
An Improved Training Algorithm for Support Vector

Machines

(to appear in the Proc. of IEEE NNSP'97, Amelia Island, FL, 24{26 Sep., 1997)

Edgar Osuna Robert Freund Federico Girosi

C.B.C.L. O.R. Center C.B.C.L.
MIT E25-201 MIT E40-149A MIT E25-201
Cambridge, MA, 02139 Cambridge, MA, 02139 Cambridge, MA, 02139
eosuna@ai.mit.edu rfreund@mit.edu girosi@ai.mit.edu
tel: (617) 252 1723 tel: (617) 253 8997 tel: (617) 253 0548

Abstract

We investigate the problem of training a Support Vector Ma-

chine (SVM) [1, 2, 7] on a very large date base (e.g. 50,000

data points) in the case in which the number of support vec-

tors is also very large (e.g. 40,000). Training a SVM is equiva-

lent to solving a linearly constrained quadratic programming

(QP) problem in a number of variables equal to the num-

ber of data points. This optimization problem is known to

be challenging when the number of data points exceeds few

thousands. In previous work, done by us as well as by other re-

searchers, the strategy used to solve the large scale QP prob-

lem takes advantage of the fact that the expected number of

support vectors is small (< 3; 000). Therefore, the existing al-

gorithms cannot deal with more than a few thousand support

vectors. In this paper we present a decomposition algorithm

that is guaranteed to solve the QP problem and that does not

make assumptions on the expected number of support vec-

tors. In order to present the feasibility of our approach we

consider a foreign exchange rate time series data base with

110,000 data points that generates 100,000 support vectors.

1 Introduction

In this paper we consider the problem of training a Support Vector Machine
(SVM), a pattern classi�cation algorithm recently developed by V. Vapnik
and his team at AT&T Bell Labs. [1, 2, 7]. SVM can be seen as a new
way to train polynomial, neural network, or Radial Basis Functions classi-
�ers, based on the idea of structural risk minimization rather than empirical

risk minimization 1. From the implementation point of view, training a SVM

1The name of SVM is due to the fact that one of the outcomes of the algorithm, in

addition to the parameters for the classi�er, is a set of data points (the \support vectors")
which contain, in a sense, all the \relevant" information about the problem.

is equivalent to solving a linearly constrained Quadratic Programming (QP)
problem in a number of variables equal to the number of data points. This
problem is challenging when the size of the data set becomes larger than a
few thousands, which is often the case in practical applications. A number
of techniques for SVM training have been proposed [7, 4, 5, 6]. However,
many of these strategies take advantage of the following assumptions, or ex-
pectations: 1) The number of support vectors is small, with respect to the
the number of data points; 2) the total number of support vectors does not
exceed a few thousands (e.g. < 3:000). Since the ratio between the num-
ber of support vectors and the total number of data points (averaged over
the probability distribution of the input variables) is an upper bound on the
generalization error, the previous assumptions are violated in the following
cases: 1) the problem is \di�cult", so that the generalization error will be
large and therefore the proportion of support vectors is high, or 2) the data
set is so large (say 300,000) that even if the problem can have small gener-
alization error (say 1%) the number of support vectors will be large (in this
case around 3,000).
The algorithm that we present in this paper does not make the above men-
tioned assumptions. It should be noticed, however, that in the case in which
the assumptions above are satis�ed the algorithm does take advantage of
them. The algorithm is similar in spirit to the algorithm that we proposed in
[4] (that was limited to deal with few thousands support vectors): it is a de-
composition algorithm, in which the original QP problem is replaced by a se-
quence of smaller problems that is proved to converge to the global optimum.
Although the experiments we report in this paper concern a classi�cation
problem, the current algorithm can also be used, with minimalmodi�cations,
to train the new version of the SVM, that can deal with regression as well as
classi�cation.
The plan of the paper is as follows: in the next section we brie
y sketch the
ideas underlying SVM. Then in section 3 we present our new algorithm, in
section 4 we show some results of our implementation on a �nancial data
set with 110,000 data-points with as many as 100,000 support vectors and in
section 5 we summarize the paper.

2 Support Vector Machines

In this section we brie
y sketch the SVM algorithm and its motivation. A
more detailed description of SVM can be found in [7] (chapter 5) and [2].
We start from the simple case of two linearly separable classes. We assume
that we have a data set D = f(xi; yi)g`i=1 of labeled examples, where yi 2
f�1; 1g, and we wish to select, among the in�nite number of linear classi�ers

that separate the data, one that minimizes the generalization error, or at
least an upper bound on it (this is the idea underlying the structural risk
minimization principle [7]). V. Vapnik showed [7] that the hyperplane with
this property is the one that leaves the maximum margin between the two
classes [1], where the margin is de�ned as the sum of the distances of the
hyperplane from the closest point of the two classes.
If the two classes are non-separable the SVM looks for the hyperplane that
maximizes the margin and that, at the same time, minimizes a quantity
proportional to the number of misclassi�cation errors. The trade o� between
margin and misclassi�cation error is controlled by a positive constant C that
has to be chosen beforehand. In this case it can be shown that the solution
to this problem is a linear classi�er f(x) = sign(

P`

i=1 �iyix
Txi + b) whose

coe�cients �i are the solution of a QP problem, de�ned over the hypercube
[0; C]`, whose precise statement will be given in section 3 (see eq. 1). Since the
quadratic form is minimized in the hypercube [0; C]`, the solution will have a
number of coe�cients �i exactly equal to zero. Since there is a coe�cient �i
associated to each data point, only the data points corresponding to non-zero
�i (the \support vectors") will in
uence the solution. Intuitively, the support
vectors are the data points that lie at the border between the two classes. It
is then clear that a small number of support vectors indicates that the two
classes can be well separated.
This technique can be extended to allow for non-linear decision surfaces. This
is done by projecting the original set of variables x in a higher dimensional
feature space: x 2 Rd) z(x) � (�1(x); : : : ; �n(x)) 2 Rn (where n is possibly
in�nite) and by formulating the linear classi�cation problem in the feature
space. Vapnik proves that there are certain choices of features �i for which
the solution has the following form:

f(x) = sign

 X̀
i=1

�iyiK(x;xi) + b

!

where K(x;y) is a symmetric positive de�nite kernel function that depends
on the choice of the features and represent the scalar product in the feature
space. In table (1) we list some choices of the kernel function proposed by
Vapnik: notice how they lead to well known classi�ers, whose decision surfaces
are known to have good approximation properties.

3 Training a Support Vector Machine

In this section we present a decomposition algorithm that, without making
assumptions on the expected number of support vectors, allows us to train a

Kernel Function Type of Classi�er
K(x;xi) = exp(�kx� xik

2) Gaussian RBF
K(x;xi) = (xTxi + 1)d Polynomial of degree d
K(x;xi) = tanh(xTxi � �) Multi Layer Perceptron

Table 1: Some possible kernel functions and the type of decision surface they
de�ne.

SVM on a large data set by solving a sequence of smaller QP problems. The
two key issues to be considered are:

1. Optimality Conditions: These conditions allow us to decide com-
putationally whether the problem has been solved optimally at a par-
ticular iteration of the original problem. Section 3.1 states and proves
optimality conditions for the QP given by (1).

2. Strategy for Improvement: If a particular solution is not optimal,
this strategy de�nes a way to improve the cost function and is frequently
associated with variables that violate optimality conditions. This strat-
egy will be stated in section 3.2.

Using the results of sections 3.1 and 3.2 we will then formulate our decompo-
sition algorithm in section 3.3.

3.1 Optimality Conditions

The QP problem that we have to solve in order to train a SVM is the following
[1, 2, 7]:

Minimize W (�) = ��T1+ 1

2
�TD�

�
subject to

�Ty = 0 (�)
� �C1 � 0 (�)
�� � 0 (�)

(1)

where (1)i = 1, Dij = yiyjK(xi;xj), �, �
T = (�1; : : : ; �`) and �T =

(�1; : : : ; �`) are the associated Kuhn-Tucker multipliers. The choice of the
kernel K is left to the user, and it depends on the decision surfaces one ex-
pects to work best. Since D is a positive semi-de�nite matrix (the kernel
function K is positive de�nite), and the constraints in (1) are linear, the
Kuhn-Tucker, (KT) conditions are necessary and su�cient for optimality.
The KT conditions are as follows:

rW (�) +���+ �y = 0

�T (� � C1) = 0
�T� = 0

� � 0

� � 0

�Ty = 0
� �C1 � 0

�� � 0

(2)

In order to derive further algebraic expressions from the optimality conditions
(2), we assume the existence of some �i such that 0 < �i < C, and consider
the three possible values that each component of � can have:

1. Case: 0 < �i < C

From the �rst three equations of the KT conditions we have:

(D�)i � 1 + �yi = 0 (3)

Using the results in [2] and [7] one can show that this implies that � = b.

2. Case: �i = C

From the �rst three equations of the KT conditions we have:

(D�)i � 1 + �i + �yi = 0 (4)

It is useful to de�ne the following quantity:

g(xi) =
X̀
j=1

�jyjK(xi;xj) + b (5)

Using the fact that � = b and requiring the KT multiplier �i to be
positive one can show that the following conditions should hold:

yig(xi) � 1 (6)

3. Case: �i = 0
From the �rst three equations of the KT conditions we have:

(D�)i � 1� �i + �yi = 0 (7)

By applying a similar algebraic manipulation as the one described for
case 2, we obtain

yig(xi) � 1 (8)

3.2 Strategy for Improvement

The optimality conditions derived in the previous section are essential in order
to devise a decomposition strategy that guarantees that at every iteration the
objective function is improved. In order to accomplish this goal we partition
the index set in two sets B and N , where the set B is called the working set.
Then we decompose � in two vectors �B and �N , keeping �xed �N and
allowing changes only in �B , thus de�ning the following subproblem:

Minimize W (�B) = ��T
B1+

1

2

�
�T
BDBB�B +�T

BDBN�N+
+�T

NDNB�B + �T
NDNN�N

�
� �T

N1

�B
subject to

�T
ByB +�T

NyN = 0
�B � C1 � 0

��B � 0

(9)
where (1)i = 1, D�� is such that Dij = yiyjK(xi;xj), with i 2 �; j 2 �, and
C is a positive constant. Using this decomposition we notice that:

� The terms ��T
N1+

1

2
�T
NDNN�N are constant within the de�ned sub-

problem.

� Since K(x;y) is a symmetric kernel, the computation of �T
BDBN�N +

�T
NDNB�B can be replaced by 2�T

BqBN , where:

(qBN)i = yi
X
j2N

�jyjK(xi;xj) i 2 B (10)

This is a very important simpli�cation, since it allows us to keep the
size of the subproblem independent of the number of �xed variables
�N , which translates into keeping it also independent of the number of
support vectors.

� We can replace any �i, i 2 B, with any �j , j 2 N (i.e. there is no
restriction on their value), without changing the cost function or the
feasibility of both the subproblem and the original problem.

� If the subproblem is optimal before such a replacement, the new sub-
problem is optimal if and only if �j satis�es the Optimality Conditions
for the appropriate case (3 cases described above).

The previous statements lead to the following more formal propositions:

Proposition 3.1 (\Build down"): moving a variable from B to N leaves

the cost function unchanged, and the solution is feasible in the subproblem.

Proof: Let B0 = B n fkg and N 0 = N [fkg. Then:

W (�B ;�N) = �

X
i2B

�i �
X
i2N

�i +
1

2

"X
i;j2B

�i�jDij + 2

X
i2B

�i

X
j2N

�jDij+

+

X
i;j2N

�i�jDij

#

= �

X
i2B0

�i � �k �
X
i2N

�i +
1

2

" X
i;j2B0

�i�jDij + 2�k

X
i2B0

�iDik+

+2�k

X
j2N

�jDjk + 2

X
i2B0

�i

X
j2N

�jDij + �
2

kDkk +

X
i;j2N

�i�jDij

#

= �

X
i2B0

�i �
X
i2N 0

�i +
1

2

" X
i;j2B0

�i�jDij + 2

X
i2B0

�i

X
j2N 0

�jDij+

+

X
i;j2N 0

�i�jDij

#

= W (�B0 ;�N 0)

The solution (�B0 ;�N 0) is feasible in the subproblem since:

0 = �T
ByB +�T

NyN

= �T
B0yB0 + �kyk + �T

NyN

= �T
B0yB0 + �T

N 0yN 0

and the bound constraints are always una�ected.

Proposition 3.2 (\Build up"): moving a variable that violates the optimal-

ity conditions from N to B gives a strict improvement in the cost function

when the subproblem is re-optimized.

Proof: This is a direct consequence of Proposition 3.1 and the fact that
Kuhn-Tucker conditions are necessary and su�cient for optimality.

3.3 The Decomposition Algorithm

Using the results of the previous sections we are now ready to formulate our
decomposition algorithm:

1. Arbitrarily choose jBj points from the data set.

2. Solve the subproblem de�ned by the variables in B.

3. While there exists some j 2 N , such that:

� �j = 0 and g(xj)yj < 1

� �j = C and g(xj)yj > 1

� 0 < �j < C and g(xj)yj 6= 1,

replace any �i, i 2 B, with �j and solve the new subproblem given by:

Minimize W (�B) = ��T
B1+

1

2
�T
BDBB�B +�T

BqBN
�B

subject to
�T
ByB + �T

NyN = 0
�B � C1 � 0

��B � 0

(11)

where:

(qBN)i = yi
X
j2N

�jyjK(xi;xj) i 2 B (12)

Notice that we have omitted the constant term ��T
N1 + 1

2
�T
NDNN�N in

the cost function, and that according to Proposition 3.2, this algorithm will
strictly improve the objective function at each iteration and therefore will not
cycle. Since the objective function is bounded (W (�) is convex quadratic and
the feasible region is bounded), the algorithm must converge to the global
optimal solution in a �nite number of iterations.

4 Implementation and Results

We have implemented the decomposition algorithm using MINOS 5.4 [3] as
the solver of the sub-problems. We tested our technique on a problem known
for being \di�cult": a foreign exchange rate time series that was used in the
1992 Santa Fe Institute Time Series Competition, in which we looked at the

sign of the change of the time series, rather than its value. We considered
data sets of increasing sizes, up to 110,000 points, obtaining up to 100,000
support vectors. Figure 4 shows the relationship between training times,
number of data points and number of support vectors in our experiments.
The training time on a SUN Sparc 20 with 128 Mb of RAM ranged from
3 hours for 10,000 support vectors to 48 hours for 40,000 support vectors.
The results that we obtain are comparable to the results reported in [8] using
a Neural Networks approach, where generalization errors around 53% were
reported. The purpose of this experiment was not to benchmark SVM's on
this speci�c problem, but to show that its use in a problem with as many as
100,000 support vectors is computationally tractable.

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

Number of Samples

N
um

be
r

of
 S

up
po

rt
 V

ec
to

rs

0 1 2 3 4 5 6 7 8 9 10 11

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Number of Samples

T
im

e
(h

ou
rs

)

Figure 1: (a)Number of support vectors Vs. number of data points. (b)
Training time Vs. number of data points.

5 Summary and Conclusions

In this paper we have presented a novel decomposition algorithm that can
be used to train Support Vector Machines on large data sets that contain
a large number of support vectors. The current version of the algorithm
has been tested with a data set of 110,000 data points and 100,000 support
vectors on a machine with 40 Mb of RAM. No attempts to optimize and
speed up the algorithm have been made yet. We believe that this algorithm
starts to meet the increasing need to deal with data sets where both the
number of data points and the number of support vectors are of the order of
105. Problems with these characteristics are likely to be found in the area of

�nancial markets, where lots of data maybe available but little generalization
error is expected.

Acknowledgements

The authors would like to thank Sayan Mukherjee for his help in collecting
and preprocessing the data.

References

[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for op-
timal margin classi�er. In Proc. 5th ACM Workshop on Computational

Learning Theory, pages 144{152, Pittsburgh, PA, July 1992.

[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:1{25, 1995.

[3] B. Murtagh and M. Saunders. Large-scale linearly constrained optimiza-
tion. Mathematical Programming, 14:41{72, 1978.

[4] E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training
and applications. A.I. Memo 1602, MIT A. I. Lab., 1997.

[5] M. Schmidt. Identifying speakers with support vectors networks. In Pro-

ceedings of Interface '96, Sydney, July 1996.

[6] B. Sch�olkopf, C. Burges, and V. Vapnik. Extracting support data for
a given task. In U.M. Fayyad and R. Uthurusamy, editors, Proceedings
of the First International Conference on Knowledge Discovery and Data

Mining, Menlo Park, CA, 1995. AAAI Press.

[7] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[8] X. Zhang. Non-linear predictive models for intra-day foreign exchange
trading. Technical report, PHZ Partners, August 1993.

