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Abstract

In this paper, we give a novel theoretical analysis which explains why
a setwise loss function exhibits a better performance of a pairwise loss
function based on an utility function. We introduce a model of preference
and ranking problems based on the concept of partial order relation and
we provide three different approaches for carrying out this model. For
understanding what is the approach with smaller generalization error, we
evaluate the Bayes risk of realizing the preference and ranking model by
each one of the three approaches. We will understand that the direct ap-
proach exhibits better performance than the utility function approach and
than a model based on a function that works directly on pairs. Finally,
we show how the ranking and preference generalization error depends on
the size of set of alternatives.
Keywords: Bayes Function, Bayes Risk, Preference and Ranking Learn-
ing, Partial Order Model, Utility Function, Dependency on Alternative
Set Size.

1 Introduction

Work on learning theory has mostly concentrated on classification and regres-
sion. However, there are many applications in which it is desirable to choose
the best element in a set of alternatives (preference problem) or to order a col-
lection of objects (ranking problem). There are many works in literature that
try to propose a solution for these problems. Herbrich et al. (2000) investigates
the problem of ordinal regression and uses a large margin algorithm based on
a mapping from objects to scalar utility values for classifying pairs of objects.
Herbirch et al. (1998) deals with the task of learning a preference relation from a
given set of ranked documents. The problem is reformulated as a classification
problem on pairs of documents, where each document is mapped to a scalar
utility value. Crammer and Singer (2002b) discusses the problem of ranking
instances. They describe an efficient online algorithm similar to perceptron al-
gorithm that projects the instances into sub—intervals of the reals: each interval



is associated with a distinct rank. Also Cohen et al. (1999) considers the prob-
lem of ranking instances. It describes a two—stages approach: before a binary
preference function indicating if a instance is better than another is learned, and
then new instances are ordered with the purpose of maximizing the agreement
with the learned preference function. In Crammer and Singer (2002a) and Elis-
seeff and Weston (2002) is described the problem of multi-labelled documents.
Both Crammer and Singer (2002a) and Elisseeff and Weston (2002) maintains
a set of prototypes associated with topics. Elisseeff and Weston (2002) reduce
the multi-label problem into multiple binary problems by comparing all pairs
of labels. Crammer and Singer (2002a) suggests an online algorithm similar to
perceptron algorithm that updates the prototypes only if the predicted ranking
is not perfect. In Joachims (2002b) is described a method to rerank the results
of a search engine, adapting them to a particular group of users: it uses a SVM
classifier on pairs of examples.

Menchetti et al. (2003, 2005) show an experimental analysis comparing re-
cursive neural networks and voted perceptron for solving preference problems.
Results indicate that both RNNs and the kernel VP are effective to solve the
proposed problems. The experiments also indicate that the choice of a pairwise
or global loss function plays an import role. In particular, it appears that the
pairwise loss is not well suited to train an RNN and it remains to be investi-
gated if this is also the case for kernel methods. Interesting, previous works with
kernels Herbrich et al. (2000); Joachims (2002a); Collins and Duffy (2001) focus
exclusively on pairwise loss functions. The development of global loss function
for preference tasks may lead to more effective solutions. So it is interesting
to theoretically investigate why a pairwise loss function behaves worse than a
global loss function based on all the elements of the set of alternatives.

The remainder of the paper is organized as follows. In Section 2 we introduce
some useful results on the Bayes function for regression and binary and multi-
class classification problems. In Section 3 we derive a new model of preference
and ranking problems based on the idea that a binary partial order relation can
model the constraints of preference and ranking problems. We describe three
possible approaches for the partial order model based on a 0-1 loss function.
Section 4 we compare the three approaches described in Section 3, showing
which is the best methods. Finally, in Section 5 we describe how the ranking
and preference errors depend on the size of set of alternatives.

2 The Bayes Function

The Bayes function is the minimizer of expected risk
errp(f) = V(f(x),y)p(z,y)dedy (1)
AxY

and depends on the distribution p (Devroye et al., 1996; Cucker and Smale,
2001; Duda et al., 2001). If p was known, then it would be possible to compute
directly the Bayes function f, using its definition

fp=arg 5@; err,(f)

In the following, the Bayes function is derived for regression and for binary
and multiclass classification problems. We start from the Bayes function for



regression (Cucker and Smale, 2001).

Theorem 2.1 (Bayes Function for Regression) In the regression problem
where f : X — IR, for a quadratic loss function V(f(x),y) = (y — f(x))?, the
Bayes function (also called regression function) is:

fo(@) = /y yolylz)dy = Eyje{Vle) @)

So the Bayes function f,(x) is the expected value of random variable Y given
X ==z

Proof In the case of regression, it is useful to write the expected risk (1) as
follows:

/ / (y — F(@))2p(y|z)dyp(=)da (3)

Setting its first derivative with respect to f(x) to zero, it follows that

aerrp // (y — f(@))plylz)dyp(x)de = 0

//yp ylz)dyp(x d:n_//f p(yle)dyp(x)dx
/X/yyp (ylz)dyp(z)de = /X /y p(ylx)dy f(z)p(z)dz

Since [}, p(y|x)dy = 1, then

/X/yyp(ylw)dyp(w)dw—/Xf(m)p(m)dw

Comparing the two members of previous equation, the regression function is
derived

folx) = /yyp(yﬁc)dy

]

It is interesting to compute the error associated with the regression function
which represents a lower bound on the error that depends only on the intrinsic
difficulty of the problem.

Proposition 2.1 (Regression Bayes Function Error) In the regression
problem where f : X — IR, for a quadratic loss function V(f(x),y) = (y —
f(x))?, the error of Bayes function f,(x) is:

erry(fp(x)) = Ex{Vary . {Y|z}} (4)
Proof Substituting Equation (2) in Equation (3), if follows that

err,(f,(z) = /X /y (v — By (V]2 })2py|z) dyp(x)dac

— /XVary|w{y|ﬂ?}P(3f')dm



O

Remark If Vary,{Y|x} = 0 Va € X, that is if exists only one possible y for
each x (the relation between X and ) is deterministic and not probabilistic),
then err,(f,(x)) = 0 if we assume that the target space 7 contains the function
which assigns to each x its output y.

After the regression task, the Bayes function is devised for binary and multiclass
classification problems where the cost of each error is weighted by the value of
the loss function (Lee et al., 2004; Tewari and Bartlett, 2005).

Theorem 2.2 (Bayes Function for Multiclass Classification) In the

multiclass classification problem where f : X +— {1,...,c}, if we use a loss
function V(f(x),y), the Bayes function is:
fo(@) =arg jmin Ey{V(f(@),y)} (5)

So the Bayes function f,(x) predicts the class label § = f(x) which minimizes
the expected value of V(§,y) over p(y|x).

Proof The expected risk err,(f) for a multiclass classification problem is:

/ S V(@) pelslmnle)d

y=1y#f(x)

So the task is to minimize the value of integral on the input space X:

folx) = argmin > Vf(@),y)p(yle) (6)
y—lﬂﬁff(w)
= argmmZV ply|x) (7)

since V(f(x), f(z))p(f(x)|x) = 0. If we define the expected value of the loss
function V(f(x),y) over p(y|z) as

Ey{V(f(z),y)} = Zv p(ylx) (8)

then
fo(@) = argmin By o {V(f(2), y)} 9)
The Bayes function chooses the class label f(x) which minimizes the expected
value of V(f(x),y) over p(y|z).
O

Remark For a binary classification problem where f : X — {+1, —1}, Equation
(5) reduces to

fol@) =ars | min (V(F(@).+Dp(+1.2) + V(/(@). ~Dp(~1.2)}



or, equivalently:

f(@) :{ i Xgiielr,;ie)p(ﬂ,a:) > V(+1,-1)p(-1,z) (10)

If the classification loss functions treats all the errors in the same way as in the
case of the 0-1 loss function, the previous results can be simplified.

Proposition 2.2 (Bayes Function for Multiclass Classification) In

the multiclass classification problem where f : X — {1,...,c}, if we use a loss
function V(f(x),y) = Z(y # f(x)) where T is the indicator function, the Bayes
function is:

fo(x) = arg ygﬁfcp(ylw) (11)

So the Bayes function f,(x) assigns to each x its mazimal probability output.

Proof First of all, we compute the expected risk err,(f) for multiclass classifi-
cation problem:

em(f) = | /y Ty # f(2))p(yle)dyp(z)da

/X S pyle)p(a)da (12)

y=Lly#f(x)

/X (1 - p(f(@)|2)) p(a)das

where we used the normalization property that

> olyle) =1

So we are looking for a function that minimizes the previous error (12)
fo(x) = argmin (1 — p(f(x)|x)) = arg_max p(y|z)
feT y=1,...,c
(]

Remark For a binary classification problem where Y = {+1,—1}, Equation
(11) reduces to

we)={ 1 e 19

Now we compute the error for the multiclass classification Bayes function in the
case of a 0—1 loss function.

Proposition 2.3 (Multiclass Classification Bayes Function Error)
In the multiclass classification problem where f : X — {1,...,¢c}, if we use a
loss function V(f(x),y) = Z(y # f(x)), the error of Bayes function f,(x) is:

(@) = Ba{1- max i) "

[ (1= o _oti)) swiie

=1,...,



where (1 —maxy—1, . .p(y|x)) is the probability that = is not classified in the
most probable class.

Proof Substituting Equation (11) in Equation (12) yields Equation (14).

3 A New Model of Preference and Ranking

In this section, we introduce a new model for preference and ranking problems.
We have to model a framework in which we are given a set of i.i.d. pairs
Dm = {(X“Rl) ?;1 where Xi = {:Bﬂ,...,:ciki} - X, Tij € X and Rl is
a relation between the elements of each subset. For example, R; can be the
ranking of {x;1, ..., x, } or a preference relation which chooses the best element
of {xj1,..., @ik, }. Before introducing the model for preference and ranking
problems, we recall the definitions of binary relation, partial order relation and
total order relation.

Definition 3.1 A binary relation R is a subset of Cartesian product of two sets
A and B: R C A x B, aRb is an ordered pair (a,b).

Definition 3.2 A partial order < on a set A is a binary relation <C A x A
that satisfies the following three properties:

1. Reflexivity: a < a Va € A
2. Antisymmetry: if a < b and b < a, then a =b Va,be A
3. Transitivity: if a < b and b =< ¢, then a < Va,b,c € A

Definition 3.3 A total order < on a set A is a partial order that satisfies the
following property:

4. Comparability: Ya,b € A, either a <b orb<a

3.1 The Partial Order Model

The partial order model of preference and ranking is based on the idea that
a binary partial order relation can model the constraints of a preference and
ranking problem. Let Ry be the set of all the partial order relations on X’

Rx ={R:RC X x X,Ris a partial order on X} C 2**¥ (15)
We can model D,,, = {(X; = {@i1, ..., @i, }, Ri) }12, where x;; € X as a set of
i.i.d. pairs (X, R;) drawn from a fixed but unknown distribution p on 2%¥ x Ry,

where 2% is the set of all the subsets of X and R is the set of all the partial
order relations on X'. The goal is to learn a function f € ‘H

f:2Y = Ry (16)
such that

[(X)~R (17)



which models the probabilistic relation between 2% and Ry . If we decompose
p as

p(2%, Rx) = p(Rx[2%)p(27Y) (18)
each pair of the dataset D,, can be obtained by a two steps process:
1. first we get a subset X of X' in according to p(27%);
2. then we get a partial order R on X from p(Rx|27).

This two steps process expressed by Equation (18) is able to model the noise
that can corrupt the function from the input to the target space: for example,
different users or the same user can sort in a different way the same set X of
instances. Note that for a given X, the relation on X is consistent in the sense
that the transitivity between the elements of X holds. Given this model, it is
interesting

e defining a loss function to measure how good is a function on a given
collection of data;

e finding the Bayes function f,, : 2% s Ry assuming that p is known;

e computing its expected risk err,(f,).

3.2 The 0-1 Loss Function

The simplest loss is 0-1 loss function defined as

v =1 £ m = { o R (19)
It counts an error when f(X) # R, without evaluating if f(X) and R are similar

or very different. It behaves as the misclassification loss for classification defined
as

V(f(®),y) = 0(-yf(z)) (20)

where 0(z) is heaviside function which equals 1 if 2 > 0, else 0.

3.3 Three Approaches for the Partial Order Model

Given the framework described in Section 3.1, we can compute the Bayes func-
tion and its expected risk of this model. Then we can learn f using several
models and then compute the expected risk of these different models. At this
point, the expected risk of Bayes function can be compared with the error of
other models to find the model with smaller Bayes error. We investigate three
models for the function f : 2% — Rx.

1. We can directly model the probabilistic relation between 2% and Ry using
a function

D:2% — Ry (21)

This is the more expressive method of modelling f. For all practical
purposes, this approach is not simple to realize because the target space
Rx is a complex output space: so we are looking for a function with a
simpler target space. We will call this approach the direct model.



2. We can map each object into a real number which measures its importance
by a function

U:X—TR (22)

then we can sort the alternatives by this score using

ki
mi =y 0(U(xir) — Ulwij)) (23)
and
m; =arg max U(x;;) (24)

]:1,...,]{,‘1‘

for ranking and preference respectively (Herbirch et al., 1998; Herbrich
et al., 2000; Crammer and Singer, 2002b). This is a very simple ap-
proach which assumes that exists a function that maps each object into
a real number whereby we can sort the objects, hypothesis which is not
always valid. It is employed in the utility function approach described
in Menchetti et al. (2003, 2005). We will call this approach the utility
function model.

3. Finally we can use a function which works on pairs of objects assigning a
score or a label (Cohen et al., 1999)

P:XxX—{+1,-1} or P:XxX+—]0,1] (25)

In this way, we can sort pairs of objects based on their scores or labels
but we have to guarantee the transitivity property and to resolve possible
inconsistencies. For example, a score greater than 0.5 or a label +1 means
that the first object has to be ranked first than the other one. We will call
this approach the pairwise model.

We use fp, fu and fp for indicating the ranking and preference function f
modelled by D, U and P respectively.

4 A Comparison of the Three Approaches

After defining in Section 3.3 three different models for the problems of ranking
and preference, we show a new approach for comparing these three models. We
first compute the Bayes function of preference and ranking problem under our
framework with its corresponding risk (this corresponds to modelling f using
D) and then compare this value with the expected risk of the other two models.
We start computing the Bayes function of the problem defined in Section 3.1
which corresponds to directly model the probabilistic relation between 2% and
Rx.

4.1 The Direct Model

In the direct model, we model f by a function D that has its same behaviour,
so we can compute the output as

f(X) = fp(X) = D(X) (26)



The following theorem compute the Bayes function of preference and ranking
problem under the model described in Section 3.1: it is based on the assumption
that if | X| is finite, then also the cardinality |R x| of set of all the partial order
relations on X is finite. This observation permits to deriving the Bayes function
using the results on multiclass classification.

Theorem 4.1 (Preference and Ranking Bayes Function) In a preferen-
ce and ranking problem in which f : 2% — Ry, if we use a 0-1 loss function
V(f(X),R) =Z(f(X) # R), the Bayes function f,(X) is:

fo(X) = arg max p(R|X) (27)

Proof If we assume that X = {x1,...,x;} C X is a finite set, then also [Rx]|,
the set of all the partial order relations on X, is finite. The expected risk of f

becomes:
/. /R ) )o(RIX)dRp(X )X

- / X) # R)p(R|X)p(X)dX

RERx

[ 1= s 0X)lp(x)ax

err,(f)

So we have cast the preference and ranking problems to a multiclass classification
problem where the categories are the elements of Ry. The direct application of
Equation (11) leads to Equation (27) which proves the theorem.

O

As in the case of multiclass classification, the Bayes function (27) assigns to each
set of alternatives its maximal probability relation. Computing the expected risk
of the Bayes function is a direct consequence of Proposition 2.3.

Theorem 4.2 (Bayes Risk for Preference and Ranking) In a preference
and ranking problems in which f : 2% — Ry, if we use a 0-1 loss function
V(f(X),R) =Z(f(X) # R), the error of Bayes function f,(X) is:

err,(fo(X)) = EQX{l B Igel%i p(R|X)} (28)

Proof Applying Proposition 2.3 for multiclass classification to Equation (27)
leads to Equation (28).

O

If we model f by D : 2% — Ry, the expected risk of the Bayes function fo
corresponds to expected risk of fp

err,(fp(X)) = E2X{1 T ReRa p(R|X)} (29)
= [ 1= e p(RIX)Ip(X)aX



The next step involves the computation of the expected risk when we model the
ranking and preference function by an utility function U and by a function P
that works on pairs of objects.

4.2 The Utility Function Model

Now we model the ranking and preference function f by an utility function
U : X — IR which assigns to each object a score proportional to its importance.
The prediction f(X) = fu(X) can be reconstruct using the utility function U
in the following way:

fulX)=A(z,2) e X x X, x,z€ X : U(x) >U(z)} (30)

Note that if U(x) # U(2z)Vx,z € X x X, then U induces a total order on X
and the cardinality of fiy(X) is equal to the number of simple combinations

Dn,k . n!
Cnde = p= = kl(n — k)!

where k = 2 is the size of the subsets (in our case we pick pairs) and n is the
cardinality of X

X1 - 1)

fo(X)] = Cpa. )

(31)
But if Ja,z € X x X : U(x) = U(z), we can model ties by two elements of the
relation as @ < z and z < @ = & = z. Then the maximum value of |fy (X)] is
the number simple arrangements

P, n!

-DTL = =
o, Pn—k (n - k)'

where k = 2 is the size of the subsets and n is the cardinality of X. So |fy(X)|
ranges from C|y| 2 to D|x| 2 depending on the number of ties:

w <o (X)] < |X](1X] - 1) (32)

The upper bound represent the situation in which all the alternatives get the
same score. The following theorem compares the expected risk of the Bayes
function f, modelled by the direct model D : 2% — Ry and by the utility
function model U : X — IR.

Theorem 4.3 (Direct Model vs Utility Function Model) The expec—ted
risk of the ranking and preference function f : 2% — Ry modelled by a direct
approach D : 2% — Ry is less than or equal to the expected risk of modelling f
by an wutility function U : X — IR such that

fo(X) = {(m,2) € X x X, 2,2 € X : Ulz) > U(2)} (33)
In mathematical terms

err,(fp(X)) < err,(fu(X) (34)

10



Proof We start computing the expected risk of the utility function model, then
we compare this value to the expected risk of direct model.

ma(fo (X)) = [ [ VU0 Rip(RIX)dRo(X) X

= [ ¥ T0uX) # RpRIX)p(X)dX

2 RERx

[ 1= st X))o (3)

Comparing Equations (28) and (35), we obtain Equation (34). If U is expressive
enough such that

fu(X) = max p(R|X)

then

err,(fp(X)) = err,(fu (X))
O

The Theorem 4.3 shows that modelling the ranking and preference function f by
an utility function U : X — IR leads to a Bayes risk greater than or equal to the
direct model. Only in the case that the utility function U leads to a fy which
behaves as the Bayes function, the two errors are the same. As a consequence,
the utility function model by itself could induce a greater generalization error.

4.3 The Pairwise Model

The pairwise model is a more expressive model than the utility function one.
Precisely, scoring the pairs and not single objects can lead to a more rich relation
on the set of alternatives and the utility function approach can be obtained as a
particular case of the pairwise model. It can be proved that exists some relations
modelled by the pairwise approach which are not represented in the utility
function one. The ranking and preference prediction function f(X) = fp(X)
can be reconstruct using the pairwise function P in the following way

fp(X)={(z,2) e X x X,z,z€ X : P(xz,z) > 0.5} (36)
if P: X x X+ [0,1] is a probability score on pairs and as

fP(X)={(z,2) e X x X,z,z€ X : P(x,z) = +1} (37)
if P:XxX — {+1,—1} is a binary classification function on pairs. The
following theorem compares the expected risk of the Bayes function f, modelled

by the direct model D : 2% — Ry and by the pairwise function model P :
XXX —[0,1]or P: X xX+— {+1,—-1}.

Theorem 4.4 (Direct Model vs Pairwise Model) The expected risk of the
ranking and preference function f : 2% — Rax modelled by a direct approach
D : 2% — Ry is less than or equal to the expected risk of modelling f by a
pairwise function P: X x X+ [0,1] or P: X x X — {+1,—1} as described in
Equations (36) and (37)

err, (fp(X)) < erry(fp(X)) (38)

11



Proof The proof is the same of the utility function approach: we compute the
expected risk of the pairwise model, then we compare this value to the expected
risk of direct model.

e (1(X) = [ [ VU0 Rp(RIX)dRp(X)ax

| 3 2e(X0) # Rp(RIX)p(X)aX

2 RERx

[ = () X0Ip(X0dX (39)
2
Comparing Equations (28) and (39), we obtain Equation (38). Note that if P
is expressive enough such that

fp(X) = max p(R|X)
then

err,(fp(X)) = err,(fp(X))
O

As in the case of the utility function model, the Theorem 4.4 shows that mod-
elling the ranking and preference function f by a pairwise function P leads to a
Bayes risk greater than or equal to the direct model. Only in the case that the
pairwise function P leads to a fp which behaves as the Bayes function, the two
errors are the same. As a consequence, pairwise function model by itself could
induce a greater generalization error.

Finally, to conclude, we can show the relation between the expected risk of
the direct, the utility function and the pairwise function models:

errp(fp(X)) < err, (fp(X)) < errp(fu (X)) (40)

Modelling the ranking and preference function f by indirect approaches as the
utility or pairwise function can lead to a greater generalization error than the
direct one due to the inherent characteristics of the model which is unable to
represent all the possible relations on the set of alternatives: the more expressive
is the model, the smaller will be the prediction error.

5 Dependence on Size of Set of Alternatives

In this section, we describe a novel approach on how the ranking and preference
errors depend on the size of set of alternatives. The larger is the size of the
set of alternatives, the bigger is the probability of a ranking or preference error.
But if the scores of the objects are well “separated”, the probability of error can
become arbitrarily small.

In the utility function approach, we learn a function U : X — IR that
measures the importance of an object using a training set D,,,. Then to rank a
set of alternatives, we sort the elements by their score; in the case of a preference
problem, we select only the best element. Since U depends on D,, and since
Dy, is a set of i.i.d. pairs sampled from a probability distribution p on X x IN,
it follows that U and furthermore also U(x) are random variables depending on
Don-

12



5.1 Ranking Two Alternatives

Let X = {@1,z2} be a set of alternatives that contains only two elements: in
this case, ranking the two elements or choosing the best element are equivalent.
We assume that @5 is ranked first than @, that isy; = 2 and yo = 1. Let U; and
Us be the random variables whose realizations u; and us represent the scores
associated to x; and a2 by the utility function U and let py,, Py,, pu, and
Py, be the probability distribution functions and the cumulative distribution
functions of U; and Us respectively.

Since xy < x1, we expect that U(x1) = u1 < ug = U(x2). If u3 > ug, then
we have a ranking error:

Pr{Error} = Pr{us <u;} =1—Pr{us > u;} (41)

Using the definition of cumulative distribution function
Pr{us <c} = Py,(¢) Vee]0,1] (42)

we obtain
Pr{us <wui} :/ Py, (u1)pu, (u1)duy :/ Py, (u1) Py, (u1)duy (43)
U1 Ul
e / dPU (ul) . e

where for definition py, (u1) = P, (u1) = dliul’ that is the probability

distribution is the derivative of the cumulative distribution. If U; and Us have
the same distribution probability but different expected values Ey, {u;} and
Ey,{us}, we obtain

PU2 (u) - PU1 (u - A) (44)
where A = Ey, {u2} — Ey, {u1}. The Equation (43) becomes
Pr{u; <u} = / Py, (u1 — A) Py, (u1)duy (45)
Ui

In the case that A = 0 = Ey, {u} = Ey,{u}, i.e. the two probability distribu-
tions of U on x; and x5 are the same, it follows that

/ P51 (ul) e
PI‘{UQ S ul} = PU1 (ul)PUl (ul)dul = B)

U1 — 00
where, for definition, Py, (+00) = 1 and Py, (—oo0) = 0. This means that if on
average the utility function U maps both &; and x5 into the same value, then
we have the highest probability to make an error.

If we suppose that the cumulative distributions Py, (u) and Py, (u) are bell-
shaped distributions, for example:

(46)

NN

1
P () = 1 = pus (6) = Py (w)(1 = P, (1) (47)
then the Equation (45) becomes
PI‘{UQ S Ul} = / ]DU1 (u1 — A)Pl/h (ul)dul
U
+o0 1 1 e Ut
= /_OO te-@m-D]1ewmltewu duy (48)

+oo e*’u,l
— d
/,oo (Itemed)(lre )™

13



Error between Two Alternatives
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Figure 1: Ranking and preference error in function of the difference A between
the two expected values of U on 7 and xs.

After solving the integral , we obtain

eAA-1)+1 A
Pr{Error} = ((eA—l))Q ~ A

Also in this case, if A = 0, then Pr{Error} = 1/2. The plot of Pr{Error} is
shown in Figure 1. We see that the probability of error tends quickly to zero as
A increments.

(49)

5.2 Ranking k£ Alternatives

Now we generalize above results to the case in which X = {x;,x,..., 2} is
a set of k alternatives. We can define two different types of errors: the ranking
error, that is probability of incorrectly ranking the set of alternatives and the
preference error, that is the probability of not ranking first the best element of
the set of alternatives. The ranking error is the probability of the joined event
u; < ug < --- < ug, where we supposed that y; =k —i+1,i=1,... k

Pr{RankingError} = 1—-Pr{u; <ug <---<ug} (50)

If we assume that the single events are independent, then we can express the
ranking in function of pairs of elements

Pr{RankingError} = 1—Pr{u; <uz}Pr{ius <wus} - -Priup_1 <u}
k—1
= 1- H PI‘{UZ < Ui+1}
i=1
k—1
= 1-JJ 0 =Pr{u <w}) (51)

i=1
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In a preference problem, the error is the probability of the joined event u; <
U, Us < Uk, ..., Up_1 < Uk, Where we suppose that xj is the best element

Pr{PreferenceError} = 1—Pr{u; <ug,uz < up,...,up—1 <ug}  (52)

Also for the preference task, if we suppose that the single events are independent,
then we can express the preference in function of pairs of elements involving the
best element

Pr{PreferenceError} = 1—Pr{u; < ugp}Pr{us <ug} - -Pr{iug_1 <ui}

k—1
1— H Pr{u; < u}
o
= 1— H (1 —Pr{iug <u;}) (53)

i=1

So the ranking and preference errors have been reduced to a production on
error on pairs of elements and so we can use Equation (49) that express the
probability of error of a pair of objects. Since

1 1
0<Priu; <uj} <5 =5 <1-Priy<u}<l

we can derive a lower and an upper bound for the probability of error for ranking
and preference:

k—1 k—1
1 1
1- H 1 < Pr{Error} <1-— H 5= 0 < Pr{Error} <1-— By (54)
i=1 i=1

where Pr{Error} is either Pr{RankingError} or Pr{PreferenceError}. The
curve of the upper bound of Pr{Error} is plotted in Figure 2, where we can see
that the probability of error grows exponentially fast towards 1 in function of
the cardinality of the set of alternatives. If we define

ALJ:EUZ{’L%}—EUJ{UJ}, Z,]:l,,k‘2>] (55)

then we can express the probabilities of ranking and preference error in function
of distance between the values of the utility function U on pairs

k—1
Pr{RankingError} = 1- H (1 =Pri{iuir1 <u;})
i=1
= 1- kl:[l efitti(efintt — Ajyy i — 1)
= 1 (eAHl,i _ 1)2
for the ranking error and
k—1
Pr{PreferenceError} = 1-— H (1 =Pr{u <wu;})
i=1
- 1 kl:[l eBri(elni — Ay — 1)
- i=1 (efni —1)2
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Error vs Number of Alternatives
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Figure 2: Upper bound of preference and ranking error in function of the number
of alternatives.

for the preference error. Note that the ranking error depends on A;4q,, i =
1,...,k—1 while the preference error depends on Ay ;, 4 = 1,...,k—1, where x;
is the best element in both problems. If the utility function is able to map more
similar elements into closer values, we see that the ranking problem is inherently
more difficult then the preference one since Ay, < A, i=1,...,k—1. But
if the scores of the objects computed by U are well “separated”, the probability
of error can become arbitrarily small despite the size of the set of alternatives.
Finally, note that similar results can be obtained using any other probability
distribution for the scores assigned by the utility function to the elements in the
set of alternatives.

6 Conclusions

We derived three approaches for a new partial order model of preference and
ranking based on a 0-1 loss function exploiting the idea that a binary partial
order relation can model the constraints of preference and ranking problems.
We showed that modelling the ranking and preference function by indirect ap-
proaches as the utility or pairwise function could lead to a greater generalization
error than the direct one due to the inherent characteristics of the model which
is unable to represent all the possible relations on the set of alternatives.

Finally, we described a novel approach about how the ranking and preference
errors depend on the size of set of alternatives. The larger is the size of the set
of alternatives, the bigger is the probability of an error. But if the scores of the
objects computed by the utility function were well separated, the probability of
error could become arbitrarily small.
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