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Overview

• Incremental parsing of natural language
– A ranking problem on labeled forests

• Supervised learning of discrete structures
– Recursive neural networks (RNNs)
– Kernel-based approaches

• New results with RNNs

• Experimental comparison



Human vs computer parsing

• Computer parsing: typically bottom up
– `islands’ are built at the beginning that are subsequently

joined together

• Human parsing: known to be left-to-right
– E.g., perception of speech is sequential, reading is sequential,

etc.



Strong incrementality hypothesis

• The human parser maintains a connected structure
that explains the first n-1 words

• When n-th word arrives it is attached to the existing
structure
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Connection path ambiguity
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Even for a fixed attachment point there
may be several alternative legal paths
(those matching the POS tag of the
new word)



A forest of alternatives

• Given a dynamic grammar, a left context and a next
word

• Many legal trees can be formed attacching a CP

• One is correct — we want to predict it



Supervised Learning of Discrete Structures

• Lack of methods that handle “directly” recursive or
relational structures such as trees and graphs

• General approach:
1. Convert structures to real vectors
2. Apply known learning methods on vectors

• These steps can be elegantly merged within a more
general theoretical framework:
1. Recursive neural networks (Göller & Küchler IJCNN  96,

Frasconi etal TNN 98)
2. Kernel machines (Haussler 99, Collins & Duffy NIPS 01, ACL

02)



Differences

• Kernel-based methods map a tree into a vector f(x) in a
very high-dimensional space, perhaps infinite

• Bag-of-something kind of representation

• Kernel choice difficult (prior knowledge?)

• RNN map a tree into a low dimensional vector
e.g. f(x) Œ¬30

• Distributed representation

• Task-driven: f(x) in this case depend on the specific
learning problem



Kernels

• Given sets of nonterminals {A,B,…} and terminals
{a,b,…} there are infinite possible subtrees:
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• fi(t): count occurrences of subtree i in tree t

• f(t)=[f1(t), f2(t), f3(t),…] has infinite dimensionality but

• f(t)T f(s) can be computed without actually enumerating
all subtrees by dynamic programming (Collins & Duffy
NIPS 2001)



Recursive neural networks

• Recurrent networks can in principle realize arbitrarily
complex dynamical systems

• Skepticism: Long-term dependencies cannot be easily
learned

• But trees are different!
– Path lengths are O(log n)
– Vanishing gradient problems not as serious for RNNs on trees
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Recursive Neural Networks
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• Let’s introduce a representation
vector

X(v)Œ¬n

for each vertex v in tree t

• X(v) computed bottom-up



Recursive Neural Networks
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• Base step:

The representation of
external nodes (“nil children”)
is a constant

X(v) = X0

X0
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Recursive Neural Networks

X(v)

D

B C

A D

• Induction:
the representation of the subtree
rooted at v is a function of

1. The representations at the
children of v

2. the symbol U(v)

• X(v) = f(X(w1),…,X(wk),U(v))

• w1,…,wk are v’s children
(k assigned)

X(v)X(v)



Recursive Neural Networks

...

X(v)
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• What is more precisely f ?
X(v) = f(X(w1),…,X(wk),U(v))

• f is realized by an MLP:

• n outputs, nk+m inputs

X(w1)
n

X(wk)
n

U(v)
m  



Recursive Neural Networks

...
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• The computation continues
bottom-up until the root r is
reached

• X(r) encodes the whole tree in a
real vector — same role as f(t)

X(w1) X(wk)U(r)
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Disambiguation is a preference task



Learning preferences

• Ranking: given an list of entities (x1,…,xr) find a corresponding
list of integers (y1,…,yr), with yi in [1,r] such that yi is the rank of
xi

• In total ranking: yi≠yj

• In our case the favorite element x1 gets y1=1 and other xj get
yj=0
– typically r=120 (but goes up to 2000)

• Linear utility function: 
wTx1 – wTxj > 0     for j=2,…,r

• Set of constraints — similar to binary classification but we have
differences between vectors

• Can be used with SVM and Voting Perceptron:
 wT[f(x1) – f(xj)]=Ssv y[f(x1) – f(xj)]T[f(x1) – f(xj)]



Learning preferences

• To get a differentiable version we use the softmax  function

† 

yj = ewT x j

ewT xk

k
Â

• Find w and xj by maximizing

† 

zj log yj + (1- zj )log(1- yj )
j

Â
i

Â

• Where z1=1 and zj=0 for j>1

• Gradients wrt xj are passed to the RNN so in this sense xj is an
adaptive encoding



Experimental setup

• Training on WSJ section of Penn treebank 
– realistic corpus representative of natural language
– large size  (40.000 sentence, 1 million words)
– uniform language (articles on economic subject)
– Train on sections 2-21, test on section 23

• Note: we are not (yet) into building a parser

• Extending earlier results (Costa et al 2000, Sturt et
al, Cognition, in press)



Results
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Selecting the right attachment
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• Given attachment-site, correct connection-
path is chosen 89% of the time



Reduced incremental trees
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Reduced incremental trees
Right frontier
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Reduced incremental trees
Right frontier + c-commanding nodes
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Reduced incremental trees
Right frontier + c-commanding nodes + connection path
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Reduced incremental trees
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Data set partitioning (POS-tag based)
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Comparing RNN and VP

• Regularization parameter l=0.5 (best value based on
preliminary trials using validation set)

• Modularization in 10 POS-tag categories

• Performance assessment at 100, 500, 2000, 10000, and
40000 training sentences

• Small datasets: CPU(VP) ~ k CPU(RNN)

• Larger datasets:
– RNN learns in 1-2 epochs (~ 3 days 2GHz)
– VP took over 2 months to complete 1 epoch



VP vs. RNN
NOUNS – 33%
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VP vs. RNN
Modularization

Learning curve
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5 independent splits
No modularization
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Summary

• VP results perhaps to be strengthened but
– 5 x 100 sentences takes ~ a week on a 2GHz CPU
– VP does not scale up linearly with # examples

• However it appears that
– RNN to be preferred, unless one has good knowledge to put into

the design of the right kernel

• Ongoing work: Collins’ relabeling task
– Same problem setting (ranking on forests)
– Less computation involved (1 forest for each sentence vs. 1

forest for each word)
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