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1. Introduction

Supervised learning algorithms on discrete
structures such as strings, trees or graphs are very
often derived from vector based methods, using a
function composition approach. In facts, if we ex-
clude symbolic learning algorithms such as induc-
tive logic programming, any method that learns
classi�cation, regression or preference functions
from variable-size discrete structures must �rst
convert structures into a vector space and subse-
quently apply �traditional� learning tools to the
resulting vectors.

The mapping from discrete structures to vector
spaces can be realized in alternative ways. One
possible approach is to employ a kernel function:
for example, Haussler [1] introduces convolu-
tion kernels on discrete structures, Jaakkola and
Haussler [2] describes the Fisher kernel, Collins
and Du�y [3] proposes a kernel for parse treeand
Lodhi [4] employs string kernels for text classi�ca-
tion. Similarly, recursive neural networks (RNNs)
[5] can solve the supervised learning problem
when the input portion of the data is a labeled
directed ordered acyclic graph (DOAG). The two

methods have di�erent potential advantages and
disadvantages.

Kernel methods for discrete structure are linear
in an in�nite-dimensional representation space,
while RNNs are highly non non linear but ca-
pable of developing an adaptive representation
space. Many kernel-based algorithms, unlike neu-
ral networks, typically minimize a convex func-
tional, thus avoiding the di�cult problem of deal-
ing with local minima. However, this problem is
only partially avoided. In fact, the kernel function
usually needs to be tuned/adapted to the prob-
lem at hand, a problem which cannot in general
be cast as a convex optimization problem. A typ-
ical example is tuning the variance of a Gaussian
kernel. Learning the kernel function is still an
open problem, particularly in the case of discrete
structures. When using kernels such as the spec-
trum kernel [6], the string kernel [4] or the parse
tree kernel [3], the mapping from discrete struc-
tures to the feature space is �xed before learning
by the choice of the kernel function and remains
unchanged during all the learning procedure. The
Fisher kernel [2], if applied for example to strings,
introduce some degree of adaptation with respect
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to the distribution of training instances. A non-
optimally chosen kernel may lead to very sparse
representations and outweigh the bene�ts of the
subsequent large margin methods.

On the other hand, RNNs operate by com-
posing two adaptive functions. First, a dis-
crete structure is recursively mapped into a low-
dimension vector by an adaptive function Φ. Sec-
ond, the output is computed by a feedforward
neural network that takes as argument the vector
representation computed in the �rst step. Thus
the role played by Φ in RNNs is similar to that of
the kernel function but it is carried out by means
of an adaptive function, leading to vector rep-
resentations that are focused on the particular
learning task.

In this paper, we compare RNNs and convolu-
tion kernels in two large scale preference learning
problems that occur in computational linguistics:
prediction of �rst pass attachment under strong
incrementality hypothesis [7] and reranking parse
trees generated by a statistical parser [3,8]. Both
problems involve learning a preference function
that selects the best alternative in a set of com-
petitors. We show how to perform preference
learning in this highly structured domain and we
enlighten some interesting connections between
these two approaches. We report about several
experimental comparisons showing that in this
class of problems generalization performance is
determined by several factors including the sim-
ilarity measure induced by the kernel or by the
adaptive internal representation of the RNN and,
importantly, by the loss function associated with
the preference model.

2. Notation

Let x be an element of an instance space X ,
y an element of a target space Y associated with
X , D = {(xi, yi)}mi=1 a collection of i.i.d. samples
from X × Y and m its cardinality. In a ranking
problem, let D = {(xi1, yi1), . . . , (xiki , yiki)}mi=1

be a data set, where (xi1, . . . ,xiki) is the i-th se-
quence of competing instances, xij ∈ X , yij ∈ IN
is the rank of xij : in this setting, xij precedes
xik (written xij ≺ xik) if yij < yik. In a pref-
erence problem, let D = {(xi1, . . . ,xiki), yi}mi=1

be a data set, where yi ∈ IN is the index of best
element.

Given a labeled ordered graph G, let V be the
set of vertexes v of the graph. Let ch[v] be the
ordered tuple of vertexes whose elements are chil-
dren of v, chi[v] the i-th child of v and cv the
number of children of v. Let I the set of N labels
associated with vertexes of the graph and I(v) the
label attached to vertex v.

3. Convolution Kernels

Collins and Du�y [3] proposes a convolution
kernel for parse trees generated by a natural lan-
guage parser that can be applied to each generic
tree with labels in a �nite set (e.g. non terminal
symbols in natural language processing). Given
a set of labeled parse trees, let φ : X 7→ H be
a mapping from the tree space X to an high di-
mensional Hilbert space H. In this kernel, the
feature space H = {τi}ni=1 is the set of all the
tree fragments [9] with the only constraint that
a production rule cannot be divided into further
subparts. Then each parse tree x is represented
by an n-dimensional vector φ(x) = {φi(x)}ni=1

of tree fragments: the i-th feature value φi(x)
counts the number of occurrences of the i-th tree
fragment τi in x. This representation can be seen
as a bag of subtrees representation: the object is
mapped into a feature vector of which each com-
ponent counts the number of occurrence of any
structure. The inner product between two trees
K(x1,x2) = φ(x1)Tφ(x2) can be computed e�-
ciently as follows [3], without actually enumerat-
ing all the tree fragments:

K(x1,x2) =
∑

v1∈V1

∑

v2∈V2

T (v1, v2) (1)

where T (v1, v2) counts the number of common
tree fragments of x1 and x2 that are rooted at
boot v1 and v2. T (v1, v2) is recursive computed
as follows: T (v1, v2) = 0 if the productions at
v1 and v2 are di�erent, else if v1 and v2 are pre-
terminals1 T (v1, v2) = 1 otherwise

T (v1, v2) =
cv1∏

i=1

(1 + T (chi[v1], chi[v2])) (2)

1Pre-terminals are nodes directly above leaves.
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A problem of this kernel is its dependency on
the number of tree nodes: the large is the num-
ber of nodes, the bigger is the kernel value. It
can be overcome by normalizing the kernel value.
An another drawback is that the kernel value dis-
tribution is very peaked. Since a match between
two large tree fragments gives a very large contri-
bution to the kernel value, we can reduce peaks
by limiting the height of subtrees during kernel
computation. Otherwise, we can weight all the
fragments by a coe�cient which decays exponen-
tially with their size, so larger fragments have a
smaller coe�cient:

Kλ(x1,x2) =
n∑

i=1

λsizeiφi(x1)φi(x2) (3)

where sizei is the number of productions in the
i-th tree fragment and 0 < λ ≤ 1.

3.1. Voted Perceptron
Kernels can be used in conjunction with several

learning algorithms. SVMs are employed when
we are interested to �nd a maximal-margin so-
lution with a good generalization performance,
since it is theoretically well-founded and there are
guarantees on its convergence to a unique global
optimum. Unfortunately the complexity associ-
ated with SVMs training grows at least quadrat-
ically in the training set size: in our experiments,
there are about 108 training examples and so
SVMs becomes prohibitive.

VP is an online algorithm for binary classi�ca-
tion based on Rosenblatt's perceptron algorithm
[10]. It is much simpler to implement and more
e�cient in terms of computational time with re-
spect to SVM classi�ers, although there are no
convergence guarantees. On the other hand, as
experimentally shown in [10], the performance
obtained with VP tends to the performance of
maximal-margin classi�ers. The training proce-
dure uses a labeled training set D = {(xi, yi)}mi=1,
where xi ∈ X and yi ∈ {+1,−1}. At each
step k, VP classi�es a training example xi us-
ing the current vector of weights wk. If the pre-
dicted label ŷi is di�erent from the true label
yi, then the vector wk is updated, xi is added
to a list L of incorrectly classi�ed examples and
training goes to next step, else the number ck of

training examples correctly classi�ed by wk is in-
creased. VP outputs a set of E weighted percep-
trons W = {(wk, ck)}Ek=1 or, equivalently, in the
dual space, a list L = {(xqk , ck)}Ek=1 of incorrectly
classi�ed examples. The basic vector-based for-
mulation can be easy kernelized. The predicted
label of a new instance is ŷ = sign[f(x)] where

f(x) =
E∑

k=1

ckΓ[wk
Tφ(x)]

=
E∑

k=1

ckΓ[
k∑

j=1

yqjK(xqj ,x)]

(4)

and Γ is the identity or the sign function. The
worst case complexity of the VP training algo-
rithm is O(dm2u), where d is the number of
epochs and u is the cost to compute the kernel
[10]. In practice, VP convergence is reasonably
fast.

4. Recursive Neural Networks

RNNs are a generalization of neural networks
(NNs) capable of processing structured data as
DOAGs where a discrete or real label is associated
with each vertex [5]. The key idea is to replicate
a NN for each node of the DOAG and consider
as input to the network both the atomic infor-
mation represented by the label and the struc-
tured information derived by the output of all the
networks instantiated for each child node. The
process of replicating a NN is called network un-
folding and, as a result of this procedure, we ob-
tain a large network having shared weights and
whose topology matches that of the input graph.
At each node v, the NN outputs a vector en-
coding of the whole subgraph induced by ver-
texes reachable from v. Data processing takes
place in recursive fashion, traversing the DOAG
in post-order, using a transition function t such
that ϕ(v) = t(ϕ(ch[v]), I(v)) where ϕ(v) ∈ IRn
denotes the state vector associated with node v
and ϕ(ch[v]) ∈ IRcv·n is a vector obtained by con-
catenating the components of the state vectors
contained in the c children of v. The transition
function t : IRcv·n × I 7→ IRn maps states at v's
children and the label at v into the state vector at
v. A frontier state ϕ0 = 0 is used as the base step
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of recursion. We use a feedforward neural net-
work to model the transition function t according
to the scheme:

aj(v) = ωj0 +
N∑

h=1

ωjhzh(I(v))+

+
c∑

k=1

n∑

`=1

wjk`ϕ`(chk[v])

ϕj(v) = tanh(aj(v)) h = 1, . . . , n

(5)

where ϕj(v) denotes the j-th component of the
state vector at vertex v, zh(I(v)) is a one-hot en-
coding of label at node v and ωjh, wjk` are ad-
justable weights. Proceeding in this fashion, the
state vector

Φω(x) = ϕ(r) (6)

at the root r of the tree encodes the whole data
structure and can be used for subsequent process-
ing. The prediction f(x) is computed by the out-
put network as f(x) = oTΦω(x) where o are the
weights of the output network. In the case of re-
gression, a candidate error function to minimize
is

E(D) =
m∑

i=1

(f(xi)− yi)2 (7)

Minimizing the error (7) leads to �nd a value for
the parameters of the RNN and to discover a vec-
tor state representation of input structures. Min-
imization is achieved by a variant of the gradient
descend backpropagation algorithm [11].

5. Ranking and Preference Problems

Work on learning theory has mostly concen-
trated on classi�cation and regression. However,
there are many applications in which it is desir-
able to order rather than to classify instances:
these problems arise frequently in social sciences,
in information retrieval, in econometric models
and in classical statistics where human prefer-
ences play a major role.

In a general supervised learning task, the goal
is to compute a function f : X 7→ Y which best
models the probabilistic relation between these
two spaces. The properties of the target set Y

de�ne di�erent learning problems: (a) if Y is a �-
nite unordered set, we have a classi�cation prob-
lem; (b) if Y is a metric space, e.g., the set of real
numbers, we have a regression problem. Ordinal
regression, partial ranking and preference model
tasks do not �t in any two previous classes but
share properties of both classi�cation and regres-
sion problems: (a) Y is a �nite ordered set; (b) Y
is not a metric space. So, as in classi�cation prob-
lems, we have to assign a possible label to a new
instance, but similar to regression problems, the
label set admits an order relation. More precisely,
in a ranking problem we have to sort a set of com-
peting alternatives by their importance, while in
a preference problem we are only interested in the
best element: note that the preference problem is
a particular case of ranking.

In the case of ranking, we learn a function
fRANK : X ∗ 7→ P∗ that maps sequences of in-
stances into corresponding ranks. Here X ∗ is the
set of all sequences of instances in X and P∗ =
∪kPk being Pk the set of permutations of the �rst
k integers. By writing fRANK(xi1, . . . ,xiki) =
(πi1, . . . , πiki) we have that πij is the rank as-
signed to the element xij . A suitable loss func-
tion for ranking should penalize predicted per-
mutations that are too di�erent from the cor-
rect one. In the particular case of preference
learning, we are only interested in ranking high
the best element of the sequence, indexed by
πi = argminj=1,...,ki{πij}. Hence a natural fam-
ily of preference 0-1 loss functions is

Lr(fRANK(xi1, . . . ,xiki), yi) =

=
{

1 if πyi > r
0 if πyi ≤ r

(8)

where r = 1, . . . , ki is the number of top positions
the correct element is ranked in, before counting
an error. In particular, L1 measures the number
of sequences whose best element is not ranked
�rst. As detailed below, both kernel methods and
RNNs rely on the de�nition of a suitable utility
function to realize fRANK.

5.1. The Utility Function Approach
We measure the importance of an instance by

introducing an utility function U : X 7→ IR so
that given x, z ∈ X such that x ≺ z, then
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U(x) > U(z). To rank a sequence of objects
we use the values assigned by the utility func-
tion to the instances. In this way, ranking is
reduced to learning an utility function U . The
rank of xij is πij =

∑ki
r=1 θ(U(xir) − U(xij))

where θ : IR 7→ {1, 0} is the Heavyside func-
tion de�ned as θ(x) = 1 if x ≥ 0, 0 other-
wise. In the following we focus on learning prefer-
ences. In this case we select only the best element
πi = arg maxj=1,...,ki U(xij).

5.2. Recursive Neural Networks Prefer-
ence Model

We implement U(x) by a neural network hav-
ing a single linear output. Consider the multi-
nomial variable Yi representing the index of the
correct element in an input sequence. The con-
ditional probability that Yi = j, i.e. that xij is
ranked �rst by the utility function realized as a
neural network with parameters ω, is estimated
using the softmax function as follows:

P (Yi = j|xi1, . . . ,xiki , ω) =
eU(xij)

∑ki
r=1 e

U(xir)
(9)

Under this model, the likelihood function is∏m
i=1 P (Yi = yi|xi1, . . . ,xiki , ω). Learning pro-

ceeds by minimizing the negative log-likelihood

EPREF(D) = −
m∑

i=1

log
eU(xiyi )

∑ki
`=1 e

U(xi`)

=
m∑

i=1

log
ki∑

`=1

eU(xi`)−U(xiyi )
(10)

with respect to the model parameters ω. A back-
propagation gradient descent algorithm for this
purpose can be easily de�ned by injecting as er-
ror signals the partial derivatives of EPREF(D)
with respect to U(xi`).

5.3. Kernel Preference Model
The approach proposed in [12] and also fol-

lowed in [3,8] starts from a simple linear model
where the utility function U is parametrized by
a vector w such that U(x) = wTx. In a gen-
eral ranking problem, w must satisfy the follow-
ing constraints
wT (xij − xik) > 0
i = 1, . . . ,m and j, k = 1, . . . , ki : yij < yik

(11)

As a special case, in a preference model we have

wT (xiyi − xij) > 0
i = 1, . . . ,m and j = 1, . . . , ki, j 6= yi

(12)

In this way, ranking and preference problems are
reduced to binary classi�cation of pairwise dif-
ferences between instances2. In other words, we
learn a function fPAIR : X × X 7→ {−1,+1} with
an associated 0-1 loss function

L′(fPAIR(xij ,xi`), zij`) =

=
1− fPAIR(xij ,xi`)zij`

2
(13)

where zij` = 1 if xij � xi` and zij` = −1 other-
wise. The overall loss associated with the training
data is in this case

EPAIR(D) =

=
m∑

i=1

ki∑

j=1,j 6=yi
L′(fPAIR(xiyi ,xij), ziyij)

(14)

as opposite to the overall loss under the preference
model

EPREF(D) =

=
m∑

i=1

L1(fRANK(xi1, . . . ,xiki), yi)
(15)

Additionally, the pairwise model does not take
into consideration all the alternatives together
but only two by two and that the best element
is used as many times as the number of elements
ki of a sequence of alternatives. The approach
can be easily generalized with kernels:

wT [φ(xij)− φ(xik)] =
=
∑
t

αstptqt [K(xstpt ,xij)−K(xstpt ,xik)+

−K(xstqt ,xij) +K(xstqt ,xik)]

for appropriate coe�cients αstptqt and indexes st,
pt and qt. In a preference model or in an ordinal
regression task, Γ in (4) is chosen to be the iden-
tity function to avoid ties.

2The number of constraints in (11) grows quadratically in
the size of the sequence of alternatives, while it is linear
in (12).
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6. Applications to Natural Language

We introduce two problems in natural language
that can be modeled as learning preferences over
structured data. Both can be formulated as the
task of selecting the best element in a set of (par-
tial) parse trees.

6.1. The First Pass Attachment
Resolution of syntactic ambiguities is a funda-

mental problem in natural language processing
and learning is believed to play a crucial disam-
biguation role in the human language processing
system. For example, consider the sentence
The servant of the actress who
was on the balcony died. (16)

where ambiguity resolution accounts to determin-
ing which noun the pronoun who refers to. Cuetos
and Mitchell [13] found that native English speak-
ers prefer lower attachment (the actress was on
the balcony) while native Spanish speakers prefer
higher attachment (the servant was on the bal-
cony) when confronted with the Spanish equiva-
lent of the sentence. The subsequent tuning hy-
pothesis [14] states that parsing choices are af-
fected by the exposure to the di�erent statistical
regularities of languages. Under a second widely
accepted and experimentally validated assump-
tion in psycholinguistics, human processing is in-
cremental, i.e. sentences are parsed left-to-right,
maintaining at every time a connected syntactic
structure that is incrementally augmented when
new words arrive. This approach can be formal-
ized by introducing a dynamic grammar where
states are incremental trees Tk (that span the �rst
k words in a sentence) and state transitions are
obtained by attaching a substructure called con-
nection path (CP) to the previous tree to obtain
a new incremental tree Tk+1. A corpus based set
of CPs can be readily obtained from a treebank
[15]. The node on the right frontier of Tk where
attachment occurs is called an anchor while the
POS-tag of the word in the CP is called a foot.
In this framework, ambiguity resolution reduces
to the �rst-pass attachment problem, illustrated
in Figure 1.

In general, several CPs may be attached to a
tree Tk. For the attachment to be admissible, it

The ofservant the actress who

ND P D N WH

WHNP

NP

PP

NP

NP

S’

alternative
anchors

foot

incremental tree connection path

Figure 1. The two main syntactic interpretations
of sentence (16) can be obtained by attaching the
same CP to one of the two alternative anchors.
In general, several CPs and several attachments
for each CP are possible.

su�ces that a matching anchor is found in the
right frontier of Tk and that the POS-tag of the
new word matches the foot of the CP. The re-
sulting forest of admissible incremental trees that
include the next work may contain hundreds of
alternative trees when using realistic wide cover-
age corpora. Disambiguation can be formulated
as the problem of learning to predict the correct
member of the forest [7].

6.1.1. Tree Reduction and Specialization
We found that the disambiguation accuracy

previously reported in [7] can be signi�cantly im-
proved by means of two linguistically motivated
heuristics [16]. The �rst is called tree reduction
and consists in removing nodes from the syntactic
parse that are considered irrelevant for discrimi-
nating between alternative incremental trees. In-
tuitively these nodes are deep nodes, where the
depth is measured with respect to the part of the
left context where the attachment process takes
place.

The second heuristic consists of specializing
the �rst pass attachment prediction with respect
to the class of the item being attached. The
idea is to train and employ specialized predic-
tors for each di�erent word classes (nouns, verbs,
etc.). The heuristic is applicable since the di�er-
ent classes naturally partition the data set into
non-overlapping sets.

6.2. The Reranking Task
The second task, originally formulated in [8],

consists of reranking alternative parse trees gener-
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ated for the same sentence by a statistical parser.
In this case each forest consists of full candidate
trees for the entire sentence. In addition, each
parse tree has a score that measures the probabil-
ity of this tree given the sentence and an underly-
ing stochastic grammar. Note that the forest does
not necessarily contain the correct parse tree for
the sentence (the gold tree). Alternative parses
are ranked according to the standard parseval
measures: labeled recall (LR), labeled precision
(LP) and crossing brackets (CB). A constituent
is a triple consisting of an internal node, its label
(a nonterminal symbol) and the indexes of the
�rst and the last word it spans. A constituent
is correct if it spans the same set of words and
has the same label as a constituents in the gold
tree. LP is the number of correct predicted con-
stituents divided by the number of constituents
in the gold tree; LR the is the number of correct
predicted constituents divided by the number of
constituents in the parse tree; CB is number of
constituents which violate constituent boundaries
with a constituent in the gold tree; sentences with
no crossing brackets (0 CBs) is the percentage of
sentences which have zero crossing brackets and
sentences with two or less crossing brackets (2
CBs) is the percentage of sentences which have
less equal then two crossing brackets.

The best tree in a forest is de�ned as the one
having maximum harmonic average of LP and LR
(F1 metric). The reranking task consists of pre-
dicting such best tree given the forest and is nat-
urally formulated as a preference problem.

6.3. Experimental Results
In our experiments, we use the Wall Street

Journal (WSJ) section of Penn TreeBank [17]. It
is a large size realistic corpus of natural language
that contains about 40,000 parsed sentences for
a total of 1 million words that has been widely
used in the computational linguistic community.
We followed the standard split of the data set us-
ing sections 2�21 for training, section 23 for test
and section 24 for validation.

6.3.1. First Pass Attachment
In the �rst pass attachment disambiguation

task, all parse trees have been preprocessed

with tree reduction and specialization (see Sec-
tion 6.1.1). In particular, ten specialized data
sets have been obtained by splitting data accord-
ing to the syntactic category of the foot node:
Nouns, Verbs, Prepositions, Articles, Punctua-
tions, Adjectives, Adverbs, Conjunctions, Posses-
sives, Others.

In order to estimate learning curves we created
data sets with 100, 500, 2, 000, 10, 000 and 40, 000
sentences, randomly extracting them from the
training set. In the full data set of 40, 000 sen-
tences the average sentence length is 24 and for
each word there are 120 alternative incremental
trees on average (ranging from a minimum of 2
to a maximum of 2, 000 alternatives), yielding a
total of about 108 trees.

Due to the high computational cost of the vali-
dation procedure, the model parameters were op-
timized using a subset of section 24 of WSJ as a
validation set. Speci�cally, we used 500 valida-
tion sentences to estimate the kernel parameter λ
of Eq. (3) and we found an optimal value λ = 0.5.
The size of the RNN's state vector was �xed to
25 units. Weights were initialized in the range
[−0.01,+0.01] and updated after the presentation
of each forest. The maximum node outdegree was
set to 15. Fixing the maximum outdegree is an
architectural constraint which, in our implemen-
tation, has the consequence of pruning syntactic
trees with very long productions. Note that since
each child position is associated with its own set
of weights, pruning long productions avoids poor
estimates of the weights associated with very in-
frequent rules. Using 15 children, only 0.3% pro-
ductions are pruned.

Because of the large size of the training set,
we observed that one epoch of VP training is
su�cient to reach a steady state validation set
accuracy. For the RNN, we used early stopping
based on 1, 000 validation sentences from section
24 of WSJ. We found that on the order of 105 sen-
tence presentations are typically needed to com-
plete the training procedure.

The results of the comparison are shown in Ta-
ble 1, where the error measure is based on the L1

loss of Eq. (8) which counts the number of forests
where the best element is not ranked �rst. In
most of classes of POS tags and in most of train-
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Table 1
VP and RNN learning curves in the �rst pass attachment prediction task using modularization in 10 POS
tag categories.

POS Noun Verb Prep Article Punc Adjective Adverb Conj Poss Other Total
Size % 33.0 13.4 12.6 12.5 11.7 7.5 4.3 2.3 2.0 0.7 100

VP after 1 Epoch
100 12.4 12.6 47.6 26.5 50.9 24.2 65.8 46.3 7.5 64.9 27.3
500 8.4 8.9 42.3 17.4 39.0 18.2 58.8 38.7 6.5 54.7 21.3

2,000 7.1 6.8 38.1 14.2 33.3 14.7 55.7 31.9 5.4 34.6 18.3
10,000 5.5 5.1 34.5 11.1 25.7 12.1 51.0 28.1 4.4 25.8 15.3
40,000 4.4 3.9 31.6 9.6 22.5 11.0 46.4 25.0 2.9 21.8 13.4

RNN
100 11.4 17.9 43.6 30.4 36.6 23.0 65.2 39.2 40.0 89.0 26.6
500 8.2 9.1 38.2 14.8 31.8 16.4 54.9 40.4 10.2 48.3 19.4

2,000 8.5 6.0 37.7 12.3 25.7 16.8 48.1 31.5 5.9 34.5 17.3
10,000 5.9 5.1 35.8 10.6 21.0 13.0 43.9 23.2 2.5 22.3 14.5
40,000 4.3 3.2 32.5 9.0 19.2 10.5 40.6 21.3 2.9 31.4 12.6

ing set sizes, the RNN outperforms the VP. If
the specialized classi�ers are combined with their
weights to obtain an overall measure not grouped
for classes of POS tag, we see the RNN exhibits
about 1% better prediction accuracy on average
with respect to VP and no evidence is found for
the superiority kernel VP when trained on a small
data set.

In order to better assess the behavior on small
data sets, we carried out a more robust experi-
ment training the RNN and the VP on 5 inde-
pendent subsets of 100 sentences each, randomly
chosen from WSJ sections 2�21. In this case we
used the tree reduction heuristic but not the spe-
cialization heuristic. Model parameters were kept
identical to the previous experiment. Results are
reported in Table 2 and con�rm the hypothesis
that the RNN outperforms kernel VP even in
regime of scarce data available for training.

Table 2
VP and RNN in the �rst pass attachment predic-
tion task: 5 independent subsets of 100 sentences.
Subset 1 2 3 4 5 Average
VP 26.4 26.3 26.5 26.8 27.4 26.7±0.4
RNN 26.7 24.6 26.3 27.0 25.6 26.0±1.0

In addition, kernel VP has the drawback of high
computational costs: training over 5 subsets of
100 sentences takes about a week on a 2 GHz
CPU and moreover VP does not scale linearly

with the number of examples as the RNN does.
For small data sets, the CPU time of kernel VP
is about the CPU time of RNN, while for larger
data sets the elaboration time is much higher: in
the �rst experiments, VP took over 2 months to
complete an epoch but RNN learns in 1�2 epoch
(about 3 days with a 2 GHz CPU). This high
computational cost has forced us to train the VP
for only one epoch in the full experiment with all
the 40,000 sentences. An advantage of the ker-
nel VP is its smoothness with respect to train-
ing iterations, i.e. validating the performance on
a working set yields a smooth, single-maximum
function. In contrast the RNN is much more sen-
sitive, making it hard to decide for a good gener-
alization point.

6.3.2. Reranking Task
The data set used in this experiment is the

same described in [8]. There are 30 alternatives
on average for each sentence and so the task is
computationally less intensive. We do not use
the two heuristics, because they are not applica-
ble in this case. The task is very di�cult, because
the statical parser employed is a very good parser
and all the trees output by the parser have an high
similarity score with the gold tree. To obtain a
better performance of kernel VP and RNN with
respect to the statistical parser, we incorporate
the probability from the parser in our models. In
the case of VP, the new tree kernel is composed
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by two parts

Kλ,β(x1,x2) = Kλ(x1,x2) +
+ β log p(x1) log p(x2) (17)

where Kλ(x1,x2) is the kernel de�ned in Eq. (3),
p(x) is the probability of the parser and β ≥
0 controls the relative contribution of the two
terms. The parameters λ and β are set to 0.3
and 0.2 respectively through tuning on the vali-
dation set.

For the RNN, a rescaling of the parser proba-
bility a log p(x) + b is used as an additional input
to the output network for appropriate values a
and b. Some parameters of RNN are: state vec-
tor size has been �xed to 25 units, a learning rate
η = 0.0001 and a momentum α = 0.5, weight ini-
tialization with random weights in [−0.01,+0.01]
and maximum node outdegree set to 15. The
number of iterations needed to reach an error
minimum on validation set is 1820.

The standard parseval measures outlined above
are used to assess the performance of predictors.
Results for a sentence length less equal then forty
(simple sentences) and for all the sentences are
reported in Table 3. In this task, the performance
of two methods is mostly the same.

Table 3
VP and RNN in the reranking task.

≤ 40 Words (2245 sentences)
Model LR LP CBs 0 CBs 2 CBs
VP 89.1 89.4 0.85 69.3 88.2
RNN 89.2 89.5 0.84 67.9 88.4

≤ 100 Words (2416 sentences)
Model LR LP CBs 0 CBs 2 CBs
VP 88.6 88.9 0.99 66.5 86.3
RNN 88.6 88.9 0.98 64.8 86.3

6.3.3. The Role of Representation
To compare the vector representations of trees

φ(x) induced by the tree kernel and Φ(x) adap-
tively computed by the RNN (see Eq. (6)), we
trained a VP using a linear kernel on the set of
vectors Φ(xi) obtained from the trained RNN. In
this way, the tree kernel representation is replaced
by the RNN adaptive representation and so the

two methods can be compared with the same rep-
resentation. Results are reported in Table 4 and
show once again the superiority of RNNs with
respect to VP. Since the two algorithms are com-
pared with an equal representation, the di�erent
performance is due to the preference loss function,
because the VP algorithm and the RNN output
network have almost the same behavior. We ar-
gue that the problem is the pairwise loss function
that does not take into consideration all the al-
ternatives together.

Table 4
VP on RNN State in the �rst pass attachment
prediction task: 5 independent subsets of 100 sen-
tences.
Subset VP on RNN State VP

1 27.8 26.4
2 25.6 26.3
3 27.2 26.5
4 28.4 26.8
5 26.4 27.4

Average 27.1±1.1 26.7±0.4

To better understand the adaptive representa-
tion generated by RNN, we have applied the PCA
to the state vector representations of trees for the
incremental task. Projecting the state vector on
a two dimensional space, we observe that the el-
ements of a set of alternatives tend to stay in a
mainfold of IR2 and that the best element is the
most right element of the set (if the RNN has
correctly classi�ed it). In Figure 2, we report a
set of alternatives with its best element plotted
as a cross. The experiments reported in the next
section further investigate the role played by the
loss function.

6.3.4. Comparing Alternative Preference
Loss Functions

To investigate the role of the loss function, we
have compared the setwise Lr in Eq. (8) and the
pairwise L′ in Eq. (13) loss functions using as
evaluation measure the errors in Eq. (14) and in
Eq. (15) in the incremental task. Results are re-
ported in Table 5 for the 5 subsets of 100 sen-
tences. The �rst two columns show if the train-
ing and the testing refer to a pairwise loss func-
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Figure 2. PCA on RNN state vectors of a forest.
Table 5
Comparison between di�erent loss functions and
evaluation measures.
Train Test RNN VP
P P 1.79±0.12 2.32 ± 0.09
P S 29.1±1.8 26.7 ± 0.4
S P 1.50±0.20 NA
S S 26.0±1.0 NA

tion (P) or a setwise loss function (S) and the
others report the results of the two algorithms.
We see that for the RNN the pairwise loss func-
tion shows worst performance with respect to the
setwise loss function on both the evaluation mea-
sures. No setwise loss function for the VP has
been proposed so far. When using the pairwise
loss function, the VP performance measured on
forests is better than RNN. We argue that a set-
wise loss function for kernel methods could im-
prove the performance.

7. Conclusions

The experimental analysis presented above
shows that both RNNs and the kernel VP are
e�ective to solve the investigated problems. In
particular, the adaptive representation developed
by the RNN allows a simple linear utility function
to solve the preference problem.

The experiments indicate that the choice of a
pairwise vs. global loss function plays an import
role. In particular, it appears that the pairwise

loss is not well suited to train an RNN and it re-
mains to be investigated if this is also the case for
kernel methods. Interesting, previous works with
kernels [18,19,3] focus exclusively on pairwise loss
functions. The development of global loss func-
tion for preference tasks may lead to more e�ec-
tive solutions.
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