
Comparing Convolution Kernels and RNNs
on a wide-coverage computational analysis

of natural language

Fabrizio Costa, Paolo Frasconi, Sauro Menchetti
Dept. Systems and Computer Science

Università di Firenze

Massimiliano Pontil
Dept. Information Engineering

Università di Siena

Related papers available from
http://www.dsi.unifi.it/~paolo
 http://www.dsi.unifi.it/~costa

Overview

• Incremental parsing of natural language
– A ranking problem on labeled forests

• Supervised learning of discrete structures
– Recursive neural networks (RNNs)
– Kernel-based approaches

• New results with RNNs

• Experimental comparison

Human vs computer parsing

• Computer parsing: typically bottom up
– `islands’ are built at the beginning that are subsequently

joined together

• Human parsing: known to be left-to-right
– E.g., perception of speech is sequential, reading is sequential,

etc.

Strong incrementality hypothesis

• The human parser maintains a connected structure
that explains the first n-1 words

• When n-th word arrives it is attached to the existing
structure

The servant of the actress

NP

NP

PPD N

P

D N

WH

who

Left context

New word
Connection
path (CP)

NP

NP

PPD N

P

D N

The servant of the actress who

S

WH

Attachment ambiguity

WH

S

E.g. low vs. high attachment

Connection path ambiguity

VD

NP

N
realizedThe athlete

VP

S

NP

his
PRP

VP

S

NP

his
PRP

VP

S’

t

Even for a fixed attachment point there
may be several alternative legal paths
(those matching the POS tag of the
new word)

A forest of alternatives

• Given a dynamic grammar, a left context and a next
word

• Many legal trees can be formed attacching a CP

• One is correct — we want to predict it

Supervised Learning of Discrete Structures

• Lack of methods that handle “directly” recursive or
relational structures such as trees and graphs

• General approach:
1. Convert structures to real vectors
2. Apply known learning methods on vectors

• These steps can be elegantly merged within a more
general theoretical framework:
1. Recursive neural networks (Göller & Küchler IJCNN 96,

Frasconi etal TNN 98)
2. Kernel machines (Haussler 99, Collins & Duffy NIPS 01, ACL

02)

Differences

• Kernel-based methods map a tree into a vector f(x) in a
very high-dimensional space, perhaps infinite

• Bag-of-something kind of representation

• Kernel choice difficult (prior knowledge?)

• RNN map a tree into a low dimensional vector
e.g. f(x) Œ¬30

• Distributed representation

• Task-driven: f(x) in this case depend on the specific
learning problem

Kernels

• Given sets of nonterminals {A,B,…} and terminals
{a,b,…} there are infinite possible subtrees:

A

B C

A

B A

a

A

B C

A Ba

• fi(t): count occurrences of subtree i in tree t

• f(t)=[f1(t), f2(t), f3(t),…] has infinite dimensionality but

• f(t)T f(s) can be computed without actually enumerating
all subtrees by dynamic programming (Collins & Duffy
NIPS 2001)

Recursive neural networks

• Recurrent networks can in principle realize arbitrarily
complex dynamical systems

• Skepticism: Long-term dependencies cannot be easily
learned

• But trees are different!
– Path lengths are O(log n)
– Vanishing gradient problems not as serious for RNNs on trees

A

B C

DEFGH

(A(B(DEFGH)C))

Recursive Neural Networks

D

B C

A D

• Let’s introduce a representation
vector

X(v)Œ¬n

for each vertex v in tree t

• X(v) computed bottom-up

Recursive Neural Networks

X0

D

B C

A D

• Base step:

The representation of
external nodes (“nil children”)
is a constant

X(v) = X0

X0

X0X0X0X0

Recursive Neural Networks

X(v)

D

B C

A D

• Induction:
the representation of the subtree
rooted at v is a function of

1. The representations at the
children of v

2. the symbol U(v)

• X(v) = f(X(w1),…,X(wk),U(v))

• w1,…,wk are v’s children
(k assigned)

X(v)X(v)

Recursive Neural Networks

...

X(v)

D

B C

A D

• What is more precisely f ?
X(v) = f(X(w1),…,X(wk),U(v))

• f is realized by an MLP:

• n outputs, nk+m inputs

X(w1)
n

X(wk)
n

U(v)
m

Recursive Neural Networks

...

X(r)

D

B C

A D

• The computation continues
bottom-up until the root r is
reached

• X(r) encodes the whole tree in a
real vector — same role as f(t)

X(w1) X(wk)U(r)

NP

PRP

S

It has no bearing on

VBZ DT NN IN

NP PP

NP

VP

Structure unfolding

NP

S

It has no bearing on

NP PP

NP

VP

Structure unfolding

S

It has no bearing on

NP

VP

Structure unfolding

S

It has no bearing on

VP

Structure unfolding

S

It has no bearing on

Structure unfolding

It has no bearing on

Structure unfolding

It has no bearing on

Structure unfolding

Output
network

It has no bearing on

Prediction phase
Information Flow

It has no bearing on

Prediction phase
Information Flow

It has no bearing on

Prediction phase
Information Flow

It has no bearing on

Prediction phase
Information Flow

It has no bearing on

Prediction phase
Information Flow

It has no bearing on

Error Correction:
Information Flow

It has no bearing on

Error Correction:
Information Flow

It has no bearing on

Error Correction:
Information Flow

It has no bearing on

Error Correction:
Information Flow

It has no bearing on

Error Correction:
Information Flow

Disambiguation is a preference task

Learning preferences

• Ranking: given an list of entities (x1,…,xr) find a corresponding
list of integers (y1,…,yr), with yi in [1,r] such that yi is the rank of
xi

• In total ranking: yi≠yj

• In our case the favorite element x1 gets y1=1 and other xj get
yj=0
– typically r=120 (but goes up to 2000)

• Linear utility function:
wTx1 – wTxj > 0 for j=2,…,r

• Set of constraints — similar to binary classification but we have
differences between vectors

• Can be used with SVM and Voting Perceptron:
 wT[f(x1) – f(xj)]=Ssv y[f(x1) – f(xj)]T[f(x1) – f(xj)]

Learning preferences

• To get a differentiable version we use the softmax function

†

yj = ewT x j

ewT xk

k
Â

• Find w and xj by maximizing

†

zj log yj + (1- zj)log(1- yj)
j

Â
i

Â

• Where z1=1 and zj=0 for j>1

• Gradients wrt xj are passed to the RNN so in this sense xj is an
adaptive encoding

Experimental setup

• Training on WSJ section of Penn treebank
– realistic corpus representative of natural language
– large size (40.000 sentence, 1 million words)
– uniform language (articles on economic subject)
– Train on sections 2-21, test on section 23

• Note: we are not (yet) into building a parser

• Extending earlier results (Costa et al 2000, Sturt et
al, Cognition, in press)

Results

40

50

60

70

80

90

100

1 2 3 4

RNN RNN500 LC MA

P
er

c.
 C

or
re

ct
ly

 p
re

di
ct

ed

Selecting the right attachment

70

75

80

85

90

95

100

1 2 3
Position

P
er

c
C

o
rr

ec
t

RNN Freq

• Given attachment-site, correct connection-
path is chosen 89% of the time

Reduced incremental trees
Example tree

S

NP VP

V

NP

D N PP

P

D N PP

P Na friend

of Jim saw
the thief

with

NP

Left context

Connection path

Reduced incremental trees
Right frontier

S

NP VP

V

NP

D N PP

P

D N PP

P Na friend

of Jim saw
the thief

with

NP

Reduced incremental trees
Right frontier + c-commanding nodes

S

NP VP

V

NP

D N PP

P

D N PP

P Na friend

of Jim saw
the thief

with

NP

Reduced incremental trees
Right frontier + c-commanding nodes + connection path

S

NP VP

V

NP

D N PP

P

D N PP

P Na friend

of Jim saw
the thief

with

NP

Reduced incremental trees

S

NP VP

V

NP

D N PP

P

NP

Results

80

85

90

95

100

Full tree Reduced tree

P
er

c.
 C

or
re

ct
ly

 p
re

di
ct

ed

Data set partitioning (POS-tag based)

50
55
60
65
70
75
80
85
90
95

100

ver
b

noun

art
ic

le

adje
ct

iv
e

punct
uatio

n

co
nju

nct
io

n
oth

er

pre
posi

tio
n

adver
b

Classes

P
er

ce
n

ta
g

e
C

o
rr

ec
t

0
5
10
15
20
25
30
35
40
45
50

E
rr

o
r

re
d

u
ct

io
n

Comparing RNN and VP

• Regularization parameter l=0.5 (best value based on
preliminary trials using validation set)

• Modularization in 10 POS-tag categories

• Performance assessment at 100, 500, 2000, 10000, and
40000 training sentences

• Small datasets: CPU(VP) ~ k CPU(RNN)

• Larger datasets:
– RNN learns in 1-2 epochs (~ 3 days 2GHz)
– VP took over 2 months to complete 1 epoch

VP vs. RNN
NOUNS – 33%

87.0

88.0

89.0

90.0

91.0

92.0

93.0

94.0

95.0

96.0

97.0

100 1000 10000 100000

Training set size

RNN

VP

VERBS – 13%

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100 1000 10000 100000

Training set size

RNN

VP

PREPOSITIONS – 13%

50.0

52.0

54.0

56.0

58.0

60.0

62.0

64.0

66.0

68.0

70.0

100 1000 10000 100000

Training set size

RNN

VP

ARTICLES – 12%

70.0

75.0

80.0

85.0

90.0

95.0

100 1000 10000 100000

Training set size

RNN

VP

PUNCTUATION 12%

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

100 1000 10000 100000

Training set size

RNN

VP

ADJECTIVES 8%

75.0

77.0

79.0

81.0

83.0

85.0

87.0

89.0

100 1000 10000 100000

Training set size

RNN

VP

VP vs. RNN
Modularization

Learning curve

70.0

72.0

74.0

76.0

78.0

80.0

82.0

84.0

86.0

88.0

90.0

100 1000 10000 100000

Training set size

RNN

VP

5 independent splits
No modularization

72

73

74

75

76

77

78

79

Split 1 Split 2 Split 3 Split 4 Split 5

RNN – Average 77%

VP – Average 75.4%

Summary

• VP results perhaps to be strengthened but
– 5 x 100 sentences takes ~ a week on a 2GHz CPU
– VP does not scale up linearly with # examples

• However it appears that
– RNN to be preferred, unless one has good knowledge to put into

the design of the right kernel

• Ongoing work: Collins’ relabeling task
– Same problem setting (ranking on forests)
– Less computation involved (1 forest for each sentence vs. 1

forest for each word)

Thanks:

Patrick Sturt
University of Glasgow

Vincenzo Lombardo
 Università di Torino

Giovanni Soda
 Università di Firenze

