrostatic potential of a molecule (solute) in water (solvent)
is sought. In particular in PB it is usually accepted that the Van Der Waals
surface (VDW) should not be directly used: to solve this problem the Solvent
Excluded Surface (SES) (or Connolly surface) was introduced [8] (an algorithm



for calculation was given in [9]) which expands the VDW surface by smothing
its concave parts with spherical patches that represent the rolling of a water
molecule (the probe) over the surface. The Richards model has been largely used
in the solution of PB [11], however it still presents some limits [10]: among them,
the fact that it leads to a non differentiable surface is of particular importance.

This issue calls for alternative surface models that retain a physically sound
definition and overcome SES limitations. Whatever is the final goal, either visu-
alization or biophysical computations, some properties of the molecular surface
are desiderable. Among them the computational efficiency, the differentiability
everywhere and a good performance scalability for large molecular models. To
this aim the Blobby surface [12][13] represents an interesting alternative to the
SES surface.

In this paper we describe an efficient algorithm, based on the isosurface ex-
traction, able to produce high-resolution blobby surfaces for very large molecules
using the CUDA architecture. Our aim was to design the algorithm able to act
as a software component producing an output suitable for both the direct vi-
sualization and the efficient storage of the surface. In fact the possibility of the
direct use of the produced mesh without any preprocessing step is of particular
importance for the performance view points if the surface have to be further
processed in a biophysical worflow.

The following Sections respectively present: related work, the definition of
the Blobby surface, the CUDA accelerated algortihm for the generation of the
Blobby surface and experimental results. At the end some conclusions are drawn.

2 Related Work

Molecular surface computation is a long standing problem. Among the others,
we mention the most used ones: the Connolly surface [9], the Skin surface [14],
and the Blobby surface [12].

From the computational point of view, the recent emerging availability of
relatively inexepensive GPU systems stimulated the research on the usability of
GPU devices to accelerate the molecular surface processing and visualization.

In [7], it is shown how GPU can be used to ray trace the Skin surface [14].
The Skin surface in fact is composed by a set of quadric patches (i.e. spheres
and hyperboloids), each of them bounded by a solid of the mixed complex [14].
This allows to use OpenGL shading language for the real time rendering. In [15]
it is shown how both the SES and the Skin surfaces can be built in parallel on
CPU and effectively rendered on the GPU by ray tracing, obtaining high frame
rates; analogous considerations hold for the Connolly [15].

These works aim exclusively at improving the final rendering phase, while
we are interested in exploiting the GPU computing capabilities also in the gen-
eration of the surface, in a format that is able to suit both the visualization and
further processing steps in a biophysical analysis worflow.

A similar approach is followed in [1], where a parallel workflow for the ex-
traction of SES surfaces is described. It is based on the construction of the



volumetric dataset starting from the atomic coordinates of the atoms that form
the molecule, which is then processed using the isosurface extraction operation
to produce the SES as a mesh of triangles. The main drawback of this work is
that it do not considers the use of GPU devices.

Such aspect is addressed in [2], where an approach similar to the previous
one is implemented for the CUDA architecture and extended to build smooth
molecular surfaces. In particular this work considers also the creation of the
Blobby surfaces but, as the previous ones, disregards the aspect related to the
effective storing of the produced meshes.

3 Blobby Surface Definition

The blobby surface S [12] [13] is defined as:

2
Ix—cill

Si={xeR®:G(x) =1}, G(x) = ieB< #) (1)

where r; are the radii of atoms, n, is the number of atoms, x is the query point,
c(x;) is the i—th atom center and B is a negative parameter (the blobbyness)
that plays the role of the probe radius when compared to the Connolly surface
[9].

Blobby surface has some salient pros and cons from both the computational
and physically soundeness point of view: first the surface is easy to implement
because the central computation is simply an evaluation of a kernel function. The
surface is also tangent continuous and is self-intersections and singularities free.
From the physical model point of view it is not completely clear if this surface
is superior to the SES [9] when solving, for instance, electrostatics problems.
Indeed it can be argued that the right setting of the blobbyness value B is a key
parameter in order to obtain reliable energy estimations of molecular systems.
Another point is that the surface it is not partioned in analytical patches as in
the skin [14] or in the Solvent Excluded Surface [9]. Additionally some values of
B can modify the size of the atoms leading to non physically acceptable surfaces
as observed in [16]. Despite these drawbacks the implicit models are becoming
rather used [17] when dealing with biophysical problems mainly because of the
smoothness nature of the surface and because gaussian functions mimick model
electronic density functions.

This surface not only is continuous and differentiable everywhere but also its
computation can be (apparently) trivially parallelized in at least two ways; first
each scalar field value G(x) can be computed independently from any other
element; secondly every kernel evaluation (the exponential) in the for loop can
be carried in parallel. Due to this explicit parallel nature the surface computation
can be effectively parallelized. In the following it will be discussed how to exploit
this parallelizzability on GPU and experimental results will be shown.



4 CUDA Accelerated Blobby Surface Generation

The high resolution representation of molecules is a key aspect for their satisfac-
tory visualization and also for the effectiveness of analysis operations, but their
modeling is a costly process that may require several minutes. This is the rea-
son why we implemented a parallel algorithm for the generation of the Blobby
surface. In particular we made use of the CUDA architecture, that represents
a cost-effective solution for many compute-intensive applications on regular do-
mains.

Following the CUDA naming convention, we define host the workstation and
device the Nvidia card providing the GPU of which CUDA is the computing
engine. The algorithm we propose is based on two main operations, the Scalar
Field Generation and the Isosurface Extraction, both performed on the device
with a minimal amount of data transfer with the host.

The main input of the system is a PDB file containing the coordinates of the
atoms that form a molecule, while the resulting isosurface is represented by a
triangulated mesh. The output format of the isosurface, that is the coordinates
of the vertices and the triangle/vertex incidence relation, suits both the direct
visualization and the efficient storing for following processing steps, because
these two data structures allow to reconstruct all the incidence relations among
the elements of a triangulated irregular network.

4.1 Scalar Field Generation

The first operation of the algorithm is the generation of the three-dimensional
grid containing the volumetric data representing the molecule. The size of the
grid is determined on the basis of the coordinates of the atomic centers and on
the required sampling step. Typical step values are chosen between 0.7 and 0.1
A, according to the desired level of resolution. Smaller step values correspond to
dense grids and high resolution surfaces, and vice versa. Within the grid, atoms
are modeled as spheres having different radii.

The grid is usually considered as a set of XY planes, called slices. As the
amount of memory of a device is limited, and the isosurface extraction opera-
tion requires to process a pair of slices at a time, we implemented this and the
following operation in an iterative way for increasing values of the Z coordinate.
This means that one slice is created at each iteration (except for the first one,
where the slices for Z=0 and 1 are created) in order to replace the slice having
the lowest Z value. In this way we are able to process very large data sets if the
size of a pair of slices does not exceed the device memory.

The value of a grid point is the result of the influence of all the atoms on
it. For large molecules (e.g. 10° atoms) this translates to considering several
million points. The present CUDA architecture limits the number of threads
(i.e. up to 1024 threads for a block and up to a grid of 65535x65535x1 blocks),
and this means that is not possible to generate a thread for each pair atom-point.
Therefore we have to group this large number of operations on the points or on
the atoms.



We experimented that, even if the partitioning on the number of points allows
a greater scalability and parallelism degree, the achieved performance is lower
than with the alternative strategy due to the large number of non-local memory
access. In fact even if we store the coordinates of the atomic centers and the
radii in the constant memory, each of these values has to be accessed a number
of times equal to the number of threads.

Also the association of one thread for each atom has one drawback, that is
the need to perform the updates of each point with atomic operations, because
in principle the value of a point is the sum of the influence of all the atoms. This
means that each point update has to be performed without race conditions,
resulting in possible overhead due to the update serialization. However, as noted
in [1] and [2], each atom influences in a significative way only the points within
a limited bounding box surrounding it. This consideration has two important
consequences. The first is to reduce the number of operation to be performed,
since it is useless to consider all the atom-point pairs. Moreover, the concurrent
updates are very limited, in the order of hundreds of atoms for each points, and
therefore the impact of the serializations is negligible.

4.2 Isosurface Extraction

The Marching Cubes algorithm [3] is the most popular method used to extract
triangulated isosurfaces from volumetric datasets. In the Marching Cubes algo-
rithm the triangular mesh representing the isosurface is defined piecewise over
the cells in which the grid is partitioned. A cell is intersected by the isosurface
represented by the isovalue if the isovalue is between the minimum and the max-
imum of the values assumed by the eight points of the grid that defines each cell.
This kind of cells is called active cells. An active cell contributes to approximate
the isosurface for a patch made of triangles, and the union of all the patches
represents the isosurface. The algorithm consists of two main operations, the
Cell Classification and the Active Cell Triangulation.

The Cell Classification is the operation that determines if a cell is intersected
by the isosurface or not. This is done using a bit vector of 8 fields of one bit,
each of them corresponding to one point of the cell. Points with values greater
or equal to the isovalue are marked with 1, otherwise with 0: therefore a cell
is an active cell if the bit vector has a value different from 0 (all points values
lower than the isovalue) and 255 (all points values greater than or equal to the
isovalue).

In these cases the Active Cell Triangulation operation is performed, consist-
ing in the approximation of the intersection with the isosurface, using a trian-
gular patch. Considering that a surface may intersect a cell in 254 ways, that
is all the values of the bit vector except 0 and 255, a look-up table is used to
enumerate all the possible connectivity schema. The coordinates of the vertices
of the triangles are computed as a linear interpolation of the values of intersected
edges.

The parallelization of the original algorithm for the CUDA architecture is a
quite straightforward task, because it is achieved by assigning one cell for each



thread, and it is provided as a C code example in the NVIDIA CUDA SDK 3.
Obviously this application is only an example and it has many limitations, as
for instance the small size of the volume that is able to process. Other proposals
were published, with the main aim to speed up the processing of extracting
and visualizing very large isosurfaces (see [4] for a survey). The main issue with
these algorithms is the fact that they are designed for a direct visualization of
the produced isosurfaces, and not for storing them. This means that they do
not consider one major issue of the algorithm, that is the duplications of the
vertices. Each active cell is in fact processed independently, and this means that
a vertex may be recalculated up to four times in adjacent cells (see Figure 1(a)).
The duplicated vertexes are useless and they may have a considerable impact on
the computing time and on the size of the resulting mesh for further processing
operations if these algorithms are used in a workflow. Obviously the vertices can
be merged using a post-processing step, but this limits the achievable speed up.

In [4] we proposed a novel algorithm that is able to produce an isosurface
equivalent to that produced by the sequential algorithm in an efficient way us-
ing the solution proposed in [5], that makes use of five auxiliary array data
structures. The coordinates of a vertex are computed only the first time the cor-
responding edge intersected by the isosurface is considered. These coordinates
are inserted in the Vertex table and the index corresponding to the vertex posi-
tion in the table is stored in the correct position of one of the five auxiliary array
data structures shown in Figure 1(b). As indicated in the Figure, in a generic
cell (i.e., a cell which is not on the border of the volume) nine edges were pre-
viously considered in the processing of adjacent cells, therefore it is possible to
produce at most three new vertices. The values in the auxiliary data structures
are updated during the subsequent processing of all cells. For example, consid-
ering Figure 1(b), the black vertex is computed by the bottom left cell and its
index is inserted in the corresponding position of the Ledge array structure. The
next cell being processed is the bottom right one. This cell uses the stored index
and moves it to the proper position in the Yedge array. When the next pair of
slices is considered, the top left cell uses the index without needing to modify
Yedge. Finally, the top right cell uses the index for the last time.

The CUDA-based version of the algorithm is composed by the following four
kernels: VerticesCalec, where the coordinates of the vertices are computed; Ver-
ticesCompact, where vertices are associated with labels to be used to represent
triangles and they are grouped to reduce transfer time; TrianglesCalc, where the
triangles are computed as three labels of vertices; TrianglesCompact, to group
the resulting triangles. The data transfer operations represent a considerable
part of the time spent in performing the isosurface extraction operation on a
device. Therefore we overlapped the data transfers and the kernel executions.
In particular we overlapped: a) VerticesCalc with the transfer of the triangles
found considering the previous pair of slices; b) TrianglesCalc with the trans-
fer of the vertices; ¢) TrianglesCompact and the transfer of the next slice. This
last overlap does not apply in this case, because the slice are created by the

3 http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
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Fig. 1. The original algorithm computes the black vertex four times, one for each cell.
The use of auxiliary data structures allows to avoid it. Thick lines represent edges not
previously considered.

previous operation directly in the memory of the device. More details on this
CUDA-based version of the algorithm are provided in [4].

5 Experimental Results

Experimental results were collected considering two implementations of the Blobby
surface generation, one sequential and one parallel, for the CUDA architecture?.
The two programs were executed on a workstation equipped with an Intel 15-750
CPU and an Nvidia GTX480 device. In particular the sequential implementation
makes use of one core of the processor to perform the whole computation.

(a) 1GKI (b) 1AON () 3a71

Fig. 2. The Blobby surfaces associated to the three molecules selected for the tests.
We obtained them considering the volume with the resolution of 0.5 A.

4 QOur software is available upon request, and will be made publicly available in case
the paper is accepted.



Molecule Atoms Resolution Grid Triangles
1GKI 19,536 8:? 112322%213;%2131785 Sézgégzgég
HON p8,07 8:? 1536131);437875))§:1263946 11333322?32
il 90,808 8? 1839742(}(2437647)():1294158 16?:;1;812:12@

Table 1. This table summarizes the characteristics of the three considered molecules.

Three molecules of the Protein Data Bank repository, chosen on the basis
of their size, were considered. The smallest one is the Plasmid coupling protein
TrwB, identified as 1GKI and made up by 19,536 atoms, followed by the crystal
structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex, iden-
tified as TAON and made up by 58,674 atoms, and one of the largest structure
in the PDB repository, the co-crystal structure of Bruceantin bound to the large
ribosomal subunit, identified as 3G71 and made up by 90,898 atoms. They are
presented in Figure 2.

The B parameter was set to —2.3 and two steps, 0.5 and 0.1 A were con-
sidered for the Scalar Field Generation operation. They represent, respectively,
a medium and a high detailed resolution. The characteristics of the molecules,
of the resulting volumetric datasets and the Blobby surfaces are shown in Ta-
ble 1, while Table 2 shows the performance of the sequential and the parallel
implementations.

Scalar Field Generation|Isosurface Extraction Total

Seq CUDA| Seq CUDA Seq CUDA

Lakr|08] 278 011 (253)] 1.38[ 007 (19.2)] 416 0.18 (23.1)
0.1| 294.08 7.95 (37.0)| 89.76 2.60 (34.5)| 383.84(10.55 (36.4)
LAox|05|  8B3[ 028 (30.9)[ 6.63] 0.20 (328)] 15.16] 0.48 (31.6)
0.1] 832.14 20.70 (40.2)|472.03| 12.90 (36.6)|1304.17|33.60 (38.8)

a7y |05] 13200 042/(3L4)[ 8.68[ 025 (34.7)| 2L88[ 0.67 (32.7)
0.1/1057.10 30.78 (34.3)|625.71| 16.73 (37.4)|1682.81|47.51 (35.4)

Table 2. This table presents the times, in seconds, for executing the sequential and the
parallel implementations of the Blobby Surface Generation. In brackets the achieved
speedups. It is worth noting that, in the total time for the CUDA version, we do not
considered the initialization time, that is of about 6.5 seconds in all the cases.

We can see that, except in the smallest case, the speedups achieved vary
between 30 and 40. This is an incouraging result considering the issues related
to the implementation of both the Scalar Field Generation and the Isosurface
Extraction in CUDA. As regards the Scalar Field Generation we can see that
the fixed parallelism degree do not allow to scale in proportion to the volume
size, but this limit neither involves a degradation. Each CUDA thread in fact



is responsible to assign the value to a few points for each slides, whose number
varies from 2 to 60, therefore we are able to achieve good performance. This is
also due to the fact that no data movement are required: each slide is created
on the device memory, used for the isosurface extraction and then replaced with
a new one without the need to involve the host memory.

The data movement instead is the factor that limits the performance of the
Isosurface Extraction operation. We have to consider in fact that it requires the
transfer of the triangular mesh representing the Blobby surface: in the largest
case this mesh is composed by about 168 million triangles and 84 million vertices,
resulting in about 9 GB of data to transfer. However the overlaps between data
transfers and kernel executions permit to achieve high performance figures also
in this case.

A final issue, common to all the CUDA programs, is represented by the time
required to initialize the CUDA device, that it is performed in correspondence
of the first call to a CUDA function within a program. In our case this time is
equal to about 6.5 seconds, therefore the use of the CUDA version is unfeasible
for small datasets as the 1GKI with a step of 0.5. It is however to consider that
the Blobby surface generation is an operation that can be inserted in a workflow
where other CUDA-based operation are executed: in these case the impact of
the initialization time on the whole processing time is limited.

6 Conclusions and Future Works

This work presented a CUDA-based efficient algorithm for the Blobby molecular
surface generation. In particular, the algorithm is able to achieve a speedup of
35.4 considering a molecule of 91,000 atoms and a resulting mesh of 168 million
triangles. We experimented that a parallelization on the atoms, even if involves
a lower level of parallelization, is able to provide higher performance figures than
a parallelization on the points of the grid containing the scalar field representing
the molecule due to the lower number of device memory accesses.

Two future works are forecasted. The first one is a further improvement of
the performance of the algorithm, in particular by an in depth analysis of the
role of the B parameter on the performance. The second one is the adoption of
the algorithm in tools for molecular surface construction [11], in order to use the
produced meshes to solve the Poisson-Boltzmann equation and/or visualization
purposes.
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